
DO:A7 efensa Priority Rating:

	

Military Security Classification: 	U

	

(or) Company/Industrial Proprietary: 	N/A

ESTRICTIONS

te Attached Government Supplemental Information Sheet for Additional Requirements.

PIES TO:

Oct Director
starch Administrative Network
earth Property Management
stinting

SPONSOR'S 177):7167727-1-57-3557-m-05-----
Procurament/EES Supply Services 	 GTRC
Res 	Securi Services 	 Library

*cram coerdi 	ocA) 	 Project Pda
Nowa) CommunicItigrn (2) 	 nth.* T aran 1

Project :No. G- .36-645 (R-6100-0A0)

riiject Director :1:' R. Le Blanc

ORIGINAL 	REVISION NO.

&RCM! 	DATE 3 / 11

School/131X 	ICS

Sponsor USAF/RADC

AFB, N.Y: 13441-5700 Griffiss

:A INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

PROJECT ADMINISTRATION DATA SHEET

Noe Agreement: - ' F30602-86-C-0032

	

(Performance) 	3/17/88 	(Reports)

This Change 	 Total to Date ,."

Estimated: $ 	389,856 	
'

' 	 $ 	389,856

Funded: $ 	146,196 	$ 	146,196

N/A 	Cost Sharing No: 	N/A

Ralph Grede 	 X-4820
2) Sponsor Admin/Contractual Matters:

kDMINISTRATIVE DATA

) ,Sponsor Technical Contact:

OCA Contact

Ir. Richard Metzger

JSAF/RADC/torp

"kiffiss AFB, N.Y. 13441-5700

Office of Naval Research

Resident Representative

206 O'Keefe 13uilding

Georgia Institute of Technology

Atlanta, Georgia 30332

kward Period: From 2/18/86

 Sponsor, Amount:

".'ost Sharing Amount: $

'Fault Tolerant Software Technology for Distributed Computing System.

awe! Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of $500 or 125% of approved proposal budget category.

iuipment: Title vests with Sponsor —

)MMENTS:

his - is an advance Payment Pool Agreement. , No Foreign Nationals are to be ass

D this project without sponsor approval.

To 2/17/4

ICS

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICEOF,CONTRACT'ADMINISTRATION

NOTICE:OF PROJECT CLOSEOUT

Date 12/9/88

•

Pjecrt G-36--645 Center No. R6100-0A0

ojectl‘Director R•J. LeBlanc, r. 	 School/Lab

onsor.
it Force

F30602-86-C-0032AfW ntrac./Grant No . 	

ime-:Contract No.
4

tle FaultTolerant Software Technology. for Distributed Computing System

(Performance) 	3/17/88 (Reports)

None'
inal„,Invoice or Copy of Last Invoice

;Final''Report of:'Inventions'and/or Subcontracts - Patent Questionnaire sent to PI
Government Property Inventory & Related Certificate
Classified Material Certificate
Release and Assignment
they -

,cludes , Subproject No(s). "N/A • •

bproject Under Main Project. No. 	

Intinues Project No. 	 Continued by Project No.

Atribution:

rdlectDirector
dthinistrative Network
ccounting ,

J,rocurement/GTRI Supply Services
ResearchProperty:Management

---'ResearchSecurity Services

e100,
L GTRC
x Project File

Contract Support Division (OCA)
Other

fective .2/17/8

oseout

Contents

I An action-based programming model 1

1 Introduction 1

1.1 Action-Based Programming and C 3I 	

1.2 Using the Handbook 	 5

1.3 Fault tolerant actions: an overview 	 6

2 Software Designs using Actions and Objects 10

2.1 The basic model 	 10

2.2 Extensions to the basic model 	 14

2.2.1 	Forward Recovery 	 15

Object 	 15

Action 	 16

Stages 	 16

on abort 	 17

2.2.2 	Coroutines 	 18

2.2.3 	Concurrency control and concurrency atomicity 	 20

Concurrency Control 	 20

Serialized, Low Performance 	 21

Non-serialized, high performance 	 21

Serialized, high performance 	 21

Commit before terminate 	 22

2.3 Failure atomicity 	 23

Precedence relationships among actions 	

A special case: nested actions 	

24

25

2.4 Some background on failure and recovery 	 27

2.5 Recoverable actions and objects 	 30

3 Requirements for Fault Tolerance 32

3.1 Functional Characterization 	 35

3.2 Atomicity 	 36

3.3 Synchronization 	 37

3.4 Time 	 38

3.5 Processing Requirements 	 39

Fault tolerant designs for embedded systems 	 40

4.1 A model architecture for embedded systems 	 40

4.2 Irreversible operations as a design problem in embedded systems 	 41

4.3 Sources and types of faults 	 42

4.4 Some basic services 	46

II Constructing fault tolerant actions 	 49

5 Introduction to the examples 	 49

EXAMPLE 1: Skeleton of an action 	 51

6 Mechanisms for deteCting faults and initiating recovery 	 55

6.1 Mechanisms for detecting faults 	57

EXAMPLE 2: Recovery handlers can be sensitive to both stages and

exceptions 	57

ii

EXAMPLE 3: Recovery handlers can use system calls to diagnose

circumstances of the abort 	 58

6.2 Mechanisms for initiating recovery 	59

EXAMPLE 4: Aborting other actions during recovery 	 59

EXAMPLE 5: Noticing that another action has failed 	61

7 Recovery activities preceding an abort 	 63

Logging 	 63

Incremental Logging with Deferred Updates: 	 63

Incremental Log with Immediate Updates: 	 64

Checkpoints 	 64

Shadow Paging 	 64

Data Replication 	 64

8 Limiting the consequences of the failure 	 66

8.1 Limiting cascading aborts when optimistic reads are allowed 	67

EX AMPLE 6: A firewall protecting against cascading aborts attributed

to optimistic reads 	67

EXAMPLE 7: A firewall protecting against cascading aborts within a

hierarchy of nested actions 	70

8.2 Limiting cascading faults 	71

8.2.1 Maintaining failure atomicity 	72

EXAMPLE 8: systems which ignore redundant commands 	 72

EXAMPLE 9: Failure atomicity in resource management 	 73

8.2.2 Providing an alternative source for the expected effects 	74

iii

EXAMPLE 10: Maintaining failure atomicity by providing an alter-

nate source of required effects 	74

EX AMPLE 11: a second example using probes 	 75

EXAMPLE 12: Probes 	 77

8.2.3 Using forward recovery to reconfigure the software 	78

EXAMPLE 13: processes can be killed to force reconfiguration 	78

8.2.4 incremental recovery over several levels of nesting 	79

EX AMPLE 14: incremental recovery over several levels of nesting . 	79

9 Repairing the computation 	 81

9.1 Using redundant data 	81

EXAMPLE 15: Saving information in the global environment 	82

9.2 Using redundant code 	 84

EXAMPLE 16: Retry or terminate 	 85

EXAMPLE 17: Restart a successor action 	 87

EXAMPLE 18: Remapping code windows 	 90

EX AMPLE 19: Redundant software to provide a fault tolerant system

service 	 92 •

EXAMPLE 20: Redundant subsystems 	 94

EXAMPLE 21: Irreversible actions: robotics 	95

	

9.3 Using redundant hardware 100

EXAMPLE 22: Hardware Redundancy . 	 101

EXAMPLE 23: Two processes on two machines 	 103

9.4 A Detailed discussion of hardware processor redundancy for fault tolerance 104

Tandem NonStop System 	 104

iv

Stratus/32 Continuous Processing System 	 104

System D Prototype 	 105

10 Action-based programming for distributed systems 	 106

10.1 A highly available distributed calendar 	 106

10.2 A walk through of the example 	 107

Part I

An action-based programming model

1 Introduction

One of the major tasks for the 1980s and 1990s is integrating data communications and

computer technologies. Among the most important examples of such integration is the

group of Command, Communication, Control, and Information (C 3I) systems required by

many military and civilian applications.

C3I systems perform complex missions: some functions involving human/computer in-

teraction, and others controlling some mechanism or process. Such large systems are likely

to be distributed and to incorporate such subsystems as databases, operating systems, real-

time control systems, graphics programs for data acquisition and display, and various tools

for monitoring, maintaining, enhancing and tuning the system. A system of such complex-

ity may involve millions of lines of code, with individual subsystems each accounting for as

much as ten percent of the total.

1.1 Action-Based Programming and C3 1

Recent research in the area of program development methodology has described new para-

digms called "object-oriented" and "action-based" programming. The literature on "object-

oriented" programming focuses primarily on the problems of specifying and implementing

objects. The focus of this handbook is on the issue of defining operations which can manip-

ulate those objects. We are concerned not with the functional correctness of the individual

operations but with their interactions. Our use of the term "action-based" programming

underscores this emphasis. An "action" is understood to be an operation which displays

certain properties when interacting with other actions. In particular, actions are units of

work which can be scheduled, synchonized and managed by various system services and

which may exhibit concurrency and failure atomicity.

In general terms, the program state is partitioned into a number of objects. The state

within the object can be examined and manipulated only by operations previously defined

1

for the object. Typically, the programmer's choice for objects and their associated op-

erations reflects a high-level, conceptual understanding of how the system is supposed to

operate. When coding operations as actions, a programmer must consider the operations

not only from the perspective of their functional correctness but from the perspective of

their interaction with other operations as well.

A programmer must be concerned with how actions may exchange information when

they are executed concurrently. Typically, the criterion is that actions may execute concur-

rently provided the final result is equivalent to a result which may have been achieved had
the executed serially i.e., the programmer is concerned with preserving the "concurrency

atomicity" of the operations.

A programmer must also be concerned with the precedence relationships among actions.

For example, a file must be opened before read and write operations are performed against

it. The problem of ensuring that the precedence relationships among concurrently executing
actions are satisfied is known as "process synchronization." Process synchronization imposes

constraints on the ordering of concurrently executing atomic actions.

When fault tolerance is made a design goal, the programmer becomes concerned with

preserving the "failure atomicity" of actions. To determine whether an action must exhibit
failure atomicity, the programmer must examine the operations to be executed by the action.

The programmer may discover that the action contains on (or several) sets of operations

such that the action must either execute all of the operations in the set or none of them.

Furthermore, the action must execute the operations in the set in a sequence which satisfies

an precedence relationships among them.

If an action must exhibit failure atomicity with respect to a set of operations and the

action fails, recovery may proceed in one of two ways: recovery may either undo the effects

of those operations in the set which have already been executed, or recovery may execute,

in the proper sequence, the remaining operations in the set. For example, once a file is

opened it must later be closed. If an action processing a file is to display failure atomicity,

then it must guarantee that, should it abort, either both the open and close operations will

be performed or that open operation (and all the ensuing reads and writes) are undone.

Most of the research related to the definition of actions has been done in connection

with transaction processing in database systems. This research has been aimed as pro-
viding techniques for high speed transaction processing in a distributed environment. The

2

requirements for such systems include a high degree of concurrency among transactions and
an ability to tolerate both faulty transactions and site crashes. In database transaction

processing it is permissible to satisfy these requirements by using strategies which delay the

processing of some transactions, change the order in which transactions are executed, or

undo all of the effects of a transaction.

A transaction may be delayed if, because of a fault or for reasons of concurrency control,

a needed resource is temporarily unavailable.

If a transaction aborts its effects can be undone. It may abort because it cannot complete

successfully (either because of internal errors or external conditions in the system) or it is

holding resources needed by other actions. Since the effects of a transaction are confined to

data stores under system control, undoing a transaction is a matter of restoring the data

stores to their previous states. The aborted transaction may or may not be restarted.

In database transaction processing there are no strong precedence relationships among
transactions. The delaying, aborting and restarting of transactions, may alter the resulting

state of the database, but generally any of the possible resulting states will be regarded as

"correct" by the database users.

C3I systems are similar to database systems providing high speed transaction processing
in that commands can be regarded as a generalized form of transaction. Commands which

inquire as to the state of a particular subsystem are similar to reads from a database state,

and commands which cause a subsystem to change state are similar to updates. C 3I systems
have similar requirements for concurrency and fault tolerance.

Fault tolerance and concurrency control, however, are more difficult to achieve in C 3I
systems. The critical difference is that C 3I systems interact with physical systems and are

subject to timing and synchronization constraints.

Synchonization constraints are discussed in detail in section 2.1. That section also

provides some additional discussion of failure and concurrency atomicity.

In order to satisfy timing constraints it may be necessary to adopt optimistic concur-

rency control methods. Optimistic concurrency control allows actions to read uncommitted

data. Optimistic concurrency control is generally avoided in database transaction process-

ing because of the need to abort optimistic readers if the action supplying them with data

is aborted. In command processing it may be necessary to accept the additional cost of

3

aborting an action when optimistic concurrency control is used in order to avoid the delays

associated with strategies in which only committed data is read.

Furthermore, the strategies used in database transaction processing to tolerate faults

may not be appropriate. Delaying the execution of a command when some resources are

unavailable may be inappropriate because of timing constraints. Also, it may not be possible

to undo the effects of a partially executed command: the effects of the command may not

be limited to data stores but may include irreversible changes to physical systems.

The concept of an irreversible change to a physical system can be illustrated in terms of

a command control system for a missile. As soon as the missile is launched, the "launching

action" cannot be undone. While it is possible to restore the data stores to their previous

states, such a procedure would obliterate any reference to the fact that the missile had

been launched. Clearly, recoverying from a faulty launch command involves subtleties not

present in the simpler problem of recoverying from a faulty database update.

Recovery requires the exploitation of redundancy in data, software and hardware. Part II

will how recovery mechanisms can use redundant resources to meet requirements for fault

tolerance.

The four most important objectives associated with making action in embedded systems

fault tolerant can be summarized as follows:

1. Repairing an action which has aborted: If an action faults and aborts, it may

attempt to repair itself and resume executing. This is an appropriate strategy for

actions which are assigned highly critical tasks.

2. Avoiding cascading faults: If an action faults and aborts, the recovery handler

may decide to anticipate some of the problems which may ensue from that fault. It

may simply attempt to ensure that failure atomicity is preserved. Furthermore, the

recovery handler may send an abort signal to other actions which may have eventually

needed the results of the aborted action. This strategy is appropriate if it would be

costly to let the other actions proceed only to fault when they attempt to use the

results which the aborted action was supposed to have produced.

3. Aborting an action which has committed but not terminated: Once an action
has committed it is required to terminate successfully. Thus, if the main line of the

action aborts, the responsibility of the recovery handler is to find an alternative way of

4

bringing the action to a successful conclusion. An action which executes an irreversible

action can be regarded as having committed before it terminates.

4. Avoiding cascading aborts: Even if an action has not committed, an optimistic

concurrency control strategy may have allowed another action to have read uncom-

mitted results. If the first action subsequently aborts and undoes or modifies the

uncommitted results, it will be necessary to abort the actions which were allowed

to read those results. The aborted readers may not have to propagate the abort if

they are able to recover (using forward recovery) in a way which does not change any

uncommitted data which they may have supplied to yet other actions.

In section 2 we introduce the concept of a staged action. In Part II, we discuss how the

concept of a staged action can be used to achieve these objectives.

1.2 Using the Handbook

This handbook is intended for the working programmer who wishes to familiarize him-

self with the use of action-based program designs in the construction of C 3I systems. In

particular, this handbook considers the problem of adapting the action-based programming

paradigm from the context of database transaction processing to the needs of command pro-

cessing in C3I systems. Before action-based programming can be used for C3 I systems, it is

necessary to extend the conventional approaches to both concurrency control and fault tol-

erance. The extensions required for concurrency control and synchronization have received

more attention and are better understood than the extensions required for fault tolerance

and recovery. Furthermore, the problems associated with the extensions related to fault

tolerance and recovery are the more subtle and difficult to solve. Thus, the major portion

of this handbook is given over to a discussion of providing fault tolerance and recovery for

C3I systems.

The majority of the innovative work presented in this handbook focuses on the software-

based recovery mechanisms. The software recovery techniques are presented within the

framework of action-based programming. The recovery techniques described in this hand-

book represent a synthesis of exception handling and action-based programming. The in-

novations include the use of staged actions, the treatment of forward recovery as a means

for preserving failure atomicity, and the use of forward recovery to coordinate the recovery

5

of interacting subsystems in an environment utilizing distributed control.

Exception handlers are associated with individual units of work (actions) rather than

with individual units of modularity (procedures or objects). The exception handlers have

access to system services not available to the mainline of the action and are used to achieve

forward recovery. To emphasize these enhancements, exception handlers are termed "re-

covery handlers."

In this handbook we take the position that the task of providing a computation with a

measure of fault tolerance is a design activity. Achieving fault tolerance requires that the

system be equipped with redundant hardware, redundant sections of code and replicated

data. Decisions as to which elements of the system should be backed up and how the backup

elements are to be activated are design decisions. Furthermore, it may be desirable to design

some elements of the primary system in ways that facilitate the provision of redundancy.

We believe the approach to recovery we describe in this handbook can be used not

only to increase the reliability of a software system but also to simplify the management

and maintenance of the system. For example, if actions are robust, it will be possible

to bring a site down for maintenance without extensive coordination. A robust action

will abort when the site goes down, and either restart when it comes up, or have made

alternative arrangements in the interim. Our approach can also be used to support software

maintenance and upgrades. We describe how recovery handlers can remap the code and

data windows of the associated action during recovery. This mechanism provides access to

backup versions of software. A similar strategy can be used to transfer control from an old

.version to.a new version of the code for an action.

1.3 Fault tolerant actions: an overview

When designing fault tolerant actions, there are five stages of activity to consider.

1. preparing for failure by saving information which may be needed during recovery;

2. detecting that a fault has occurred or that an action has failed;

3. limiting the consequences of a failure and compensating for those consequences that

could not be avoided;

6

4. constructing a new state for the aborted computation, including repairing data and

control information and replacing faulty software or hardware; and

5. terminating recovery and restarting the main line of the computation.

Step one is carried out by the main line of the action. Step two may be done explicitly

at the request of the action which is to be aborted, at the request of another action, or at

the request of the run-time or operating systems. Steps three and four are tarred out by

the recovery handler itself. Step six is carried out by the action manager at the request of

the recovery handler.

It is unreasonable to attempt to imbue every action with a maximum amount of fault

tolerance. A programmer cannot anticipate every possible fault: there are too many. Fur-

thermore, if the programmer tries to be selective and specific he will find himself guarding

against errors when it would be easier to simply fix them once and for all. The programmer
may also provide a measure of fault tolerance without any specialized support from the

run-time or operating systems by using input validation, conditional statements directing

the flow of control and explicit back tracking under program control.

When incorporating fault tolerance into actions, the programmer must consider the

criticality of the action and the types of threats from which the action must be protected.

A recovery handler is built only if the cost of the recovery handler is less than the expected

cost of of the damage caused by the fault. As part of this analysis the programmer must

consider the granularity at which a particular strategy for fault tolerance should be applied.

For example, one way of defending against software errors is to have two versions of a

system available. If an error is encountered in the first version, the recovery mechanism

automatically switches to the second. This is a strategy which is more appropriate for

large-grained structures and for rather generally stated threats. It is more reasonable to

have a backup version for a several thousand line section of code and for that version to

be used whenever the primary section fails. The alternative is to have backups for smaller

sections of code and to have those backups serve as patches for specific errors; this second

approach, however, can be unwieldy if the number of threats is large.

Yet another strategy is possible and often this proves to be the most reasonable. If a

subsystem, Si, faults and is unable to provide a service to a second subsystem, S2, then 52

l i.e. expected cost = (probability of fault) * cost of fault

7

irreversible actions fail. They are: 1) take steps to ensure that information regarding the

occurrence of an irreversible action is recorded in several locations on stable storage, and

2) make provisions for investigating the state of the system being controlled to determine

whether the irreversible action in question had in fact occurred.

9

2 Software Designs using Actions and Objects

Our discussion of software fault tolerant mechanisms focuses primarily on the object/action

model for software design as described in section 2.1. We will also discuss a hybrid model

in which processes are added to the basic object/action model.

2.1 The basic model

In the object/action model, work is accomplished by executing a set of actions. The actions

carry out their work by accessing and modifying the states of various objects. The objects

are global to the actions and may persist even after the computation containing the actions

has terminated.

An object encapsulates data structures and provides operations (called entry points) in

its external interface. These operations allow actions to create objects and to observe and

modify an object's state.

An entry point to an object may (1) be an action, (2) contain a set of actions, or

(3) may be invoked by other actions. An action is an operation which possess certain

additional nonfunctional characteristics.

Actions provide a way of structuring concurrenc:y control, synchronization, and recovery

within a computation. Actions are regarded as managable units of work and may exhibit

concurrency and/or failure atomicity (actions were discussed in detail in section 1.1). By

dividing a thread of control (i.e., a computation) into a set of actions it is possible to exercise

a fine-grained control over its interactions with other threads.

From the perspective of concurrency control, actions represent schedulable units of work.

Declaring that a sequence of statements be atomic for purposes of concurrency control guar-

antees that information will propagate from one statement to the next without interference

from other threads.

Interference is possible if some of the variables read or modified by one action are also

modified by another action. For example, if one action reads some variables before they are

modified by a second action, but reads others after the second action has modified them,

the interaction is not serializable. Concurrency control prevents actions from interfering in

this way.

10

Even if two actions are declared to exhibit concurrency atomicity, it may be possible to

interleave their execution, i.e., the operations within the actions may be scheduled in a way

which is consistent with the view that the actions themselves executed one after the other.

Bernstein's recent book [Bern] discusses methods for ensuring serializability of concurrent

execution. The most commonly used technique is two-phase locking.

In database transaction processing, it is acceptable to process actions in any order. Not

all sequences of actions, however, produce the same effect. For example, if for a particular

account a bank processes a withdrawal before a deposit, the result may be a bounced check.

Had the actions been processed in the other order, the check would not have bounced.

Discussions of database transaction processing assume that the task of ordering actions

is the responsibility of the user. This is not an acceptable answer in the context of C 3I

systems.

A C3I system is an example of a command processing system. A command processing

system is an action-based system which must interface with electro/mechanical devices

and humans in a manner that satisfies specified time constraints. Sequences of commands

must also satisfy precedence constraints, e.g., commands which operate a device cannot be

executed until after other commands have turned the device on, initialized it, and confirmed

that it is operating correctly.

The command processing system must be able to synchronize the actions to ensure

they are executed in the proper order. Suppose Al and A2 are two actions. The basic

possibilities are:

1. Al;A2 (Al precedes A2),

2. A2;Al (A2 precedes Al), and

3. parbegin Al,A2 parend (the actions may execute concurrently but the final result is

either Al;A2 or A2;Al.)

Concurrency atomicity (with synchroniztion) is adequate just by itself provided actions

never fail. Unfortunately, some actions may not run to completion because of problems with

code, data or hardware. When an action terminates prematurely it is said to abort. Not

only may actions be aborted because of internal problems, they may be aborted for reasons

of systems management. If a high priority action needs the resources being used by a low

priority action, the action manager may abort the low priority action and give its resources

to the high priority action. Regardless of the reason an action is aborted, something must

be done to clean up after it, i.e., to recover from the abort. The problems associated with

the failure of an action belonging to a set of concurrently executing and interacting actions

is discussed more in section 2.2.

Internal aborts can be signaled using a mechanism for raising exceptions. If a component

observes that it or another component has faulted, then the component noticing the fault

can raise an exception. An exception raising facility provides a mechanism for fault recovery

the fault results in system failure. Goodenough [9] has observed that exceptions may be

also be used to classify results and monitor activity. In this paper we focus on signalling

that a fault has been detected. When an exception is raised and a fault is indicated, an

action aborts. We will emphasize the role of exceptions and exception handling by using the

phrase "signalling an abort" to indicate that a fault has been observed and an appropriate
exception raised. We will also use the term "recovery handler" to designate exception

handlers responsible for handling aborts.

From the perspective of recovery, actions are required to either execute completely or

never begin execution. When an action is declared to exhibit fault recovery, provisions

must be recorded on stable storage to bring about a correct outcome should the action

fail. Enough information must be recorded on stable storage (accessible to the computation

performing the recovery) to ensure either that the effects of the action can be undone or

that the action can be forced to a completion state in spite of its failure.

The problem of recovering from failed actions in C 3I systems can be understood by
contrasting it with the similar, but simpler, problem of recovering from failed transactions

in database transaction processing. In a database transaction processing an action, once

begun, may either terminate successfully or abort. If the transaction aborts, recovery is

carried out by undoing all of the actions effects. If the action terminates successfully, it

is expected to commit. By committing, an action makes its effects permanent and they

cannot be undone by rolling them back.

A commit in database transaction processing is an indivisible operation. The act of

committing is usually reduced to modifying of a single block on secondary storage. Thus,

an action is either uncommitted and none of its effects are permanent, or it is committed

and all of its effects are permanent. In the case of database transaction processing, all of

12

the effects of the action are limited to changes on secondary storage, and it is possible to

first make the change, and then decide whether to make it permanent.

In command processing, however, the committing of an action is a more difficult pro-

cess. An action may commit before it terminates (either by executing an explicit commit

operation or by executing an irreversible operation), thus requiring that recovery force the

action to completion. Furthermore, the act of committing does not reduce to the modifying

of a single byte on secondary storage. Instead, the commit may be a consequence of having

caused a state change in a physical system. The action may set a bit before changing the

state of the physical system. This bit merely declares the action's intention to commit.

The action may set another bit after the state of the physical system has changed. This bit

declares that the action has committed. Unlike the case of a commit in database transac-

tion processing, the setting of a bit did not in and of itself make the state permanent. A

fundamental problem in generalizing from transaction processing to command processing

is the issue of determining whether an action aborted before or after the action caused the

state of a physical system to change. If the action aborted before it set the bit declaring

its intention to change the state or after it set the bit indicating that it has completed the

state change, the answer is obvious. If the action aborted after it set the first bit but before

it set the second, additional steps must be taken to determine whether the state change

occurred.

Recovery may proceed in one of two ways. The two possibilities are denoted by the

terms "backward" and "forward" recovery. Backward recovery returns the computation

to an earlier state which existed prior to the failure. Generally this involves undoing all

of the aborted action's effects thereby creating the illusion that the action had never run.

Forward recovery puts the computation into a new state from which computation may

continue. The recovery mechanism may construct this new state by forcing the aborted

action to completion or otherwise constructing a state which could have resulted had the

computation not been interrupted by the fault. Forward recovery may also construct a new

state which incorporates the fact that a fault occurred, e.g., a new state in which the faulty

subsystem is shut down and the services it had provided are no longer available.

To facilitate these uses of forward recovery, we allow an action's recovery handler to be

selective with respect to which objects and data areas are rolled back or modified during

recovery. The recovery handler may be selective in aborting other actions which depend in

some way on the failed action.

13

In C3I, forward recovery is used in two ways. First, recovery procedures may be used to

increase the reliability of a computation in spite of any undetected flaws which may remain

in it. In this case the recovery handler is responsible for reparing the fault and allowing the

action to continue executing. This is the required approach if an action has been allowed

to commit (perhaps by performing an irreversible operation) before it terminated.

Second, recovery procedures may be used to protect one computation from flaws in any

other computations or systems (including physical systems and computer hardware) with

which it interacts. The faulting action can signal other actions that a fault occurred. The

other actions then would have an option of reconfiguring themselves and so as to avoid

conditions in which they might also fault.

In a similar fashion, forward recovery can also be used to prevent the abort of an action

which has permitted optimistic reads from resulting in a cascade of aborts among processes

who have, directly or indirectly, used the uncommitted data.

