245 research outputs found

    Patient Safety and Quality: An Evidence-Based Handbook for Nurses

    Get PDF
    Compiles peer-reviewed research and literature reviews on issues regarding patient safety and quality of care, ranging from evidence-based practice, patient-centered care, and nurses' working conditions to critical opportunities and tools for improvement

    Medication safety in intravenous drug administration : error causes and systemic defenses in hospital setting

    Get PDF
    Intravenous administration of drugs is associated with the highest medication error frequencies and more serious consequences to the patient than any other administration route. The bioavailability of intravenously administered medication is high, the therapeutic dose range is often narrow, and effects are hard to undo. Many intravenously administered drugs are high-alert medications, bearing a heightened risk of causing significant patient harm if used in error. Smart infusion pumps with dose error-reduction software can be used to prevent harmful medication errors in high-risk clinical settings, such as neonatal intensive care units. This study investigated intravenous medication safety in hospital settings by identifying recent research evidence related to systemic causes of medication errors (Study I) and systemic defenses to prevent these errors (Study II). The study also explored the development of dose-error reduction software in a neonatal intensive care unit (Study III). A systems approach to medication risk management based on the Theory of Human Error was applied as a theoretical framework. The study was conducted in two phases. In the first phase, a systematic review of recent research evidence on systemic causes of intravenous medication errors (Study I) and systemic defenses aiming to prevent these errors (Study II) was carried out. In Study I, 11 studies from six countries were included in the analysis. Systemic causes related to prescribing (n=6 studies), preparation (n=6), administration (n=6), dispensing and storage (n=5) and treatment monitoring (n=2) were identified. Insufficient actions to secure safe use of high-alert medications, lack of knowledge of the drug, failures in calculation tasks and in double-checking procedures, and confusion between look-alike, sound-alike medications were the leading causes of intravenous medication errors. The number of the included studies was limited, all of them being observational studies and graded as low quality. In Study II, 46 studies from 11 countries were included in the analysis. Systemic defenses related to administration (n=24 studies), prescribing (n=8), preparation (n=6), treatment monitoring (n=2), and dispensing (n=1) were identified. In addition, five studies explored defenses related to multiple stages of the medication use process. Defenses including features of closed-loop medication management systems appeared in 61% of the studies, smart pumps being the defense most widely studied (24%). The evidence quality of the included articles was limited, as 83% were graded as low quality, 13% moderate quality, and only 4% high quality. A mixed-methods study was conducted in the second phase, applying qualitative and quantitative methods (Study III). Medication error reports were used to develop simulation-type test cases to assess the suitability of dosing limits in a neonatal intensive care unit’s smart infusion pump drug library. Of all medication errors reported in the neonatal intensive care unit, 3.5% (n=21/601) involved an error or near-miss related to wrong infusion rate. Based on the identified error mechanisms, 2-, 5-, and 10-fold infusion rates and mix-ups between infusion rates of different drugs were established as test cases. When conducting the pump programming for the test cases (n=226), no alerts were triggered