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Abstract. Supply Chain Formation is the process of determining the
participants in a supply chain, who will exchange what with whom, and
the terms of the exchanges. Decentralized supply chain formation appears
as a highly intricate task because agents only possess local information,
have limited knowledge about the capabilities of other agents, and prefer
to preserve privacy. State-of-the-art decentralized supply chain formation
approaches can either: (i) find supply chains of high value at the expense
of high resources usage; or (ii) find supply chains of low value with low re-
sources usage. This work presents chainme, a novel decentralized supply
chain formation algorithm. Our results show that chainme finds supply
chains with higher value than state-of-the-art decentralized algorithms
whilst decreasing the amount of resources required from one up to four
orders of magnitude.
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1 Introduction

Supply Chain Formation (SCF) is the process of determining the participants
in a supply chain (SC), who will exchange what with whom, and the terms of
the exchanges [13]. Today’s companies are required to dynamically form and
dissolve trading relationships at a speed and scale that can be unmanageable by
humans, giving rise to the need for automated SCF.

Automating SCF poses an intricate coordination problem to firms that must
simultaneously negotiate production relationships at multiple levels of the SC.
This problem has been already tackled by the AI literature. Initial contributions
[14,5,4] addressed the problem by means of combinatorial auctions (CAs) that
compute the optimal SC allocation in a centralized manner. Since even finding a
feasible SC allocation is NP-Hard [12,7], sufficiently large SCF problems will be
intractable, hence hindering the scalability of the global optimization performed
by centralized, auction-based approaches. Furthermore, as argued in [13], even



when the computation is tractable, no single entity may have global allocative
authority to compute allocations over the entire SC. Thus, there is a need for
approximate distributed solutions to the SCF problem.

In [13], Walsh et al. proposed to solve the SCF problem in a fully decentral-
ized manner. Each good in the SC is auctioned separately and all auctions run
simultaneously without direct coordination. Therefore, each auction allocates a
single resource considering the offers to buy or sell submitted by agents. Never-
theless, the approach proposed by Walsh et al. suffers from high communication
requirements, as discussed in [11].

Later on, Winsper et al. [16] cast the decentralized SCF problem as an opti-
mization problem that can be approximated using (max-sum) loopy belief prop-
agation [6]. Nonetheless, as shown in [9], the problem representation employed
by Winsper et al. leads to exponential memory and communication requirements
that largely hinder its scalability. Thus, Penya-Alba et al. provide in [9] a scal-
able approach to the decentralized SCF problem through a new encoding of the
SCF problem into a binary factor graph. However, as we show in this paper, as
the number of agents at trade increases, the algorithm in [9] is unable to find
SCs whose value are close to the optimal.

To summarize, state-of-the-art decentralized SCF algorithms can either: (i)
find supply chains of high value at the expense of high resources usage; or (ii) find
supply chains of low value with low resources usage. Against this background,
in this paper we present chainme, a novel decentralized supply chain formation
algorithm that assesses supply chains with higher value than state-of-the-art
decentralized algorithms. Furthermore, the resources required by chainme are
from one up to four orders of magniude less than those used by other algorithms.

The paper is organized as follows. Section 2 reviews previous approaches to
distributed SCF. Section 3 describes chainme, our main contribution. Section
4 benchmarks chainme against previous algorithms for distributed SCF, and
section 5 draws conclusions and sets paths for future research.

2 Background and related work

First, section 2.1 reviews periodic double auctions as a basic market mechanism
to allocate independent commodities. Then, section 2.2 reviews the state-of-the-
art approaches to decentralised SCF.

2.1 Periodic double auctions

Most of the classic auctions examined in the literature are one-sided, in that
a single seller or buyer accepts bids from multiple buyers or sellers. Two-sided
or double auctions, in contrast, permit multiple buyers and sellers to bid to
exchange a designated commodity.

The periodic version of the double auction [17], sometimes termed a call
market [8], collects bids over a specified interval of time, then clears the market
at the expiration of the bidding interval.



Imagine you are hired as mediator in a vintage computer market. Some of
the participants (buyers) will be interested in buying an MSX while other par-
ticipants (sellers) are interested in selling them. Table 1 shows an example with
4 sell offers (Alice offers to sell an MSX for e 2, Bob for e 3, and so on) and 4
buy offers (Eve offers to pay e 6 for an MSX, Frank offers to pay e 5 and so on).
In this setting, the most profitable option for you (the mediator) is to buy from
Alice and Bob and to sell to Eve and Frank for a benefit of e 6.

In general, we note the largest possible benefit as π∗. We refer to a π∗-
configuration as the set of buyers and sellers that achieve benefit π∗. Alice, Bob,
Eve, and Frank are active in the π∗-configuration and Carol, Dave, Gene, and
Hank are not. The number of consumers at trade in the π∗-configuration (2 in
this case) is noted as η.

