66,638 research outputs found

    Soft Condensed Matter Physics

    Full text link
    Soft condensed matter physics is the study of materials, such as fluids, liquid crystals, polymers, colloids, and emulsions, that are ``soft" to the touch. This article will review some properties, such as the dominance of entropy, that are unique to soft materials and some properties such as the interplay between broken-symmetry, dynamic mode structure, and topological defects that are common to all condensed matter systems but which are most easily studied in soft systems.Comment: 11 Pages, RevTeX, 7 postscript figures. To appear in Solid State Communication

    Lorentz violation and Condensed Matter Physics

    Full text link
    We present heuristic arguments that hint to a possible connection of Lorentz violation with observed phenomenon in condensed matter physics. Various references from condensed matter literature are cited where operators in the Standard Model Extension appear to be enhanced. Furthermore, we consider the Levy-Leblond equation, which is the analogue of Dirac equation in non-relativistic quantum mechanics. We show that we can obtain the Levy-Leblond equation by adding enhanced Lorentz violating operators to the Dirac equation. Based on these observations, we propose that Lorentz violation exhibits itself in non-relativistic quantum mechanics.Comment: 11 pages, 1 Tabl

    Superfluid Helium 3: Link between Condensed Matter Physics and Particle Physics

    Full text link
    The discovery of the superfluid phases of Helium 3 in 1971 opened the door to one of the most fascinating systems known in condensed matter physics. Superfluidity of Helium 3, originating from pair condensation of Helium 3 atoms, turned out to be the ideal testground for many fundamental concepts of modern physics, such as macroscopic quantum phenomena, (gauge-)symmetries and their spontaneous breakdown, topological defects, etc. Thereby the superfluid phases of Helium 3 enriched condensed matter physics enormously. In particular, they contributed significantly - and continue to do so - to our understanding of various other physical systems, from heavy fermion and high-Tc superconductors all the way to neutron stars, particle physics, gravity and the early universe. A simple introduction into the basic concepts and questions is presented.Comment: 11 pages, 2 figures; to be published in Acta Physica Polonica B [Proceedings of the XL Jubilee Cracow School of Theoretical Physics on "Quantum Phase Transitions in High Energy and Condensed Matter Physics"; 3-11 June, 2000, Zakopane, Poland
    • …
    corecore