with infusion rates responding to the usual dosages (n=32). Of the erroneous 2-, 5-, and 10-fold infusion rates, 73% (n = 70/96) caused an alert. Mix-ups between infusion rates triggered an alert only in 24% (n=24/98) of the test cases. This study provided an overview of recent research evidence related to intravenous medication safety in hospital settings. Current intravenous medication systems remain vulnerable, which can result in patient harm. While in-hospital intravenous medication use processes are developing towards closed-loop medication management systems, combinations of different defenses and their effectiveness in error prevention should be explored. In addition to improved medication safety, implementing new systemic defenses leads to new error types, emphasizing the importance of continuous proactive risk management as an essential part of clinical practice.Laskimonsisäiseen lääkkeen annosteluun liittyy merkittävä lääkityspoikkeamien ja vakavien haittatapahtumien riski. Sairaaloissa käytetään useita laskimoon annosteltavia suuren riskin lääkkeitä, joiden virheellinen käyttö johtaa muita lääkkeitä todennäköisemmin vakaviin haittoihin. Tässä tutkimuksessa tunnistettiin järjestelmällisen kirjallisuuskatsauksen perusteella lääkityspoikkeamien järjestelmälähtöisiä syitä (osatyö I) sekä lääkehoitoprosessin suojauksia (osatyö II). Lisäksi tutkittiin älyinfuusiopumppujen käyttöönottoa vastasyntyneiden teho-osastolla. Teoreettisena viitekehyksenä käytettiin inhimillisen erehdyksen teoriaa ja järjestelmänäkökulmaa lääkehoitoprosessin riskien hallinnassa. Osatyön I aineistosta (n=11 tutkimusta) tunnistettiin lääkityspoikkeamien syntyyn vaikuttavia järjestelmälähtöisiä syitä, jotka liittyivät lääkehoidon määräämiseen (n=6), käyttökuntoon saattoon (n=6), antoon (n=6), jakeluun ja varastointiin (n=5) sekä seurantaan (n=2). Yleisimpiä syitä olivat riittämättömät toimenpiteet suuren riskin lääkkeiden turvallisen käytön varmistamisessa, ammattilaisten heikot tiedot lääkkeistä, virheet laskutoimituksissa ja kaksoistarkistuksissa sekä toisiltaan näyttävien ja kuulostavien lääkkeiden sekaantuminen keskenään. Osatyön II aineistossa (n=46 tutkimusta) kuvattiin lääkehoitoprosessin suojauksia, jotka liittyivät lääkkeiden annosteluun (n=24), määräämiseen (n=8), käyttökuntoon saattoon (n=6), hoidon seurantaan (n=2) ja jakeluun (n=1). Lisäksi viidessä tutkimuksessa kuvattiin useaan lääkehoitoprosessin vaiheeseen liittyviä suojauksia. Katkeamattoman lääkehoitoprosessin piirteitä tunnistettiin 61 prosentissa tutkimuksista ja älyinfuusiopumput olivat eniten tutkittu suojaus (24 %). Osatyö III toteutettiin monimenetelmätutkimuksena. Vastasyntyneiden teho-osastolla raportoitujen lääkityspoikkeamien pohjalta kehitettiin simulaatiotyyppisiä testitapauksia, joilla arvioitiin annosrajojen sopivuutta älyinfuusiopumppujen lääkekirjastoon. Lääkityspoikkeamista 3,5 % (n=21/601) liittyi väärään infuusionopeuteen ja niiden perusteella testitapauksiksi määritettiin 2-, 5- ja 10-kertaiset infuusionopeudet sekä eri lääkkeiden antonopeuksien sekaantuminen keskenään. Testitapauksissa (n=226) infuusiopumput eivät hälyttäneet tavanomaisia nopeuksia ohjelmoitaessa (n=32), mutta virheellisistä infuusionopeuksista 73 % (n=70/96) aiheutti hälytyksen. Nopeuksien sekaantuminen keskenään laukaisi hälytyksen vain 24 %:ssa (n=24/98) testitapauksista. Sairaaloiden laskimonsisäinen lääkehoitoprosessi kehittyy kohti katkeamatonta lääkehoitoprosessia, mutta se on edelleen altis lääkityspoikkeamille. Kirjallisuuskatsauksiin sisällytettyjen tutkimusten laatu oli pääosin heikko, joten lääkityspoikkeamien riskitekijöitä ja suojauksia tulee edelleen tutkia yhä laadukkaammissa tutkimusasetelmissa. Uusien suojausten käyttöönotto muuttaa myös riskikohtia, mikä korostaa ennakoivan riskienhallinnan merkitystä osana sairaaloiden toimintaa