Seller Sell Offer Buy Offer Buyer

Alice e -2 e 6 Eve

Bob e -3 e 5 Frank

Carol e -4 e 2 Gene

Dave e -5 e 1 Hank

Table 1. Mediation example

In the general case, consider a mediator (mg) that aims to trade good g. Let
Sg be the set of sellers that are willing to sell g and Bg the set of buyers that are
willing to buy g. Then, determining the π∗-configuration in a periodic double
auction amounts to:

1. sorting sell bids descendingly,

2. sorting buy bids descendingly, and

3. matching buyers and sellers in order until it is no longer profitable to do so,
that is, until the buy offer is not able to cover the sell offer or there are no
more sell offers.

Sellers Buyers Fact

s1 · · · b1 Og
b1

+Og
s1
> 0

...
...

sη · · · bη Ogbη +Ogsη ≥ 0

sη+1 · · · bη+1 Og
bη+1 +Og

sη+1 < 0
...

...

Table 2. General mediation scenario



Table 2 describes a general periodic double auction, with s1, ..., sη, ..., s|Sg|

being the sellers ordered descendingly by offer, b1, ..., bη, ..., b|Bg| being the buyers
ordered descendingly by offer, Ogsi is the offer of seller si and Ogbj is the offer of
buyer bj . The buyers and sellers over the dashed line are in the π∗-configuration
whilst the ones below are not.

Price rules A price rule in a periodic double auction establishes the price τ
paid by buyers and received by sellers. There are some constraints that the price
has to fulfill to ensure individual rationality for the active agents and fairness
for the inactive agents.

To ensure individual rationality, no seller at trade should be paid less than her
bid (τ ≥ −Ogsη ) and no buyer at trade should pay more than her bid (τ ≤ Ogbη ).
To ensure fairness the price cannot be larger than the bid of any seller that is
left out of trade (τ ≤ −Ogsη+1) and it cannot be smaller than the bid of any
buyer that is left out of trade (τ ≥ Ogbη+1). Thus, the price can be any number
τ such that τ− ≤ τ ≤ τ+ where

τ− = max(−Ogsη , O
g
bη+1)

and
τ+ = min(−Ogsη+1 , O

g
bη ).

The rule that sets the price at τ− is known as the (M+1)st price rule, whilst the
rule that sets the price at τ+ is known as the M-th price rule [17].

For our example in table 1, the (M+1)st price rule will set the price at
τ− = max(−(−3), 2) = e 3 (corresponding to Bob’s offer). The M-th price in
this case is τ+ = min(−(−4), 5) = e 4, established by Carol’s offer.

The price interval (τ−, τ+) is usually known as the bid-ask interval. Algo-
rithm 1 assesses the bid-ask interval.

Algorithm 1 Bid-ask assessment in a periodic double auction.

1: function AssessBidAsk(Og)
2: /* Determine the π∗-configuration */
3: Sort sellers decreasingly by offer getting:
4: S = 〈s1, . . . , s|Sg|〉
5: Sort buyers decreasingly by offer getting:
6: B = 〈b1, . . . , b|Bg|〉
7: η ← 0 /*Assess the number of trading agents*/
8: while Og

sη+1 +Og
bη+1 ≥ 0 do

9: η ← η + 1
10: end while
11: τ− ← max(−Ogsη , O

g

bη+1)

12: τ+ ← min(−Og
sη+1 , O

g
bη )

13: return (τ−, τ+, η)
14: end function
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Fig. 1. Example of a TDN.

2.2 Related work

Next, we review the state-of-the-art on decentralized SCF separating the contri-
butions in the literature in two groups: market-based approaches and message-
passing approaches.

Market-based approaches In [2] Babaioff and Nisan provide a distributed
mechanism providing ex-post individual rationality and incentive compatibility,
budget balance and high global economic efficiency in linear supply chains. Later
on, Babaioff and Walsh [3] extended this result to supply chains that satisfy the
unique manufacturing technologies property, that is, markets where two produc-
ers that have the same output, should have exactly the same input goods in the
same amounts. In this work we are interested in the more general SCF scenario
introduced by Walsh and Wellman in [13].

In order to encode a SCF problem, Walsh and Wellman present the notion
of Task Dependency Network (TDN). To efficiently solve a SCF problem over
a TDN, they introduced the Simultaneous Ascending (M+1)st Price with Sim-
ple Bidding protocols (SAMP-SB and SAMP-SB-D, noted as samp-sb* hence-
forth) [13]. Each protocol is composed of an auction mechanism along with some
bidding policies. In what follow we outline both the notion of TDN and the
samp-sb* protocols.