The recovery procedures must be supported by choices in the design of the hardware,

the software, and the data stores. Used in this second way, recovery can provide firewalls

to prevent faults from cascading. When faults cascade, each fault triggers other faults in

heretofore correctly functioning elements of the system until the system as a whole fails in

an uncontrolled and possibly catastrophic way. The next section discusses extensions to

this basic model and introduces the syntactic structures we use for expressing fault tolerant

designs.

2.2 Extensions to the basic model

In adapting the action/object model to the needs of embedded, real-time systems we have

made several modifications to the approach taken in Clouds.

• We regard recovery as the responsibility of the action rather than of the objects

touched by the action —thus, we attach recovery handlers to the action rather than

abort handlers to the objects.

• We emphasize the importance of forward recovery and have added a mechanism for

restarting an aborted action at an intermediate stage. The data used by an action is

partitioned into objects and data areas. A aborting action may selectively rollback or

modify data areas and objects.

14

• We have added coroutines to the paradigm of action-based programming and allow

optimistic concurrency control.

• We provide two mechanisms for optimistic concurrency control. An action may allow

other actions to use its uncommitted results. If the action aborts and the uncommitted

results are rolled back, any actions having used those results are aborted. An Action

may commit some of its results even before it terminates and this can be regarded as

a second approach to providing optimism. An aborting action is not allowed to use

the roll back mechanism on data it has previously committed. The aborting action is,

however, allowed to modify the commited data and may explicity abort actions which

have used the committed results.

• We separate failure and concurrency atomicity. We have defined an action as a unit of

computation which is subject to system management. In its simplest form, an action

is merely a segment in a thread of execution. An action may, however, be coded to

exhibit failure and/or concurrency atomicity.

We use these extensions to discuss and solve several problems related to the construction

of embedded systems.

2.2.1 Forward Recovery

This section describes our methodology for forward recovery. The methodology is expressed

in terms of objects, actions, and abort (exception) handlers. In the course of this discussion,

we introduce the syntax of the design language we use when describing fault tolerant actions.

The most important langauge features are introduced here. Additional language features

are introduced in Part II.

Object An object is an abstract data structure. An ob ject contains data and operations

that may operate on the data. An example of an object is a file. The file's contents

represent the data, and the operations are read, write, open, close, ... Objects are used in

a programming methodology that supports abstraction. "An abstraction isolates use from

implementation: an abstraction can be used without knowledge of its implementation and

implemented without knowledge of its use [18]."

The syntax of an object is

15

implementation of object <object_name> IS

...data...

...procedures and functions...

end

Action An action is a unit of work. An action represents a segment along a thread

of execution that may pass through one or more objects. An action may invoke nested

actions. Each action may have an associated exception handler. When an exception occurs,

the action jumps to the statement on abort and executes the exception handler. The on

abort statement is defined within the scope of the action. The exception handler processes

according to the stages which are described below.

The syntax of an action is

begin action <action_name>

stage 1: ...

stage n:

on abort

case stage OF

1:...

n:

end

The code, data, and control information associated with an action is encapsulated in an

object of type action. The entry points, such as abort and restart, in the action object provide

the operating system with the hooks required for action management.

Stages Stages are perhaps the most novel aspect of our language. Each action is divided

into zero or more stages. A stage is a label attached to a sub-segment of an action. Stages

are a series of labels. An action executes in stage i until until the action passes stage label

i +1 which causes the action to execute in stage i 1. On the event of an exception, control

jumps to the beginning of the current stage label in the exception handler. The exception

handler is marked with the statement on abort. The on abort statement is defined below.

16

on abort The on abort statement marks the beginning of a recovery handler. The fol-

lowing action template is used for explanatory purposes in the discussion below:

begin data area data_area_name

<variable declarations>

end data area

begin action action_name

stage 1: f(x)

stage 2: g(x)

stage 3: h(x)

stage 4: a(x)

stage 5: b(x)

on abort

case stage of

1: forward recovery 1

2: forward recovery 2

resume(3)

3: forward recovery 3

raise_exception(exception_name3)

4: backward recovery 4

5: backward recovery 5

raise_exception(exception_name5)

end

The recovery handler may operate in the ways listed below:

• Total forward recovery and termination: When an action raises an exception,
the recovery handler processes the exception by invoking the recovery routine marked

by the appropriate stage number. The recovery routine may clean up the exception

and return with, or without raising its own exception. If the recovery handler does

not raise an exception, then we say the action is totally recovered and terminated. We
use this terminology because the recovery handler believes that the exception can be

screened from its invoker, thus protecting against a cascaded exception. The stage 1

17

recovery handler of the template is an example of this case because an exception is

not raised.

• Forward Recovery and Resumption: In this case an action raises an exception,

and the recovery handler executes some forward recovery. The recovery handler then

executes the statement resume(i). The resume statement overrides the default of the

recovery handler (terminate), and resumes execution at the beginning of stage(n).

The stage 2 recovery handler of the template is an example of this case. Here, some

forward recovery is executed and control is passed back to the beginning of the action's

stage 3.

• Partial Forward Recovery and Termination: In this case, the action does as

much forward recovery as possible, but is either unable or unwilling to shield its

invoker from the exception. Here, the action terminates and signals its invoker that

an exception has occurred. Stage 3 of the template is an example of this case.

• Backward Recovery without exception: This case models actions that have little

to no functional criticality. If the action proceeds correctly, then the action terminates

correctly. Otherwise, the action precedes until an exception is raised, and rolls back

to its state at the time the action was invoked and returns.

• Backward Recovery with Exception: This case is identical to backward recovery

without exception, with one difference: an exception is raised. This case is used

when atomicity semantics of an action is required. Here, an action either precedes to

completion, or rolls back to its initial state at the time it was invoked. If the action

rolls back to its initial state, then an exception is raised. The exception is handled by

its invoker.

2.2.2 Coroutines

We use the cobegin 	coend construct to express coroutines. Brakets are used to delimit the

individual coroutines. We use locks, semaphores an d rendezvous to express the interaction

of coroutines (and more generally of processes).

A skeleton for a coroutine follows:

begin action

18

stage 1:

stage 2:

stage 3: cobegin

A: { stage 1:

stage 2:

}

B: { stage 1:

stage 2:

stage 3:

}

stage 4:

on abort

end action

To refer to stages within a coroutine it is necessary to refer to the stage containing the

coroutine statement and the label of the coroutine. For example, resume(3.A.2, 3.B.1) will

resume execution at stage 2 in coroutine A and stage 1 in coroutine B.

19

2.2.3 Concurrency control and concurrency atomicity

Concurrency atomicity is the property that actions execute in a serializable manner. An

action is implemented by a sequence of operations on objects. The global state of each

invoked object is visible to currently executing actions. The operations of concurrent actions

may be interleaved, but if concurrency atomicity is to be preserved, then the sequence of

operations performed by the actions must be serializable. The designer of an ob ject specifies

the locking protocols to be used when accessing the object in order to achieve serializability.

It is possible to specify the locking in ways which allow nonserializable interactions. With

the use of top-level actions it is possible to approximate the effects of optimistic concurrency

control, i.e., the results of an action can be made visible before the action commits provided

the results to be made visible were the consequence of a nested, top-level actions. Cascading

aborts, a drawback to optimistic concurrency control, are avoided by not allowing recovery

of objects touched by a nested top-level action after it has committed.

Concurrency Control Whenever two or more processes have the potential to invoke the

same object, then synchronization problems may occur. Objects in our language are passive

in the sense that they have no associated process. For example, in conventional systems,

different users may have access to the same text editor. In this case, all of the users share

the same image of the text editor's code, but supply their own local space for storage of

their edited files. In our language we call the text editor code an object. The text editor

code may operate on local variables (files).

We extend the notion of shared code by associating a state with an object. Suppose an

object exists that is a text editor for a special file foo. Then, the text editor object would

be composed of the text editor code and the file foo itself. If two or more users each wish to

simultaneously edit file foo, then the users both invoke the text editor object simultaneously.

Obviously, there is a potential for concurrency problems.

We address the concurrency problem by separating the language constructs used for

synchronization from the language constructs used for concurrency control. A user may

associate synchronization variables with either objects or actions. In our text editor exam-

ple, if the the text editor object has its own synchronization variables, then actions that

invoke the object need not synchronize. Unfortunately, one may find programming such an

object difficult if the object must be guaranteed to assure correctness (e.g. serializability

20

and deadlock avoidance). Therefore, we allow actions as well as objects to use synchro-

nization variables. By placing synchronization variables in actions we avoid the problem of

attempting to create fault tolerant objects, but we introduce the problem of creating fault

tolerant actions. We believe fault tolerant actions are easier to build than fault tolerant

objects, because actions tend to be more special purpose in nature.

If two actions share the same object and one action aborts, then what should the other

action do? Our language is a general purpose language that can express any correctness

criterion. In the paragraphs below we present various correctness criteria for recovery and

their associated solutions.

Serialized, Low Performance In situations in which all actions must be serializable,

but good performance is not highly critical, we omit forward recovery from all actions.

When an action aborts, the action rolls back each touched object to the object's original

state (the state at the time the action invoked the object). All other actions that touched

the objects also abort.

Non-serialized, high performance In some situations, non-serializable execution may

be allowed. In our missile example, all that matters is the final position of the missile. If

the history of the missile's movements turn out to be non-serializable, then we do not care.

In this case, we may use forward recovery whenever deemed appropriate.

Serialized, high performance Designing recovery schemes that achieve both serializ-

ability and high performance is an open research problem.. A quick survey of some of these

schemes are provided below: A transaction Ti reads from Ti in H if Ti reads some data item

from Tj in H. Notice that it is possible for a transaction to read a data item from itself [4].

We denote a commit point c.

• RC: "A history H is called recoverable (RC) if, whenever Ti reads from Tj (i j) in

H and ci E H, ci < cj. Intuitively, a history is recoverable if each transaction commits

after the commitment of all transactions (other than itself) from which it read [4]."

• ACA: "A history H avoids cascading aborts (ACA) if, whenever Ti reads x from

Tj (i 	j), cj < ri[x]. That is, a transaction may read only those values that are

written by committed transactions or by itself [4]."

21

• ST: "A history H is strict (ST) if whenever wi < oi[x] (i # j), either ai < oi[x]

or ci < oi[x] where oi[x] is rj[x] or wi[x]. That is, no data item may be read or

overwritten until the transactions that previously wrote into it terminates, either by

aborting or committing [4]."

Commit before terminate We allow actions to commit (either in entirety or merely

selected data areas and objects) before they terminate. An action may commit either

explicitly or implicitly. An implicit commit may occur before termination if the action

performs an irreversible operation on the physical system being controlled. If an action

aborts between the time the action commits and the time the action terminates, the action

is required to execute to completion, and it is the responsibility of the recovery handler

associated with the action to see that the action does indeed complete. "Completion" can

be either restarting the action or merely leaving the objects and data areas touched by the

action in a consistent state.

As an example, consider the following high-level control loop of a missile. In our example,

there are three stages. The first stage, validates the status variable against a set of internal

sensors. If the status variable is incorrect, then the status variable is updated, and control

resumes in stage 2. Stage 2 is an example of a stage that has the potential to terminate

before it commits. Here, the missile's position is moved. Internal sensors determine when

the correct end state is reached. If for some reason, the end state cannot be reached, then

the exception incorrect_position is raised. The status of the action reflects the final position

of the missile. In this case we say the action "commits before termination" because the

action does not proceed all the way through stage 3, but the action does change the state of

the missile (reflected by the variable missile_pos). The final stage is merely a check against

possible programmer errors; the final stage should be a "no operation."

begin implementation of object missile

begin data area mis

missile_pos : position_type

end data area

procedure missile(IN next_pos : position_type)

begin

22

begin action missile_act

stage 1: validate(missile_pos) !check status with missile sensors

stage 2: while not missile_pos = next_pos

move missile to next_pos from original missile_pos

end

stage 3: validate_end(next_pos,missile_pos)

on abort

case stage of

stage 1: initialize

resume(2)

stage 2: raise_exception(incorrect_position)

stage 3: raise_exception(unable_to_figure_out_problem)

end

end

end

2.3 Failure atomicity

Failure atomicity is the property that an action appears to either execute entirely or to not

have executed at all. The question of what it means for an action to execute entirely is a

difficult one. We apply an informal notion. An action has executed if it has changed its

parent environment. An action has executed completely provided it has changed left the

parent environment in a consistent state. A state is not consistent if it will cause subsequent

actions to fail. For example, an action is supposed to close any files it has opened but fails

to do so (i.e., it has not executed completely): other actions may incorrectly assume the files

are closed and, because that assumption is violated, execute incorrectly. If, however, the

action had discovered that it was unable to close the files and, instead, set a flag known to the

other actions to indicate that fact, then it can be regarded as having executed completely.

The question of failure atomicity is closely connected to the question of precedence among

actions and among operations. This discussion is taken up in section 2.3.

Failure atomicity is provided in Clouds by means of backward recovery. In backward

recovery, the effects of an aborted action are undone and the illusion is created that the

23

failed action never began to execute. Clouds provides several loopholes in failure atomicity:

nested actions can be marked as top-level actions and objects can be equipped with "roll

your own" recovery handlers. When an action aborts, the default recovery procedure is to

replace the state of each object touched by the action with a copy of the state as it existed

before the action began executing. This default recovery procedure can be overridden by

attaching an abort hander to an object. If an abort handler is present, then the object will

be recovered not by restoring its previous state but by executing the abort handler. The

effects of an action which has been marked top-level cannot be backed out even if its parent

action aborts, so objects touched by nested, top-level actions will not be restored. A chief

advantage of marking nested actions as top-level is that the results of a top-level action are

visible when the top-level action commits even though the parent of the top-level action

has not yet committed.

Precedence relationships among actions The precedence relation must be qualified

whenever it is possible for actions to fail. The possibility that an action may means that

either of the actions in the precedence relation may not occur. The assertion that A l

 precedes A2, unless qualified, means that if A l and A2 both commit then A l must precede

A2. Either Al or A2 may commit without the other. This is termed weak precedence.

There are two consequences of weak precedence:

1. Al must precede A2 if Al is to occur at all, and

2. A2 must follow A l if AT is to occur at all

The precedence relations between two actions may be strengthed with either of the

following qualifications:

1. A l must precede A2 if A2 is to occur at all, or

2. A2 must follow A l if Al is to occur at all

These two qualifications, when taken together, define the concept known as nested

atomic actions. This we call strong precedence.

The weaker forms of precedence arise as possibilities when two processes interact and

an action within one process must precede an action in the the other.

24

The abort handler can ensure that the precedence among operations is preserved in spite

of failures.

For example, if one knows that a particular action is idempotent (an operation f is

idempotent provided f(x) = f(f(x))) this fact may be used during recovery. Thus, if the

abort handler is unable to determine whether f has been invoked, it can invoke f during

recovery.

Suppose the precedence relationships among operations may require that particular

action A h be followed by 12. Suppose further that a particular execution of A aborts

after executing fi and after executing an irreversible operation. Finally, suppose that,

because of the failure, it is uncertain whether A has executed 12 . If h is idempotent, the

abort handler can ensure failure atomicity by executing f 2 with out determining whether

it had been executed just prior to the abort.

Some difficulties arise when processes interact through shared objects. It is possible

through the use of shared objects for two actions within different concurrent scopes to

communicate. If optimistic reads are permitted and the locking is not two-phase, then the

actions may communicate in an unserializable way. In such a situation failure atomicity

may be preserved but concurrency atomicity is lost.

We term an action with nonserializable iterations with other actions and which cannot

be rolled back a weakened action. A weakened action is little more that a coroutine with a

high powered exception handler.

Weakened actions may contain nested actions which are not themselves weakened. When

two weakened actions interact, full strength subactions nested within them should interact

in serializable ways. It may be desirable to further constrain allowable schedules to a subset

of the serial schedules. Such constraints can generally be expressed using sequencing and

rendezvous mechanisms.

A special case: nested actions Nexted actions are are a common extension to the

object/action model.

Nested actions are actions at different levels of abstraction. A parent action may spawn

a set of subactions. Each subaction appears to the parent action as an atomic unit even

though the subaction itself is composed of its own operations and sub-subactions. After

25

each of the child subactions complete, the parent action may complete. Each child subaction

may be the parent for one or more of its own child actions. Normally, the correctness

criteria for system state is that the system state must result from a series of serializable

transactions. Nested actions provide a weaker correctness criteria that is strong enough for

most applications. The correctness criteria for nested actions is that highest-level actions

(HLA) must be serializable. Since a user views the system state using HLAs, the user's

view of the system state is guaranteed to be consistent because the HLAs are serializable.

Example An example of a history of nested actions that satisfies the weak correctness

criteria, but not the strong correctness criteria is provided below: Suppose an HLA spawns

three subactions 3 1 ,32 , and s3 . All of these subactions operate on a list of integers. Suppose

the HLA knows that every integer in the list is positive, and subactions s 1 , and 32 , are

inserting negative numbers into the list. Suppose .53 computes the maximum of all of the

integers in the list. Since s i , and s2 add negative numbers to the list, the HLA knows that Si

and 32 will not affect the execution of .5 3 . Therefore, si and 82 need not be serializable with

respect to s 3 in order for the HLA to be assured the "correct" result from its subactions.

Correctness Criteria Griffeth [10] describes the correctness criteria in database sys-

tems: "The reason that the executions are correct, in spite of violating this rule [serializ-

ability], is that the data-base state with which we are really concerned is just the set of

tuples in the tuple file and the set of index entries in the index. Any pair of states having

the same sets in the two files must be regarded as equivalent. 'Therefore, the resulting

"top-level" database state is the same in the original executions as in some serial execution

of the committed transactions."

Performance The primary motivation for nested actions is they may be used to yield

better performance than comparable systems that do not use nested actions.

A history in a multi-level system is a collection of histories, one for each levels

of abstraction. The concrete actions at one level of abstraction are abstract

actions at the next lower level (this is just another way of saying that the lower

level implements the higher level actions). A multi-level history is serializable

and atomic by layers if each layer is abstractly serializable and atomic and if

26

the committed abstract actions at one level are exactly the same as the concrete

actions at the next level.

The key to achieving performance improvements is recognizing the multiple level of ab-

stractions in a system. As the example provided above illustrates, if a problem can be

decomposed into different levels of abstraction, then the knowledge of semantics can be

used to enhance performance.

Implementation Nested actions are implemented by (1) providing a locking structure

as described by Moss [19], and (2) providing a facility to UNDO aborted actions. The

locking structure assures serialization at a child's level of abstraction is inherited by the

parent action. The UNDO mechanism is implemented to allow some actions commit while

other actions abort. Implementing an UNDO mechanism in a nested environment is more
problematic than implementing the UNDO mechanism in a non -nested environment because

the UNDO mechanism must operate at different levels of abstraction. If nested actions are

"called by higher level actions which are subsequently aborted, then the nested actions

which committed must be UNDOne rather than aborted. The lowest-level concrete actions

are considered to be committed in this context as soon as they are done. This is consistent

with normal usage, because page reads and writes (the usual bottom level actions) are
UNDOne, not aborted."

2.4 Some background on failure and recovery

The discussion of fault tolerance introduced the concept of an action that commits before it

terminates to represent a permanent state modification that occurs before an atomic action

terminates.

Inevitably, problems will develop with both the hardware and software components

in a system. The problems with the hardware may result from ordinary wear and tear,

from misuse, or from a mismatch between hardware capabilities and requirements. While

software does not wear out, problems may develop because of errors in the requirements

analysis, systems architecture, design and coding of components, and data used.

These errors will, from time to time, manifest themselves in the operation of the system,

and a fault is said to have occurred. When the chain of events stemming from the fault

27

effects systems functionality or performance as perceived by human users or client systems,

a failure is said to have occurred. Specifically, a failure is the cessation of the normal, timely

operation of the system or the delivery of incorrect information.

The distinction between a fault and a failure is not sharp. A fault can be regarded as the

improper execution of a component. A failure is a fault which manifests itself to a human

user. In this sense, a failure cannot be recovered. It is also possible for one to use the term

failure in a second sense by speaking of the failure of a subsystem: a failed subsystem is one

which has failed from the point of view of its clients, i.e., the other subsystems with which

it interacts. The subsystem failure is a fault in that it may or may not manifest itself in

the behavior of the system of which the faulty subsystem is a part. We will generally use

the term failure in this second sense and will speak of a fault as causing an action to abort

and invoke a recovery handler. When we wish to refer to the action which has aborted but

not yet invoked a recovery handler, we will refer to it as a failed action.

Often considerable time may elapse between the internal events we term faults and the

anomalous external behavior we term failure. The failure may be the cumulative effect of
a number of faults. If software is designed to be fault tolerant, then some portion of the

software is given over to preventing faults from causing the system as a whole to fail. It
will generally not be possible to prevent a failure, but with proper design it may be possible

to delay it, minimize its extent or consequences or at least maintain control of critical
subsystems during the failure.

The distinction between detected and undetected faults is an important one and the

research literature has addressed both cases. The simplest type of fault is the crash; a crash

always results in a failure. A crash is characterized by the complete cessation of activity

within a system (or subsystem). A crash is generally accompanied by a loss of any data in

volatile storage. 2

Because of this problem, a fault tolerant computation is generally required to periodically

flush data to stable storage. In the event of failure, the computation can be resumed using

an intermediate state constructed from the data saved on stable storage. The data on

stable storage can be in the form of a checkpoint (shadow) or a log. The computation can

be resumed either by restarting the failed subsystem or by transferring critical functions to

other subsystems.

2 Lin has recently shown that data in volatile storage survives a large portion of system crashes [17].

28

The same strategies can be used to protect against faults which result in anomalous
behavior but not in a crash. Once a fault has been detected, it is possible to treat the

faulty subsystem as though it had stopped processing altogether and either restart it from a

state which was know to be correct or transfer its assignments to other correctly functioning

subsystems. The problem of responding to and recovering from faults once they have been

detected is known in the research literature as the "fail stop" problem.

Attention has also been directed towards the problem of detecting failure in a subsystem

which is still active. A failure which does not make itself known immediately but which
must instead be "discovered" is known as a Byzantine failure [16]. With Byzantine failure,

a faulty subsystem may intentionally or unintentionally disguise the fact that it has failed

and interfere with the normal activity of other subsystems, especially with respect to the

task of detecting that the failure has occurred.

While fail stop is studied is a generalization of detectable failure, Byzantine failures
are studied as generalizations of failures which have not yet been detected and may prove

difficult or elusive.

Our interest is neither in fail stop nor Byzantine failure, but rather in protecting system

from residual errors in specification, design, and implementation, effects of ordinary wear
and tear on the physical components of a system, and the effects of spontaneous external

noise. The techniques discussed here should be used not with the expectation that they will
prevent failures but with the hope that the mean time between failures can be extended

by equipping key components with appropriate safeguards for tolerating certain types of

faults.

A fault tolerant system is designed by first choosing the correct hardware architecture

to satisfy the most important or most stringent requirements, and then building a fault

tolerant system on the hardware base. When building fault tolerant software systems, the

first line of defense is to avoid or eliminate as many errors as possible. Unfortunately, it
is not practical to remove all errors. Studies suggest, for example, the number of errors in

a large system remains constant in spite of ongoing efforts at corrective maintenance. A

second line of defense then is to design the code so that erroneous code, state, and data

are recognized before they are used in a way which could result in a fault. This is also not

always possible, so a third line of defense is required: it is often necessary to recognize that

a fault has occurred and cope with it. Ideally, a fault can be handled in a way which does

29

not impact the performance and function of the system. Sometimes this is not possible and

the objective of fault tolerance strategies should be to minimize the impact on performance

and function.

2.5 Recoverable actions and objects

In the Clouds model, recovery handlers are bound to objects rather than to actions. Thus,

when an action aborts the objects touched by the action are recovered by each object

individually. The recovery of objects may, depending on t he semantics of the object, involve

rollback or the invocation of the objects recovery handler. This is a satisfactory solution

when the objective of recovery is to construct a state in which it appears that the aborting

action had never been invoked. In order to insure availability of system resources, many

system objects are unlocked before an action which has modified them commits. In such

cases concurrency atomicity may be preserved but failure atomicity is lost.

The onus is on an object's programmer to provide a "roll your own" recovery handler

when an object may represent a loophole in failure atomicity. The recovery handler must

allow the effects of the aborting action to be backed out without interfering with subsequent

operations on the object by other actions. For example, if an object represents a resource

pool, then the recovery handler must return any resources checked out to the aborting

action. This can be done without interfering with other resources which have been assigned

to other actions.'

For objects with richer semantics this solution is not appropriate. Suppose the shared

object is an index into a file. Changes to the index by one action may directly affect the

execution of other actions. If the first action aborts, there are two problems: how to back

out the changes to the index and how to notify the other actions that their views of the

index are invalid. We believe the appropriate solution in such a situation is a recovery

handler which is sensitive to the semantics of the aborting action.

In our model, recovery handlers are bound to the actions. Thus, when an action aborts,

'The recovery handlers described in this handbook can be used to implement Clouds recovery handlers.

A Clouds recovery handler is associated with an object and is not sensitive to the semantics of the pro-

cess containing the aborted action. A Clouds recovery handler is implemented using a special entry point

designated as the Recovery Handler. Now, if an action aborts after having touched an object, the recovery

handler in the action can invoke the Recovery Handler entry point in the object.

30

the action's recovery handler is free to decide which objects are to be recovered and how

that recovery is to be achieved. This allows the recovery process to be sensitive to the

semantics of the aborting action. In particular, it allows recovery to force to completion an

action which implicitly committed before aborting (terminating). It also allows actions to

restart at intermediate stages.

In the case of the action which aborted after modifying a shared index, several options are

available. For example, the index could be rolled back completely and all actions sharing the

index aborted and restarted. A second option would involve regarding the aborting action

as already committed and forcing it to completion. In this case the recovery handler must

initiate compensatory operations. These compensatory actions may include corrections to

the index and signals to other processes which may have used the incorrect version of the

index. The actions which used the incorrect index may themselves proceed in several ways.

An action may be robust and have recognized and handled the errors in the index on its

own. It may abort when it receives a signal that it was using an incorrect version of the

index. It may either rollback and restart itself from the beginning or may restart in an

intermediate state after identifying the inconsistencies between its view of the index and

the current version of the index.

Of course when the original action recovers, it need not choose to recover the index at

all; instead, it may attempt to restart in an intermediate state which assumes the index has

already been modified. If the original action aborted because it was involved in a deadlock,

because recovery was initiated in some other object which the action had accessed, or

because of a hardware failure, this would be an appropriate strategy. A similar strategy

would be possible even if recovery involved swapping in a new version of the code for the

aborting action. This important ability of an action to restart in an intermediate stage

provides a firewall against cascading aborts.

As a third possibility, the aborting action could pass the burden of recovery and/or

continuation to its parent action.

In our model the onus is on the programmer of the action: he must have a correct

understanding of how his action interacts with the persistent objects in the environment

and how his action interacts, albeit indirectly, with other actions sharing these objects.

We suggest that the designer of an object include sample recovery protocols as a way of

coordinating recovery among actions sharing an object.

31

3 Requirements for Fault Tolerance

A system's capabilities are defined in terms of requirements. Some of these requirements

involve the system's ability to recover from faults. We call these requirements fault tolerance

requirements. In this section we identify many system requirements that are also fault

tolerance requirements.

The purpose of this section is to establish a connection between fault tolerance re-

quirements and software design. This section presents a taxonomy of fault tolerance re-

quirements. For each requirement we present forward references to sections within this

handbook that provide detailed descriptions of mechanisms that may be used to satisfy a

given fault tolerance requirement. The forward references serve as a framework for choosing

good fault tolerance mechanisms.