    Clinical decision support systems in the care of hospitalised patients with diabetes

    Get PDF
    This thesis explored the role of health informatics (decision support systems) in caring for hospitalised patients with diabetes through a systematic review and by analysing data from University Hospital Birmingham, UK. Findings from the thesis: 1) highlight the potential role of computerised physician order entry system in improving guideline based anti-diabetic medication prescription in particular insulin prescription, and their effectiveness in contributing to better glycaemic control; 2) quantify the occurrence of missed discharge diagnostic codes for diabetes using electronic prescription data and suggests 60% of this could be potentially reduced using an algorithm that could be introduced as part of the information system; 3) found that hypoglycaemia and foot disease in hospitalised diabetes patients were independently associated with higher in-hospital mortality rates and longer length of stay; 4) quantify the hypoglycaemia rates in non-diabetic patients and proposes one method of establishing a surveillance system to identify non diabetic hypoglycaemic patients; and 5) introduces a prediction model that may be useful to identify patients with diabetes at risk of poor clinical outcomes during their hospital stay

    An investigation of healthcare professionals’ experiences of training and using electronic prescribing systems: four literature reviews and two qualitative studies undertaken in the UK hospital context

    Get PDF
    Electronic prescribing (ePrescribing) is the process of ordering medicines electronically for a patient and has been associated with reduced medication errors and improved patient safety. However, these systems have also been associated with unintended adverse consequences. There is a lack of published research about users’ experiences of these systems in UK hospitals. The aim of this research was therefore to firstly describe the literature pertaining to the recent developments and persisting issues with ePrescribing and clinical decision support systems (CDS) (chapter 2). Two further systematic literature reviews (chapters 3 and 4) were then conducted to understand the unintended consequences of ePrescribing and clinical decision support (CDS) systems across both adult and paediatric patients. These revealed a taxonomy of factors, which have contributed to errors during use of these systems e.g., the screen layout, default settings and inappropriate drug-dosage support. The researcher then conducted a qualitative study (chapters 7-10) to explore users’ experiences of using and being trained to use ePrescribing systems. This study involved conducting semi-structured interviews and observations, which revealed key challenges facing users, including issues with using the ‘Medication List’ and how information was presented. Users experienced benefits and challenges when customising the system, including the screen display; however, the process was sometimes overly complex. Users also described the benefits and challenges associated with different forms of interruptive and passive CDS. Order sets, for instance, encouraged more efficient prescribing, yet users often found them difficult to find within the system. A lack of training resulted in users failing to use all features of the ePrescribing system and left some healthcare staff feeling underprepared for using the system in their role. A further literature review (chapter 5) was then performed to complement emerging themes relating to how users were trained to use ePrescribing systems, which were generated as part of a qualitative study. This review revealed the range of approaches used to train users and the need for further research in this area. The literature review and qualitative study-based findings led to a follow-on study (chapter 10), whereby the researcher conducted semi-structured interviews to examine how users were trained to use ePrescribing systems across four NHS Hospital Trusts. A range of approaches were used to train users; tailored training, using clinically specific scenarios or matching the user’s profession to that of the trainer were preferred over lectures and e-learning may offer an efficient way of training large numbers of staff. However, further research is needed to investigate this and whether alternative approaches such as the use of students as trainers could be useful. This programme of work revealed the importance of human factors and user involvement in the design and ongoing development of ePrescribing systems. Training also played a role in users’ experiences of using the system and hospitals should carefully consider the training approaches used. This thesis provides recommendations gathered from the literature and primary data collection that can help inform organisations, system developers and further research in this area

    Human Resource Strategies for Improving Organizational Performance to Reduce Medical Errors

    Get PDF
    Preventable medical errors are the third leading cause of death in the United States. Healthcare leaders must consistently promote the delivery of quality and safe care of patients to reduce unnecessary errors and prevent harm. The purpose of this case study was to explore human resource strategies for improving organizational performance to reduce medical errors. The study included face-to-face interviews with 5 healthcare clinical managers who work within a multifaceted health system in the Midwestern region of the United States. Complex adaptive systems theory was used to frame this study. Interview notes, publicly available documents, and audio recordings were transcribed and analyzed to identify themes regarding strategies used by managers to find effective ways for improvement. Four themes emerged: addressing seminal/never events, ongoing training programs, communication/collaboration, and promoting a culture of safety and quality. Results may directly benefit healthcare managers by facilitating successful strategies to reduce preventable medical errors through education, feedback, innovation, and leadership. Implications for social change for healthcare managers include continued training, building a culture of safety, and using collaborative and communicative efforts while making contributions to the best practices within healthcare organizations to reduce the likelihood of medical errors

    Organizing the U.S. Health Care Delivery System for High Performance

    Get PDF
    Analyzes the fragmentation of the healthcare delivery system and makes policy recommendations -- including payment reform, regulatory changes, and infrastructure -- for creating mechanisms to coordinate care across providers and settings

    System-related errors associated with the long-term use of electronic medication management

