173,763 research outputs found

    Science teachers' transformations of the use of computer modeling in the classroom: using research to inform training

    Get PDF
    This paper, from the UK group in the STTIS (Science Teacher Training in an Information Society) project, describes research into the nature of teachers' transformations of computer modeling, and the development of related teacher training materials. Eight teacher case studies help to identify factors that favor or hinder the take-up of innovative computer tools in science classes, and to show how teachers incorporate these tools in the curriculum. The training materials use the results to provide activities enabling teachers to learn about the tools and about the outcomes of the research into their implementation, and help them to take account of these ideas in their own implementation of the innovations

    On the narrative form of simulations.

    Get PDF
    Understanding complex physical systems through the use of simulations often takes on a narrative character. That is, scientists using simulations seek an understanding of processes occurring in time by generating them from a dynamic model, thereby producing something like a historical narrative. This paper focuses on simulations of the Diels-Alder reaction, which is widely used in organic chemistry. It calls on several well-known works on historical narrative to draw out the ways in which use of these simulations mirrors aspects of narrative understanding: Gallie for "followability" and "contingency"; Mink for "synoptic judgment"; Ricoeur for "temporal dialectic"; and Hawthorn for a related dialectic of the "actual and the possible". Through these reflections on narrative, the paper aims for a better grasp of the role that temporal development sometimes plays in understanding physical processes and of how considerations of possibility enhance that understanding

    The Logic of the Method of Agent-Based Simulation in the Social Sciences: Empirical and Intentional Adequacy of Computer Programs

    Get PDF
    The classical theory of computation does not represent an adequate model of reality for simulation in the social sciences. The aim of this paper is to construct a methodological perspective that is able to conciliate the formal and empirical logic of program verification in computer science, with the interpretative and multiparadigmatic logic of the social sciences. We attempt to evaluate whether social simulation implies an additional perspective about the way one can understand the concepts of program and computation. We demonstrate that the logic of social simulation implies at least two distinct types of program verifications that reflect an epistemological distinction in the kind of knowledge one can have about programs. Computer programs seem to possess a causal capability (Fetzer, 1999) and an intentional capability that scientific theories seem not to possess. This distinction is associated with two types of program verification, which we call empirical and intentional verification. We demonstrate, by this means, that computational phenomena are also intentional phenomena, and that such is particularly manifest in agent-based social simulation. Ascertaining the credibility of results in social simulation requires a focus on the identification of a new category of knowledge we can have about computer programs. This knowledge should be considered an outcome of an experimental exercise, albeit not empirical, acquired within a context of limited consensus. The perspective of intentional computation seems to be the only one possible to reflect the multiparadigmatic character of social science in terms of agent-based computational social science. We contribute, additionally, to the clarification of several questions that are found in the methodological perspectives of the discipline, such as the computational nature, the logic of program scalability, and the multiparadigmatic character of agent-based simulation in the social sciences.Computer and Social Sciences, Agent-Based Simulation, Intentional Computation, Program Verification, Intentional Verification, Scientific Knowledge

    Development and Evaluation of a Tutorial to Improve Students' Understanding of a Lock-in amplifier

    Full text link
    A lock-in amplifier is a versatile instrument frequently used in physics research. However, many students struggle with the basic operating principles of a lock-in amplifier which can lead to a variety of difficulties. To improve students' understanding, we have been developing and evaluating a research-based tutorial which makes use of a computer simulation of a lock-in amplifier. The tutorial is based on a field-tested approach in which students realize their difficulties after predicting the outcome of simulated experiments involving a lock-in amplifier and check their predictions using the simulated lock-in amplifier. Then, the tutorial provides guidance and strives to help students develop a coherent understanding of the basics of a lock-in amplifier. The tutorial development involved interviews with physics faculty members and graduate students and iteration of many versions of the tutorial with professors and graduate students. The student difficulties with lock-in amplifiers and the development and assessment of the research-based tutorial to help students develop a functional understanding of this device are discussed.Comment: Currently under review for Phys Rev ST PER. arXiv admin note: text overlap with arXiv:1601.0128

    Soft thought (in architecture and choreography)

    Get PDF
    This article is an introduction to and exploration of the concept of ‘soft thought’. What we want to propose through the definition of this concept is an aesthetic of digital code that does not necessarily presuppose a relation with the generative aspects of coding, nor with its sensorial perception and evaluation. Numbers do not have to produce something, and do not need to be transduced into colours and sounds, in order to be considered as aesthetic objects. Starting from this assumption, our main aim will be to reconnect the numerical aesthetic of code with a more ‘abstract’ kind of feeling, the feeling of numbers indirectly felt as conceptual contagions’, that are ‘conceptually felt but not directly sensed. The following pages will be dedicated to the explication and exemplification of this particular mode of feeling, and to its possible definition as ‘soft thought’