A system's requirements define constraints on a system's operations. Requirements tend
to be informal and do not specify a particular system. The task of constructing a functional

description that satisfies a given set of requirements is relatively complex. The functional

description must satisfy the following constraints:

1. The functional description must satisfy the requirements.

2. The functional description must be implementable.

3. The functional description must have enough detail to establish a formal system design

specification.

In order to create a functional description, one must translate abstract requirements into

concrete functions. The concrete functions must be expressed in a notation that allows

formal designs to be constructed. For example, a real-time requirement for a data collection

facility may state that the data collector must operate under a real-time constraint of 5

milli-seconds. A functional description of a particular sysl;em must translate this abstract

requirement into a functional description of a protocol that is guaranteed to satisfy the

real-time requirement.

Translating a set of requirements into a functional description is non-trivial if the re-

quirements stipulate some degree of fault tolerance. For example, suppose a requirement

mandates that a data collector will be operational 99% of the time. The functional descrip-

tion must take to following questions into account:

32

• Which data collection operations must be guaranteed to run to completion?

• Which facilities must be operational 99% of the time, and which may fail?

• Which facilities must communicate, and what happens if one fails?

• How fast must the distinct facilities operate in order to be considered "operational"?

• What kind of off-the-shelf equipment is available that satisfies the requirements?

In the sections below we generalize these questions to form a characterization of the system

requirements that are also fault tolerance requirements. These requirements lie in one or

more of the following categories:

• Functionality: functional requirements form the statement of the results the software

system is to compute in response to its inputs or the commands it is to issue in response
to conditions in its environment.

• Atomicity: requirements related to atomicity stipulate the sets of commands (ac-

tions) which must be executed as a group (i.e., failure atomicity) and the extent

to which groups of commands may interact (interfere) with each other (concurrency

atomicity)

• Synchronization: requirements related to synchronization stipulate the extent to

which precedence relations among actions must be maintained and the degree of con-

currency which must be allowed.

• Time: requirements related to time are timing constraints. Timing constraints specify

the maximum and minimum amount of time which can elapse between two related
operations.

• Processing: processing requirements stipulate performance constraints (e.g., time

allowed for a procedure call, time allowed to access a record in a file, the rate at

which database transactions must be processed). From these processing considerations

requirements can be developed for the hardware and software environments within

which the software is to operate.

Time and functionality are the most important requirements. Atomicity and synchroniza-

tion are important considerations when deciding how bet to satisfy the reqirements related

33

to time and function. Processing power has an effect on the ability to satisfy the other

requirements.

There are natural tradeoffs among these requirements. For example, if it is critical that

a particular timing constraint be satisfied, then it may be necessary to sacrifice concurrency

atomicity. To satisfy the constraint, it may be necessary to allow a high priority action to

preempt the low priority action with out allowing it to recover. The consequence may be to

compromise the ability to perform a minor function until the relevant portion of the system

is reinitialized.

From the system-level requirements it is possible to infer requirements for the mecha-

nisms which provide fault tolerance. For example, if it is more important that a parameter

be adjusted with a particular frequency than that adjustments be of a particular precision,

then this has implications for how fault tolerance should be provided. In this case the pro-

cess making the adjustments should be highly available and resilient even if its reliability
(measured by the accuracy of the adjustments) is compromised. The following criteria can

be used to describe the requirements for fault tolerance:

availability: physical computational resources and data are made available in spite of

failure in servers which provide access to them or support their use.

resiliency: faults do not cause a computation to terminate in an abort

reliability: faults do not cause a computation to produce an incorrect answer

forward progress: recovery does not always undo all the work which had been completed

before the fault.

The criticality of each metric taken individually affects the design of fault tolerance

mechanisms in terms of the choice of hardware, the choice of software model, and specific
decisions regarding software architecture.

Once the requirements for the mechanisms for providing fault tolerance have been iden-

tified, the mechanisms themselves must be designed. The design choices include decision

about what elements of the system (hardware, software, and data) should be supplied re-

dundantly and how those redundant elements should be exploited during recovery. Sections

four and Part II detail a number of design options. The remainder of this section provides

34

additional detail on the interaction of system-level requirements and requirements for fault

tolerance.

3.1 Functional Characterization

The functional characterization specifies the type of functions dictated by system's require-

ments. The functional characterization is expressed in terms of three parameters: time

preservation, frequency of updates, and criticality.

Time Preservation Time preservation dictates how long collected data must be pre-

served. Fox example, a real-time data collection device typically does not store collected

data. Instead, data is immediately transmitted to a long-range storage device for process-

ing. The long-range storage device may store the collected data in main memory, a disk, or
backup tape.

A variety of software structures are used to preserve data: local variables, parameters,

global variables, objects, and system structures. These structures are tools used to preserve

data for varying lengths of time. This paper focuses on objects (see section 2.2.1) because

we feel that the concept of an object is a general purpose notation that can describe any

kind of data no matter how long it must be preserved.

Frequency of Updates Frequency of Updates states how often data is modified. An

example function that updates data every micro-second is a fast real-time data collector;

an example of a function that never updates data is a periodic backup onto magnetic tape

(the periodic backup never overwrites a tape).

Criticality This parameter is a qualitative measure of the criticality of a function. The

possible values range from not critical to maximum criticality. Functions that are deemed
not critical should not have a large impact on the fault tolerance functional description.

Functions that are highly critical have maximal impact.

Functions that are highly critical should have an associated recovery mechanism. The

recovery mechanism discussed in this paper is an exception handler attached to an action.

We describe this mechanism in detail in section 2.2. An example of a highly critical function

35

is a life-support system. An example of a low criticality function is the UNIX 4 rwho

command that returns the login ids of currently logged in users on a set of interconnected

machines. The rwho command may omit users who have just logged in recently and should

return a result even if current information is not available for some machines.

3.2 Atomicity

Current trends in system design indicate that separating a system into modules is essential

to creating reliable systems. Each module is expected to be self-contained, and the mod-

ule's functional specification defines its output given each input. The hierarchical design

methodology recommends that modules be recursively defined in terms of sub-modules. A

given requirement may mandate that a particular module operate as an atomic unit: an

operation implemented by the module either runs to completion, or does not run at all. We
call an operation implemented by an atomic unit an atomic action (see section 2.2).

A functional description defines the operations of each atomic function. The formal

design document describes the mechanisms that implement the atomic function. These

mechanisms may be implemented in either hardware or software. Hardware mechanisms

include switchover to backup processors and battery backed-up memory. Software mecha-

nisms include object-oriented programming techniques and exception handlers. Section 2.2
is a detailed description of a methodology that integrates these action-based software mech-

anisms.

We characterize atomicity in terms of two sub-parameters: size of atomicity and criti-

cality of atomicity.

Size of Atomicity Size of atomicity specifies the magnitude of the atomic operation.

Values range from a single machine instruction s to an arbitrarily large number of operations
seperated by an arbitrary length of time. The size of atomicity parameter defines the size

of the unit that must be recovered. The amount of time required to implement an atomic

operation is usually proportional to the size of the operation. An example of an action with
a large size of atomicity is a complex database query. The commands to open and close a file

'UNIX is a Trademark of Bell Laboratories.

5 More precisely, the set of micro-operations required to execute the instruction must exhibit failure

atomicity.

36

may be regarded as belonging to the same atomic action (for purposes of failure atomicity).

An example of an action with a small size of atomicity is single machine instruction.

The recovery technique may either be forward or backward. These techniques are de-

scribed in detail in sections 2.2 and 2.3, respectively.

Criticality of Atomicity Criticality of atomicity is a prioritized range extending from

not critical to maximum criticality. Criticality of atomicity should not be confused with

functional criticality. A requirement for low criticality of atomicity, but high criticality of

function states that an action should be invoked even though there is a risk that the action

will leave the global environment in an inconsistent state (e.g., some of the data structures

indicate a file is closed while others indicate it is open). Such a situation might arise if

the aborted action had committed before it terminated and then recovered incorrectly. In

section 2.2.1 we describe a strategy for recovering from actions that commit and then abort.
The criticality of atomicity parameter does not dictate a mechanisms for fault tolerance,

rather, this parameter is used as part of a cost-benefit analysis to determine whether or not

fault tolerance is required for a specific function.

3.3 Synchronization

Synchronization defines how distinct processes communicate. For example, a distributed

database may use voting to synchronize updates, while a multi-location data collection

activity may use fast, special purpose (hardware-defined) communication. Synchronization

is defined in terms of two parameters: criticality of synchronization, and number of distinct

functions. This paper does not discuss synchronization specificly, although synchronization

is one of the motivations for nested actions (see section 2..3).

Criticality of Synchronization This parameter qualitatively describes the importance
of synchronization to correct functionality (note the parameter does not express the im-

portance of correct functionality). Values for criticality range from not critical to maximal

criticality. An example of a function that requires low criticality of synchronization is the

previously discussed UNIX rwho function. Rwho sends a message to each UNIX machine in
a local area network requesting a list of users who are currently logged in. If synchroniza-

tion is not correct, then rwho may leave out a few names or return out of date data, but

37

this is not considered important. An example of a function that requires high criticality

of synchronization is a distributed database. Since data integrity is important for correct

functionality, correct synchronization must be maintained to assure that data updates are

implemented correctly.

Number of Distinct Functions This is a quantitative parameter that describes the

number of functions (processes) in a synchronization group. For example, in the distributed

database described above, the number of single- processor databases is the number of dis-

tinct functions. This parameter is modeled in software using the technique of object repli-

cation (see section

3.4 Time

Time requirements is a quantitative measure that describes the real - time constraints of a

function. This parameter affects the choice of processor, redundancy approach, and recovery

technique. For example, if the real- time requirements are relatively fast, then a relatively

fast processor must be chosen. Fine-grained nested actions (described in section 2.3) may

be used to speed-up recovery in order to satisfy the time requirements.

The time requirements are expressed in terms of two parameters: real-time, and maxi-

mum response time for recovery.

Real-Time This parameter denotes the real-time requirements of a function. A function

operates correctly only if the function's response time is faster than the real-time parameter.

For example, a data collection device attached to a real-time sensor operates correctly only

if data is collected before the data is over-written by the sensor.

Maximum Response Time for Recovery This parameter quantitatively describes

the maximum amount of time that may elapse before recovery from a fault completes (see

section 2.2.1).

38

3.5 Processing Requirements

The processing requirements define the type of processing required by a particular function.

This category is expressed in terms of two parameters: operating system, and memory. We

do not discuss this parameter in detail in this handbook.

Operating System This parameter describes the type of constraints imposed upon the

operating system. Possible values for this parameter are: real- time, secure, and fault

tolerant.

Memory This parameter quantitatively describes the memory requirements.

39

4 Fault tolerant designs for embedded systems

Embedded systems interact with physical systems within real-time constraints. An em-

bedded system accepts data from sensors and, after some computation, generates control

signals. The data from a sensor may by itself be ambiguous, and must be interpreted in the

context of other elements of the state of the system and :perhaps even in context of recent

events within the system. The embedded system will maintain a model of the state of the

system being controlled. This state information will describe not only the system's current

configuration but other information about its current capabilities, recent events within the
system and recent commands issued to it. The embedded system is also likely to maintain

a model of the environment in which the control system is operating.

4.1 A model architecture for embedded systems

An event loop is generally the top-level control structure in an embedded system. The event
loop monitors the status of various devices and of the physical system being controlled.

When a device or an element of the physical system changes state, an event is said to have

occurred. The event loop invokes the appropriate event handler.

The event loop may be used in conjunction with a system of interrupt handlers. The

interrupt handlers will generally be reserved for handling important asynchronous events.

Many of the more ordinary events cannot be detected except in context and require the

event loop to compare sensor data against a world model.

The event handlers may or may not make use of a feedback loop. When a feedback loop

is used, deviations from expected behavior may be regarded as an event and require the
event handler to be reinvoked. This strategy, however, requires a means for dynamically

defining events to be monitored for by the event loop. A second strategy is for the event

handler to spawn processes in response to events and then these processes are responsible

for managing the feedback loop and executing the planned response to the event.

In many embedded systems, it is important for the software to maintain data structures

which model the state of the physical system and the state of its environment. The event

loop is then responsible for maintaining these models in response to external events. When
an event requires a response, the event loop invokes the appropriate action or spawns the

appropriate process. The actions and processes which are responding to events must share

40

access to the models of the physical system and its environment.

4.2 Irreversible operations as a design problem in embedded systems

In embedded systems some operations may be irreversible, i.e., an operation's effects may

not hidden until the action containing the operation terminates and commits. In effect, an

irreversible operation causes an action to commit before it terminates.

Irreversible operations may occur in three ways:

1. operations may be performed on nonrecoverable objects;

2. operations may trigger events in the physical systems being controlled; and

3. effects of operations may be made visible to other actions before the containing action

commits.

This last type of irreversible operation occurs when actions used to define allowable

concurrency are larger-grained than those used to define fault tolerance, i.e., when optimistic

concurrency control is used.

An irreversible operation is one which cannot be "undone;" that is, it cannot be undone

by rolling back the objects and data areas touched by the containing action;

We can distinguish several degrees of reversibility

1. an inverse operation exists and recovery involves executing this inverse;

2. the operation is compensable and recovery involves executing the compensating pro-

cedure;

3. an invariant exists and recovery involves performing operations which establish con-

sistency over several variables or objects (this suggests that recovery may proceed

even when the source of the fault is unknown); and

4. operations for which recovery is not possible.

An operation may become more irreversible as its consequences are realized. For example,

the effects of raising the temperature in some chemical process may be reversed by lowering

41

the temperature provided the temperature is reduced within a few seconds of being raised.

If more time elapses, however, the calories needed to initiate the reaction will have been

transferred, at which point the operation of raising the temperature no longer has an inverse.

Even then it may be possible to compensate for the change in temperature by other means

removing the catalyst, adding other materials, or draining the vat). As the reaction progress,

even such compensating actions may not be effective and recovery is no longer possible.

A general programming strategy will be to defer invoking an irreversible operation until

all the possible software failure points have been passed. It is also desirable to put guards

on the irreversible operation; these guards will check that the conditions for invoking the

operation are indeed satisfied. We do not want to invoke an irreversible operation just

because an ordinary software error led program execution down the wrong path.

These precautions, however, may not be feasible. Even if they are, the may not be

sufficient. the precautions may be inadequate because the fault was:

• in the computation leading to the invocation of the operation but the information

needed to verify that computation was not available until after the irreversible oper-

ation was completed. Perhaps the needed information was among that returned by

the irreversible operation itself;

• the result of a sensor error. the sensor error may not be detected until after the

irreversible operation is completed;

• in the irreversible operation itself. the physical system being controlled may not

respond to a command as expected. This may be becauses of influences on the physical

system other than the control software; or

• in an operation which uses the results of the irreversible operation but faults for other,

unrelated reasons.

4.3 Sources and types of faults

The choice of recovery strategy depends, in large measure, on the source and type of the

fault. Below is a list of several possible errors which may lead to faults as well as several

ways in which faults may manifest themselves.

Most system-level exceptions belong to one of the following categories:

42

• Logical Errors: The program can no longer continue with its normal execu-

tion due to internal conditions such as bad input, data not found, overflow,

or resource limit exceeded.

• System Errors: The system has entered an undesirable state (e.g., dead-

lock), as a result of which the program cannot continue with its normal

execution. The program, however, can be reexecuted at a later time.

• System Crash: The hardware malfunctions, causing the loss of the content

of volatile storage. The content on nonvolatile storage remains intact.

• Disk Failure: A disk block loses its content as a result of either head crash

or failure during the data transfer operation [15].

Faults may be transient or nontransient. They may also be the cumulative effect of a

number of small errors or the result of a single design error. When handling a fault arising

from a transient error it is often appropriate to perform recovery and resume computation

as though nothing had happened. If the fault resulted from the cumulative effect of a

number of small errors, it may be appropriate to reinitialize some objects or subsystems

before resuming computation.

Hardware errors can be handled in three ways depending on the criticality of the func-

tions effected. When handling hardware errors, there are three appropriate recovery strate-

gies: wait for the failed hardware to be returned to service, move the computation to another

piece of hardware, or, if the fault resulted from a transient error, restart the computation

with minimal reconfiguration of hardware. These alternatives are appropriate whether the

hardware device is a memory chip, a printer, a disk drive, or a site in a distributed system.

In all cases it may be necessary to make some associated changes in the software being

run or to repair data that was damaged when the hardware failed. The hardware failure

may make some information temporarily unavailable and may have caused the permanent

loss of yet other information. Much research in distributed systems has been devoted to the

problem of moving computation to other hardware in the event of a hardware failures and

site crashes. Some of this reasearch has studied the use of replicated data to circumvent

the problem of temporarily unavailable data. This research has also addressed the problem

of reintegrating the replicas once the hardware problem is resolved.

Logical errors are of two types, software and data. Data errors are tricky to handle in

that they may be a consequence of software errors. The data error can be repaired and

43

computation resumed. Furthermore, effort be made to track down the software element

which caused the data error; perhaps with intent of bypassing it until it is repaired.

When dealing with data errors it will generally not be clear why the data has become

corrupted. It may have been corrupted though the actions of an outside agent or, in the

case of shared data, as the result of an unknown software error. When dealing with a data

error, three strategies are possible: 1)determine the correct values and restore them, 2)

establish a consistent set of values (this is a weaker condition than correctness), and 3)

mark the corrupted data as unavailable. When data is changed or marked as unavailable,

this must affect the execution of actions needing the data: in our view they should abort

and find an alternative path during recovery. When it is recognized that data is corrupted,

it is necessary to notify processes which have used that data. Each process may then decide

how to proceed.

Several strategies are available for handling software faults: 1) rerun the computation

with the expectation that the fault was transitory, 2) reinitialize the unit and rerun the

computation with the expectation that the fault was cumulative, 3)allow the faulty software

to continue to operate but patch the results before they are made available, 4) shut down

the faulty software and use an alternative unit with equivalent functionality, 5) shut down

the faulty software and use an alternative unit with reduced functionality, and 6) shut down

the faulty software unit and allow the system to operate in a degraded mode. Of course,

the effect of these strategies is to bypass errors or compensate for fault. This should be

regarded as temporary measure in effect until the error is repaired.

An error in the interface between control software and the system being controlled may

be of several types:

• tolerance: the software cannot adjust to the system finely enough or cannot distin-

guish between two system states;

• timing: the responses to changes in the physical system are not appropriate at the

time at which they are applied (the response may be too soon or too late);

• limits: unexpected response or combination of responses from the physical system

may drive the software beyond its limits— buffers may overflow, or there may not be

sufficient resources, or there may be a range error.

44

Such errors may arise because of errors in the requirements analysis. In particular the

analytical models used to describe the systems with which the software interacts may have

been inadequate. If requirements have been carefully analyzed, the residual specification

errors are likely to be subtle, transient ones against which fault tolerant strategies must

defend.

Faults in resource management also may arise because of errors in the design of the

software. typical faults may include: the unavailability of the required resources, the use

fo the wrong resource, contention for a resource, a race condition in getting a resource, a

resource not returned to the right pool, improper recombination of fractionated resources,

resources not returned, deadlock, resource use forbidden to the caller, resource linked to the

wrong kind of queue. One of the purposes of systems layer is to provide these services in a

consistent manner to the applications layer.

Faults in resource management can often be handled by reinitializing the resource pool.

For this strategy to succeed, the software must have a layered structure. The resource man-

ager can send an abort signal to its clients and thereby reclaim its resources. The aborted

clients would, during recovery, rerequest resources. If the clients were appropriately de-

signed, they could resume computation in intermediate states. Thus, the resource manager

could reinitialize itself without causing its clients to loose more than a small amount of

work.

Faults may also arise because of errors in software architecture, especially errors that are

load dependent. Possible errors include the assumption that interrupts will not occur, the

failure to mask or unmask interrupts, the assumption that code is reentrant or not reentrant,

the bypassing of data interlocks, the failure to lock or unlock data ob jects, an assumption

about the location of a calling or called routine, the assumption that data storage was or

was not initialized, the assumption that a variable did or did not change value, inconsistent

conventions about the layout and management of data or about the propagation of control

information.

If architectural errors are load dependent, then they can often be handled as transient

errors. Recovery could also manage the load by shifting computations to other machines or

by deferring less critical work.

Faults may also arise because of errors in a software system's internal interfaces: there

may be protocol design errors, format errors, inadequate protection against corrupted data,

45

parameter layout errors, inconsistency conventions as to the meaning of input or return

values.

In some circumstances recovery procedures may be able to correct the corrupted data,

or resolve the inconsistency in the internal interface. For example, if for historical reasons a

system is built using two different parameter passing conventions and there is no discernible

pattern governing their use, it would be wise to anticipate the fault by equipping actions

with a means of handling the fault, i.e., the recovery handler could attempt to resolve the

fault by reformating the parameters.

Faults may also be caused by errors in coding or in low level logic: a wrong operation

may be used or missing altogether; operations may be in the wrong order; cases presumed

impossible may, in fact, be possible; loops may terminate an iteration too early or too late;

cases presumed mutually exclusive may not be, special cases may have gone unrecognized;

execution paths may be missing or unreachable; and loops or conditionals may be nested

improperly.

Errors such as these will generally require that the computation be shut down unless an

alternative, functionally equivalent section of code is available.

4.4 Some basic services

The operating system and run-time system must provide some basic services to support our

modifications to the object/action model.

• Actions: Actions will interact in serializable ways. Actions may commit before they

terminate but may not terminate until all actions which have provided them with

data have terminated.

• Stages: While an action provides concurrency atomicity, stages provide failure atom-

icity. Stages have control over what information is logged or checkpointed. If an

action aborts, the stage in which it was executing at the time of the abort is recorded.

• Recovery handlers: If an action aborts, control will transfer to its associated recov-

ery handler. The recovery handler will be sensitive to the stage at which the action

aborted and the type of exception which caused the action to abort. Recovery is

transferred to the recovery handler associated with the action containing the stage.

46

The recovery handler may complete the work of the aborted stage, undo the work of

the aborted stage, do or undo the work of other stages and then restart or terminate

the action.

The recovery handler may consist of two parts: on abort (triggered when the action

aborts) and on restart (executed after the action is restarted but before control passes

into the main line of the action)

• Checkpointing Checkpointing can be used by an action to save a data area or

object state for reference during recovery. An action can explicitly checkpoint at the

beginning of a stage and may release a checkpoint at the end of a stage. An action

may not proceed with a stage until any checkpoints requested by the stage are written

to stable storage or replicated at a remote site as required.

• Logging: Logging may also be used by an action to save a information for reference

during recovery. A log is an object to which an action can write and from which a

recovery handler can read. An action may not proceed with a stage until log entries

made by the previous stage are written to stable storage or replicated at a remote site

as required.

• Commit: "Commit" is used by an action to make data visible to other actions before

the first action terminates. A commit represents a promise by the first action not to

modify the committed data except in the extreme case that it aborts and is forced to

recover.

• Data invalidation: During recovery, an action may modify data areas touched dur-

ing normal execution of that action. If the data area was committed, such modification

will invalidate the old values and force and actions which accessed the old values to

terminate. If the actions have been properly designed, then cascading aborts should

not occur.

• Pauses: Pauses may be used by an action to ensure that the data it is reading

has been provided by a committed and terminated, action. If data is supplied by a

committed but not terminated action, then it may later be invalidated. A "pause"

causes the consumer to wait until that risk has passed.

• Windows: Windows are used in Clouds to map portions of the address space of one

object onto the address space of another. We find it useful to allow recovery handlers

47

to remap windows. This provides a simple way of activating a redundant, backup

section of code.

48

Part II

Constructing fault tolerant actions

5 Introduction to the examples

After an action aborts occurs, the recovery handler must create a consistent state. The state

includes data, logical flags and a point at which control is to resume. This consistent state

may be one which arose at some juncture before the aborted action began to execute, one

which could have arisen had the action not aborted, or one which allows the computation

to continue, though in a way which does not hide the fact the action aborted.

The most familiar pattern within this framework is that of restarting the aborted action

immediately and in the state which existed just before the aborted action was first invoked.

This is the usual practice if an action is aborted because it is involved in deadlock or has

been preempted by a higher priority action. If the error was in the code used for the action,

then the state is, in database recovery, rolled back to what it was immediately before the

action began, but the action is not restarted. It is also common in database recovery to

delay the restart of the action until after the reason for the fault has been repaired. For

example, if an action needs a resource on a crashed machine, it may either wait for the

resource to become available or abort. If it aborts, then it should be restarted once the

resource becomes available.

In command- processing, however, additional flexibility is required. The options of either'

restarting immediately, after repairs have been made, or not at all are insufficient. to

satisfy timing requirements for critical functions, it must also be possible for recovery to

return the system to partial operation immediately and then to full operation once repairs

have been made. Thus, the system designer must understand the tradeoffs among system-

level requirements for functionality, timeliness, and processing capability. Furthermore,

the system designer must understand how requirements for atomicity and synchronization

can be modified to balance those tradeoffs. By understanding these tradeoffs, the system

designer is able to determine whether particular functions must be resumed immediately

following a fault or may wait for repairs to be made. Depending on how a particular function

is classified, different approaches to providing fault tolerance are to be pursued.

49

For functions in which correctness and timeliness are both critical, it must be possi-

ble to resume computation in spite of hardware crashes, data errors and faults in related

components. The efforts to be expended on providing and exploiting redundant data and

redundant software for related components are determined by the relative importance of

correctness. If the timeliness with which a function is carried out is critical but accu-

racy is not, then the emphasis should be on ensuring the computation is resilient and the

availability of an appropriate subset of the the resources required. In these cases recov-

ery strategies should emphasize reconfiguring the software (by setting switches) to use the

resources that are available and the most critical resources should be made redundant. If

accuracy is important but timeliness is not, then the emphasis should be on reliability rather

than availability. In such cases recovery should delay this function until repairs are made.

It may be necessary to make provisions so that other functions may be carried out even

though the one directly affected by the function is delayed. If both accuracy and timeliness

are critical then a high level of redundancy must be provided for hardware, software and

data.

Recovery mechanisms must be able to detect failure/abort, record progress of action

through stages, manage replicated objects, investigate environment, and remap code and

data windows on the fly.

To perform their functions properly, recovery mechanisms must operate both before and

after an exception is raised. Before an exception occurs, an action must store information

it may need during recovery. After an exception occurs, the recovery handler must limit

the consequences of the failure and must construct a new state from which computation

can resume.

Our mechanisms must deal with the problems of implicit commits (caused when an

action executes an irreversible operation). We must recognize the action aborted and initiate

recovery. During recovery we will have to determine how far the action had progressed prior

to failure. Suppose, for example, the failure is the result of a hardware error. Recovery

could be initiated on a backup machine. If the proper protocols were observed, the recovery

handler could recognize where the failed action was just prior to its failure and then restart

the action at the appropriate point. Of course, information about what the action did

between its last transmission to the backup machine and failure is lost. This is not a

problem if lost operations (or their inverses) are idempotent. It may also be possible to

observe physical system and other objects to determine whether any of the lost operations

50

were performed.

EXAMPLE 1: Skeleton of an action

This example illustrates the outline of an action. This example includes details not

shown in section 2.2.. We have distinguished between the exception handler and the recovery

handler. The exception handler is sensitive to the name of the exception (as in Ada). The

exception handler may be used to classify results, monitor activity or for error handling.

The exception handler uses a case statement to select code appropriate to the exception

being handled. The recovery handler is sensitive to the stage in which computation was

interrupted by an exception. The recovery handler uses a case statement to select code

appropriate to the stage in which the action aborted.

When an exception is raised control transfers to the exception handler. If the appropri-

ate cases have not been provided in the exception handler, the action aborts and control

transfers to the recovery handler. The exception handler may reraise an exception visible

to the parent action. The exception handler also has the options of terminating the action

normally or aborting it. If the exception handler aborts the action, then control passes to

the recovery handler. The recovery handler appropriate to the stage at which the exception

was first raised is used.