Task dependency network A TDN is a graphical description of a SCF problem
that takes the form of a bipartite directed acyclic graph. Figure 1 depicts an
example of TDN. Producers (p1, p2, p3, p4) and consumers (c1, c2, c3) are repre-
sented by rectangles, goods (g1, g2) are represented by circles, and links between
rectangles and goods represent potential flows of goods. The number below each
participant a (either producer or consumer) stands for her activation cost (Ca).
The activation cost is positive for consumers, who pay to be part ot the SC, and
negative for producers, who must be paid to be part of the SC. For each SC
participant a, let Ga be the set of all goods she is related to, either as a buyer
(input goods) or as a seller (output goods). Producers p1, p2, p3 can produce each
one a unit of output good g1, which is an input good of p4. Similarly, consumers
c1, c2, c3 can consume each one a unit of g2 acting as buyers in such transaction



without selling any other good. However, this is not the case of producer p4 that
requires one unit of g1 to produce g2. Thus, producer p4 acts as a buyer for g1
and as a seller for g2.

The TDN in figure 1 allows several feasible SC configurations. For instance,
configuration SC1 : p1 → p4 → c2 is feasible, whereas SC2 : p4 → c2 is not
(nobody provides g1 to p4). The value of a configuration is assessed by adding
the activation costs of participants that are active in the SC. The value of SC1 is
−5− 10 + 22 = 7. The SCF problem is that of finding the feasible configuration
with maximum value. In figure 1, that corresponds to configuration SC1.

Auction mechanism and bidding policies A samp-sb* mechanism comprises a
set of auctions, one per good. Each auction is run by a different agent, who
plays the role of mediator. Given a good g, each participant interacts with the
mediator of the good, mg, by submitting her offers to buy or sell g. For instance,
in Figure 1 producer p1 would send an offer message to mediator mg1 to sell
g1. Each auction runs independently of the other auctions in the supply chain.
However, all auctions run simultaneously.

Each auction is an increasing periodic double auction with price quotes.
When a mediator receives a new bid, she sends each of her bidders a price
quote specifying the bid-ask interval that would result if the auction ended in
the current bid state. The price quote also reports to each bidder the quantity
she would buy or sell in the current state. The price quotes are not issued until
all initial bids are received, but are subsequently issued immediately on receipt
of new bids.

Each participant follows a simple, non-strategic bidding policy, in reply to
mediators’ notifications. Thus, participants’ bidding behaviour is purely reactive.
The samp-sb* bidding policies require that, for each auction, the prices of a
participant’s successive buy offers increase by no less than some generally small)
positive number δb and the prices of successive sell offers increase by no less
than δs. Inaction leaves previous bids standing in an auction. More concretely,
samp-sb* distinguishes between bidding policies for consumers and producers
as follows.
Consumer bidding policy. A consumer c not winning her input good g will bid
by increasing the (M+1)th price (τ−) by the minimum required increment δb
(see equation 1). The bid is issued whenever the consumer’s gain is non-negative
(Cc − τ−g − δb ≥ 0), otherwise she will stop bidding. 3

Ogc ← τ−g + δb (1)

Producer bidding policy. Every time a producer p receives a quote, if p is currently
winning the auction for her output good and losing the auction for some input
good g, she increases her last offer for g by the minimum required increment
(δb).

3

Ogp ← Ogp + δb. (2)

3 Initial offers submitted for inputs goods are set to 0.



Furthermore, if the quote is coming from an input good, p updates her offer for
her output good g′ (Og

′

p ) as4:

Og
′

p ← max(Og
′

p + δs, Cp +
∑

g∈Gp\g′
τ̂g) (3)

where τ̂g stands for the perceived cost of input good g. If p is currently winning
g, τ̂g is τ−, otherwise τ̂g = max(τ+, τ− + δb).

Bidding continues until all messages have been received, no participant chooses
to revise her bids, and no auction changes its prices, ask prices, or allocation. At
this point, the auctions clear; each bidder is notified of the final prices and how
many units she transacts per good. Since samp-sb may converge to solutions in
which some participants obtain a negative utility to participate in the SC, the
samp-sb-d protocol includes a final phase that allows agents to decommit.

Message-passing approaches In [16] Winsper and Chli propose an alterna-
tive graphical representation for the encoding of a SCF problem as a factor
graph. Under this representation, the SCF problem is cast as an optimization
problem and subsequently approximated by the (max-sum) loopy belief propaga-
tion algorithm (lbp)[6]. Nonetheless, as shown in [9], the problem representation
employed by Winsper et al. leads to exponential memory and communication
requirements that largely hinder its scalability. To overcome this limitation, re-
cently Penya-Alba et al. propose an alternative factor graph encoding for the
SC problem [9], the so-called Reduced Binary Loopy Belief Propagation (rb-
lbp), that dramatically lowers the max-sum requirements, from exponential to
quadratic, while leading to higher valued SCs.