    Get PDF
    Background: Electronic medication management (EMM) systems can facilitate system-related errors; errors that were less likely with the use of paper-based medication charts. Little is known about the types of system-related errors that persist or emerge with routine system use. This thesis aimed to identify and classify long-term system-related errors, determine contributing factors and compare errors over time. Methods: Research was conducted at three hospitals with the same EMM system in place for different durations. A narrative review was followed by mixed methods research, including an analysis of EMM-related incident reports, interviews with stakeholders and a review of documents detailing EMM system enhancements at the three sites. Long-term system-related errors were examined in terms of error types, contributing factors, consequences, and strategies for detection and mitigation. Analysis of each data source considered the element of time since EMM system implementation. Results: System-related errors were found to persist with long-term EMM system use. Factors related to the EMM system design, user and organisation contributed to system-related errors in varying degrees over time, however certain factors were consistently associated with errors. System-related errors resulted in medication errors, but also impacted the user, and documentation within the EMM system. Detection of system-related errors relied heavily on clinicians, while mitigation strategies targeted the EMM system and the context in which the system was used. Conclusion: This program of research highlighted how system-related errors develop over time. The findings emphasise that system-related errors result from a combination of different factors, and therefore mitigation strategies should be multilayered. Future research should investigate the effectiveness of interventions aimed at minimising system-related errors, particularly as EMM systems are increasingly implemented and improved

    Association of Electronic Health Records with Methicillin-Resistant Staphylococcus aureus Infection in a National Sample

    Get PDF
    This study examined the relationship between advanced electronic health record (EHR) use in hospitals and rates of Methicillin-resistant Staphylococcus aureus (MRSA) infection in an inpatient setting. National Inpatient Sample (NIS) and Health Information Management Systems Society (HIMSS) Annual Survey are combined in the retrospective, cross-sectional analysis. A twenty percent simple random sample of the combined 2009 NIS and HIMSS datasets included a total of 1,032,905 patient cases of MRSA in 550 hospitals. Results of the propensity-adjusted logistic regression model revealed a statistically significant association between advanced EHR and MRSA, with patient cases from an advanced EHR being less likely to report a MRSA diagnosis code

    Reducing medication errors for adults in hospital settings

    Get PDF
    Adulto; Errores de medicación; FarmacéuticosAdult; Medication errors; PharmacistsAdult; Errors de medicació; FarmacèuticsBackground: Medication errors are preventable events that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the healthcare professional or patient. Medication errors in hospitalised adults may cause harm, additional costs, and even death. Objectives: To determine the effectiveness of interventions to reduce medication errors in adults in hospital settings