The seperation of the exception handler from the recovery handler is appropriate when

the exception handler is being used to clasify results or monitor activity. When errors are

being handled however, the recovery often needs to know both where an action aborted

and why. Thus, it is possible to nest case statements sensitive to the name of the exception

within the recovery handler.

We have also shown the recovery handler seperated into two parts. The on abort section

is executed immediately when the action aborts. The execution of the on restart section

is delayed until the action is about to be restarted. We have shown how the on restart
section can be made sensitive to the circumstances of the restart and the stage in which it

is restarted.

Additional information about the reason an action has aborted may be made available

through system calls.

51

This language construct is intended for software design. In some of the examples which

follows we have elided or modified portions of the construct to improve the readability of

the example. These modifications are explained in conjunction with the examples in which

they appear.

!data areas global to the action

begin data area 1 [<data area attributes>]

!declarations go here

end data area 1

begin action 1 [<action attributes>]

begin data area 2 [<data area attributes>]

!declarations go here

end data area 2

stage 1:

stage 2:

on exception

[some code which is executed for all exceptions]

case exceptionType of

<exception name>:

<exception name>:

others:

52

end case

[some code which is executed after specific exceptions are handled]

on abort

[some code which is executed on all aborts]

case stageAborted of

stage 1:

stage 2:

end case

[some code which is executed after handling the stage dependent issues]

on restart

[some code which is executed on all restarts]

case source0fRestart of

internalRestart: [some code which is executed on all internal restarts]

case stageRestarted of

end case

[some code which is executed on all internal restarts]

externalRestart: [some code which is executed on all internal restarts]

case stageRestarted of

end case

[some code which is executed on all internal restarts]

end case

53

[some code which is executed on all restarts]

end action 1

54

6 Mechanisms for detecting faults and initiating recovery

When a fault is encountered, an exception should be raised. When the action recieves the

exception, control passes to the exception handler. If the exception handler is not equiped

to handle the exception the action aborts and control passes to the recovery handler. This

second strategy is the one which should typically be followed for fault related exceptions,

since it is often important for the recovery handler to be aware of both the stage in which

the action aborted and the reason it aborted.

Some exceptions are are raised by the hardware on which the software is executing.

Other exceptions are raised by the system software supporting applications. Still other

exceptions are raised within the applications software itself.

Hardware is designed to trap certain types of exceptions such as divide by zero, access

violations, and time outs. Software checks may reveal yet other faults arising from errors in

data, code or hardware. For example, some hardware faults such as communication failures

and crashes on remote sites may not be detected unless special software procedures are

used.

Actions may be aborted in several ways. The hardware may fail, it may be aborted by a

signal from the system software because of external events, it may be aborted by an internal

signal, or it may be aborted because of an internal error which trapped to the system.

When an action aborts, it is necessary to detect the fact that the abort has occurred

and to initiate appropriate recovery procedures. The problems of detecting the abort and

then initiating recovery must be approached differently for the various kinds of aborts.

If the exception which caused an action to abort was raised by the action itself or by

one of its operations, we say the action aborted because of an internal exception. If the

exception was raised as a result of activities external to the action, we say the action aborted

because of an external exception.

Finally, we can distinguish between explicit and implicit aborts. If an action is aborted

in an orderly way by the operating system, we say that an explicit abort has occurred.

Only the operating system may explicitly abort an action. The operating system may

explicitly abort an action in response to a signal from another action or the action itself.

The operating system may also explicitly abort an action for management reasons (e.g.,

55

resolving deadlock or preempting a resource). Finally the operating system may abort an

action because of some illegal behavior (e.g., arithmetic overflow or an access violation) on

the part of the action. An implicit abort occurs if the action fails because of events external

to the operating system. Hardware and power failures are causes of implicit aborts.

Internal aborts arise when an action aborts itself. This is essentially a transfer of control

from the main line of the computation to the appropriate section of the recovery

handler.

Explicit, external aborts may be signaled if another action or the operating or run-time

systems recognize that an action has faulted, been the victim of a fault in another

action, or has possibly encountered an error (in software, hardware, or data) but not

yet faulted. For example, if an action recognizes that the data it and other actions

have been using is incorrect or inconsistent it may tell the operating system that the

other consumers of the data should be aborted and given an opportunity to recover.

If an action contains run-time errors such as divide-by-zero, the operating system

may abort it using the mechanism for external aborts. If an action reads data from

a second action and the second action aborts and changes the shared data during

recovery, the first action should be aborted and given an opportunity to recover as

well. Again, the external abort mechanism should be used. Recovery can be initiated

on another machine after the crash has been detected or it may be initiated when the

crashed machine comes back up.

Implicit, external aborts include such events as system crashs. An implicit, external

abort is a consequence of events not under the control of the action, run-time system,

or operating system. Recovery in the face of this type of abort is more difficult than

for other types of aborts.

The handling of implicit, external aborts requires some additional discussion.

Recoverying on a backup machine requires access to replicated data and may occur

when the backup machine is unable to communicate with the primary machine. A common

strategy is to have two copies of the action executing, one on the backup machine and one

on the primary machine. The two copies of the action periodically exchange "I am alive"

messages. The primary action may also send data to the backup action. The backup action

in this case would be charged with maintaining logs and/or checkpoints.

56

If the backup action fails to hear from the primary action, the backup action aborts and
on recovery assumes the role that had been played by the primary action.

Recoverying on the primary machine is simplier. Actions which were executing when

the machine crashed are restarted at an appropriate location in their recovery handler. The

recovery handler may attempt to determine whether the action was continued on a backup
machine while the primary machine was down. Depending on the answer, the action may
be restarted or terminated.

6.1 Mechanisms for detecting faults

The machanisms illustrated in the two examples in this section can be used to determine

the reason the action aborted. As was discussed in part I, proper recovery often depends

on knowing both the reason an action aborted and where it was in its execution when it
aborted. With proper run - time support, either of these mechanism may be used to classify

an abort as internal, as explicit and external, or as implicit and external. These mechanisms
can be used to establish more detailed diagnosis if required.

EXAMPLE 2: Recovery handlers can be sensitive to both stages and exceptions

This example illustrates a point made in section 5: it is often useful to nest case state-

ments sensitive to the name of the exception within the recovery handler.

\begin action

stage 1:

stage 2:

on abort

case stageAborted of

stage 1: case exception of

57

preemption:

resourceUnavailable:

parentActionFailed:

usedInvalidData:

others:

end case

stage 2: case exception of

preemption:

resourceUnavailable:

parentActionFailed:

usedInvalidData:

others:

end case

EX AMPLE 3: Recovery handlers can use system calls to diagnose circumstances of the abort

To facilitate systems management, actions are encapsulated within objects. A new

object is created for each invocation of an action. These ''action objects" provide access to

the action's code, local data and parent environment. There are also entry points that allow

the action, the action manager and other actions to enquire about the action's state. These

action management entry points can be used to abort the action and to record information

about the circumstances related to its execution, termination (normal or abort). They may

also be used during recovery to establish the reason action aborted. This example illustrates

the use of object entry points to establish the reason for the abort. The example shows the

recovery handler calling an entry point in a resource manager. It also shows the recovery

handler calling an entry point into the object encapsulating the action being recovered.

\begin action

stage 1:

58

stage 2:

on abort

case stageAborted of

stage 1: if servereserviceFailure then <take an action>

else if selfeexternalAbort then <take an action>

stage 2: if objectUuncommitted then

if serveraserviceFailure then <take an action>

else <take an action>

else <take and action>

6.2 Mechanisms for initiating recovery

As was discussed in part I, it may be necessary during recovery to abort other actions. These

other actions may be aborted because they consumed data invalidated during recovery or

because their correct execution depends on the successful completion of the action which

aborted.

The two examples in this section illustrate different approaches for aborting actions

which interact with a faulty action. The first shows an action's recovery handler aborting

other actions. The second shows an action aborting itself when it detects that an action on
which it depends has failed.

EXAMPLE 4: Aborting other actions during recovery

The recovery handler aborts actions three ways. When it rolled back the uncommitted

data area (in stage 1), all the optimistic readers were aborted. These actions recieve the
used Invalid Data exception.

It also explicitly aborted the actions whose capabilities were kept in the variables X and

59

Y. X and Y receive the exception indicated as the message parameter. In stage 2, data

area 1 is modified after it was commits. In this situation it is necessary to explicitly abort

actions which have accessed the data. the abort operation takes a list of the actions which

have read the data area as a parameter. The exclude parameter indicates actions in the list

which should not be aborted. The message parameter indicates the exception which is to

be sent to the actions targeted to be aborted.

data area 1 (optimistic reads allowed)

end data area 1

begin action

stage 1: <use data area 1>;

commit(data area 1)

stage 2:

on abort

case stageAborted of

stage 1: rollback(data area 1)

abort(X, message=> <an appropriate exception name>);

abort(Y, message=> <an appropriate exception name>);

raise(<an appropriate exception name>);

stage 2: <make some changes to data area 1>

abort(dataArealCreaders, exclude=> selfeparent, message=>usedInvalidData)

terminate normally

end case

end action

EXAMPLE 5: Noticing that another action has failed

In the previous example an action was responsible for aborting other actions which de-

pended on it. The responsibility can be transfered to the dependent action by using probes.

The present example illustrates this idea. Each action consists of a pair of coroutines. In

each action, one coroutine in the pair does the work while the other exchanges probes with

other actions. If an action fails to hear from the others with whom it is exchanging probes,

it assumes they have failed. The action aborts and initiates recovery. Since all of the part-

ners in this arrangement all have the same structure, we show the skeleton for only one of

the partners.

begin action

stage 1: cobegin

A: {begin action 2

loop

stage 1: XesendProbe

stage 2: select

receiveProbe(X);

or

delay <maximum wait>;

raise(message => partnerFailed);

end select;

end loop;

on abort

case exception of

partnerFailed: raise(message => partnerFailed);

other: raise(message => other);

end case

end action 2

61

B:{ begin action 3

stage 1:

stage 2:

on abort

end action 3

}

coend;

on abort

case exception of

partnerFailed: abort(action3 => partnerFailed);

abort(X,message => doNotRestart);

start an alternative partner;

resume(stage 1);

other: abort(X,messsage => partnerFailed);

abort(action3 => selfFailed);

raise(internalFailure);

end action

62

7 Recovery activities preceding an abort

If an action is to recover successfully in the event of an abort, it must prepare in advance.

In particular, it must ensure that any information which may needed during recovery is

properly saved. Some actions are designed to restart on a backup system should the primary

system fail. To prepare for this, an action must ensure that the required information is
periodically recorded at the backup site. Other actions are simply designed to carry out

recovery on the same machine they were executing originally. In this case it is important

that the required information is periodically recorded on stable storage.

There are three types of information which must be saved: flags indicating transitions

between stages of an action, data checkpointed by a stage, and data logged by a stage. In

general, an action may not proceed from one stage to the next until the logs, checkpoints

and transition flags have been properly recorded.

Logging A log is an incremental record of transactions. After a system crash, an undo

operation rolls the log backwards in order to delete a set of transactions. Next, a redo

operation rolls the log forward in order to redo the operations. There are two types of

logging procedures: incremental logging with deferred updates, and incremental logging

with immediate updates.

Incremental Logging with Deferred Updates:

During the execution of a transaction all the write operations are deferred un-

til the transaction partially commits. All updates are recorded on a system-

maintained file, called the log. When a transaction partially commits, the in-

formation on the log associated with the transaction is used in executing the

deferred writes. If the system crashes before the transaction completes its exe-

cution, or, if the transaction aborts, then the information on the log is simply

ignored [15].

After a crash, an undo operation need not be executed because the system state has

not been modified. After a transaction commits, the redo operation rolls the log forward
executing all the write operations on the permanent system state.

63

Incremental Log with Immediate Updates: This method keeps an incremental log
of all changes to the system state. All updates are applied directly to the system states

and recorded in the log. "If a crash occurs, the information in the log is used in restoring
the state of the system to a previous consistent state [15]." In the event of crash recovery,

undo operation rolls back the log to a previous consistent state. Then the redo operation
rolls the log forward to a new consistent state.

Checkpoints "When a system failure occurs, it is necessary to consult the log in order

to determine those transactions that need to be redone and those that need to be undone

[15]." Undoing and redoing a log may be time consuming if the log is long. Therefore, in

order to reduce log overhead, "the system periodically performs checkpoints, which require

the following sequence of events to take place:

1. Output all log records currently residing in main memory onto stable storage.

2. Output all modified buffer blocks to the disk.

3. Output a log record <checkpoint> onto stable storage [15]."

Shadow Paging An alternative to logging is shadow paging.

Intuitively, the shadow page approach to recovery is to store the shadow page

table in nonvolatile storage so that the state of the database prior to the execu-

tion of the transaction may be recovered in the event of a crash, or transaction

abort. When the transaction commits, the current page table is written to non-

volatile storage. The current page table then becomes the new shadow page

table and the next transaction is allowed to begin execution. It is important

that the shadow page table be stored in nonvolatile storage since it provides our

only means of locating database pages. The current page table may be kept in

main memory (volatile storage). We do not care if the current page table is lost

in a crash, since the system recovers using the shadow page table [15].

Data Replication The system maintains several identical replicas (copies) of a data
item. Each replica is stored on a different node. Replication can enhance the performance

64

of read operations. It can also increase the availability of data to read transactions. Update

transactions, however, involve greater overhead. In most situations, the correctness criteria

for data replications is serializability. In order to achieve serializability, a read set and a

write set are defined for each replicated data item. If the sum of the number of replicas in

the read set, and the number of replicas in the write set, is greater than the total number

of replicas, then serializability is guaranteed.

In order to build a reliable system that uses replication, all of the replicated data items

must be consistent. Therefore, an atomic transaction called a commit protocol that accesses

the data items must be constructed that either commits at all replicated sites, or aborts

at all replicated sites. The most commonly used commit protocol is the two-phase commit

protocol. The two-phase commit protocol assumes a central coordinator and a set of nodes

each with a copy of the replicated data item.

Phase 1 initiates when the central coordinator forces a prepare record to the nonvolatile
log. Next the coordinator send a prepare-to-commit message to each of the nodes. When a

node receives a prepare-to-commit message, the node decides whether or not to execute the

transaction. If the node decides to execute, then the node forces a ready record to the log,

and transmits a ready message to the central coordinator. If the node decides to abort the

transaction, the node forces a no record to the log, and transmits an abort message to the

central coordinator.

Phase 2 begins when the central coordinator receives replies from the nodes. If all of the

nodes reply with ready messages, then the central coordinator forces a commit message to

the log and broadcasts a commit message to the nodes; otherwise, the central coordinator

forces an abort message to the log, and transmits an abort message to the nodes.

65

8 Limiting the consequences of the failure

When a fault occurs it is important to limit its impact of system function and performance.

We do not want a faulty computation to disrupt other functions which are operating cor-
rectly.

The problem of insulating unrelated computations is easily solved: with appropriate
hardware support it is possible to isolate applications into separate logical address spaces

thereby preventing one application from corrupting the code and data being used.

When applications must exchange information, other measures are required. The sim-

plest measure is to not allow actions to commit before they terminate and to not allow reads

of uncommitted data. This is the standard approach. This approach often is not suitable

for use in embedded systems. If timing constraints for embedded systems are to be met,
we must sometimes allow actions to commit before they terminate (this is another way of
saying that under some circumstances it may be desirable for actions to read uncommitted

data). This approach is called optimistic concurrency control.

The problem with optimistic concurrency control is that of cascading aborts. We need
some sort of "firewall" to prevent the failure of one action from causing the failure of other

actions which have read uncommitted data supplied by the failed action. Forward recovery
can be used to provide that firewall. Suppose Action A reads uncommitted data written

by action B. Action A then makes some data available to action C. Does action C depend

on the uncommitted data provided by action B? Only action A knows for sure. If action B

aborts and during recovery invalidates the data provided to action A, then A must abort.

Forward recovery provides a firewall in that it gives action A an option: action A may

determine that the data supplied to action C did not depend on the now invalid values

supplied by B. Thus, A can restart itself in an intermediate state and hide from action C
the fact that A had aborted and recovered.

Sometimes it will not be enough to simply insure that actions do not use data invalidated

by an aborting action. The fact that the failed action did not complete successfully and did

not produce the required effects may in itself set up conditions causing subsequent actions
to faults If actions A and B are executing concurrently andB must be preceeded by A,

the failure of A has consequences for the correct execution of B. In situations such as this,

6 this is the phenomenon we have refered to as cascading faults.

66

more active measures can also be used to limit the effects of a failed action. For example,

an abort signal can be sent to actions which are active but should not proceed until the

failed action has recovered. If it is possible that the propagation of information provided by

the failed action will cause anomalous behavior in a subsystem, it may be appropriate to

direct the abort signal in a way which causes the subsystem to shut down until recovery is

complete. Other possibilities include forcing the subsystem to reconfigure or finding another

means for providing the effects which were supposed to have been produced by the failed

action.

8.1 Limiting cascading aborts when optimistic reads are allowed

The next two examples illustrate how forward recovery can be used to prevent an optimistic

reader from aborting any or all of the actions to which it has supplied data in the event

that one of the actions from which it as consumed data aborts.

EXAMPLE 6: A firewall protecting against cascading aborts attributed to optimistic reads

With careful use of locking and recoverable data areas of small granularity, it is of-

ten possible to maintain recoverability and availability without allowing actions to read

uncommitted data (or, more broadly, to view the effects of uncommitted actions).

In some circumstances availability can be increased if actions are allowed to read un-

committed data. When roll back is the only available recovery technique, this entails a

risk of cascading aborts. The risks are compounded if the victims of the cascade of aborts

have performed irreversible operations. By regarding the uncommitted data as irreversible

once it has been read (or other wise made visible) and by using forward recovery techniques

to build a "firewall" against cascading aborts, we can provide a means for inhibiting the

cascade. In this example, we assume that the run-time system maintains a record of ac-

tions which have been granted access to uncommitted data. If an action aborts and its

abort handler performs recovery on a data area which has subsequently been accessed by

other actions, then the other actions are aborted. ? This initiates forward recovery within

71n the event that one of these other actions has aborted then its surviving ancestor will be aborted.

67

these other actions. A casecade of aborts may be avoided in either of two ways. First, the

action which has been aborted because it accessed uncommitted data may not itself have

permitted yet other actions to access its uncommitted results. Second, even if it had itself

permitted access to its uncommitted results, it may be able to recover without affecting the

uncommitted results.

The example illustrates how an action can avoid aborting other actions which may have

seen its uncommitted results.

begin data area 1 (shared access allowed, uncommitted access allowed)

end data area 1

begin data area 2 (shared access allowed, uncommitted access allowed)

end data area 2

begin data area 3 (shared access allowed, access to committed, data only)

end data area 3

begin action 1 (executes as a process,

may access uncommitted data in data areas 1 and 2)

stage 1: readLock(data area 1)

writeLock(data area 2)

writeLock(data area 3)

read from data area 1

unlock(data area 1)

stage 2: read from and write to data area 2

unlock(data area 2)

stage 3: do some more stuff

68

unlock(data area 3)

on exception

abort

on abort

stage 1: unlock(data area 3)

unlock(data area 2)

unlock(data area 1)

if selfCexternalAbort() then

restart stage 1

else

exception(internalError) !parent will handle it from here

end if

stage 2: if selfCexternalAbort() then

rollback(data area 2) !or some other state correction

abortSubsequentAcesses(data area 2)

if wasRecovered(data area 1) then

if <important changes to data area 1> then

unlock(data areas 1,2, 3)

restart stage 1

else

restart stage 2

end if

else if wasRecovered(data area 2) then

restart stage 2

endif

else

exception(internalError) !parent will handle it from here

end if

stage 3: if selfCexternalAbort() then

rollback(data area 3) !or some other state correction

if wasRecovered(data area 1) then

if <important changes to data area 1> then

69

unlock(data area 3)

rollback(data area 2) !or some other state correction

abortSubsequentAcesses(data area 2)

restart stage 1

else

restart stage 3

end if

else if wasRecovered(data area 2) then

restart stage 2

endif

else

exception(internalError) !parent will handle it from here

end if

EXAMPLE 7: A firewall protecting against cascading aborts within a hierarchy of nested
actions

!This is an example procedure that protects against cascading aborts. Here

!there are four levels of nestings of actions. If the fourtch layer

!action aborts, the third layer action notices the aborts and

!computes some forward recovery and returns. If forward recovery

!cannot be accomplished, then the third layer action aborts and

!the second layer action invokes forward recovery. If the second

!layer action cannot compute forward recovery, then the top layer

!action handles the the abort. If the top layer action cannot

!compute forward recovery, then the abort is cascaded.

implementation of object cascade_example

cascade_procedure(parmlist : ...)

begin

begin action top_level

stage 1:

begin action second_level

70

stage 1:

begin action third_level

stage 1:

begin action fourth_level

stage 1: do some processing

on abort raise_exception(except_condition4)

end

on abort

do some forward recovery

if exception

raise_exception(except_condition3)

end

on abort

do some forward recovery

if exception

raise_exception(except_condition2)

end

on abort

do some forward recovery

if exception

raise_exception(except_condition2)

end

end

8.2 Limiting cascading faults

The next five examples illustrate how forward recovery can be used to prevent the failure

of one action from causing dependent actions from failing. The first two of these examples

show how forward recovery can be used to maintain failure atomicity. The next three

examples show how recovery can provide an alternate source for the expected effects.

The last two examples show how the dependent action can be reconfigured to remove

the dependence on the failed action. The first of these shows reconfiguration within nested

actions and the second shows reconfiguration across independent threads of control.

71

8.2.1 Maintaining failure atomicity

EXAMPLE 8: systems which ignore redundant commands

Assume g and and j exhibit strong precedence. As defined in section 2.2.2, strong
precedence exists between two operations A l and A2 if

1. Al must precede A2 if A2 is to occur at all, and

2. A2 must follow A l if Al is to occur at all.

i is an irreversible operation. Assume that g* (the inverse of g), h* (the inverse of h), and j
are idempotent. Operation i is not idempotent but operations exist to establish the status
of the physical system on which i operates.

Recall that an idempotent operation has no effect if the state the operation is to bring
about already exists. For example, turning off a light has no effect if the light is already off.

begin action

stage 1: g(x);

stage 2: h(x) ;

stage 3: i(x); !this is an irreversible operation

stage 4: j(x);

on abort

stage 1: g*(X); 	 !undo any effects of g and give up

raiseException(noEffect);

stage 2: h*(X); 	 !h is optional so undo it and go on to the

resume(stage 3); 	!next stage

stage 3: if i_notPerformed(x) then

72

resume(stage 4);

else if i_partiallyPerformed(x) then

k(x);

resume(stage 3);

else

resume(stage 3);

end if;

stage 4: resume(stage 4);

end action

EXAMPLE 9: Failure atomicity in resource management

Checking a resource out of a pool is one type of irreversible action. Recovery may be used
to ensure that the resource is returned.

data area is visible to actions other than the one shown

begin dataArea 1

X, Y: capabilities for a resource

Z: data of some kind

end dataArea 1

begin Action 1'

checkPoint dataArea 1

stage 1: X := serverCobtainResource()

stage 2: Xeinitialize()

while (condition) do

Z := something

Xftrite(Z)

end while

stage 3: Xecleanup()

serverCreturn(X)

73

on abort

stage 1: servereparentOserviceFailure(server)

rollback dataArea 1

raise exception(notStarted)

stage 2: some operations on X to make it consistent

X0cleanup()

serverCreturn(X)

raise exception(incomplete)

stage 3: servereparenteserviceFailure(server)

terminate normally

end action

8.2.2 Providing an alternative source for the expected effects

The first example shows how an action can provide the alternate source in the event it fails.

The second and third examples show how a backup action at another site can use probes

to detect that the first action has failed and take over for it.

EX AMPLE 1 0: Maintaining failure atomicity by providing an alternate source of required

effects

Assume that other actions require the effects of operation c. If c cannot be executed

then d will provide some of the results. Operation d will also set some flags that to indicate

that the action executed with reduced functionality. Other actions will see the flags and be

will be able to adjust themselves to the reduced functionality of the first action.

The use of flags can be avoided by remapping the code window. This use of code

windows is discussed in section 5.2. in section 5.2.

begin action

stage 1: a(x);

74

stage 2: b(x);

stage 3: c(x);

on abort

s etFlags (F) ;

d(x);

terminate normally

end action

! the dependent action

begin action

if not flagsSet(F) then do one thing

else do another thing

end action

EXAMPLE 11: a second example using probes

This example shows how probes can be used to restart a computation on another machine.

Note that the storing of information needed during recovery is handled by the action.

Information stored can include the current stages of the coroutines. This information can

be used to restart the action on another machine in an intermediate state. action 1 ersion:

procedure probe()

broadast id

if recieve an id from a higher priority replica then abort

end

75

begin action

stage 1: active := false;

stage 2: loop 	!dormant version

eaves drop listening for activity from higher priority replicas

store data recieved from active replica

abort if no activity heard

end loop

stage 3: cobegin 	 !activeVersion

probe: { loop

exchange probes

if probe from higher priority replica recieved then

abort;

if probe from lower priority replica recieved then

signal it to abort

}

replicateData: { loop

send important data to dormant replicas

keep replicas apprised of progress

end}

doWork: { code for doing the work required of this action}

coend

on abort

stage 1: resume stage 1;

stage 2: attempt to verify the active version is dead

do some work to construct a consistent state

active version := true;

resume stage 3

stage 3: send out any information other replicas may need

active version := false;

resume stage 2

76

EXAMPLE 12: Probes

! This example is an implementation of the procedure stat_check

! defined in example 1. stat_check returns true iff the primary

! is marked as operational and returns probes, or the backup

! is marked as operational and returns its probes.

! This action uses an additional language feature called a "timed action".

! A timed action aborts if it does not terminate before its timed

! period expires.

stat_check(index : index_type)

begin

begin action chk

stage 1: assert(resrc_tbl[index].primary->status)

stage 2: begin timed action (TIME_OUT_CONST)

send_probe(ARE_YOU_UP,resrc_tbi[index].primary->addr)

receive_probe(val)

assert(val = up)

return true

on abort

CASE stage OF

stage 1 :

! the assertion failed

if (resrc_tbl[index].backup->status)

then

swap(resrc_tbl[index].primary,resrc_tbl[index].backup)

resume(2)

77

else

raise_exception(operation_not_available)

stage 2 :

if (exception = timed_out) or (val = down)

then

if (resrc_tbl[index].backup->status)

then

swap(resrc_tbl[index].primary,resrc_tbl[index].backup)

resume(2)

else

raise_exception(operation_not_available)

else

raise_exception(operation_not_available)

!give up

end;

end;

8.2.3 Using forward recovery to reconfigure the software

EXAMPLE 13: processes can be killed to force reconfiguration

begin action

stage 1: a(x);

stage 2: b(x);

stage 3: c(x);

on abort

abort(Action2, message => reduceServiceLevel);

78

d(x);

terminate normally

end action

! the dependent action

begin action

stage 1: if not flagsSet(F) then do one thing

else do another thing

on abort

case exception of

reduceServiceLevel: rollback;

setFlags(F);

resume(stage 1);

end action

8.2.4 incremental recovery over several levels of nesting

EXAMPLE 14: incremental recovery over several levels of nesting

begin action

begin action

begin action

on abort

<do some partial recovery>

raise exception

end action

on abort

<do some more recovery>

raise exception

end action

on abort

<do some more recovery>

terminate normally

end action

80

9 Repairing the computation

9.1 Using redundant data

The state of a computation can contain invalid or inconsistent data and by the time the

error causes a fault or is otherwise detected, it may no longer be possible to detect the

source of the error. It is often possible, indeed it may be sufficient, to correct the error and

allow computation to resume. It is also reasonable to examine critical data for correctness

and consistency before a fault occurs. This could be done by a coprocessor or by the main

event loop during otherwise idle moments. Such a precautionary measure is reasonable to

protect against commutative errors. For example, over a period of time the software may

become increasingly uncertain as to the location of a particular part under its control. If

the system become idle, it may be appropriate the software to put the system through a
recalibration cycle.

four general strategies are available for correcting erroneous data and/or recovering
missing data:

• measure physical system and use results to determine correct value

• replace incorrect data with backup data.