The approaches in [16] and [9] replace the process of bidding in auctions
with message-passing between SC participants. Since goods are not explicitly
represented in these encodings, message-passing directly takes place between SC
participants without any mediator. For instance, during the execution of rb-lbp
for the SCF problem represented in figure 1, producer p1 will iteratively exchange
messages with p4 regarding their trading decisions for good g1. This process con-
tinues until reaching convergence (either all participants agree on their trading
decisions or a maximum number of steps is reached). Upon convergence, each
message passing algorithm includes a post-processing phase to remove possible
incompatibilities from the resulting SC configuration.

3 CHAINME

In this section we describe our approach for decentralized SCF, the so-called
chainme (CHaining Agents IN Mediated Environments). As we will show in
Section 4 state-of-the-art methods for SCF can either produce high-valued SCs

4 The producer places her first output offer only after receiving the first notification
for all her inputs



at the expense of high resource usage, or find low-valued SC configurations while
requiring low resource usage. chainme aims at providing an algorithm for de-
centralized SCF that combines the best features of both approaches. That is,
chainme aims at finding high-valued SCs using as little resources as possible.

The rest of this section is organized as follows. In section 3.1 we provide a
detailed description of how chainme agents make decisions. Then, in section 3.2
we compare the operation of chainme with that of rb-lbp and samp-sb*.

3.1 Algorithm Description

Consider a SCF problem such as described by a TDN. In chainme, there is an
agent for each of the participants in the SC (either producers or consumers).
Furthermore, for each of the goods at trade there is an agent that will act as
mediator for that good.

chainme is a message-passing algorithm involving participants and media-
tors. Each participant only communicates with the mediators of the goods she
wants to acquire or produce. Likewise, each mediator only communicates with
the participants willing to buy or sell the good she mediates.

Likewise rb-lbp, agents in chainme follow a established protocol that has
two main phases. During the first phase, each participant finds out how valuable
she is for the SC as a whole when she is active (i.e. producing or consuming
goods). Based on that information, during the second phase, each participant
decides whether to be active (part of the SC) or not. Section 3.1 details the first
phase, whereas section 3.1 details the second phase.

Assessing how valuable participants are. During this phase, agents ex-
change messages iteratively in turns, from participants to mediators and from
mediators to participants. First, each participant submits her offers, encoding
her willingness to participate in the SC, to the mediators she is connected to.
After that, each mediator mg communicates to each of her neighboring agents a
an approximation of their local social value (Sga) for that good. In general, the
social value for a group of agents of an event is the difference between the aggre-
gated benefit for those agents if the event happens and the aggregated benefit
for those agents if the event does not happen. In our case Sga is the social value,
for all agents connected to g but a, of a being active. That is, the benefit that
the other agents connected to g would obtain if a is active minus the benefit
that the other agents connected to g would obtain if a is inactive. We refer to Sga
as the social value for g of a. After receiving mediators’ messages, participants
use the received social value estimates to update their offers, which are subse-
quently sent to mediators. This process continues until messages do not change
from iteration to iteration or a maximum number of iterations is reached. At
this point, each participant knows how valuable she is for the supply chain.

Next, we detail how participants compute their offers and mediators compute
participants’ local social values. Henceforth we consider that a good g is mediated
by mg, Sg stands for the set of participants willing to sell good g, and Bg is the
set of participants willing to buy good g.



How a participant determines her offers Algorithm 2 shows the procedure that a
participant (either consumer or producer) follows in chainme. At each iteration,
each participant makes an offer to each good mediator she is connected to. Given
a participant a and a good g, first the agent approximates her value for being
active in the SC (Va) by adding up the local social values reported from the
mediators the agent is connected to (line 6). This value also takes into account
the activation cost of agent a. Then,

Va = Ca +
∑
g∈Ga

Sga (4)

An agent sends to a mediator mg her marginal value, namely her value with-
out the value contributed by g, to signal her significance in the supply chain
excluding g. This amounts to subtracting the local social value of a for g from
the agent’s value:

Oga ← Va − Sga (5)

Notice that the higher the contribution from a good to the value of a par-
ticipant, the lower the offer; the lower the contribution, the higher the offer.
Consider the following cases. On the one hand, if a participant knows that her
value is large with respect to her local social value for some good g, she will
send a high offer to mg to signal her high value for the rest of the supply chain
(excluding good g). On the other hand, if a participant knows that most of her
value is contributed by g, she will send a low offer to mg to signal her low value
for the rest of the supply chain.

How a mediator determines social values Recall that the social value for a good
g of an agent a is defined as the difference between the benefit for the remaining
agents of having her at trade versus not having her at trade. Thus, going back to
table 1, to assess the social value of Alice for that good (say g) we need to assess
the largest possible benefit for the other agents when Alice is active (υ∗A) and
when she is not active (υ∗−A), and assess the social value of as SgA = υ∗A − υ∗−A.
Since Alice is active in the π∗-configuration, υ∗A is π∗−OgA = e 6 - (e -2) = e 8. To
assess υ∗−A we remove Alice bid . The best configuration will definitely have Bob
and Eve (since Eve is paying more than Frank and Bob was happy with that what
Frank was paying). Furthermore, since Frank’s offer covers the price requested
by Carol, the best configuration also includes Frank and Carol, and thus υ∗−A
is e 4, setting the social value of Alice for good g to SgA = υ∗A − υ∗−A =e 4. In
another scenario, it could be the case that Carol requested more than Frank was
willing to pay, and then we would not include them.

