24 research outputs found

    Social Value Propagation for Supply Chain Formation

    Get PDF
    Supply Chain Formation is the process of determining the participants in a supply chain, who will exchange what with whom, and the terms of the exchanges. Decentralized supply chain formation appears as a highly intricate task because agents only possess local information, have limited knowledge about the capabilities of other agents, and prefer to preserve privacy. State-of-the-art decentralized supply chain formation approaches can either: (i) #12;find supply chains of high value at the expense of high resources usage; or (ii) fi#12;nd supply chains of low value with low resources usage. This work presents chainme, a novel decentralized supply chain formation algorithm. Our results show that chainme fi#12;nds supply chains with higher value than state-of-the-art decentralized algorithms whilst decreasing the amount of resources required from one up to four orders of magnitude.Peer Reviewe

    Strongly Budget Balanced Auctions for Multi-Sided Markets

    Full text link
    In two-sided markets, Myerson and Satterthwaite's impossibility theorem states that one can not maximize the gain-from-trade while also satisfying truthfulness, individual-rationality and no deficit. Attempts have been made to circumvent Myerson and Satterthwaite's result by attaining approximately-maximum gain-from-trade: the double-sided auctions of McAfee (1992) is truthful and has no deficit, and the one by Segal-Halevi et al. (2016) additionally has no surplus --- it is strongly-budget-balanced. They consider two categories of agents --- buyers and sellers, where each trade set is composed of a single buyer and a single seller. The practical complexity of applications such as supply chain require one to look beyond two-sided markets. Common requirements are for: buyers trading with multiple sellers of different or identical items, buyers trading with sellers through transporters and mediators, and sellers trading with multiple buyers. We attempt to address these settings. We generalize Segal-Halevi et al. (2016)'s strongly-budget-balanced double-sided auction setting to a multilateral market where each trade set is composed of any number of agent categories. Our generalization refines the notion of competition in multi-sided auctions by introducing the concepts of external competition and trade reduction. We also show an obviously-truthful implementation of our auction using multiple ascending prices.Comment: Preliminary version accepted to AAAI 2020. This version adds (1) External competition auction for arbitrary recipe vectors; (2) Obvious-truthfulness proof; (3) Simulation experiment

    Balanced Trade Reduction for Dual-Role Exchange Markets

    Get PDF
    Abstract We consider dual-role exchange markets, where traders can offer to both buy and sell the same commodity in the exchange but, if they transact, they can only be either a buyer or a seller, which is determined by the market mechanism. To design desirable mechanisms for such exchanges, we show that existing solutions may not be incentive compatible, and more importantly, cause the market maker to suffer a significant deficit. Hence, to combat this problem, following McAfee's trade reduction approach, we propose a new trade reduction mechanism, called balanced trade reduction, that is incentive compatible and also provides flexible trade-offs between efficiency and deficit

    Chain: A Dynamic Double Auction Framework for Matching Patient Agents

    Get PDF
    In this paper we present and evaluate a general framework for the design of truthful auctions for matching agents in a dynamic, two-sided market. A single commodity, such as a resource or a task, is bought and sold by multiple buyers and sellers that arrive and depart over time. Our algorithm, Chain, provides the first framework that allows a truthful dynamic double auction (DA) to be constructed from a truthful, single-period (i.e. static) double-auction rule. The pricing and matching method of the Chain construction is unique amongst dynamic-auction rules that adopt the same building block. We examine experimentally the allocative efficiency of Chain when instantiated on various single-period rules, including the canonical McAfee double-auction rule. For a baseline we also consider non-truthful double auctions populated with zero-intelligence plus"-style learning agents. Chain-based auctions perform well in comparison with other schemes, especially as arrival intensity falls and agent valuations become more volatile

    Decentralized Supply Chain Formation: A Market Protocol and Competitive Equilibrium Analysis

    Full text link
    Supply chain formation is the process of determining the structure and terms of exchange relationships to enable a multilevel, multiagent production activity. We present a simple model of supply chains, highlighting two characteristic features: hierarchical subtask decomposition, and resource contention. To decentralize the formation process, we introduce a market price system over the resources produced along the chain. In a competitive equilibrium for this system, agents choose locally optimal allocations with respect to prices, and outcomes are optimal overall. To determine prices, we define a market protocol based on distributed, progressive auctions, and myopic, non-strategic agent bidding policies. In the presence of resource contention, this protocol produces better solutions than the greedy protocols common in the artificial intelligence and multiagent systems literature. The protocol often converges to high-value supply chains, and when competitive equilibria exist, typically to approximate competitive equilibria. However, complementarities in agent production technologies can cause the protocol to wastefully allocate inputs to agents that do not produce their outputs. A subsequent decommitment phase recovers a significant fraction of the lost surplus
    corecore