• compute a replacement value using other values in the current state and perhaps

values which have been checkpointed. This strategy is often feasible because the state

contains redundant information. This last approach regards the state of the physical
system as one more repository for redundant data.

When an action fails, information regarding its state may be lost if it was not flushed to

stable storage prior to the failure. This may result in an inconsistency (the stable version

may contain current values for some variables but not for other variables use to compute

those new values). These problems may be handled using the techniques described above.
The emphasis here is on recovering missing information regarding the occurrence or non-
occurrence of irreversible actions.

The techniques described here can also be used to record progress from one stage to
another within an action.

81

If the intention is not recorded, the operation was not invoked. If the completion is

recorded, then the operation was invoked. If the intention is recorded and the completion

not, then the situation is indeterminate. Several strategies are possible in this situation. If

the operation is idemnopotent, it may be performed again to ensure the operation has been
completed. If the inverse is idempotent, it may be performed again to ensure the operation

is undone. If this strategy is inappropriate, then the subsystem must attempt to establish

whether the operation occurred. This can be done by checking the status of devices attached

to the system. With proper foresight, system designers will have provided a connection to

the system affected by the operation which allows the question to be answered. Redundant

communication channels are also a possibility. The backup machine may eavesdrop on the

conversation between the primary machine and the physical system. Even if the primary

machine failed before it made a record that the irreversible operation completed, the back
up machine will have observed that the appropriate commands were issued to the system.
Thus, the backup machine can infer that the operation was performed.

Similar provisions can be made even if the action is of low criticality and recovery can

wait until the primary machine is brought back up.

EXAMPLE 15: Saving information in the global environment

This example illustrates the use of our forward recovery constructs to propogate information

into the global environment. The parent action will then use that information to select an

appropriate continuation.

begin data area 1

server: capability

finished: boolean := false

numberDone := 0

end data area 1

begin action 1

begin data area 2

X: capability

Z: data of some kind

c: integer := 0

82

end data area 2

begin

stage 1: X := servereobtainResource()

X0initialize()

stage 2: while <condition> do

checkpoint data area 2

c := c + 1

Z := <some expression>

XauseResource(Z)

commit data area 2

end while

stage 3: Xecleanup()

serverOreturn(X)

on exception

abort

on abort

begin data area 3

reason: (serverFailure,resourceFailure, other)

action: (raiseException, normalTermination)

end data area 3

if servereserviceFailure(server) then

reason := serverFailure

else if serverOserviceFailure(X)

reason := resourceFailure

serverereturn(X)

else reason := other

end if

case stageAborted of

stagel: action:= raiseException

stage 2: if Z <> XelastValue() then

rollback data area 2

end if;

action := raiseException

stage 3: action := terminateNormally

end case

numberDone := c

if action = raiseException then

finished := false

exception(reason)

else

finished := true

terminate normally

end if

end action 1

9.2 Using redundant code

Redundant code can be exploited during recovery in several ways. This simplest is for the

recovery handler to replace the code containing the error with another version not containing

the error. This can be done be remapping the code window for the action which aborted.

The new code may require a different presentation of the state information; consequently,

it may also be necessary to remap the data window as well. The contents of the new data
window will be calculated by the recovery handler using the contents of the old data window.

A common strategy will be to cut over not to an equivalent section of code but to one

with reduced functionality. The simpler version will operate until repairs can be made to

the primary version. The primary version can be reinstalled by using the cutover strategy.

A rolling cutover is also possible. When the old version of an action attempts an

84

operation not supported in the version with reduced functionality it aborts. During recovery

the appropriate backup version with reduced functionality is swapped in.

The cutover stays in place until repairs are made and the patched, full function version

is ready to be reinstalled. Cutting over to the repaired, full function version can be achieved

in the same way as was the cutover to the reduced level of functionality.

A cutover is triggered by errors within a module. Generally, this is a way of handling

software errors. That the error is detected suggests either that an error trapped to the

system while the module was executing or that a data error was traced back to the module

(suggesting an acceptance test either in the module or on the consumer of the module's

data)

A similar strategy may be used to obtain a correct computation given two partially

correct versions. If the acceptance test on one version fails, the recovery manager would
cut over to the other and redo the computation. When states are encountered which cause

the second version to produced unacceptable results, it aborts and the recovery manager

cuts back to the first version. A strategy such as this would be plausable provided the two

versions were developed independently and simple acceptance tests could be provided to

check the results.

EXAMPLE 16: Retry or terminate

This example illustrates the use of our forward recovery constructs to declare an action

which clean up its state and either retrys itself or terminates by raising an exception visible

to its parent.

begin data area 1

server: capability

end data area 1

begin action 1

begin data area 2

X: capability

Z: data of some kind

end data area 2

85

begin

stage 1: X := serverCobtainResource()

Xeinitialize()

stage 2: while <condition> do

checkpoint data area 2

Z := <some expression>

XeuseResource(Z)

commit data area 2

end while

stage 3: X0cleanup()

serverCreturn(X)

on exception

abort

on abort

case stageAborted of

stage 1: if servereserviceFailure(server) then

exception(serverFailure)

else if serverCserviceFailure(X) then

serverCreturn(X)

retry self

else

rollback data area 2

retry self

end if

stage 2: if serverCserviceFailure(X) then

serverCreturn(X)

except ion(actionIncomplete)

else if Z = XClastValue() then

commit data area 2

resume stage 2

else

rollback data area 2 !to a state consistent with the begining of the loon

resume stage 2

end if

stage 3: if servereserviceFailure(X) then

serverareturn(X)

else

Xecleanup()

serverCreturn(X)

endif

terminate normally

end action i

end action 1

The serviceFailure call begins diagnostic routines and may result in corrective action

within the server or resource. This ensures that continuity of service is maintained.

Note that the X@useResource(Z) is treated as a potentially irreversible action. The abort

handler uses the operation X@IastValue() to determine whether it was invoked just before

the the abort occured. the result of the IastValue operation will determine how recovery

will proceed.

EXAMPLE 17: Restart a successor action

This example illustrates how the abort handler may attempt to complete an action by

starting a successor action. The abort handler copies data into the global environment.

The restart handler will copy that data into the local environment of the successor action.

This is an example of an external restart.

In this case the successor action is defined within the parent action and has access to

the data which is propogated into the global environment.

This example also illustrates a different strategy for maintaining continuity of service

from the server.

begin data area 1

server: capability

finished: boolean := false

numberDone := 0

resource: capability := null

end data area 1

begin action 1

begin data area 2

X: capability

Z: data of some kind

c: integer := 0

end data area 2

begin

stage 1: X := servereobtainResource()

Reinitialize()

stage 2: while <condition> do

checkpoint data area 2

c := c + 1

Z := <some expression>

XeuseResource(Z)

commit data area 2

end while

stage 3: Xecleanup()

serverereturn(X)

on exception

abort

on abort

begin data area 3

stage: (stagel, stage2, stage3)

88

end data area 3

if server@serviceFailure(server) then

server := serveresuccessorServer()

else if serverfterviceFailure(X) then

serverereturn(X)

X := servereobtainResource()

end if

case stageAborted of

stagel: stage := stagel

stage 2: if Z <> XelastValue() then

rollback data area 2

end if;

stage := stage2

stage 3: stage := stage3

end case

if stage = stage3 then

if not servereconfirmReturn(X) then

serverareturn(X)

end if

terminate normally

else

!propogate state into the global environment

resource := X

numberDone := c

if stage = stagel then

restart using selfefparentGalternative()

else if stage = stage2 then

restart using selfGfparentealternative() in stage 2

endif

endif

end action 1

EXAMPLE 18: Remapping code windows

This example illustrates how the abort handler may attempt to complete an action by

mapping code for the successor action into the code window of the action which is aborting.

The abort handler may also remap the window containing the restart handler. On restart,

the local data areas and the abort handler may also be remapped.

This is an example of an internal restart. The restarted action inherits the local envi-

ronment of the action which it replaces.

begin data area 1

server: capability

finished: boolean := false

numberDone := 0

resource: capability := null

end data area 1

begin action 1

begin data area 2

X: capability

Z: data of some kind

c: integer := 0

end data area 2

begin

stage 1: X := serveraobtainResource()

Hinitialize()

stage 2: while <condition> do

checkpoint data area 2

c := c + 1

90

Z := <some expression>

X'QuseResource(Z)

commit data area 2

end while

stage 3: Xecleanup()

serverCreturn(X)

on exception

abort

on abort

begin data area 3

stage: (stagel, stage2, stage3)

end data area 3

if serverCserviceFailure(server) then

server := serveresuccessorServer()

else if serverCserviceFailure(X) then

serverCreturn(X)

X := serverCobtainResource()

end if

case stageAborted of

stagel: stage := stagel

stage 2: if Z <> XClastValue() then

rollback data area 2

end if;

stage := stage2

stage 3: stage := stage3

end case

if stage = stage3 then

91

if not servereconfirmReturn(X) then

serverereturn(X)

end if

terminate normally

else

!propogate state into the global environment

resource :=

numberDone := c

if stage = stagel then

remap codeWindow using <information needed to complete the remapping>

remap restartWindow using <information needed to complete the remapping>

else if stage = stage2 then

remap codeWindow using <information needed to complete the remapping>

remap restartWindow using <information needed to complete the remapping>

restart in stage 2

endif

endif

end action 1

EXAMPLE 19: Redundant software to provide a fault tolerant system service

! Every resource has a backup. If the primary is not operational, then

! the backup is invoked. If neither is operational, the resource

! cannot be used.

! This example uses a special keyword "RESUME(n)". This keyword

! overrides the exception handler's normal protocol by resuming

! the action in stage n. Note that if the RESUME keyword is not

! used the exception handler terminates when an exception is raised.

implementation of object resource mgr

type

92

resrc_entry

primary : pointer to resource

backup : pointer to resource

end;

begin data_area resrc

resrc_tbl : array (index) of resrc_entry

end data_area resrc

resrc_invoke(index : index_type; op : operation; data : data)

begin

begin action rec

stage 1: stat_check(index)

stage 2: invoke(index,op,data)

on abort

CASE stage OF

stage 1 :

if not resrc_tbl(resrc_tbl[index].primary->status)

then if not resrc_tbl[index]backup->status

then raise_exception(operation not available)

else begin

swap(resrc_tbl[index].primary,resrc_tbl[index].backup

resume(2)

end

else raise_exception(status_check_exception)

stage 2:

if not resrc_tbl[index].backup->status

then raise_exception(operation not available)

else begin

swap(resrc_tbl[index].primary,resrc_tbl[index].backup)

resume(2) !retry using backup

end

93

end

EXAMPLE 20: Redundant subsystems

implementation of object redundant_software

! One method used to implement fault tolerance is to use a set of

! systems that are all supposed to do the same thing. Each system

! is designed and implemented by a different team of engineers.

! In this example, when a system notices that something is wrong,

! the system voluntarily gives up control to a top-level controller.

! The top-level controller invokes another system

redundanti(state : state_type)

begin

begin action ri

stagel : do some processing

on abort

raise_exception(state_information)

end

end

• • •

redundantn(state : state_type)

begin

begin action ri

stagel : do some processing

on abort

raise_exception(state_information)

end

end

top_level_controller

94

begin

begin action control

begin data area ctrl

bad_list : array[1..n] of boolean

state_information

procedure_name

end data area

stage 1 : procedure_name := pickproc(bad_list) !try a new system. If no

!systems are left give up

stage 2 : invoke_some_controller(procedure_name)

on abort

case exception of

1 : raise_exception(no_system_works)

2 : bad_list(state_information.redundant_number) := FALSE

resume(1)

end

end

EXAMPLE 21: Irreversible actions: robotics

Implementation of object robot_arm

begin data area

arm_position : pos_tensor

end data area

! The initialize procedure figures out the robot's configuration

! by invoking low-level sensors associated with each joint.

! Each low-level sensor returns a variable describing its joint's

! angle, rotation, or extension (whichever is appropriate).

! The initialize procedure accepts the sensor's values to compute

95

! tensors that describe the exact postion of the end of the robot's

! arm. Initialize is invoked as part of the recovery procedure when

! the robot's control system faults.

function initialize : position : pos_tensor

begin

begin action init

stage 1 : invoke appropriate sensors

stage 2 : compute tensors

on abort

case staged abort of

stage 1 : raise_exception(joint_broken(joint_number))

stage 2 : raise_exception(invalid sensor values)

end

end

!Move uses the move_resumption procedure to recompute the arm's position

!and plan whenever necessary. The recovery procedure always implements

!exactly one retry when needed.

procedure move(IN to_place : pos_tensor)

begin

begin action my

stage 1 : validate(arm_position)

stage 2 : validate(to_place)

stage 3 : compute_movement_plan(arm_position,to_place)

stage 4 : execute_movement_plan(arm_position,to_place)

on abort

case staged abort of

stage 1 : begin

96

arm_position := initialize

if exception

then raise_exception(exception)

else resume(2)

fi

end

stage 2 : raise_exception(to_place_invalid)

stage 3 : begin

move_resumption(arm_position,to_place)

if exception

then raise_exception(exception)

else resume(4)

fi

stage 4 : begin

move_resumption(arm_position,to_place)

if exception

then raise_exception(exception)

else execute_movement_plan(arm_position,to_place)

if exception !avoid infinite retry

then raise_exception(exception)

fi

fi

end

end

procedure move_resumption(to_place)

begin

begin action mv_res

stage 1 : arm_position := initialize

stage 2 : compute_movement_plan(arm_position,to_place)

case staged abort of

stage 1 : raise_exception(unable_to_initialize)

stage 2 : raise_exception(unable_to_plan)

end

end

!idem_potent_move is the same as move except there is no need to

!to call the initialization procedure. In this case, the robot

!simply moves its arm to a location.

procedure idem_potent_move(IN to_place : pos_tensor)

begin

begin action my

stage 1 : execute_idempotent_movement_plan(to_place)

on abort

case staged abort of

stage 1 : begin

execute_idempotent_movement_plan(to_place)

if exception

then raise_exception(movement_unavailable)

fi

end

end

! reduce_move is a reduced functionality move. Here, when an execution

! fails, the movement is reexecuted with reduced functionality (possibly

! lower performance or with a decreased set of arm movements.

procedure reduce_move(IN to_place : pos_tensor)

begin

begin action my

stage 1 : validate(arm_position)

stage 2 : validate(to_place)

stage 3 : compute_movement_plan(arm_position,to_place)

stage 4 : execute_movement_plan(arm_position,to_place)

98

on abort

case staged abort of

stage 1 : begin

arm_position := initialize

if exception

then raise_exception(exception)

else resume(2)

fi

end

stage 2 : raise_exception(to_place_invalid)

stage 3 : begin

move_reduced_resumption(arm_position,to_place)

if exception

then raise_exception(exception)

else resume(4)

fi

stage 4 : begin

move_reduced_resumption(arm_position,to_place)

if exception

then raise_exception(exception)

else execute_movement_plan(arm_position,to_place)

if exception !avoid infinite retry

then raise_exception(exception)

fi

fi

end

end

!move_reduced_respumption returns only a subset of the plans

!as in move_resumption

procedure move_reduced_resumption(to_place)

begin

begin action mv_res

stage 1 : arm_position := initialize

stage 2 : compute_reduced_movement_plan(arm_position,to_place)

case staged abort of

stage 1 : raise_exception(unable_to_initialize)

stage 2 : raise_exception(unable_to_plan)

end

end

9.3 Using redundant hardware

When designing a fault tolerant system, it is possible to provide for the continuation of

critical services in the event of hardware failure by making provisions to move computation

to a backup machine. The movement of the computation may be directed from either

the primary or the back up machine. If the primary machine fails completely, then the

movement of the computation must be directed from the backup machine. If only a portion

of the primary machine fails, then the primary machine itself may direct the transfer of the

computation.

For some critical applications, more than one backup machine may be provided. In some

circumstances it may be desirable to allow the possible backup machines to elect one of their

number as the machine which will assume the responsibilities of the failed machine. In other

circumstances the backup machines may not be able to communicate with each other. In

such a situation it is necessary for the machines to have an indirect means of detecting the

presense of other machines attempting to perform the backup function. This could be done

via redundant, low bandwidth communications channels or by making inferences from state

changes in the physical system being controlled. It would also be possible for a processor

attached to the physical system to select the backup system from which the physical system

will accept control signals.

In order to construct highly available systems, each hardware and software component

must be duplicated.

100

At minimum the system requires two processors. There may, have to be two

paths connecting the processors, and it is desirable to have at least two paths

from the processors to the database, [operating system, application program,

etc.] that is, two I/O subsystems consisting of a channel (I/O processor), con-

troller, and disk drives. The disk controllers must be multiported, so that they
may be connected to more than one processor [14].

EX AMPLE 22: Hardware Redundancy

! The swithover object controls a group of processors. If all of the

! processors are down then switchover aborts. Otherwise, switchover

! switches to a backup and continues

implementation of object switchover

type

proc_entry =

status variables

control structures

end

begin data area

processor_list : array (index) of proc_entry

down_list : array(index) of boolean

! the control loop that controls a particular processor

control(processor : proc_entry)

begin

begin action ctrl

loop

control "processor"

end loop

101

on abort

raise_exception(processor_unavailable(state_info))

! state info represents some portion of the state that is

! returned to the parent

end

end

!command_control raises an exception if no processors are available.

!otherwise the procedure switches to some backup processor.

!The state is saved and passed on to the backup

command_control

begin data area

state_info : state_information_type

end data area

begin

begin action comm_ctrl

stage 1: choose some processor, i, not marked on down list

stage 2: initialize(i,state_info)

stage 3: control(i)

on abort

case exception of

1 : raise_exception(processors_unavailable)

2,3 : down_list(i) := FALSE

resume(i) !with updated state_info altered by the child

end

end

end

end !object

102

EX AMPLE 23: Two processes on two machines

Master

action 1

control the device and communicate with the slave through rpcs on

objects

on abort

abort because contact lost with slave machine. Either the slave

machine crashed or the network partitioned.

assumes it has effective contact with the command and sensor registers.

one of the command register's is a deadman's switch. If the partition

cut the link to the as registers or if this machine crashes, then

the switch closes. If the slave still exists and the switch closes

it attempts to control in an autonomous mode.

end action 1

Slave

coupled with the master if couple broken, then in autonomous mode.

effective or ineffective depending on the switch. no need to actually

know.

103

9.4 A Detailed discussion of hardware processor redundancy for fault

tolerance

In this section we present a brief overview of systems that exhibit hardware provided fault

recovery.

Tandem NonStop System

Each processor module consists of a central processing unit (CPU), memory,

interface to an interprocessor bus system Called Dynabus, and an I/O.channel.

Each of the I/O controllers is connected to two processors via its dual-port

arrangement, and each processor is connected to all other processors via a dual

Dynabus. Further, ..., each processor is connected to a pair of disk controllers,
which in turn maintain a string of up to four pairs of (optionally) mirrored disk

drives...

The Tandem system is designed to survive any single point failure. Also, any repair of a

single point failure can be accomplished without affecting the rest of the system.

In order to detect a processor failure in the Tandem system, each processor

broadcasts an "I-AM-ALIVE" message every 1 second and checks for an "I-AM-

ALIVE" message from every other processor every 2 seconds [3]. If a processor

decides that another processor has failed to send the "I- AM-ALIVE" message,

it initiates recovery actions...

Stratus/32 Continuous Processing System

The Stratus/32 Continuous Processing System [13,21] consists of 1-32 Process-

ing Modules, where each Processing Module consists of duplicated CPU, mem-

ory, controller, and I/O... The memory may be configured to be redundant
or nonredundant, as the two memory subsystems are not paired with the two

CPUs. In a redundant configuration, the CPUs read and write to both memory
subsystems simultaneously; in a nonredundant configuration, each memory sub-

system becomes an independent unit and the memory capacity is doubled. Each

104

Processing Module has duplicated power supplies. The Processing Modules are

connected through a dual-bus system called the StrataLINK [14].

All hardware malfunctions are reported to maintenance software. The maintenance

software determines the cause and nature of the malfunction and directs recovery. In a

redundant configuration, Stratus reduces the probability of a hardware- induced error by

comparing the results of computation from duplicated hardware components.

System D Prototype

System D is a distributed transaction processing system designed and proto-

typed at IBM Research, San Jose, as a vehicle for research into availability and

incremental growth of a locally distributed network of computers [1]. The sys-
tem was implemented on a network of Series/1 minicomputers interconnected

with an insertion ring... [14]

Hardware error diagnosis and recovery is implemented by a software subsystem called the

Resource Manager (RM).

The basic premise of its [RM] design is that the time-out mechanism detects
all failures, including deadlock, agent or module crash, communication medium

failure, or processor failure... The Resource Manager attempts to bring down

and restart failed agents, while normal service requests are handled by other

agents. In the event of a processor failure, agents are brought up in the backup

processor and all transactions in progress are aborted [14].

105

10 Action-based programming for distributed systems

10.1 A highly available distributed calendar

Our example illustrates a distributed consensus protocol implemented on a fully connected

point-to-point network used in a highly available distributed calendar. At the applications

level, a user is presented with the following operations: insert, delete, and query. The

consensus protocol is two phased and is managed by a central coordinator. The central

coordinator requires universal consensus for any calendar update. Consensus is not required

for the calendar read operation.

The example illustrates two irreversible actions. An irreversible action is an action

that cannot be rolled back after the action initiated. The two irreversible actions are

multicast and consensus. Multicast sends an identical message to every machine in a group.

Consensus is an applications level action that implements the calendar insert and delete

operations. Multicast is irreversible because multicast may only be implemented by a set

of point to point send operations. The multicast operation succeeds if and only if every

point-to-point send operation succeeds. The action is irreversible because each atomic

send operation is irreversible. The second irreversible action, consensus, uses multicast

as a nested action. Consensus succeeds if and only if every machine reaches agreement.

Consensus is implemented as a two-phase consensus protocol. A central coordinator first

multicasts a precommit message, and after receiving a positive reply from all machines,

multicasts a commit message. The consensus action is irreversible because each multicast

is an irreversible atomic action.

The multicast action is implemented in three stages: initialization, processing, com-

mit. Initialization is the recoverable stage of the action. The initialization stage allocates

the data structures used by the action and may be recovered by rolling back. The second

stage is the irreversible component of the action. After each transmission, the action check-

points its progress. Recovery is implemented by multicasting an abort message to each to

each destination indicated by a checkpointed list of destinations. The checkpointed list of

destinations indicates the destinations to which a precommit message was sent.

The consensus action succeeds if and only all machines reach a consensus. The consensus

action is irreversible because every multicast is irreversible. Consensus is implemented in

three stages: initialization, precommit, and commit The initialization allocates the action's

106

data structures, and may be recovered by rolling back. Precommit broadcasts a message

using the multicast action, and receives a reply from each machine. If consensus is not

reached, the second stage exception handler is invoked. The exception handler multicasts

an abort message. If consensus is reached, the third stage begins execution. The third stage

commits the action. A third stage exception is raised on a disk error.

10.2 A walk through of the example

The calendar is a list of records of type msg_type. The date and time fields of a msg_type

record are used to compute a unique key. The key is used to lookup an individual record

in the calendar.

msg_type = record (export)
date : pending

time : pending

key : key_type

type : pending

node : pending

data : string
end

begin data area calendar_state

log : log_object

end data area calendar_state

insert

The insert procedure is the central coordinating procedure of the calendar. Insert imple-
ments the two phase consensus algorithm. Insert is implemented as an action.

stage 1

Interact with the user through the user interface to obtain a calendar entry. Read the old

entry from the calendar (section 10.2) into a log record data structure, and commit the old

107

calendar entry to the log. Any exception raised by the commit action (section 10.2) is a fatal

error. The log entry has the type "precommit". Any query (section 10.2) on a date/time

slot marked by a log entry with the type "precommit" gets the value of the log entry as

opposed to the value of the calendar entry. Therefore, the user view of the calendar does

not change until after the precommit portion of the protocol completes. The new calendar

entry is then written to the calendar (an exception is fatal).

If this node crashes when a log entry has the value "precommit", the recovery object

invokes the procedure recover_precom (section 10.2). Recover_precom operates by broad-

casting an abort message.

stage 2

Broadcast a precommit message to every node. We assume our network topology is point-

to-point and fully connected. The broadcast action is irreversable because some, but not

all, of the nodes may receive the broadcasted message. In this case (a stage 2 exception)

the exception handler invokes no_precommit (section 10.2) which sends an abort message. If

stage 2 procedes normally, all receiving nodes execute the rec_insert_precommit (section 10.2)

procedure. Otherwise, if an abort message is sent, all receiving nodes execute the ab_ins_pre

procedure (section 10.2).

stage 3

Receive a message from every node. If all the messages have the value "yes", then commit

"precommit good" to the log. At this point, a query will reflect the updated calendar entry.

Also, if this node crashes, the recovery object will invoke recover_ins_com (section 10.2).

Recover_ins_com operates by rolling the action forward.

stage 4

Broadcast an "insert commit" message. Any exception is considered fatal. All receiving

nodes execute the rec_insert_commit (section 10.2). If some node does not receive the "insert

commit" message, then the receiving node will not clear the calendar entry from its log.

This case will be noticed by the recovery procedure recov_badcommit (section 10.2).

108

stage 5

Receive a "yes" message from every node. Once stage 5 completes, this node is aware that

every other node has committed the updated entry to its remote instance of the calendar

object.

stage 6

Clear the entry from the log. Any exception is fatal.

code

procedure insert
begin data area ins

log_rec : log_rec_type

end data area ins
begin action insert_action

stage 1 :
insertlO (logrec.logmsg)

logrec.logmsg.key := compute_key(logrec.logrnsg)

read_logrec(logreclogmsg.key,logrec) !read from calendar
logrec.logtype := "precommit"

logncomputekey(logrec)

logOlog_commit(logrec)

write_cal(msg)
stage 2 :

logrec.logmsg.type := "insert precommit"

communicateOsynch_bcast(myname,logrecdogmsg)
stage 3 :

communicate0synch_recv_all_yes(myname)

logacommit_type(logreclogkey,"precommit good")

stage 4 :

msg.type := "insert commit"

communicate@synch_bcast(myname,logrec.logmsg)

109

stage 5 :

communicate@ synch_recv_all_yes(myname)

stage 6 :

log@clear(logreclogkey)

on abort

CASE stage OF

stage 1 : if (exception = key_not_computed)

then raiseException(invalid_date_or_time)

else begin
log@clear(logrec.logkey)

raiseException(fataldisk_error)

end

stage 2 : no_precommit(exception,logrec,msg)
parm := exception !raised by no_precommit if except exists

stage 3 : no_agreement(logrec.logkey,exception)

raiseException(insert_unavailable(exception))

stage 4 : raiseException(fatal_commit_comm_error)
stage 5 : no_conamit(logrec.logkey)

if (exception=fatal_commit_error) raiseException(exception)
raiseException(remote_state_undetermined)

!If the exception is from no_commit raise fatal_commit_error

! else raise an exception (not necessarily an error)

stage 6 : raiseException(fatal_disk_error)

end action

end

no_precommit

no_precommit is called by the stage 2 exception handler of insert (section 10.2). The purpose
of no_precommit is to abort a "precommit" message sent by insert in stage 2. If insert raised
the exception "port_unavailable", then no_precornmit raises a fatal exception. Otherwise,

no_precommit broadcasts an "abort insert precommit" message, and clears the log. All
receiving nodes invoke ab_ins_pre (section 10.2) when the abort message is received.