Next, we detail how a mediator computes the local social value for every agent
she is linked to depending on whether the agent is active in the π∗-configuration
or not. A general mediation scenario is described in table 2. Consider first the
case of any seller sk active on the π∗-configuration. The benefit when sk is active,
υ∗sk , is simply π∗ − Osk (we subtract Osk because it should not be considered
benefit to the other agents but to sk itself). To assess υ∗−sk we need to remove

bid Osk and recompute the best configuration. All pairs (si, bi) with i < k are



Algorithm 2 Algorithm run by a participant a.

1: for all goods g ∈ Ga /* Initialize social values */ do
2: Sga ← 0
3: end for
4:
5: while not convergence and not reached maximum number of iterations do
6: Va ← Ca +

∑
g∈Ga S

g
a

7: for all goods g ∈ Ga do
8: Send offer Oga ← Va − Sga to the mediator mg.
9: end for

10: for all goods g ∈ Ga do
11: Receive social value Sga from mg.
12: end for
13: end while
14: Set agent a to be available if Va ≥ 0
15: Send the state of agent a to each of her good mediators
16: /* Determine whether the agent should be active */
17: while not convergence and agent a is available do
18: Receive from each of her good mediators whether agent a should be active or

not.
19: Set agent a to be available if all of her good mediators want her to be active
20: Send the state of agent a to each of her good mediators.
21: end while

profitable, (since they were profitable before removing seller sk). Furthermore,
all pairs (si+1, bi) with k ≤ i < η are also profitable, since each pair (si+1, bi+1)
was profitable before removing sk and the offer for bi is at least as good as that
of bi+1. To assess the best attainable benefit after removing sk, we must consider
whether: (i) to add a new seller (namely sη+1); or (ii) to remove one of the current
buyers (namely bη). Thus, we have that υ∗−sk = π∗ − Osk −min(−Ogsη+1 , O

g
bη ).

In general, for any seller s active on the π∗-configuration, a mediator mg can
compute the seller’s local social value for g as:

Sgs = min(−Ogsη+1 , O
g
bη ) = τ+g . (6)

Following the same line of reasoning we can assess the local social value for g of
an inactive seller s

Sgs = max(−Ogsη , O
g
bη+1) = τ−g , (7)

the local social value for g of an active buyer b:

Sg
b

= −max(−Ogsη , O
g
bη+1) = −τ−g , (8)

and the local social value for g of an inactive buyer b

Sgb = −min(−Ogsη+1 , O
g
bη ) = −τ+g . (9)

Note that the social value of sellers is always positive and that of buyers
is always negative5. That is reasonable, since if we only take into account how

5 Under the reasonable assumption that goods are positively priced.



much benefit the other agents make, a seller being active is a positive thing. She
is providing a good which has a positive value and the remaining agents benefit
from that. On the other side, a buyer being active forces the other agents to pro-
vide an additional good, thus incurring in a negative social value. Furthermore,
the social value for a good of a participant does not depend on the particular
value of her bid, but only on whether the participant is active or inactive. The
local social values coincide (disregarding sign) with the bid (τ−g ) and ask (τ+g )
values in a periodic double auction that takes the participants’ offers as bids.
Thus, local social values can be assessed with the help of algorithm 1. This can
be seen in the procedure that mediators follow in chainme to assess social values
of the participants that is computationally described in detail in lines 1-10 of
algorithm 3.

Algorithm 3 Algorithm run by a mediator mg.

1: while not convergence and not reached maximum number of iterations do
2: for all a ∈ Sg ∪ Bg /* Receive offers */ do
3: Receive offer Oga from participant a.
4: end for
5: (τ−g , τ

+
g , η)← AssessBidAsk(Og)

6: Send τ+g to active sellers.
7: Send τ−g to inactive sellers.
8: Send −τ−g to active buyers.
9: Send −τ+g to inactive buyers.

10: end while
11: /* Determine which participants should be active */
12: Receive availability status from each neighboring participant.
13: while not convergence do
14: Determine π∗-configuration which only involves available participants.
15: Send each neighboring available participant whether she should be active or

not.
16: Receive availability update from each neighboring available participant.
17: end while

Assessing the supply chain configuration Participants and mediators ex-
change messages in turns following the algorithms described in section 3.1. After
this process ends, participants need to decide whether they will be active in the
resulting SC or not. This is achieved by iterating a two-step process. During
the first step, participants determine whether they are available to be active.
During the second step, mediators communicate to participants whether they
are eligible to be active.