    Reducing medication errors for adults in hospital settings

    Get PDF
    Background: Medication errors are preventable events that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the healthcare professional or patient. Medication errors in hospitalised adults may cause harm, additional costs, and even death. Objectives: To determine the effectiveness of interventions to reduce medication errors in adults in hospital settings. Search methods: We searched CENTRAL, MEDLINE, Embase, five other databases and two trials registers on 16 January 2020. Selection criteria: We included randomised controlled trials (RCTs) and interrupted time series (ITS) studies investigating interventions aimed at reducing medication errors in hospitalised adults, compared with usual care or other interventions. Outcome measures included adverse drug events (ADEs), potential ADEs, preventable ADEs, medication errors, mortality, morbidity, length of stay, quality of life and identified/solved discrepancies. We included any hospital setting, such as inpatient care units, outpatient care settings, and accident and emergency departments. Data collection and analysis: We followed the standard methodological procedures expected by Cochrane and the Effective Practice and Organisation of Care (EPOC) Group. Where necessary, we extracted and reanalysed ITS study data using piecewise linear regression, corrected for autocorrelation and seasonality, where possible. Main results: We included 65 studies: 51 RCTs and 14 ITS studies, involving 110,875 participants. About half of trials gave rise to 'some concerns' for risk of bias during the randomisation process and one-third lacked blinding of outcome assessment. Most ITS studies presented low risk of bias. Most studies came from high-income countries or high-resource settings. Medication reconciliation –the process of comparing a patient's medication orders to the medications that the patient has been taking– was the most common type of intervention studied. Electronic prescribing systems, barcoding for correct administering of medications, organisational changes, feedback on medication errors, education of professionals and improved medication dispensing systems were other interventions studied. Medication reconciliation. Low-certainty evidence suggests that medication reconciliation (MR) versus no-MR may reduce medication errors (odds ratio [OR] 0.55, 95% confidence interval (CI) 0.17 to 1.74; 3 studies; n=379). Compared to no-MR, MR probably reduces ADEs (OR 0.38, 95%CI 0.18 to 0.80; 3 studies, n=1336; moderate-certainty evidence), but has little to no effect on length of stay (mean difference (MD) -0.30 days, 95%CI -1.93 to 1.33 days; 3 studies, n=527) and quality of life (MD -1.51, 95%CI -10.04 to 7.02; 1 study, n=131). Low-certainty evidence suggests that, compared to MR by other professionals, MR by pharmacists may reduce medication errors (OR 0.21, 95%CI 0.09 to 0.48; 8 studies, n=2648) and may increase ADEs (OR 1.34, 95%CI 0.73 to 2.44; 3 studies, n=2873). Compared to MR by other professionals, MR by pharmacists may have little to no effect on length of stay (MD -0.25, 95%CI -1.05 to 0.56; 6 studies, 3983). Moderate-certainty evidence shows that this intervention probably has little to no effect on mortality during hospitalisation (risk ratio (RR) 0.99, 95%CI 0.57 to 1.7; 2 studies, n=1000), and on readmissions at one month (RR 0.93, 95%CI 0.76 to 1.14; 2 studies, n=997); and low-certainty evidence suggests that the intervention may have little to no effect on quality of life (MD 0.00, 95%CI -14.09 to 14.09; 1 study, n=724). Low-certainty evidence suggests that database-assisted MR conducted by pharmacists, versus unassisted MR conducted by pharmacists, may reduce potential ADEs (OR 0.26, 95%CI 0.10 to 0.64; 2 studies, n=3326), and may have no effect on length of stay (MD 1.00, 95%CI -0.17 to 2.17; 1 study, n=311). Low-certainty evidence suggests that MR performed by trained pharmacist technicians, versus pharmacists, may have little to no difference on length of stay (MD -0.30, 95%CI -2.12 to 1.52; 1 study, n=183). However, the CI is compatible with important beneficial and detrimental effects. Low-certainty evidence suggests that MR before admission may increase the identification of discrepancies compared with MR after admission (MD 1.27, 95%CI 0.46 to 2.08; 1 study, n=307). However, the CI is compatible with important beneficial and detrimental effects. Moderate-certainty evidence shows that multimodal interventions probably increase discrepancy resolutions compared to usual care (RR 2.14, 95%CI 1.81 to 2.53; 1 study, n=487). Computerised physician order entry (CPOE)/clinical decision support systems (CDSS). Moderate-certainty evidence shows that CPOE/CDSS probably reduce medication errors compared to paper-based systems (OR 0.74, 95%CI 0.31 to 1.79; 2 studies, n=88). Moderate-certainty evidence shows that, compared with standard CPOE/CDSS, improved CPOE/CDSS probably reduce medication errors (OR 0.85, 95%CI 0.74 to 0.97; 2 studies, n=630). Low-certainty evidence suggests that prioritised alerts provided by CPOE/CDSS may prevent ADEs compared to non-prioritised (inconsequential) alerts (MD 1.98, 95%CI 1.65 to 2.31; 1 study; participant numbers unavailable). Barcode identification of participants/medications. Low-certainty evidence suggests that barcoding may reduce medication errors (OR 0.69, 95%CI 0.59 to 0.79; 2 studies, n=50,545). Reduced working hours. Low-certainty evidence suggests that reduced working hours may reduce serious medication errors (RR 0.83, 95%CI 0.63 to 1.09; 1 study, n=634). However, the CI is compatible with important beneficial and detrimental effects. Feedback on prescribing errors. Low-certainty evidence suggests that feedback on prescribing errors may reduce medication errors (OR 0.47, 95%CI 0.33 to 0.67; 4 studies, n=384). Dispensing system. Low-certainty evidence suggests that dispensing systems in surgical wards may reduce medication errors (OR 0.61, 95%CI 0.47 to 0.79; 2 studies, n=1775). Authors' conclusions: Low- to moderate-certainty evidence suggests that, compared to usual care, medication reconciliation, CPOE/CDSS, barcoding, feedback and dispensing systems in surgical wards may reduce medication errors and ADEs. However, the results are imprecise for some outcomes related to medication reconciliation and CPOE/CDSS. The evidence for other interventions is very uncertain. Powered and methodologically sound studies are needed to address the identified evidence gaps. Innovative, synergistic strategies –including those that involve patients– should also be evaluated.Fil: Ciapponi, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Fernandez Nievas, Simon E. No especifíca;Fil: Seijo, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Rodriguez, Maria Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Vietto, Valeria. Instituto Universidad Escuela de Medicina del Hospital Italiano; ArgentinaFil: García Perdomo, Herney A.. Universidad del Valle; ColombiaFil: Virgilio, Sacha. No especifíca;Fil: Fajreldines, Ana V.. Universidad Austral; ArgentinaFil: Tost, Josep. No especifíca;Fil: Rose, Christopher J.. No especifíca;Fil: Garcia Elorrio, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentin
    corecore