110

code

procedure no_precommit(exception : IN exception_type;

logrec : IN log_rec_type;

msg : IN msg_type)

begin

if (exception = port_unavailable)

then raiseException(fatal_port_unavailable)

else begin

log@commit_type(logrec.logkey,"precommit bad")

msg.type := "abort insert precommit"
communicate@synch_bcast(myname,msg)

logaclear(logreclogkey)

on abort

raiseException(fatalcomm_error)

end

no_agreement

No_agreement is called by the stage 3 exception handler of the insert procedure. No_agreement

operates by first writing a "precommit bad" message to the log. This message indicates

that the the insert operation should be rolled back, but for some reason th roll back was

unsuccsessful. The roll back is retried at some later time by the abort Pre procedure in the

recover object (section 10.2).

No_agreement handles disk and transmission exceptions as fatal errors. All other excep-
tions cause no_agreement to roll back the insert operation. The roll back is implemented by

broadcasting an "abort insert action" and waiting for a reply. All receiving nodes invoke
ab_ins_act which clears its local log and transmits an acknowledgement.

111

code

procedure no_agreement(logkey :key_type; except : exception_type) begin

log@commit_type(logkey,"precommit bad")

CASE exception OF

fatal_disk_error : raiseException(fatal_disk_error)

fatal_xmit_error : raiseException(fatal_xmit_error)

mcast_unavailable : raiseException(mcast_uiiavailable)

no_agreement :

begin

msg.type := "abort insert action"

communicate@synch_bcast(myname,msg)

communicate@synch_recv_all_yes(myname,msg)
if no exception then log@clear(logkey)
else raiseException(fatal_recovery_error(logkey)

no_exception : !do nothing
end

end CASE

on abort raiseException(fatal_recovery_error(logkey))
end no_agreement

no_commit

The no_commit procedure is called by the stage 5 exception handler of insert. No_commit

writes the message "bad commit" to the log and exits. Any exception is a fatal exception.

The "bad commit" message indicates that the local node has proceded by committing a

calendar entry, but some remote node may not have been notified. The recovery object will
retry all remote nodes at some later time in the recov_badcommit (section 10.2) procedure.

code

procedure no_commit(key : key_type) begin
begin action nocom

112

log©commit_type(key,"bad commit")

on abort raiseException(fatal_commit_error)

end action nocom

end

receive

Receive is the central processing receive handler used by the calendar object. Receive invokes

the correct code segment depending upon a received message's type.

code

procedure receive !blocking receive used by high level server process

begin
communicate©synch_recv_any(src,msg)

CASE msg.type OF

"abort insert precommit" : ab_ins_pre(src,msg)

"abort insert action" : abJns_act(src,msg)

"insert precommit" : recinsert_precommit(src,msg)

"insert commit" : recinsert_commit(src,msg)

"status commit" : rec_stat_com(src,msg)

"delete" : !not implemented

end

rec_insert_precommit

rec_insert_precortarnit is invoked when the node receives a "precommit" message. If the
receiving node cannot insert the data into the calendar, the node returns "no", otherwise

the node returns "yes" and commits the received entry to the log.

113

code

procedure rec_insert_precommit(src : IN name; msg : IN msg_type)

begin

begin action rec_precom

stat := oktorecv(msg) !oktorecv not documented

if (stat = TRUE) then begin

msg.type := "received precommit"

msg.data := "yes"

log©commit(msg)

end

else msg.data := "no"

I0Oxmit(myname,src,msg)

on abort

CASE exception OF

fatal_disk_error : raiseException(fatal_disk_error(msg.key))

fatal_xmit_error : raiseException(fatal_xmit_error(msg.key))

end CASE

end action

end procedure

recjnsert_commit

Rec_insert_commit is invoked when an "insert commit" message is received. The "insert

commit" message indicates the completion of the second phase of the commit protocol.

Insert commit writes the received message to the calendar, returns and acknowledgement,

and clears the log record. Clearing the log record relinquishes the recovery object from

querying for the status of the calendar entry in the event that the node recovers from a

crash (see section 10.2).

114

code

procedure recinsert_commit(src : IN name; msg : lN msg_type)

begin data area rec_in

logrec : log_rec_type

end data area recin

begin
begin action recins_com

log@read(msg.key,logmsg)

write_cal(msg)

log©compute_key(logrec)

msg.data := "yes"

I0@xmit(myname,src,msg)
logaclear(logrec)

on abort

CASE exception OF

fatal_disk_error : raiseException(fatal_disk_error(msg.key))

fatal_xmit_error : raiseException(fatal_xmit_error(msg.key))

end CASE

end action

end procedure

ab_ins_pre

ab_ins_pre is invoked when an abort precommit message is received (see section 10.2). This

procedure clears the log entry if the entry exists. If the entry does not exist, the read
operation returns an exception that is not an error.

code

procedured ab_ins_pre(src : pending; msg : msg_type)

begin

115

begin action ab_ins_pre

stage 1: logaread(msg.key,msg)

stage 2: logaclear(msg.key)

on abort

CASE exception OF

stage 1: !no error: do nothing precommit msg never received

stage 2: raiseException(fatal_badlog(fatal_disk_error,msg.key))

end action

end procedure

ab_ins_act

ab_ins_pre is called whenever an "abort insert action" message is received. The "abort insert

action" message is sent in the no_agreement procedure (section 10.2) which is called by the

exception handler of stage 3 of the exception handler of insert (section 10.2).

code

procedure ab_ins_act(src : IN name, msg : msg_type)

begin data area ab_in

logrec : log_rec_typ

end data area ab_in

begin

begin action abins_act

stage 1:

log©read(msg.key,logrec)
msg.data := "yes"

stage 2: IOaxmit(myname,src,msg)
logaclear(date,time,msg)

on abort

116

CASE stage OF

stage 1: raiseException(abort_incompete(fatal_disk_error))

stage 2: CASE exception OF

fatal_disk_error : raiseException(abortincomplete(fatal_disk_error))

transmit_error : raiseException(abortincomplete(transmit_error))
end CASE

end action

end procedure

rec_stat_com

rec_stat_com is invoked whenever a "status commit" message is received. The status commit
message is called by the recovery object (see section 10.2) when a log entry marked "bad

commit" is encountered. A "bad commit" entry is inserted into the log by the no_commit

procedure (see section 10.2) whenever the insert procedure is unable to guarantee consensus
among the nodes of a committed entry.

code

procedure rec_stat_com(src : IN name; msg : IN msg_type)

begin
begin'action rec_st_com

stage 1: log@read(logOcompute_key(date,time),msg)

stage 2: msg.data := "yes"

I0@xmit(calendarOmyname,src,msg)

stage 3: logaclear(loggcompute_key(date,time))

on abort

CASE stage OF

stage 1: if (exception = key_not_found) then begin
msg.data := "yes"

I0Oxmit(calendaramyname,src,msg)

logaclear(date,time,msg)

117

if not (exception = key_not_found)

raiseException(fatal_receive_error)

stage 2: raiseException(fatal_receive_error)

stage 3: raiseException(fatal_disk_error)

end action rec_st_com

end

querylO

querylO prompts the user for a calendar entry to be queried.

code

procedure querylO(msg : OUT msg_type)

begin
I0@write("date: ")

I0@read(logreclogmsg.date)

I0@write("time: ")

I0@read(logrec.logmsg.time)
key = log@computekey(logmsg)

end

query

Query prompts the user for an entry to be queried. If a log entry exists and the log entry

has the value "precommit" (see sections 10.2 and 10.2), then query returns the value stored
in the log, otherwise, query returns the value stored in the calendar.

code

procedure query

118

begin

begin data area query_dat
logrec : log_rec_type

end data area query_dat

queryI0(date,time,key)

if (logOexists_rec(key)) then begin

logOread_log_rec(key,dat a)

CASE data.type OF

"precommit" : IO©write(logreclogmsg data)

otherwise : begin

calendar©read(key,logrec.logmsg)

IO©write(logrec.logmsg.data)
end

end CASE

else !no log record !

calendar©read(key,logrec.logmsg)

I0@write(logrec.logmsg.data)

end !procedure query

others

The other procedures are lookup, write_cal, read, compute_key, and read_logrec (implemen-

tation details omitted).

code

procedure lookup(key : IN key_type)returns msg_type

!Given a key, return the msg_type from the calendar

!If no such key is available the procedure aborts and raises the

!exception: `msg_key_unavailable'

119

procedure write_cal(msg : IN msg_type)

!Force an entry into the calendar stored in stable storage. The entry

!can be looked up using the unique key.

procedure read(key : IN key_type) returns msg_type

!Given a key, return the corresponding value from the calendar.

!Raise exception: key_unavailable if the key cannot be found in the calendar

procedure compute_key(msg : IN msg_type) returns key_type

!Given msg.date and msg.time compute the unique key that names a calendar

!entry. We assume no two entries have the same node/date/time stamp.
!RaiseException: key_not_computed if an exception occurs

procedure read_logrec(key : IN key_type; logrec : OUT log_rec_type)

!Read the entry named by key from the calendar stored in stable storage (using

!the read operation) into a log record data structure

procedure myname returns name

!Return the unique name of the local node.

recovery object

The object recovery is invoked whenever a node recovers from a crash.

120

recover

recover rolls back the log. For each log entry, recover checks the type and dispatches to the

appropriate procedure. Recover is called when the node recovers from a crash.

code

procedure recover

begin data area rec

logrec : log_rec_type

end data area rec

for each logrec := log@read do begin
CASE logrec.logtype OF

"insert precommit" : recover_precom(logrec)

"precommit good" : recover_ins_com(logrec)

"received precommit" : recover_rec_precom(logrec)

"precommit bad" : abort_pre(logrec)
"bad commit" : recov_badcommit(logrec)

end CASE

end for
end procedure

recover_precom

recover_precorn is called when a node reaches stage 2 of insert (see section 10.2), writes

the "insert precommit" message to the log, and then crashes. This procedure implements

backward recovery. If a transaction is aborted during precommit stage, the transaction is

simply aborted. An abort is implemented by sending an "abort insert action" message.
The receiver invokes ab_ins_act (section 10.2) when the abort message is received.

121

code

procedure recover_precom(logrec)

begin data area ins_precom

msg : msg_type

name : pending
end data area ins_precom

begin
begin action rec_ins_pre

logrec.logmsg.type := "abort insert action"

communicateasynch_bcast(calendarOmyname,logrec.logmsg)

communicate Osynch_recv_all_yes (myn ame,logrec .logmsg)

logaclear(logrec.logkey)

on abort raiseException(fatal_recovery_error(logrec.logkey))
!note: on an exception the log is NOT cleared

end action

end procedure

recoverjns_com

Recover_ins_corn is called if the insert procedure reaches stage 4 (see section 10.2) and then

crashes. This procedure implements forward recovery by broadcasting a commit message.

code

procedure recover_ins_com(logrec)

begin

begin action rec_com

stage 1:

msg.type := "insert commit"

122

communicate@synch_bcast(calendar@myname,"commit")

stage 2:

communicate@synch_recv_all_yes(calendar@myname,msg_array)

stage 3:

log©clear(logreclogseq)

on abort

CASE stage OF

stage 1 : raiseException(commit_comm_error)

stage 2 : raiseException(commit_comm_error)

stage 3 : raiseException(fatal_disk_error)

end action

end procedure

recover_rec_precom

Recover_rec_precom is called when the node receives a precommit message and then crashes.

The node recovers by sending a query message message to see if the commit proceeded.
This portion of the protocol is not included in this example.

abort_pre

abort_pre is invoked if the node crashes in the exception handlers of either stage 2 stage 3

of insert (see sections 10.2 and 10.2). The exception handlers call no_precommit (sec-

tion 10.2) and no_agreement (section 10.2). Abort pre is invoked only if the node crashes in
no_precommit or no_agreement.

code

procedure abort_pre(logrec : log_rec_type)

begin

begin action ab_pre

123

stage 1: communicatensynch_bcast(calendaramyname,msg)

stage 2: logOclear(logreclogkey)

on abort

CASE exception OF

stage 1 : raiseException(fatal_recovery_error(bcast_unavailable))

stage 2 : raiseException(fatal_recovery_error(disk_error))
end !CASE

end !action ab_pre

end !procedure

recov_badcommit

Recov_badcommit is called if a "bad commit" message was placed in the log by no_commit

(section 10.2). This message indicates a commit is unsuccessful even though all nodes agreed
to commit the message. The recov_badcommit procedure retries the commit.

code

procedure recov_badcommit(logrec : log_rec_type)

begin
begin action ab_pre

stage 1: logrec.logmsg.type := "status commit"

communicateOsynch_bcast(calendar@myname,logreclogmsg)

stage 2: communicatensynch_recv_all_yes(calendaramyname)

stage 3: logOclear(logreclogkey)

on abort
CASE stage OF

stage 1: raiseException(fatal_recovery_error)

stage 2: raiseException(no_consensus)

stage 3: raiseException(fatal_disk_error)
end !case

124

end action ab_pre

end

log object

The following procedures are access the log. write, read, log_commit, commit_type, com-

pute_key and clear. The procedures are either self explanatory or documented below.

log_rec_type (export)
logmsg : msg_type !import msg_type from the calendar object

logkey : key_type !the unique key of the logrecord

logtype : log_type_type !the type of the log record
end

code

!log is the logging object.

implementation of object log_object

write(logmsg : IN log_rec_type) 	•

!Force a log message and out to stable storage

read(key : IN key_type; logrec : OUT log_rec_type)

!Read the log record indicated by key into logrec

log_commit(logval : INOUT log_rec_type)

begin

begin action putlog

log@write(logval)

125

on abort raiseException(fatallog_commit_error)

end action putlog

end logcommit

procedure commit_type(logkey : IN key_type; ltype : log_type_type)

!Update the type field of a log entry named by logkey to the value ltype
!on abort raiseException(fatallog_commit m_error)

!

procedure compute_key(logval : INOUT log_rec_type)

!Given the date and time compute the unique key for a log record

!and place the key in the logval record
!

procedure clear(key : IN key_type)

begin

begin action logclear

! remove the entry named by key from the log
on abort raiseException(key_not_found)

end action logclear

end object log

communicate object

Implementation of object communicate

!multicast a message to a group

!Irreversable action

procedure synch_mcast(IN src : name; dst : IN group_n.ame; msg : msg_type)
exceptions(port_disabled)

begin action m_cast

begin data area 1
src_port : capability

dst_portist : array of capabilities

end

stage 1 : src_port := portOobtain_port(src)

dst_portist 	portOobtain_group_port(dst)

stage 2 : for i := list©first(dst_portist) TO list©last(dst_portist)

I0@xmit(src_port,port©translat(dst_port_lst,i),frame)

end

on abort

case staged abort of

stage 1 : raiseException(port_unavailable)
stage 2 : raiseException(multicast_incomplete)

end

!Broadcast a message to every node on the network. Broadcast is

!implemented through a multicast sub action.

procedure gynch_bcast(src : IN name;msg:msg_type); exceptions(port_disabled)

synch_mcast(src,portdobtain_bcast_name,msg)

end

procedure synch_recv_any(src : IN name; msg : IN msg_type)

begin
begin action

I0Orecv_a,ny(portOobtain_port(src),msg))

on abort raiseExeption(comm_unavailable)

end action

127

end

!Receive a message from every port in dst_portist

procedure synch_recv(src : IN name;

dst : dst_portist;
msg : msg_type)

begin

begin action

for i := list©first(dst) TO listOlast(dst)

parbegin

I0 Orecv(src_port ,port© translat(dst_port_lst,i),msg)

parend
end action

on abort

raiseException(fatal_recv_error)

end

!Receive a message from every node. This procedure blocks until every

!node sends a message.

procedure synch_recv_all(src : IN name

msg_arr : OUT frame)

begin

synch_recv(src,port@obtain_all_port,msg_arr)

end

procedure msg_validate(msg_arr :IN array of msg_t3rpe;

val : IN string) returns(boolean)

!Return true if and only if every entry in the array msg_arr

!has the value "vat"

!Receive a message from every node. Return success if and only if

!every node returns success

procedure synch_recv_all_yes(src : IN name)

begin data area yes

msg_arr : array of msg_type

end data area yes

begin

synch_recv_all(src,msg_arr)

if not msg_validate@ACK_check(msg_arr,"yes")

then raiseException(no_agreement)

end

end object

shell object

!Shell is the user interface object.

implementation of object shell !()

begin data area IO

myname : name = pending ! my network name

end data area IO

!User is the user interace. User is implemented as an infinite loop.

!The user may invoke a procedure (insert, query, or remove) by calling

!the appropriate procedure.

procedure user

begin data area 1

token

done = false

end data area 1

begin

begin action user

REPEAT

J0@prompt

JOOget_token(token)
CASE token OF

insert : calendar@insert

query : calendar@query

remove : calendar@remove

halt : done := true

end
UNTIL done

on abort

!Interact with user to recover from fatal errors
end action

end

!Return the local name of the host.

procedure local_name returns name

begin

return(myname);

end;

130

References

[1] Andler, S., Ding I., Eswaran, K., Hauser, C., Kim, W., Mehl, J., and

Williams, R., "System D", Proceedings of the 8 th International Confer-

ence on Very Large Data Bases Mexico City, Mexico (Sept 1982) pp.

33-44.

[2] Balchen, J., Mumme, K., Process Control Structures and Applications,

(New York: Van Nostrand Reinhold Co., 1988).

[3] Bartlett, J. "A nonstop operating system" Proceedings of the 1978 Inter-

national Conference on System Sciences (Honolulu, Hawaii, Jan. 1978).

[4] Bernstein, P., Hadzilacos, V., and Goodman, N., Concurrency Con-

trol and Recovery in Database Systems, (Reading MA: Addison-Wesley,
1987).

[5] Bhargava, B., Concurrency Control and Reliability in Distributed Sys-

tems, (New York: Van Nostrand Reinhold Co., 1987).

[6] Brownbridge, D.,L. Marshall, and B. Randell, "The Newcastle Connec-

tion, or UNIXes of the World Unite!" Software Practice and Experience,

Vol. 12, Wiley Inter-science, Dec. 1982, pp. 1147-1162.

[7] Dasgupta P., LeBlanc R., Spofford E., "The Clouds Project: Design

and Implementation of a Fault-Tolerant Distributed Operating System,"

Georgia Institute of Technology Technical Report GIT-ICS-85/29.

[8] Gehani, N., McGettrick, A., Concurrent Programming, (Reading MA:

Addison-Wesley, 1983).

[9] Goodenough, J., "Exception Handling Design Issues," ACM SIGPLAN

Notices, July 1975, pp. 41-45.

[10] Griffeth, N., Unpublished course notes for Database Design, Georgia

Institute of Technology.

[11] Hwang, K., and Briggs, F., Computer Architectures and Parallel Pro-

cessing, (New York: McGraw-Hill, 1984).

131

[12] Jovic, F., Process Control Systems, (Houston: Gulf Pub. Co., 1986).

[13] Kastner, P.C., "A fault- tolerant transaction processing environment",

IEEE Q. Bull. Database Eng. 6, 2 (June 1983), special issue on Highly

Available Systems.

[14] Kim, W, "Highly Available Systems for Database Applications", ACM

Computing Surveys, 'Vol. 16, No. 1, March 1984, pp.71-98.

[15] Korth, H., Silberschatz, A, Database System Concepts, (New York:

McGraw-Hill Book Co. 1986).

[16] Lamport, L., Shostak, R., and Pease, M., "The Byzantine Generals

Problem," Technical Report 54, Computer Science Laboratory, SRI In-

ternational, March 1980.

[17] Lin, T., and Siewiorek, D., "On-Line Fault Prediction in Distributed

Environments: A Case Study" Carnegie-Mellon University.

[18] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., "Abstraction

Mechanisms in CLU", Communications of the ACM, Aug. 1977, pp.
564-576.

[19] Moss, J. Eliot B., Nested Transactions: An Approach to Reliable Dis-

tributed Computing, (Cambridge, MA: MIT Press, 1985).

[20] Stallings, W., Data and Computer Communications, (New York:
Macmillan Publishing Co., 1988).

[21] Stratus/32 System Overview, (Natick MA: Stratus Computers)

[22] Trivedi, Probability and Statistics with Reliability, Queuing and Com-

puter Science Applications, (Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1982).

[23] Wright, Paul Kenneth and David Alan. Bourne, Manufacturing Intelli-

gence, (Reading, Massachusetts: Addison-Wesley, Inc., 1988).

Contents

1 Introduction 5

1.1 The Need for Resilience 	 6

1.2 The Need for Availability 	 6

1.2.1 	Problems of Replication in Object-Based Systems 	 7

1.3 The Aeolus/Clouds Model 	 10

1.3.1 	The Clouds System 	 10

1.3.2 	The Aeolus Programming Language 	 13

2 Language Features for Resilience 19

2.1 Autorecoverable 	 19

2.2 Recoverable 	 19

2.3 Per-action and permanent variables 	 20

2.4 Resilient types 	 21

2.5 Other work 	 23

2.5.1 	ISIS 	 23

2.5.2 	Argus 	 26

3 Language Features for Availability 28

3.1 Ad hoc techniques 	 28

3.2 Consensus Locking 	 28

3.3 Distributed Locking 	 31

3.3.1 	Overview of Distributed Locking 	 31

3.3.2 	Availability Specifications 	 32

3.3.3 	Comparison of Consensus Locking and Distributed Locking 	 36

2

3.3.4 Built-in Replication Schemes in Distributed Locking 	37

3.3.5 Distributed Locking Example 	 38

3.4 Other Work 	 39

3.4.1 The HOPS project 	 39

4 Support for resilience 	 41

4.1 The Action Manager Interface 	 41

4.2 The Clouds Object Header 	 41

5 Support for availability 	 44

5.1 Support for Distributed Locking 	44

5.1.1 Naming Replicated Objects 	 44

5.1.2 Invocation of Lock and Copy Events 	 47

5.1.3 Primitives for Lock and Copy Event Handlers 	 48

5.1.4 Examples of Event Handlers in Distributed Locking 	51

A Permanent Heap Example 	 53

B Resilient Symbol Table Definition 	 62

C Resilient Symbol Table Implementation 	 71

D Resilient Symbol Table with Resilient Type Construct 	 76

E Ad-Hoc Replicated Symbol Table 	 82

F Aeolus Distributed Locking Primitives 	 92

G Clouds Action Manager Interface 	 96

3

H Aeolus/Clouds Feature Summary 100

11.1 Features Supporting Objects 	 100

11.1.1 Persistent State 	 100

11.1.2 Object Instance Creation 	 101

11.1.3 Object Invocation 	 101

H.1.4 Object Event Handlers 	 102

11.2 Features Supporting Actions 	 102

11.3 Features Supporting Action/Object Interactions 	 103

11.3.1 Mutual Exclusion: Critical Regions 	 103

H.3.2 Synchronization: Locks and Autosynch 	 103

H.3.3 Action Event Handlers 	 104

H.3.4 Recoverable Areas 	 104

11.3.5 Autorecoverable Objects 	 105

11.3.6 Per-Action Variables 	 105

11.3.7 Permanent Variables 	 	105

4

1 Introduction

Among the benefits claimed for distributed computing are improvements in system fault

tolerance and reliability, and increased availability of data and services. The Clouds project

at Georgia Tech is one of a number of recent proposals in which reliability in a distributed

system is based on the use of atomic actions, a generalization of the transaction concept of

distributed databases. As part of the Clouds project, we have designed and implemented

a high-level language providing access to the synchronization and recovery features of the

Clouds system; this language is being used to implement those levels of the Clouds system

above the kernel level. It also provides a framework within which to study programming

methodologies suitable for systems based on the action concept, such as Clouds. Among

the properties needed by systems data structures, the design of which must be addressed by

such methodologies, are resilience—survivability and consistency of the data despite crashes

and other faults; and availability—increased possibility of access to data despite network

partitions or failures of some sites in a multicomputer system. Together with a mechanism

that ensures forward progress—continued execution of jobs despite failures, these properties

provide fault tolerance in the system.

In this paper, we describe some of the results of a study of methods of achieving fault

tolerance in the Clouds system, in particular achieving resilience and increased availability

of objects in Clouds. The remainder of this introduction presents the problems explored by

this work. Section 1.3 describes the model of distributed computation in which the problems

posed by the research were examined (the Clouds system) and the tools which were used

to address these problems (the Aeolus' programming language). In Section 2, we describe

various methodologies for achieving resilience using the tools provided by Aeolus/Clouds as

well as discuss methods other researchers have proposed. In Section 3, we explore the various

methodologies (both from Aelous/Clouds and others) proposed to achieve availability. The

language runtime support features (primitives) required to support resilience as well as

operating system support needed to support these features, are presented in Section 4.

Finally, the language runtime support features and operating system support needed to

support availability are discussed in Section 5.

'Aeolus was the king of the winds in Greek mythology.

5

1.1 The Need for Resilience

The distribution of a computation is of little benefit if the failure of a single site or portion

of the network may leave that computation in an inconsistent state, or corrupt or destroy

the data being operated upon by the computation. As noted above, distribution of physical

resources alone may actually increase the chances of hardware failure, and thus the pos-

sibility of inconsistency. Thus, there is a need for mechanisms which ensure that failures

in a distributed system do not leave the data at failed sites in a corrupted state, and that

no inconsistencies are introduced in the data at operational sites because of computations

which had visited the failed (or inaccessible) sites.

In the Clouds prototype, the resilience of data—that is, its consistency despite failures—

is provided by the combination of stable storage and action mechanisms. Stable storage helps

ensure that data is not corrupted by a failure at its site; the use of an action to provide a

"firewall" around a computation helps ensure, through interaction with the stable storage

facility, that no data at any site visited by that computation are left in an inconsistent

state. The organization of data into objects—that is, containers for data which allow access

to that data only through operations which they provide--simplify the tasks of the stable

storage and action mechanisms by delimiting the effects of changes (and thus of failures),

and by providing a definition of the state of a distributed computation. These concepts are

explained in more detail in Section 1.3.

1.2 The Need for Availability

Even if a computation is distributed, it is subject to a single point of failure if any of the

data objects involved in that computation exist at only a single node. The provision of

resilience alone cannot eliminate the problems caused by site or network failures; although

inconsistencies introduced by such failures have been abolished, any objects existing only

at a failed site are unavailable for the duration of the failure, and thus no computation may

proceed which requires those objects. A method for eliminating these bottlenecks is data

replication, that is, the maintenance of copies of an object at multiple sites.

The use of replication introduces the problem of maintaining the consistency of the

individual replicas when operations are executed on them. A common requirement for

consistency is that the replicated object maintain single-copy semantics, that is, that the

6

(a) representation of (b) physical nesting (c) logical nesting
an object 	 orobjects 	of objects

Figure 1: Pictoral Representation of Object Nesting

state of each replica be consistent with that which would have been obtained had the object

existed only at a single site and had the same sequence of operations been applied to it.

This is achieved by a combination of a mechanism for controlling concurrency among the

replicas, and of a mechanism for copying the state obtained by an operation execution

among the replicas.

These mechanisms have been the subject of much study, both in the areas of database

systems and of operating systems. Indeed, it has been found that single-copy semantics is

too stringent a requirement in some applications. (See [Wilk87] for a discussion of previous

work in this area.) However, most previous work on such mechanisms has been concerned

with "flat" data, such as 'files. The unique problems posed for these mechanisms by the

object construct used in systems such as Clouds are discussed in the following section; in

so doing, we also introduce some terminology used in the remainder of this paper.