Each participant decides whether she is available to be active if that is prof-
itable for the SC as a whole. This occurs whenever the addition of the local social
values of each of the goods she is connected to together with her activation cost
is positive, namely iff her value Va is greater of equal than zero.



Once each participant has determined whether she is available to be active or
not, she sends her availability status to all of her neighboring mediators. Once a
participant decides that she is unavailable, she will no further change her status.
Each mediator, after receiving the availability status from all her neighboring
agents, determines the π∗-configuration by discarding participants that reported
themselves as unavailable. After that, the mediator sends each available partici-
pant whether she is active or inactive in the π∗-configuration. When a participant
receives the status request from each of her neighboring mediators, she decides
to be available only if all of her neighboring mediators requested her to be active.
She sends her availability status to all the mediators she is connected with. This
process continues iteratively until no participant changes her availability status.
Participants who are available when this occurs will be the active participants in
the SC and will compose the SC configuration. The process to determine which
participants are active is described in algorithm 2 (lines 14-21) and algorithm 3
(lines 12-17) for participants and mediators respectively.

3.2 Discussion

Next we analyse the differences and similarities between chainme and the state
of the art. First, chainme, likewise samp-sb, uses an infrastructure of agents
that mediates participants’ interactions. The role of these mediators is to aggre-
gate information that helps participants decide whether to be part of the supply
chain or not. Unlike chainme and samp-sb rb-lbp does not employ mediators
for goods. Thus, the producers and consumers of each good make their deci-
sions regarding whether to trade or not through direct interactions, instead of
mediated interactions.

Second, chainme and samp-sb mediators differ in the semantics of the infor-
mation they convey to participants. On the one hand, recall that each mediator
in samp-sb runs an increasing periodic double auction with price quotes. Given
a set of bids and asks for a given good g, the mediator sends to each of the par-
ticipants a price quote specifying: the bid-ask interval [τ−g , τ

+
g ] that would result

if the auction ended; and whether the bidder currently wins the bid or not. The
bid quote (τ−g ) signals what a seller must offer to trade, whereas the ask quote
(τ+g ) signals what a buyer must offer to trade. On the other hand, analogously
to samp-sb, each chainme mediator also computes the bid-ask interval for a
given set of offers issued by participants. Nonethelesss, each chainme mediator
distributes between participants information about their current local social val-
ues, depending on whether each agent is active or inactive (see equations 6 to
9), instead of what they should offer to become active. Furthermore, a chainme
mediator does not tell participants whether they are part of the trade or not,
and hence participants are unaware of whether they are so.

Third, the semantics of offers utterly differ from chainme and samp-sb.
Given a particular good, the offer of a samp-sb participant expresses her inter-
est in participating in the trade for the good. Differently, the offer of a chainme
participant expresses her marginal value in the supply chain (her value disre-
garding the good).



Not surprisingly, the way participants use the information received from me-
diators to compose their offers totally differ between chainme and samp-sb.
samp-sb bidding policies make participants compose their new offers by con-
sidering their last offers as well as the bid-ask interval (see equations 1 to 3).
Successive offers always increase by some minimum required amount with the
purpose of winning the auction (for buyers) or covering its costs (for sellers).
A chainme participant considers her social value for the supply chain together
with her local social values (see equation 4). Hence, the higher the contribution
from a good to the value of a participant, the lower the offer; the lower the
contribution, the higher the offer. Therefore, given a mediator mg, the purpose
of the offer of a chainme participant connected to g is to signal how important
the participant is for the rest of the supply chain.

Finally, although the behaviour of chainme participants may resemble that
of rb-lbp participants, there is a fundamental difference. A message from an rb-
lbp participant to another participant (participants interact without mediators)
indicates how important it is for the supply chain their trading for some good,
completetly disregarding what other competitors for the good offer. An offer
from a chainme participant to the mediator mg of a good g indicates how
important it is for the SC that the participant is included in the trade for the
good. This offer is assessed as the aggregate of the social values received from all
the mediators she is connected to but mg. The offer encodes how valuable the
participant is for the SC as a whole regardless of good g. Therefore, chainme
participants benefit from the information aggregation performed by mediators
to compose more accurate offers.

4 Experimental Evaluation

In this section we benchmark chainme against the decentralized state-of-the-
art SCF algorithms: samp-sb, samp-sb-d, and rb-lbp. We perform our com-
parison in terms of solution quality (the SC value) and resource requirements
(bandwidth, computation and memory usage).

Following [9], we use the test-suite described in [10] that is specifically de-
signed to generate SCF problems. We generate TDNs with 50 goods spread over
four SC levels. We analyze different scenarios by varying the number of partic-
ipants from 40 to 500. For each scenario, the test suite generates 100 different
TDNs.

The code for the algorithms, the generated problems, and the results obtained
can be freely downloaded from [1].

