366 research outputs found

    An Analytical Review of Orientation Based Concurrency Control Algorithm

    Get PDF
    There is an ever-increasing demand for higher throughputs in transaction processing systems leading to higher degrees of transaction concurrency.Concurrency control in Database management systems ensures that database transactions are performed concurrently without violating the data integrity of the database. Thus concurrency control is an essential element for correctness in any system where two database transactions or more, executed with time overlap, can access the same data. There are problems like Deadlock,Livelock and prevention of these problems is vital in concurrency control of distributed database systems.Many techniques have been proposed for managing concurrent execution of transactions in database systems.A new method for concurrency control in distributed DBMS2019;s,is discussed which will improve system performance by reducing the chances of deadlock and livelock and reducing restart ratio

    Hybrid concurrency control and recovery for multi-level transactions

    Get PDF
    Multi-level transaction schedulers adapt confiict-serializability on different levels. They exploit the fact that many low-level conflicts (e.g. on the level of pages) become irrelevant, if higher-level application semantics is taken into account. Multi-level transactions may lead to an increase in concurrency. It is easy to generalize locking protocols to the case of multi-level transactions. In this, however, the possibility of deadlocks may diminish the increase in concurrency. This stimulates the investigation of optimistic or hybrid approaches to concurrency control. Until now no hybrid concurrency control protocol for multi-level transactions has been published. The new FoPL protocol (Forward oriented Concurrency Control with Preordered Locking) is such a protocol. It employs access lists on the database objects and forward oriented commit validation. The basic test on all levels is based on the reordering of the access lists. When combined with queueing and deadlock detection, the protocol is not only sound, but also complete for multi-level serializable schedules. This is definitely an advantage of FoPL compared with locking protocols. The complexity of deadlock detection is not crucial, since waiting transactions do not hold locks on database objects. Furthermore, the basic FoPL protocol can be optimized in various ways. Since the concurrency control protocol may force transactions to be aborted, it is necessary to support operation logging. It is shown that as well as multi-level locking protocols can be easily coupled with the ARIES algorithms. This also solves the problem of rollback during normal processing and crash recovery

    A Survey of Traditional and Practical Concurrency Control in Relational Database Management Systems

    Get PDF
    Traditionally, database theory has focused on concepts such as atomicity and serializability, asserting that concurrent transaction management must enable correctness above all else. Textbooks and academic journals detail a vision of unbounded rationality, where reduced throughput because of concurrency protocols is not of tremendous concern. This thesis seeks to survey the traditional basis for concurrency in relational database management systems and contrast that with actual practice. SQL-92, the current standard for concurrency in relational database management systems has defined isolation, or allowable concurrency levels, and these are examined. Some ways in which DB2, a popular database, interprets these levels and finesses extra concurrency through performance enhancement are detailed. SQL-92 standardizes de facto relational database management systems features. Given this and a superabundance of articles in professional journals detailing steps for fine-tuning transaction concurrency, the expansion of performance tuning seems bright, even at the expense of serializabilty. Are the practical changes wrought by non-academic professionals killing traditional database concurrency ideals? Not really. Reasoned changes for performance gains advocate compromise, using complex concurrency controls when necessary for the job at hand and relaxing standards otherwise. The idea of relational database management systems is only twenty years old, and standards are still evolving. Is there still an interplay between tradition and practice? Of course. Current practice uses tradition pragmatically, not idealistically. Academic ideas help drive the systems available for use, and perhaps current practice now will help academic ideas define concurrency control concepts for relational database management systems

    Concurrent rule execution in active databases

    Get PDF
    Cataloged from PDF version of article.An active DBMS is expected to support concurrent as well as sequential rule execution in an efficient manner. Nested transaction model is a suitable tool to implement rule execution as it can handle nested rule firing and concurrent rule execution well. In this paper, we describe a concurrent rule execution model based on parallel nested transactions. We discuss implementation details of how the flat transaction model of OpenOODB has been extended by using Solaris threads in order to SUppOrt COnCUrrent eXeCUtiOU of rUkS.

    Priority-based speculative locking protocols for distributed real-time database systems.

    Get PDF
    With globalization, multinational networked organizations' need for exchange of information has led to the emergence of applications that are heavily dependent on globally distributed and constantly changing data. Such applications include, stock trading, Computer Aided Design and Manufacturing (CAD/CAM), online reservation systems, telecommunication systems, e-commerce systems and real time navigation systems. These applications introduce the need for distributed real time database systems (DRTDBS) which must access/manipulate data spread over a network in addition to meeting the real time constraints and maintaining database consistency. In order to improve performance within DRTDBS, attention needs to be given to concurrency control mechanism and transaction's time constraints. A number of protocols have been suggested in recent years to address these issues. One of the proposed protocols, Speculative Locking (SL), has especially demonstrated the capability of improving performance within Distributed Database System by allowing parallelism between conflicting transactions without violating serializability. This research extends SL by giving it the capability of taking a transaction's priority into consideration when scheduling transactions. In addition, a nested transaction model is used to access the data that is distributed across the network. We propose two new Priority-based Speculative Locking protocols: (1) Preemptive Speculative Locking (PSL) and (2) Priority inheritance Speculative Locking (PiSL). PSL extends SL by allowing any incoming higher priority transaction to preempt and abort any lower priority transaction in case of lock conflict thus giving the higher priority transaction a chance to meet the deadline. PiSL, on the other hand, attempts to prevent any wasted work by avoiding preemption by a higher priority transaction. Instead, the lower priority transaction inherits the priority of the blocked transaction. This gives both transactions an opportunity to meet their deadline whenever possible.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b159863

    Concurrent Access Algorithms for Different Data Structures: A Research Review

    Get PDF
    Algorithms for concurrent data structure have gained attention in recent years as multi-core processors have become ubiquitous. Several features of shared-memory multiprocessors make concurrent data structures significantly more difficult to design and to verify as correct than their sequential counterparts. The primary source of this additional difficulty is concurrency. This paper provides an overview of the some concurrent access algorithms for different data structures

    Fault tolerant software technology for distributed computing system

    Get PDF
    Issued as Monthly reports [nos. 1-23], Interim technical report, Technical guide books [nos. 1-2], and Final report, Project no. G-36-64

    Chiller: Contention-centric Transaction Execution and Data Partitioning for Modern Networks

    Full text link
    Distributed transactions on high-overhead TCP/IP-based networks were conventionally considered to be prohibitively expensive and thus were avoided at all costs. To that end, the primary goal of almost any existing partitioning scheme is to minimize the number of cross-partition transactions. However, with the new generation of fast RDMA-enabled networks, this assumption is no longer valid. In fact, recent work has shown that distributed databases can scale even when the majority of transactions are cross-partition. In this paper, we first make the case that the new bottleneck which hinders truly scalable transaction processing in modern RDMA-enabled databases is data contention, and that optimizing for data contention leads to different partitioning layouts than optimizing for the number of distributed transactions. We then present Chiller, a new approach to data partitioning and transaction execution, which aims to minimize data contention for both local and distributed transactions. Finally, we evaluate Chiller using various workloads, and show that our partitioning and execution strategy outperforms traditional partitioning techniques which try to avoid distributed transactions, by up to a factor of 2
    corecore