    The view from elsewhere: perspectives on ALife Modeling

    Get PDF
    Many artificial life researchers stress the interdisciplinary character of the field. Against such a backdrop, this report reviews and discusses artificial life, as it is depicted in, and as it interfaces with, adjacent disciplines (in particular, philosophy, biology, and linguistics), and in the light of a specific historical example of interdisciplinary research (namely cybernetics) with which artificial life shares many features. This report grew out of a workshop held at the Sixth European Conference on Artificial Life in Prague and features individual contributions from the workshop's eight speakers, plus a section designed to reflect the debates that took place during the workshop's discussion sessions. The major theme that emerged during these sessions was the identity and status of artificial life as a scientific endeavor

    Embodiment and embodied design

    Get PDF
    Picture this. A preverbal infant straddles the center of a seesaw. She gently tilts her weight back and forth from one side to the other, sensing as each side tips downward and then back up again. This child cannot articulate her observations in simple words, let alone in scientific jargon. Can she learn anything from this experience? If so, what is she learning, and what role might such learning play in her future interactions in the world? Of course, this is a nonverbal bodily experience, and any learning that occurs must be bodily, physical learning. But does this nonverbal bodily experience have anything to do with the sort of learning that takes place in schools - learning verbal and abstract concepts? In this chapter, we argue that the body has everything to do with learning, even learning of abstract concepts. Take mathematics, for example. Mathematical practice is thought to be about producing and manipulating arbitrary symbolic inscriptions that bear abstract, universal truisms untainted by human corporeality. Mathematics is thought to epitomize our species’ collective historical achievement of transcending and, perhaps, escaping the mundane, material condition of having a body governed by haphazard terrestrial circumstance. Surely mathematics is disembodied

    The Relativity of Existence

    Full text link
    Despite the success of modern physics in formulating mathematical theories that can predict the outcome of experiments, we have made remarkably little progress towards answering the most fundamental question of: why is there a universe at all, as opposed to nothingness? In this paper, it is shown that this seemingly mind-boggling question has a simple logical answer if we accept that existence in the universe is nothing more than mathematical existence relative to the axioms of our universe. This premise is not baseless; it is shown here that there are indeed several independent strong logical arguments for why we should believe that mathematical existence is the only kind of existence. Moreover, it is shown that, under this premise, the answers to many other puzzling questions about our universe come almost immediately. Among these questions are: why is the universe apparently fine-tuned to be able to support life? Why are the laws of physics so elegant? Why do we have three dimensions of space and one of time, with approximate locality and causality at macroscopic scales? How can the universe be non-local and non-causal at the quantum scale? How can the laws of quantum mechanics rely on true randomness

    Thought Experiments in Biology

    Get PDF
    Unlike in physics, the category of thought experiment is not very common in biology. At least there are no classic examples that are as important and as well-known as the most famous thought experiments in physics, such as Galileo’s, Maxwell’s or Einstein’s. The reasons for this are far from obvious; maybe it has to do with the fact that modern biology for the most part sees itself as a thoroughly empirical discipline that engages either in real natural history or in experimenting on real organisms rather than fictive ones. While theoretical biology does exist and is recognized as part of biology, its role within biology appears to be more marginal than the role of theoretical physics within physics. It could be that this marginality of theory also affects thought experiments as sources of theoretical knowledge. Of course, none of this provides a sufficient reason for thinking that thought experiments are really unimportant in biology. It is quite possible that the common perception of this matter is wrong and that there are important theoretical considerations in biology, past or present, that deserve the title of thought experiment just as much as the standard examples from physics. Some such considerations may even be widely known and considered to be important, but were not recognized as thought experiments. In fact, as we shall see, there are reasons for thinking that what is arguably the single most important biological work ever, Charles Darwin’s On the Origin of Species, contains a number of thought experiments. There are also more recent examples both in evolutionary and non-evolutionary biology, as we will show. Part of the problem in identifying positive examples in the history of biology is the lack of agreement as to what exactly a thought experiment is. Even worse, there may not be more than a family resemblance that unifies this epistemic category. We take it that classical thought experiments show the following characteristics: They serve directly or indirectly in the non-empirical epistemic evaluation of theoretical propositions, explanations or hypotheses. Thought experiments somehow appeal to the imagination. They involve hypothetical scenarios, which may or may not be fictive. In other words, thought experiments suppose that certain states of affairs hold and then try to intuit what would happen in a world where these suppositions are true. We want to examine in the following sections if there are episodes in the history of biology that satisfy these criteria. As we will show, there are a few episodes that might satisfy all three of these criteria, and many more if the imagination criterion is dropped or understood in a lose sense. In any case, this criterion is somewhat vague in the first place, unless a specific account of the imagination is presupposed. There will also be issues as to what exactly “non-empirical” means. In general, for the sake of discussion we propose to understand the term “thought experiment” here in a broad rather than a narrow sense here. We would rather be guilty of having too wide a conception of thought experiment than of missing a whole range of really interesting examples
    corecore