We solve each SCF problem with samp-sb, samp-sb-d, rb-lbp, and chainme.
We measure bandwidth as the number of messages sent and received by each
agent times the size of the message. To measure computation we simply count
the number of operations each agent performs.6

6 A fair assessment of the amount of computation performed by mediators is difficult.
The costliest operation for both samp-sb and chainme mediators is assesing the bid-
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Fig. 2. chainme, rb-lbp, and samp-sb-d solution quality.

Following [9], we impose a hard limit of 250 iterations after which the exe-
cution of rb-lbp and chainme is stopped and a solution is assessed. samp-sb
is run until convergence since convergence is guaranteed in these protocols [13].

Since the distributions obtained for these measures are long-tailed and skewed,
we use the median instead of the mean as a measure of central tendency follow-
ing the recommendations in [15]. Where possible we do also show the 20th and
80th percentile as a measure of dispersion.

Section 4.1 analyzes the quality of the solution obtained (in terms of the
value of the SC) by each algorithm. Then, section 4.2 analyzes the resource
requirements of each algorithm.

4.1 Solution quality

We normalize solution quality to the 0-1 scale by dividing by the quality of
the optimal solution.7 Hence, a quality of one means that the solution found
is optimal. Figure 2a shows the median and dispersion of the solution quality
for chainme, rb-lbp, and samp-sb-d. We observe that chainme outperforms
rb-lbp and performs slightly better than samp-sb-d. Moreover, the quality of
the solution obtained by rb-lbp and samp-sb-d decreases as the number of
participants increases. This effect is more noticeable for rb-lbp.

For problems with more than 100 agents, most of the times samp-sb con-
verges to solutions with negative values due to the lack of decommitment phase.

ask interval. chainme uses algorithm 1 whose worst-case complexity is O(P · logP )
(P stands for the number of participants a mediator is connected to). Thus, we
record P · logP operations each time the bid-ask interval is assessed in chainme.
On the other hand, the assessment of the bid-ask interval in samp-sb can be done
in O(logP ) following [17]. Hence, we record logP operations each time the bid-ask
interval is assessed in samp-sb.

7 The optimal solutions are found using a centralized mixed integer programming
solver.



Since in terms of resources samp-sb is equivalent to samp-sb-d we have dis-
carded samp-sb from further analysis.

Figure 2b plots the number of problems for which each method was able to
find the optimal solution. The number of problems optimally solved by samp-sb-
d and rb-lbp decreases very rapidly as the number of participants increases. By
contrast, chainme is able to find the optimal solution in most of the problems,
even in scenarios with a large number of participants In the 500 participants
scenario,chainme converges to the optimal solution in more than 70% of the
problems, whereas the other methods almost never find it.

In summary, the value of SC’s assessed by chainme is higher than that
obtained by the other algorithms. Moreover, it finds optimal solutions much
more frequently.

4.2 Resource requirements

The memory requirements for an agent is proportional to the number of neigh-
bors for the four algorithms compared. Thus, no current computational environ-
ment will be unable to run any of the algorithms due to memory constraints.

Recall from section 3.2 that chainme and samp-sb-d are mediated algo-
rithms whilst rb-lbp is not. For that reason we benchmark bandwidth usage
along four different dimensions: total bandwidth used by all agents, maximum
bandwidth used by any participant, total bandwidth used by mediators and
maximum bandwidth used by any mediator.

Figure 3 shows how the different algorithms performed in terms of bandwidth
usage. Note that rb-lbp is left out of figures 3c and 3d due to its lack of medi-
ator agents. In figures 3a and 3b we see that chainme consumes at most 1/60
of the bandwidth used by rb-lbp and at least 3 orders of magnitude less band-
width than samp-sb-d. This difference is also confirmed when we only consider
mediators in figures 3c and 3d.

Figure 4 shows how the different algorithms performed in terms of computa-
tion. Again, rb-lbp is left out of figures 4c and 4d due to its lack of mediator
agents. In figures 4a and 4b we see that the number of operations performed by
chainme is at least 2 orders of magnitude smaller than that of the runner-up.
This difference is confirmed when we only consider mediators in figures 4c and
4d.

In summary, we have seen that chainme is able to provide better valued solu-
tions than the state-of-the-art algorithms for decentralized SCF while requiring
from one up to four orders of magnitude less resources.

5 Conclusions and Future Work

We have introduced chainme, a novel decentralized supply chain formation
algorithm where agents use the concept of local social value to determine their
worth to the supply chain as a whole. In our experiments, chainme outperforms
state-of-the-art algorithms rb-lbp and samp-sb-d in terms of the value of the
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Fig. 3. chainme, rb-lbp, and samp-sb-d bandwidth requirements. Plots use a log-
scale for the y axis.

supply chains found. Furthermore, chainme consumes less than one tenth of the
communication and one percent of the computational resources used by those
algorithms.