1.2.1 Problems of Replication in Object-Based Systems

In the course of research on methods of achieving availability in object-based systems such

as Clouds, we have found that the generality of the abstract object structure supported by

Clouds poses problems for replication methods which are not presented by a less general,

flat object structure (for instance, files or queues).

The problem lies in the possibility of the arbitrarily complex logical nesting of Clouds

7

4- Replicated object

4- Internal object

_J

4_ External object

Figure 2: Replicated object with Internal and External Object References

objects. Although Clouds objects may not be physically nested (that is, one object may not

physically contain another object), an object may contain a capability to another object. If

an object A creates another object B, and retains sole access to B's capability (by refraining

from passing the capability to other objects, either explicitly or through an intermediary

such as an object directory service), object B is said to be internal to object A. The internal

object B may be regarded as being logically nested in object A. (A pictorial representation

of physical and logical nesting is shown in Figure 1.) If, on the other hand, object A passes

B's capability to some object not internal to A, or if A registers B's capability with an

object directory service, B is said to be an external object; an external object is potentially

accessible by objects not internal to the object which created the external object.

Problems arise with replication schemes when internal and external objects are mixed

together in the same structure, i.e., when an object may contain capabilities to both internal

and external objects. (An example of such an object is represented in Figure 2.) These

problems are associated with the method which is used to propagate the state of a replicated

object among its replicas. One such method is to execute nt each replica the computation

from which the desired state results; this scheme is called idemexecution. Another method

8

1-
(d) cloning on replicated object

r
F •

(a) single (unreplicated)
object operation

(c) clone (copy) state

(b) idemexecution on replicated object

Figure 3: Replicated State-Copying Methods

is to execute the computation at one replica, and then copy the state of that replica to the

other replicas; this scheme is called cloning. (Representations of the idemexecution and the

cloning methods are shown in Figure 3.) Note that the scheme which is used to ensure that

the replicas maintain consistent states (e.g., quorum consensus) is not involved in these

problems, and is considered separately in this investigation.

External objects cause problems when idemexecution is used to propagate state among

replicas. If the replicated object performs some operation on an external object (e.g., a print

queue server), then—under idemexecution—that operation will be repeated by each replica.

If the operation being performed on the external object is not idempotent, this can cause

serious problems (e.g., multiple submissions of a job to the print queue). Also, trouble may

arise due to idemexecution if the operation on the external object is non-deterministic (for

instance, random number generation, or disk block allocation among multiple concurrent

processes).

On the other hand, internal objects cause problems when cloning is used to propagate

state. For example, assume that each replica of an object creates a act of internal objects.

Then, when an operation is performed on one of the replicas, its state—under cloning—is

9

(a) before cloning of state
	

(b) after cloning of state

Figure 4: State Cloning with Internal Objects

copied to each of the other replicas. However, the capabilities to the internal objects of

the repliCat1 are el/111.ilillell iii the 	tauten; 1.111111, eiu li repliCIL 11(1W 	 ei11):11)1111.1•li 1.4)

the internal objects of that replica on which the operation was actually performed, and

the information about the internal objects of the other replicas is lost. This problem is

illustrated in Figure 4. In Figure 4 (a), each replica has a capability to its individual

internal object. In Figure 4 (b), an operation execution has taken place at the leftmost

replica in the figure, and its state has been cloned to the other two replicas; the states

of the other replicas now contain capabilities to the internal object of the leftmost replica

rather than to their own internal objects.

1.3 The Aeolus/Clouds Model

In this section, we provide an overview of the model of distributed computation embodied

in the Aeolus/Clouds system. The background of the Clouds distributed operating system

project, as well as the major concepts and facilities presented by the Clouds system, are

presented here; a more complete description of the system may be found in a recent overview

paper. [Dasg87] Also, the major features of the Aeolus language are described briefly.

1.3.1 The Clouds System

The Clouds distributed operating system project has been under development at Georgia

Tech since late 1981; the central concepts were developed by Allchin and McKendry in a

pair of early papers, [Al1c82] [Allc83] and the Clouds architecture was described in full in

10

Allchin's dissertation. [Allc83a] The goal of the Clouds project is the implementation of

a fault-tolerant distributed operating system based on the notions of objects, actions, and

processes, to provide an environment for the construction of reliable applications on unre-

liable hardware. The basic approach is to exploit the redundancy available in distributed

systems which consist of multiple computers connected by high-speed local area networks.

Such systems are called multicomputers or computer clusters. In Clouds, the notion of an

object may be used to represent system components, such as directories or queues. A set

of changes to objects may be grouped into an action, which corresponds roughly to the

transaction concept of distributed database work, providing an "all or nothing" assurance

of atomic execution (a property sometimes called failure atomicity). The underlying sup-

port system ensures that, even if the actions extend across multiple machines, the changes

will occur in totality or not at all. At this level, the support system, known as the Clouds

kernel, is maintaining the consistency of the objects. It ensures that objects either reflect

the effects of an action totally or not at all—no intermediate states are possible. This guar-

antee of an action's totality permits one to characterize the effects of hardware component

failures: they cause actions to fail. Since a failed action is guaranteed to have had no effects

on the objects with which it interacted, the action may be restarted without concern for

potential inconsistencies it might have created.

Actions in Clouds go beyond the related notion of transactions in a database system.

Rather than modelling all access to objects as simple reads or writes, the Clouds approach

supports arbitrary operations on objects and allows a programmer to take advantage of op-

eration semantics to increase concurrency, and thereby, performance. Through appropriate

use of encapsulation, concurrent actions can be allowed to change objects without violating

serializability.

A powerful feature of Clouds is the separation of the two components the traditional

notion of the serializability of atomic actions, failure atomicity and view atomicity. Failure

atomicity, as mentioned above, refers to the "all or nothing" property of atomic actions;

view atomicity requires that the effects of an uncommitted action are not seen by other

actions until commital occurs, thus avoiding the problem of "cascading aborts" of actions

which have viewed intermediate states of an uncommitted action that later is aborted. This

separation of the recovery and synchronization aspects of serializability allows the Clouds

programmer to design objects that, while maintaining an appearance of serializability to

the outside world, may violate strict serializability internally—in ways based on the pro-

11

grammer's knowledge of the object's semantics—in the interest of system efficiency.

Objects, actions, and processes are fundamental concepts supported by the Clouds ar-

chitecture. To support these concepts, recovery and consistency are incorporated into the

basic virtual memory mechanism. [Pitt86] [Pitt87] Synchronization mechanisms to control

the interactions of actions are also provided. It is with these capabilities that Clouds is

meant to support the data integrity required for the implementation of reliable, distributed

application programs.

The detailed design of the Clouds kernel is discussed in Spafford's dissertation. [Spaf86]

A prototype of the Clouds kernel, also described by Spafford, has been implemented on

a hardware testbed consisting of VAX 2 750s connected by a 10Mbps Ethernet, several

dual-ported disk drives, and Sun 3 Workstations 3 running UNIX 4 —also attached to the

Ethernet—that provide a user interface to the Clouds system. The Clouds kernel is imple-

mented "on the bare machine," that is, it is not implemented on top of some other operating

system such as UNIX. Thus, the features of objects, actions, and processes have been im-

plemented in the lowest levels of the kernel, allowing use of the Clouds concepts in the

construction of the operating system itself. At these lowest levels, we attempt to avoid im-

plementing policies, instead providing mechanisms with which policies may be constructed.

Some policies are embedded in subcomponents of the kernel. The storage management sys-

tem [Pitt86] implements support for action-based stable storage within the object virtual

memory mechanism. The action manager [Ken186] controls the interaction of actions with

objects, including creation, committal, and abortion of actions, a time-based orphan de-

tection facility. and support for lock-based synchronization. Those kernel subcomponents

implementing policy are intended to be replacable with minimal changes to the rest of the

kernel. For instance, the storage management system could be replaced with another im-

plementing log-based recovery, or the action manager changed to support timestamp-based

synchronization, without fundamental changes to other kernel subcomponents.

The Clouds system above the kernel level consists of a set of fault-tolerant servers which

provide system services (such as object filing, job scheduling, printer spooling, and the like)

to application programs. (It is for the construction of this level of the Clouds system that

the Aeolus programming language was designed; the kernel itself has been implemented in

2 VAX is a registered trademark of Digital Equipment Corp.

'Sun Workstation is a registered trademark of Sun Microsystems, Inc.

'UNIX is a registered trademark of AT&T.

12

the C language.)

The location-transparency and resilience mechanisms provided by the Clouds architec-

ture are used to support the operating system itself and its services. Thus, the system

itself is decentralized (in the sense that the system can survive the failure of any node) and

resilient. The Clouds system may be considered to consist of a set of fault-tolerant objects

which in combination provide a reliable environment for applications.

1.3.2 The Aeolus Programming Language

In this section we provide a brief overview of the Aeolus programming language. More

complete discussions of Aeolus may be found in previous publications. [Wilk85] [Wilk86]

[Wilk87]

Aeolus developed from the need for an implementation language for those portions of

the Clouds system above the kernel level. Aeolus has evolved with these purposes:

• to provide the power needed for systems programming without sacrificing readability

or maintainability;

• to provide abstractions of the Clouds notions of objects, actions, and processes as

features within the language;

• to provide access to the recoverability and synchronization features of the Clouds

system; and

• to serve as a testbed for the study of programming methodologies for action-object

systems such as Clouds. [LeB185]

The intended users of Aeolus are systems programmers working on servers for the Clouds

system. Clouds provides powerful features for the efficient support of resilient objects where

the semantics of the objects are taken into account; it is assumed that the intended users

have the necessary skills to make use of these features. Thus, although access to the

automatic recovery and synchronization features of Clouds is available, we have avoided

providing very-high-level features for programming resilient objects in the language, with

the intention of evolving designs for such features out of experience with programming in

Aeolus.

13

Aeolus provides access to the action manager's support

construct. An unusual aspect of Aeolus/Clouds locks is tha

the specific data being locked, but rather with values in so

obtained for a value of an object, and not on the object itself.

be obtained on a file name even if that file does not yet exi ,

 of Aeolus/Clouds locks is that they provide a mechanism fo

locking modes and arbitrary compatibilities between the diff

lock to be tailored to the specific synchronization semantics c

For example:

type file_lock is lock (read : [read], write

domain is string(FILE_NAME_SIZE)

The declaration of file_lock defines a lock type over the

filenames, in which the usual multiple reader/single writer

the compatibilities among the read and write modes of th

All locks obtained during execution in the environment

and propagated to the immediate ancestor of that action

released by the programmer. Locks obtained under an acti

the action aborts or successfully performs a toplevel comn

protocol (2PL) is maintained, with violations to 2PL allow,

if the programmer deems such violations acceptable. A loch

a nested action even if conflicting locks are held under one

action, but not if conflicting locks are held under an action

nested action. [Allc83a] The power of the Aeolus/Clouds loc

defined synchronization lies in the specification of arbitrar:

compatibilities between those modes, as well as the dissoc

variables.

Support for Objects The object construct provides sup

olus. A collection of related data items may be encapsulat

may provide operations (procedures that operate) on the da

of an object is via these operations; thus, an object can stri

encapsulated data, helping guarantee the invariants of the ;

the object defines a type, called an object type, which may be used in the declaration of

variables to hold capabilities to instances of that object type.

Aeolus provides a hierarchy of object classifications sharing a common implementation

and invocation syntax which offers a trade-off of functionality and efficiency. The object clas-

sifications fall into two groups: the so-called Clouds object classifications (autorecoverable,

recoverable, and nonrecoverable) may make use of the ob ject management facilities and

(for autorecoverable and recoverable types) the action management facilities, while the

non-Clouds object classifications (local and pseudo) do not use any of the Clouds facilities

for action or object management and provide data-abstraction facilities usable "locally"

(without resorting to the system facilities supporting distribution of objects). On the other

hand, the Clouds object classifications provide access to the support for data abstraction

provided by the Clouds system when the expense of that support is warranted; the sepa-

rate classifications of Clouds objects allow the programmer to specify the degree of support

(and of incurred expense) required. The object classifications are described in more detail

in the papers cited above; while the autorecoverable classification provides the paradigm

most often presented by other action systems, that is, completely automatic recovery of the

entire object state, the recoverable classification is of more interest here in that it allows the

programmer to tailor object recovery based on the semantics of the object via mechanisms

described below.

The global variables of an object are called collectively the object's state. In an object

of class recoverable, part of the object state may be specified to be in a recoverable area;

also, the programmer may specify an action events part and/or a per-action variables part.

Recoverable areas, action events, and per-action variables are described in more detail in

section 2.

In order to allow the object to participate in its own creation and deletion, an object

implementation part contains specifications of handlers for the so-called object events. The

object events include the init or object initialization event, the handler for which is executed

whenever an instance of the object is created by use of an allocator; the reinit or object

reinitialization event, the handler for which is executed--if the object has registered its

desire for reinitialization with the action manager—when the system is reinitialized after a

crash or network partition; and the delete or object deletion event, the handler for which is

executed when the object instance is destroyed.

15

An invocation of an object operation looks much like a procedure invocation, except that,

outside the implementation part of the object itself, an operation name must be qualified by

the name of a variable representing an instance of that object type (or, for pseudo-objects,

by the name of the object type itself). Thus, for an instance of a bounded-stack type, the

programmer might write

stack_instance push(elem)

When an object invokes one of its own operations, however, the usual procedure call syntax

is used.

Invocations of pseudo-object and local object operations have semantics essentially sim-

ilar to those of calls to procedures local to a compiland. The situation is different for

operations declared in objects which use the Clouds object-management facilities (i.e., the

so-called "Clouds objects"). Invocations of operations on Clouds objects are handled by

the compiler through operations on the Clouds object manager on the machine on which

the invoking code is running. The Clouds object on which the operation is being invoked

need not be located on the same machine as the invoking code; the ob ject manager then

makes a remote procedure call (RPC) to the object manager on the machine on which the

called object resides. The location—local or remote—of the object being operated upon,

however, need not concern the programmer, as the RPC process is transparent above the

object-management level.

Support for Actions The action concept provides an abstraction of the idea of work in

the Clouds system; an action represents a unit of work. Actions provide failure atomicity,

that is, they display "all-or-nothing" behavior: an action either runs to completion and

commits its results, or, if some failure prevents completion, it aborts and its effects are

cancelled as if the action had never executed.

Support for actions in the Aeolus language is relatively low-level. At present, the

methodology of programming with actions is not as well-understood as the methodology of

programming with objects; thus, rather than providing high-level syntactical abstractions

such as those available for object programming, Aeolus allows access to the full power and

detail of the Clouds system facilities for action management. The major syntactic sup-

port provided by Aeolus for action programming is in the programming of action events,

recoverable areas, permanent and per-action variables, and action invocations.

16

At several points during the execution of an action, the action interacts with the action

manager of the Clouds system to manage the states of objects touched by that action,

including writing those states to permanent (stable or safe) storage, and recovering previous

permanent states upon failure of an action. Thus, failure atomicity may be provided by the

action management system. The action events include:

BOA beginning of action

toplevel_precommit prepare for commit of a toplevel action

nested_precommit prepare for commit of a nested action

commit normal end of action (EOA)

abort abnormal end of action

The interactions with the Clouds action manager necessary when such events take place

are done by default procedures supplied by the Aeolus compiler and runtime system; these

procedures are called action event handlers. When an action event occurs for a particular

action, the action manager(s) involved invoke the event handlers for each object touched

by that action.

The right-hand side of an assignment statement may take the form of an action invo-

cation. Here, the right-hand side (which consists of an operation invocation which, if the

operation is value-returning, is embedded in another assignment statement) is invoked as

an action; the action ID of this action is assigned to the variable designated by the left-hand

side of the action invocation. Thus, for example, if the bounded-stack object mentioned

above were defined as a recoverable object, one might invoke one of its operations as an

action:

aID := action(stack_instance G push(elem))

The action ID may be used as a parameter in operations on the action manager which

provide information about the status of the action, cause a process to wait on the completion

of an action, or explicitly cause an action to commit or abort. By use of additional syntax

not shown here, the programmer may specify that an action be created as a "top-level"

action, that is, as an action with no ancestors; a top-level action cannot be affected by an

17

abort of any other action. Otherwise, the action is created as a "nested" action, that is,

as a child (in the so-called action tree) of the action which created it; as described below,

a nested action may be affected by an abort of one of its ancestors. Optionally, a timeout

value may be specified in the action invocation clause; if the action has not committed by

the expiration of this timeout, the action will be aborted. If no timeout value is specified,

a system-defined default value is used. The detailed semantics of action invocations, and

requirements on objects that may have operations invoked as actions, are described in the

papers on Aeolus cited above.

18

2 Language Features for Resilience

2.1 Autorecoverable

As was described in Section 1.3, by use of the autorecoverable class of object, the pro-

grammer may take advantage of the recovery facilities of the Clouds system by having the

compiler generate the necessary code automatically. This automatic recovery mechanism

requires recovery of the entire state of the object, and uses the default action event han-

dlers. However, it is sometimes possible for the programmer to improve the performance

of object recovery by providing one or more object-specific event handlers which make use

of the programmer's knowledge of the object's semantics; these programmer-supplied event

handlers then replace the respective default event handlers for that object. Thus, if ob-

ject class keyword recoverable is specified in the definition header of the object being

implemented, the programmer may give an optional action event part in the object's imple-

mentation part. Following the keywords action events, the programmer lists the name of

each action event handler provided by the object implementation as well as the name of the

action event whose default handler the specified handler is to override. Thus, for example,

the specification (in an object implementing a bounded-stack abstraction):

action events

stack BOA overrides BOA,

stack_nested_precommit overrides nested_precommit

indicates that the default handlers for the BOA and nested_precommit action events are to be

replaced by the procedures named stack_BOA and stack_nested_precommit, respectively,

for the bounded-stack ob ject type only.

2.2 Recoverable

As mentioned above, if an object being implemented is of class recoverable, then some of

its variables may be declared in a recoverable area. When a nested action first invokes

an operation on a recoverable object ("touches" that object), the action is given a new

version of the recoverable area which initially has the same value as the version belonging

to the action's immediate ancestor. The set of versions belonging to uncommitted actions

19

which have touched a recoverable object is maintained on a version stack by a Clouds

action manager. When a nested action commits, its version replaces that of its immediate

ancestor. When a toplevel action commits, its version is saved to permanent storage. If

an action is aborted, its version is popped from the version stack. Thus, recoverable areas

(in conjunction with appropriate use of synchronization) provide view atomicity, that is, an

action does not see the intermediate (uncommitted) results of other actions. Also, the use of

recoverable areas allows the programmer to provide finer granularity in the specification of

that part of the object state which must be recoverable, since the use of automatic recovery

on an object (the autorecoverable object class) requires recovery on the entire state of

the object. The interaction with the action manager necessary to manage the states of

recoverable areas is implemented by the action event handlers as described above. Again,

the default event handlers may be overridden by programmer-supplied event handlers for

the entire object to achieve better performance.

2.3 Per-action and permanent variables

It may sometimes be desirable to make large data structures resilient. In such cases, the

recoverable area mechanism may be inefficient, since it requires the creation of a new version

of the entire recoverable area for each action which modifies the area. Often in such cases

the programmer may take advantage of knowledge of the semantics of the data structure to

efficiently program the recovery of the data structure. The Aeolus language provides two

constructs which aid in the custom programming of data recovery, the so-called permanent

and per-action variables, constructs proposed by McKendry. [McKe85]

Any type may be given the attribute permanent. This attribute indicates that members

of that type are to be allocated on the permanent heap, a dynamic storage area in the object

storage of each object instance. This area receives special treatment by the Clouds storage

manager; in particular, it is shadow-paged during the toplevel_precommit action event.

Aeolus also provides the per-action variable construct. A per-action variable specifi-

cation resembles a recoverable area specification, and its semantics is also similar, in that

each action which touches an object with per-action variables gets its own version of the

variables; however, the programmer may access the per-action variables not only of the

current action, but also of the parent of the current action. Also, per-action variables are

allocated in non-permanent storage, that is, in storage the contents of which may be lost

20

upon node failure. The variables in a per-action specification are accessed as if they were

fields in a record described by the specification; two entities of this "record type" are im-

plicitly declared: Self and Parent, which refer respectively to the per-action variables of

the current action and its immediate ancestor.

Permanent and per-action variables may be used together to simulate the effect of

recoverable areas at a much lower cost in space per action. In general, the per-action

variables are used to propagate changes to the resilient data structure up the action tree;

these changes are then applied during the toplevel_precommit action event to the actual

data structure in permanent storage. The use of permanent and per-action variables is

shown more fully in the Aeolus papers cited above.

2.4 Resilient types

Experience with programming with the features controlling interaction of actions and ob-

jects has led to the development of a higher-level language construct to embody the observed

methodology. This feature, called the resilient type, is described in this section.

A methodology for simulating the effects of recoverable areas without incurring the

cost of multiple versions of the entire recoverable area was described above. This scheme

involves the use of the per-action variable construct provided by Aeolus to maintain lists

of the intentions of an action to modify the resilient state of an object. The resilient state

is specified by use of the permanent variable construct of Aeolus. The lists of intended

modifications are then, used at top-level commit to perform the actual modifications to the

resilient state.

Examples of the use of this methodology are provided in Appendices A and C. The

design of such examples has led to the development of a declarative syntax to replace

the imperative combination of the per-action/permanent variable constructs. This new

construct is called the resilient type.

When using per-action and permanent variables to achieve resilience of permanent data,

the programmer must specify the following characteristics:

• the representation of the permanent version of the data;

• the relationship of the modifies operations of the object to the permanent represen-

21

tation; and

• the visibility of both the permanent version and uncommitted modifications made to

it by actions.

The first characteristic is achieved in the per-action/permanent variable paradigm by the

specification of a permanent variable. The second characteristic is implemented by use of

per-action variables to maintain lists of changes to the permanent variables made by each

modifies operation; the programmer must specify in a top-level precommit action event

handler how these modifications are to affect the permanent data. The third characteristic

is realized typically by the use of a "lookup" function that takes into account both the

permanent state and the uncommitted changes maintained in the per-action variables in

some manner appropriate to the semantics of the object.

The use of the per-action and permanent variable constructs in this paradigm has two

undesirable consequences: not only must the programmer explicitly specify exactly how

the paradigm is to be implemented, but the implementation is scattered among many parts

of the object, i.e., the data and per-action variable declarations, modifies operations,

and action event handlers. Thus, there is motivation to abstract the experience with the

imperative constructs into the design of a higher-level, declarative feature that allows the

programmer to specify what the characteristics of the resilient data are, rather than how

these characteristics are to be achieved.

A preliminary design has been developed for a feature called the resilient type that ex-

presses the three characteristics of the per-action/permanent variable paradigm in a•declar-

ative fashion. An example of a resilient object using this feature is presented in Appendix

D. The declaration of the resilient type from this object is also shown in Figure 4. The

syntax of the resilient type describes the characteristics of the type in the following order:

representation of the permanent data; relationship of the modifies operations of the object

to this data; and the visibility rule which applies to the permanent data and uncommitted

modifications. The effect of a resilient type declaration is as follows. For each modifies

operation, an "intentions list" is maintained by the system; at each invocation of such an op-

eration, the values of those operation parameters which are specified in the with modifies

operations clause are added to the list for that operation. The programmer may specify

that one operation "reverses" the effect of another; in this case, the value inserted previously

on the list of the reversed operation is removed. These lists are propagated to the parent

22

action upon nested commit. During the top-level precommit event, these lists are traversed
using a "thunk" of code specified by the programmer in the with modifies operations

clause. The visibility rule for a variable of the resilient type may be accessed by using the
variable name as an object instance name, and invoking operation visibility on it. The
representation of the permanent data structure may be accessed within the resilient type
specification by the name rep. For instance, in the example of Figure 4, the entry for the

delete operation of symtab is as follows:

delete (name) reverse insert :

rep[hash(name)] @ remove(name)

The effect of this entry is the maintenance of an intentions list for the delete operation.
The programmer has specified that the delete operation reverses the effect of a previous
insert operation by the same action. Thus, if an entry with value name is found on the

intentions list for insert, that entry is removed from the list; otherwise, an entry is added
to the intentions list for delete. During top-level precommit, the intentions list for delete

is iterated using the specified thunk; its effect is to invoke the remove operation on the
element (given by the hash function, which is not shown here) of the array of bucket_list

objects that forms the permanent data structure of the resilient type (accessed by the name
rep).

A final aspect of the resilient type specification bears explanation. It was found necessary
to provide some way of accessing elements not only of the permanent data, but of the
(visible) uncommitted results of modifies operations; such access is useful for displaying all
visible elements of a resilient type, or for other operations requiring mapping-like functions.
Thus, the final portion of the prototype syntax allows the programmer to specify an iterator

function which can yield successive visible elements of the resilient type.

2.5 Other work

2.5.1 ISIS

The ISIS system developed at Cornell [Birm84] [Birm85] supports k-resilient objects (ob-
jects replicated at k+1 sites and which can tolerate up to k failures) by means of checkpoints

23

type symtable_type is

resilient array[hash_range] of bucket_list

with modifies operations

insert (name, value) :

rep[hash(name)] C add(name, value) ,

delete (name) reverse insert :

rep[hash(name)] C remove(name ,)

end operations

visibility (name : name_type, out value : value_type) is

insert(name, value)

or (not delete(name)

and rep[hash(name)] 	find(name, value))

end visibility

iterator (out value : value_type) returns name_type is insert :

for i in bucket_range loop

return rep[i] CI iterate(value)

end loop

end iterator

end resilient

Figure 5: Example of a Resilient Type Declaration

24

and the "available copies" algorithm. ISIS objects can refer to other objects, although ap-

parently all such "nested" objects are considered to be external. This system provides both

availability and forward progress; that is, even after up to k site failures, enough infor-

mation is available (at the remaining sites possessing an object replica) that work started

at the failed sites can continue at these remaining sites. This is accomplished through a

coordinator-cohort scheme, where one replica acts as master during a transaction to coor-

dinate updates at the other, "slave" replicas ("cohorts"). The choice of which replica acts

as coordinator may differ from transaction to transaction. The object state is apparently

copied from the coordinator to the cohorts via a cloning operation; this operation has been

described as propagating a checkpoint of the entire coordinator, [Birm84] or, in a more

recent paper, as propagating the most recent version in a version stack. [Birm85] In the

current system, it is assumed that the network is not subject to partitioning.

In ISIS, a transaction is not aborted when a machine on which its coordinator is running

fails (transactions are usually aborted only when a deadlock situation arises). Rather, the

transaction is resumed at a cohort from the latest checkpoint, in what is called restart mode;

this cohort becomes the new coordinator. Operations which the coordinator had executed

after the latest checkpoint took place must be re-executed at the new coordinator.

In the course of an operation on a k-resilient object, the coordinator may perform oper-

ations on other objects to which it contains references. Such operations on "nested" objects

are called external actions. Inconsistencies can arise due to external actions performed

during restart mode; operations performed on external objects by the new coordinator in

this mode were also performed by the old coordinator before it failed. Thus, unless the

operations on external objects are idempotent, inconsistencies can arise. (This problem is

closely related to the problem of idemexecution on external objects, discussed in Section 1.)

This problem is solved in ISIS by requiring external objects to retain results of operations;

these retained results are associated with a transaction II). When a new coordinator takes

over from a failed coordinator and enters restart mode, it uses the same IDs for its external

operations, and rather than re-execute these operations, the external objects merely return

the associated results.