Note that, since no payment function has been defined, chainme (as rb-lbp)
should only be considered as a distributed approximate winner determination al-
gorithms.
Therefore, the design of a mechanism would require the definition of a pay-
ment function. The design of such payment function and the analysis of the
properties of the corresponding mechanisms should be pursued as future work.

The experiments show that the supply chain values obtained by chainme are
optimal much more often than the state-of-the-art algorithms. Thus, we consider
that it could be an approximate, low resources alternative to optimal centralized
approaches (such as integer linear programming) in very large SCF scenarios.
We plan to explore that path in the future.

References

1. Removed to preserve anonymity.

2. M. Babaioff and N. Nisan. Concurrent Auctions Across The Supply Chain. Journal
of Artificial Intelligence Research, 21:595–629, 2004.



100 200 300 400 500
Number of participants

103

104

105

106

107

108

Nu
m

be
r o

f o
pe

ra
tio

ns

(a) Total operations.

100 200 300 400 500
Number of participants

101

102

103

104

105

106

Nu
m

be
r o

f o
pe

ra
tio

ns

(b) Maximum operations per
participant.

100 200 300 400 500
Number of participants

103

104

105

106

107

Nu
m

be
r o

f o
pe

ra
tio

ns

(c) Total mediators operations.

100 200 300 400 500
Number of participants

101

102

103

104

105

106

Nu
m

be
r o

f o
pe

ra
tio

ns

(d) Maximum operations per
mediator.

Fig. 4. chainme, rb-lbp, and samp-sb-d computations. Plots use a log-scale for the
y axis.

3. M. Babaioff and W. E. Walsh. Incentive-compatible, budget-balanced, yet highly
efficient auctions for supply chain formation. Decision Support Systems, 39(1):123–
149, Mar. 2005.

4. J. Cerquides, U. Endriss, A. Giovannucci, and J. A. Rodriguez-Aguilar. Bidding
languages and winner determination for mixed multi-unit combinatorial auctions.
In IJCAI, pages 1221–1226. Morgan Kaufmann Publishers Inc., 2007.

5. J. Collins, W. Ketter, and M. Gini. A multi-agent negotiation testbed for contract-
ing tasks with temporal and precedence constraints. Int. J. Electron. Commerce,
7:35–57, October 2002.

6. A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination
of low-power embedded devices using the max-sum algorithm. In AAMAS (2),
pages 639–646, 2008.

7. V. Fionda and G. Greco. Charting the tractability frontier of mixed multi-unit
combinatorial auctions. In C. Boutilier, editor, IJCAI, pages 134–139, 2009.

8. K. A. Mccabe, S. J. Rassenti, and V. L. Smith. Auction Institutional Design :
Theory and Behavior of Simultaneous Multiple-Unit Generalizations of the Dutch
and English Auctions. The American Economic Review, 80(5):1276–1283, 1990.

9. T. Penya-Alba, M. Vinyals, J. Cerquides, and J. A. Rodriguez-Aguilar. A scalable
Message-Passing Algorithm for Supply Chain Formation. In 26th Conference on
Artificial Intelligence (AAAI 2012), Toronto, 2012.

10. M. Vinyals, A. Giovannucci, J. Cerquides, P. Meseguer, and J. A. Rodriguez-
Aguilar. A test suite for the evaluation of mixed multi-unit combinatorial auctions.
Journal of Algorithms, 63(1-3):130–150, 2008.



11. W. Walsh. Market protocols for decentralized supply chain formation. PhD thesis,
University of Michigan, 2001.

12. W. E. Walsh and M. P. Wellman. Marketsat: An extremely decentralized (but
really slow) algorithm for propositional satisfiability. In H. A. Kautz and B. W.
Porter, editors, AAAI/IAAI, pages 303–309. AAAI Press / The MIT Press, 2000.

13. W. E. Walsh and M. P. Wellman. Decentralized supply chain formation: A mar-
ket protocol and competitive equilibrium analysis. J. Artif. Intell. Res. (JAIR),
19:513–567, 2003.

14. W. E. Walsh, M. P. Wellman, and F. Ygge. Combinatorial auctions for supply
chain formation. In 2nd ACM Conference on Electronic Commerce, EC ’00, pages
260–269, New York, NY, USA, 2000. ACM.

15. R. R. Wilcox and H. J. Keselman. Modern robust data analysis methods: measures
of central tendency. Psychological methods, 8(3):254–74, Sept. 2003.

16. M. Winsper and M. Chli. Decentralised supply chain formation: A belief
propagation-based approach. In ECAI, pages 1125–1126, Amsterdam, The Nether-
lands, The Netherlands, 2010. IOS Press.

17. P. R. Wurman, W. E. Walsh, and M. P. Wellman. Flexible double auctions for
electronic commerce : theory and implementation. (July):17–27, 1998.


	Social Value Propagation for Supply Chain Formation