There is also an idemexecution scheme due to Joseph [Jose85] [Jose86] which was ap-

parently implemented as an experiment using the ISIS system as a testbed, rather than as

part of the ISIS replication mechanism itself. In Joseph's scheme, the coordinator performs

the requested operation, and then instructs its cohorts to perform the same operation.

25

Recently, a new version of the ISIS system, called ISIS-2, has been designed; it is an-

ticipated that this new system will be operational by Fall 1987. The ISIS-2 design exploits

a new abstraction called the virtually synchronous process group. [Birm87] In this abstrac-

tion, a distributed set of processes cooperate to perform work in an environment in which

broadcasts, failures, and recoveries are made to appear synchronous.

2.5.2 Argus

The Argus system at MIT [Lisk83] [Lisk84] [Lisk83a] [Weih83] is a language and system

for distributed applications which has evolved from the CLU language. Argus provides an

object construct (called Guardian) which encapsulates data and processes, giving an ab-

straction of a physical node or server. Argus also retains the cluster construct from CLU,

which provides functionality similar to that of local objects in Aeolus; however, the syntax

of Guardians is not similar to that of clusters. Resilience in Argus is based on the notion

of system-provided primitive atomic data types, from which user-defined atomic data types

may be constructed. These primitive atomic data types also define the synchronization

properties of the user-constructed types. Experience with programming a distributed, col-

laborative editing system in Argus has been described by Greif et al.; [Grei86] one criticism

arising out of this experience was that they were sometimes forced to use a Guardian where

a cluster might have been more appropriate.

An atomic data type, like a regular abstract data type, provides a set of objects and a

set of operations which are the only method of interacting with the object. Unlike regular

types, however, an atomic type provides serializability and recoverability for actions that use

objects of that type. To achieve atomicity in Argus there were two requirements imposed on

the execution sequences that affected objects. To support recoverability they required that

actions can observe the effects of other actions only if those actions committed. This ensures

that aborted actions cannot have any effect on other actions. The second requirement was

needed to help insure serializability. Operations executed by one action cannot invalidate

the results of operations executed by a concurrent action.

In Argus, an application is implemented from one or more modules called guardians.

Each guardian consists of some data objects and some processes to manipulate those objects.

Sharing of objects between guardians is not permitted. Handlers, a set of operations that

can be called from other guardians, provide access to a guardians objects. Each guardian

26

resides at a single physical node, although a node may support many guardians. Guardians

survive crashes of their node of residence and other hardware failures with high probabil-

ity, and are therefore resilient. When a guardian's node crashes, all processes within the

guardian are lost, but a subset of the guardian's objects, referred to as the guardian's sta-

ble state, survives. On recovery from a crash the guardian recovers from its saved stable

state and runs a recovery process to reclaim the remainder of its objects. Resilience is

accomplished in Argus by making a stable storage copy of the guardian's state periodically.

27

3 Language Features for Availability

3.1 Ad hoc techniques

Ad hoc techniques to implement availability are those in which the control of replication

is programmed explicity in the object. These attempts at programming availability are

normally inelegant and have no support from the system.

Master/Slave Appendix E of this report presents a detailed example of using one ad hoc

technique—master/slave. In the master/slave paradigm (sometimes called the "hot spare"

scheme), a designated replica performs all invocations and relays each invocation to the

slave object. This keeps the slave's state completely up-to-date. An external object may

hold a capability to the slave object as well as to the master, and may use this capability to

perform a direct invocation on the slave; in this case, the slave merely passes the invocation

immediately to the master; the invocation then proceeds as described above. All locks are

obtained by the master, as allowing the slave to obtain locks concurrently could lead to

deadlock. If the master fails, the slave will detect its unavailability when the slave attempts

to relay an incoming direct invocation. In this case, the slave "promotes" itself to master,

and creates a new slave object.

Although the ad hoc replication technique demonstrated by this example is inelegant,

its use of the idea of having an object processing an invocation obtain the necessary locks

at its replicas as well ultimately led to the development of the Distributed Locking scheme

presented in Section 3.3. The advantage of Distributed Locking is that it requires no

programming modifications to the single-site implementation of a resilient object in order

to derive a replicated implementation.

3.2 Consensus Locking

Herlihy's work on General Quorum Consensus [Her184] concerns the extension of quorum

intersection methods to take advantage of the semantic properties of abstract data types.

Previously, work on quorum methods—mostly in the database area—has been limited to a

simple read/write model of operations. Herlihy's extensions allow the selection of optimal

quorums for each operation of an abstract data type based on the semantics of that operation

28

and its interaction with the other operations of the data type.

Herlihy's method is based on the analysis of the algebraic structure of abstract data

types. This entails the construction of a "quorum intersection graph," each node of which

represents an operation of the data type, and each edge of which is directed from the node

representing an operation 01 to the node representing operation 02, where each quorum

of 02 is required to intersect each quorum of 01. From the quorum intersection graph,

optimal quorums for each operation may be calculated, given the number of replicas of the

data, and the desired availability of each operation in relation to the other operations of

the data type.

Herlihy shows that his method can enhance the concurrency of operations on replicated

data over that obtained from a read/write model of operations. He also claims advan-

tages for his methods in the support of on-the-fly reconfiguration of replicated data, and in

enhancing the availability of the data in the presence of network partitions.

More recently, Herlihy has developed two new methods for integrating concurrency

control and recovery for abstract data types, called Consensus Locking and Consensus

Scheduling. 5 In these schemes, Herlihy requires that the quorum intersection relation and

the lock conflict relation (the complement of the lock compatibility relation) for an object

satisfy a common serial dependency relation on that object; he notes that, in practice, the

lock conflict and quorum dependency relations will be the same. [Her185]

The model of objects and actions which Herlihy adopts may be summarized as follows.

• A replicated object is modelled as sets of repositories, which store the object state,

and front ends, which perform operations for clients. An operation is performed by a

front end by reading the object state from a collection of repositories, performing the

computation, writing any update to the state to (another) collection of repositories,

and sending a response to the invoker.

• In order to perform an operation on a replicated object, the front end must read from

an initial quorum of repositories and must write to a final quorum, the sizes of which

depend on the operation. Thus, a quorum for an operation is a set of repositories

containing both an initial and a final quorum.

'The differences between these models need not concern us at present; therefore, we will refer to their

common basis using the term "Consensus Locking."

29

• The object state is modelled as a log, which represents a behavioral history of the

object, that is, a sequence of operation executions as well as Commit and Abort

events. The log is formed by a sequence of entries consisting of a timestamp, an event

(a paired operation invocation and response), and an action identifier. The log is

partially replicated among the repositories, that is, some entries may be missing at

some repositories.

• When a repository agrees to participate in an invocation, it grants an initial lock;

when it agrees to accept a new log entry for an event, it grants a final lock. Both

initial and final locks are two-phase.

• To execute an operation, the front end must merge the logs obtained from initial

quorum of repositories. A view is constructed in which events belonging to com-

mitted actions are ordered by the actions' Commit entry timestamps, the invoker's

operation is placed last, and entries belonging to uncommitted or aborted actions are

discarded. The operation is then executed based on this view by a single-site serial
implementation of the abstract data type.

Herlihy shows that Consensus Locking minimizes constraints on availability. On the other

hand, the Consensus Scheduling scheme places additional constraints on availability, but

allows more concurrency than Consensus Locking. While Consensus Locking is based on

predefined lock conflicts, the Consensus Scheduling scheme allows scheduling decisions to

take into account the state of the object.

A third scheme, called Layered Consensus Lacking, extends the Consensus Locking

method by associating a level with each activity in the system. [Her185a] Activities at

a higher level are serialized after activities at a lower level. If an activity executing at a

given level is unable to make progress after a failure with its current quorum assignment,

it may restart at a higher level and switch to another quorum assignment. Each initial

quorum for an invocation at level n is required to intersect with each final quorum for an

event at levels i= n.

Herlihy and Wing recently have been developing a set of linguistic features, called

Avalon, for support of transaction processing. [Her187] Avalon is intended to be imple-

mented as extensions to pre-existing languages such as Ada and C++. One aspect of this

support closely resembles the features for support of action event handling provided by

30

Aeolus, as described in Section 1.3. Avalon also provides support for testing serialization

orders dynamically.

3.3 Distributed Locking

3.3.1 Overview of Distributed Locking

In this section, we outline a model of concurrency control and replication management for

the Clouds system, called Distributed Locking (DL). The linguistic and runtime mechanisms

required to support DL are described in the following sections.

In the DL methodology, derivation of a replicated object from its single-site implemen-

tation consists essentially of two steps:

• The user writes a single-site definition and implementation of the object. This imple-

mentation includes specification of all lock types used by the object to ensure view

atomicity in the presence of concurrently-executing actions.

• The user writes an availability specification (availspec) for the object. This specifies

the number of replicas of each instance of the object to be generated, the replication

control policies to be used, and (optionally) the relative availabilities of the modes

of each lock type specified by the object. If no availspec is provided, the object is

assumed to be nonreplicated.

The availspec construct is discussed in detail in Section 3.3.2. Note that availabilities are

expressed in terms of the modes of locks rather than in terms of operations. Together with

the domain notion, with which lock granularities are expressed in Aeolus/Clouds, this gives

the user more latitude in the expression of relative availabilities than is provided in related

work.

The automation of replication provided by the DL methodology is based on a concept

similar to that of action events and object events as discussed in Section 1.3. The program-

mer may specify the interaction of an object with the action management system at critical

points in the processing of an action via writing handlers for the action events; handlers for

object events allow the object to participate in its creation and destruction. In a similar

spirit, we have identified two critical points in the handling of an operation invocation on a

31

replicated object: the lock event, during which the invocation attempts to synchronize some

subset of the replicas of the object; and the copy event, during which the state resulting

from the invocation is transmitted to the subset of replicas synchronized during the corre-

sponding lock event. These events correspond to the concurrency control and consistency

maintenance aspects of replication control, respectively. Note that the names we have cho-

sen for these events reflect the lock-based synchronization and stable storage-based recovery

mechanisms of Clouds. For reasons examined in Section 5, we require that an invocation

on a replicated object be made in the context of an action.

Policies for control of concurrency among replicas, and for control of the copying of

state among replicas, are expressed in a lock object event handler and a copy action event

handler, respectively, in the availspec for an object. Preprogrammed default handlers

for these events, implementing commonly-used schemes such as quorum consensus, may

be requested by the user if appropriate. If the user wishes to provide application-specific

handlers for these events, the same system-provided primitives used in the construction of

the default handlers are available for use in programming user-specified handlers. These

primitives are described in Section 5, and example event handlers using the primitives are

also presented there.

3.3.2 Availability Specifications

As discussed in Section 3.2, the Consensus Locking model of Herlihy allows the specification

of the availability properties of an abstract data type in terms of the initial and final quorums

required for an operation. It has already been mentioned that in the Distributed Locking

model it makes sense to speak of the availability properties of lock modes (rather than

of operations, as in other schemes). Some means is needed of allowing the programmer

to specify these availability properties for an object without requiring modification of the

single-copy version of the object definition or implementation.

In Distributed Locking as implemented in the Aeolus/Clouds system, the availability

properties of a replicated object are specified in a separate compiland for that object type,

called the availability specification part (or availspec, for short). The properties specified in

an availspec include the number of replicas, the replication management algorithm desired

(e.g., quorum assignment, available-copies, etc.), the name of each lock type declared by the

implementation of that object along with the names of that lock's modes, and (optionally)

32

the availability relationships among the modes of each lock type used by the implementation

of that object. All internal and/or non-Clouds objects used by a replicated object must also

have a replication specification; this requirement is applied recursively to these objects. The

availability information of a non-Clouds object is inherited by the object which imports it;

thus, the effect is as if locks declared by non-Clouds objects were instead declared by the

importing Clouds object.

If a voting method is chosen, the quorum assignments for each lock may be derived

from the replication specification using integer programming methods. The availability re-

lationships among locking modes, expressed as relative availabilities, may be transformed

into constraints on the space of feasible solutions; the objective function may be chosen

to maximize the minimum availability over the locking modes subject to these constraints.

The construction of this linear program is discussed in more detail later in this section.

This information is transformed by the Aeolus compiler into a table of replication manage-

ment information which is stored in the TypeTemplate of the given Clouds object. This

information is placed in the header information of each object instance and is used by

the Distributed Locking primitives to guide the selection of sets of replicas for Distributed

Locking (see Section 5).

The Aeolus availability specification bears some resemblance to the fault - tolerance spec-

ification of the HOPS system (cf. Section 3.4). However, in HOPS the programmer must

select among several predefined policies for replication control; there is no provision for

user programming of these policies. The ability of the programmer to specify lock and

copy event handlers as well as the provision of primitives in support of programming these

handlers allows the use of a wider range of replication control policies with the Aeolus

availspec construct.

Example of an Availability Specification A sample availspec making use of the

quorum event handlers is given in Figure 5. This availspec applies to a resilient symbol

table object, the definition for which is presented in Appendix B; the implementation of

this object is presented and discussed elsewhere. [Wilk87] The degree of replication (i.e.,

the number of replicas for a given instance of symtab) is given as a formal parameter to the

availspec; the actual parameter is supplied (in addition to any object parameters specified

by the definition part of the object) during creation of object instances.

33

availspec of object symtab (d : unsigned) is

! Availability specification of the symbol table object using

! the quorum consensus scheme. The DistLock pseudo object

! definitions are imported automatically by all availspecs,

! but we must import the quorum definitions to use its

! predefined handlers.

import quorum

! First, we specify the degree of replication (the number of

! replicas). Here, the degree is taken from an additional

! parameter, d, which is specified during creation of an

! instance of this object.

degree is d

! The resilient symtab object defines two locks, each with two

! modes. We define the relative availabilities for the modes

! of each lock as follows. The relative availabilities are

! used in the constraints of an integer program which is used

! in turn to generate the quorum assignments for each lock

! mode.

lock symtable_lock with exact = nonexact

lock name_lock with read > write

! The definitions of the lock and copy events. Here, we just

! use the predefined handlers for quorum consensus.

availspec events

quorum_lock overrides lock_event,

quorum_copy overrides copy_event

end availspec. ! symtab

34
Figure 6: Availability Specification for the Resilient Symbol Table

The availspec also specifies the relative availabilities of the modes of each lock declared

by symtab. Here, the two modes of symtable_lock are declared to have the same availability

level; however, the read mode of name_lock is declared to be more available than the write

mode. The relative availability declarations are used to determine the size of quorums for

each mode.

Finally, the alternate handlers for the lock and copy events are specified. Here, the

quorum_lock and quorum_copy operations made accessible by importing the quorum pseudo-

object are used.

Computing Quorum Assignments When a voting method is used for replication con-

trol, the system requires information about the minimum number of replicas required to

constitute a quorum for each lock mode. As shown in the example availspec in the previ-

ous section, the programmer may specify the relative availabilities of the modes of each lock.

This information is used to generate constraints for an integer program which computes the

actual quorum requirements; the requirements for the modes of each lock of the object are

then stored in the object state in an array associated with that lock. A primitive is provided

for use in a lock event handler which returns the minimum quorum size associated with

the lock and mode active at the invocation of the handler (that is, the request for which

caused the lock event). The Distributed Locking primitives are described in Section 5.

The integer program used to generate the quorum information for each lock is built as

follows. If the ith variable of the integer program represents the minimum number of replicas

required to constitute a quorum for mode i of the lock, then the objective function is chosen

to minimize the maximum value over all of the variables. As the availability of a mode

is inversely proportional to the size of the quorum required for that mode, the objective

function has the effect of maximizing the minimum availability over the modes. The relative

availabilities of the locking modes as specified by the programmer in the availspec are

used as constraints on the integer program; if no relative availabilities were specified, the

availabilities of the modes are taken to be equal. There are additional constraints generated

by the requirement of voting methods that the quorums of each pair of modes intersect

(that is, that the sum of each pair of variables be greater than or equal to the degree of

replication plus one), as well as that the value of each variable be nonnegative and be less

than or equal to the degree of replication.

35

3.3.3 Comparison of Consensus Locking and Distributed Locking

In Section 1.3, the model of objects and actions provided by the Clouds system was de-

scribed. The model used by Herlihy in his Consensus Locking scheme was described in

Section 3.2. The salient differences between the Clouds ,action/object model as used by

Distributed Locking and the model used by Consensus Locking may be summarized as

follows.

• There is no logical separation between the object code (Herlihy's "front end") and

the object data ("repository"), and thus no separation between reading the data,

computation, and writing the data. An object operation performs computation inter-

leaved with arbitrary examinations and modifications of the object state. A replicated

Clouds object consists of a set of single-copy Clouds objects.

• Likewise, there is no separation of a quorum into initial and final quorums for an

operation. Indeed, as will be explained below, quorums are not expliclitly associated

with operations.

• Rather than using logs, the object state is kept in virtual memory, and its resilience

is maintained by use of shadowing to perform atomic update. Different replicas of an

object may have different versions of the object state at a given time. Each version

is assigned a version number with which the most current version among the replicas

may be identified. A good candidate for implementing the version number would be

the timestamp of the Commit action event which creates the version (a usage similar

to Herlihy's method of ordering log entries).

• There is no separation of "initial" and "final" locks. An operation may obtain a lock

at an arbitrary point in its computation. Locks are normally two-phase, although

the programmer may explicitly release locks before commit or abort if the desired

consistency requirements permit.

• There is no necessity of merging logs into a view. An operation is performed by

invoking one of the set of replicas of the desired object, each of which implements

a single-site version of the object type. When a lock request is encountered in the

invoked object instance, the Clouds kernel (using a modified naming scheme described

in Section 5.1) attempts to set that lock on some subset of the replicas according to

36

the policy specified in the lock event handler. If the action performing the invocation

has not previously touched the replicas, the most current version of the object state

is identified, and this version is either copied to the replica executing the operation,

or the execution may be transferred to a replica containing the most current version;

this version becomes the action's view, which it may proceed to modify. If the action

has already touched the replicas, then it already possesses its own view. The update

of the replicas on action commit with the action's view is discussed below.

Another significant difference in Herlihy's work and that presented here is the model of

locks. Locking is performed in Herlihy's model on an operation-by-operation basis; conflicts

are defined among operations. Thus, in terms of Aeolus/Clouds Distributed Locking locks,

one of Herlihy's Consensus Locking locks is defined with one locking mode per operation.

There is no concept of the domain of a Consensus lock, as there is in Distributed Locking.

Effectively, the domain of a Consensus lock is an entire object, i.e., only one request for such

a lock for a given operation is granted at a time, conflicts permitting. Thus, a Consensus

lock for an object may be modelled by a Distributed Locking lock with one mode per oper-

ation and no domain. However, by allowing specification of arbitrary modes and domains,

Distributed locks allow more generality than Consensus locks. The programmer may decide

to share some lock modes among operations based on semantic similarities between those

operations (for instance, examine vs. modify operations), thus effectively defining classes of

operations with similar concurrency and availability characteristics. It is also possible that

the programmer may decide to have an operation obtain a lock in different modes depend-

ing on its parameters or other factors; this may occur, for instance, through consolidation

of logically separate operations with a similar interface into a single operation (to avoid

duplication of portions of their functionality). Thus, while it is reasonable in Consensus

Locking to speak of the differing availabilities of operations rather than of objects, it is also

sensible to speak in Distributed Locking of the availability of lock modes. In addition, the

ability to specify a domain for an Aeolus/Clouds lock may permit increased concurrency

over locking on the object operation level.

3.3.4 Built - in Replication Schemes in Distributed. Locking

Several popular replication management schemes are available when using the Distributed

Locking mechanism. Other schemes can be supplied by the programmer.

37

Primary copy The primary copy methods have multiple copies of the data around the

network with one designated copy recognized as the "primary copy". These methods insist

that access to a copy during any network partition is allowed, only if the partition possesses

the designated primary copy of the data. If the primary copy is not in the partition, no

access is allowed until the failure(s) have been corrected allowing access to the primary

copy.

Token passing scheme An extension of the primary copy method, the token passing

scheme passes a token among the various sites on the network holding a copy of data. The

copy at the site currently holding the token is considered the primary copy.

Voting schemes Voting schemes are another extension of the primary copy method.

Each copy of the data object is assigned a number of votes. The number of votes for each

copy may vary from copy to copy. The partition which possesses the majority of the votes

for the object may access it.

Available copies Available-copy methods follow a "read-one, write-all available" disci-

pline. A read operation may access any initialized copy (that is, one which has already

processed a write operation). A write operation must access all copies; those which are

unavailable for writing are called missing writes. A validation protocol, which runs after

all reads and writes of a transaction have either been processed or timed out, guarantees

one-copy serializability. This protocol ensures that all copies for which missing writes were

recorded are still unavailable, and that all copies accessed are still available. Several re-

searchers have recently proposed enhancements to the original available-copies algorithm.

[Skee85] [El-A85] [Long87]

General quorum consensus See section 3.2.

3.3.5 Distributed Locking Example

We will now consider an example of distributed locking using the resilient symtab object

with quorum consensus handlers.

38

Assume the capability S refers to (some convenient replica of) the replicated resilient
symbol table object. (The choice of replica will be made by the system depending on the

naming scheme.) The replica chosen is called the primary cohort, or p-cohort.

• object 0 invokes operation S@insert(name, value) at the p-cohort in the context of

an action A.

• the S@insert(name, value) operation obtains the namelock in write mode on the value
name. This causes a lock event, so the lock event handler for the replicated symtab

type is invoked. In this case, the event handler implements quorum consensus, so

it attempts to obtain the same mode and value of namelock at some quorum of

replicas of S (including the p-cohort). The quorum size is determined by the relative

availabilities of the modes of namelock. If a quorum can't be obtained, action A is

aborted. The members of the set of replicas other than the p-cohort that belong to
the quorum are called the s - cohorts.

Note that the insert() operation later obtains another lock, the symtablelock (in

mode nonexact). The quorum size needed for this lock is determined by the relative

availabilities specified for its modes, which may be different than the quorum size
needed when we obtained the namelock. If the size is larger, we must obtain locks

at additional replicas to bring the quorum obtained earlier up to the new size. If it's

smaller, we stick with the larger quorum required by namelock.

• When action A commits, a copy event is caused, so the copy event handler is invoked.

The event handler for quorum consensus cause's the state of the p-cohort to be copied

to the s-cohorts. The copied state is then committed at those replicas.

If action A aborts, the previous state of the p-cohort is restored (as in a single-site

Clouds object), and the locks obtained at the s-cohorts are released. As no state was

copied to the s-cohorts prior to end of action, nothing needs to be restored there.

3.4 Other Work

3.4.1 The HOPS project

The Honeywell Object Programming System (HOPS) [HorLe86] under development at Hon-

eywell, Inc., has research goals similar to those of our methodology research. The stated

39

goals of the HOPS project are:

• to alleviate what is seen as a lack of experience in the field of distributed systems

in implementing mechanisms which perform failure detection, failure recovery, and

resource reconfiguration;

• to provide programming support for developing fault-tolerant distributed applications;

and

• to assess the actual benefits and costs of such mechanisms in terms of performance,

reliability, and availability.

HOPS consists of an implementation language derived from Modula-2 together with a

distributed runtime support system. The language requires that HOPS objects (or HOP-

jects) be specified in three parts: an interface specification, a body (or implementation

specification), and a fault tolerance specification. In the latter, the programmer may specify

attributes and policies relating to recovery, concurrency control, and replication which are

to be used for that object, thus giving the programmer a choice among several mechanisms

provided by HOPS in each of these areas. The distributed runtime system (together with

the underlying host operating system) provides facilities for naming and addressing objects,

communication, failure detection and recovery, local and distributed transaction manage-

ment, concurrency control, recovery, and replication. HOPS is currently being implemented

on a network of Sun-3 workstations under the Sun version of Unix 4.2.

40

4 Support for resilience

The features provided by Aeolus to access the support for resilient computation provided by

the Clouds system were described in Chapter II. These features rely heavily on the action

management subsystem of Clouds for their functionality. In this section, the interface to

the action manager is described, as is other support for synchronization and recoverability

required of the Aeolus compiler.

4.1 The Action Manager Interface

The Aeolus interface to the Clouds action management subsystem is presented in its en-

tirety in Appendix G. This interface is implemented as an Aeolus pseudo-object called

ActionManager. Operations are provided to:

• return the action ID, status, and level (top-level or nested) of the current action;

• query and set the timeout of a specified action;

• obtain the current global Lamport clock time;

• commit the current action;

• abort the current action or a specified child action; and

• await the completion (commit or abort) of a specified child action.

Operations used by the language runtime system, but not available to the programmer

in the Aeolus/action management interface, are those for creating actions. The interface to

the AM_Create_Action and AM_Create_Proc_Action operations are described in Chapter III

of Kenley's thesis. [Ken186] AM_Create_Action is used to invoke an operation of a remote

Clouds object as an action, while AM_Create_Proc_Operation is used to invoke a local

procedure of an object as an action.

4.2 The Clouds Object Header

Each Clouds object is provided with a header containing information used by both the

object and action management subsystems. This header is generated automatically by the

41

windowcnt
entrycnt
entrypt
sysmask—
RAptr
PHptr
Apt.
windows

offset
in
bYtes

4

8

12

16

20

24

28

32

Figure 7: Clouds Object Header

Aeolus compiler from the object type definition and implementation. The layout of the

object header is illustrated in Figure 7.

The fields of the object header are as follows:

windowcnt The number of "windows" used by the object. A window is a region of memory

with certain associated protection characteristics (e.g., read-only or execute-only).

Thus, code, data, recoverable areas, and the permanent heap are typically in separate

windows.

entrycnt The number of public operations provided by the object.

entrypt The address of the common object entry point for the public operations (called

ObjEntry in the Aeolus runtime system). Any required transformations of operation

parameters (e.g., from kernel to Aeolus format) are performed by this entry point.

sysmask A bit mask indicating which "system operations" (object event handlers) are

provided by the object.

RAptr The address of the beginning of the recoverable area of the object, if any.

PHptr The address of the beginning of the permanent heap area of the object, if any.

Alptr The address of the "availability information" tables containing the minimum quorum

size information for each lock mode, if the object has an availability specification.

42

windows The address of the window descriptors for each window used by the object. The

format of window descriptors is described in Spafford's dissertation. [Spaf86]

More details on runtime support for objects are provided in Appendix H.

43

5 Support for availability

5.1 Support for Distributed Locking

As defined in Section 3.3, the term Distributed Locking refers to a methodology for deriving a

replicated implementation from its single-copy version, as well as to a mechanism to support

this methodology. A powerful feature of Distributed Locking is that it does not assume any

particular policy for replication control. Although the user may easily specify use of one

of several default policies in the areas of replica concurrency control and state copying,

it also allows the user to explicitly program policies for these purposes. The mechanisms

provided by Distributed Locking for support of both default and user-programmed policies

are described below.

5.1.1 Naming Replicated Objects

The mechanism required for support of Distributed Locking requires modifications to the

Clouds ob ject naming scheme to support replication.

We have considered two different capability-based naming schemes which may be used

in support of state cloning, as described in Section 1. The first scheme requires minimal

changes to the Clouds kernel, but relies on facets of the Clouds object lookup mechanism

which may not be applicable to other systems. In Clouds, the search for an object begins

locally (that is, on the node which invoked the search), and—if the object is not found

locally—proceeds to a broadcast search. If the internal objects belonging to a replica are

constrained to reside on the same node as their parent object, then the local search will

locate the local instance of the internal object. (This constraint is not considered to be

onerous, since the internal objects of each replica need to be highly available to that replica

in any case, and thus should logically reside on the same node as the parent replica.) Thus,

each replica of an object (each of which resides on a separate node) may maintain its set of

internal objects using the same capabilities as each other replica. (This situation may be

created by initializing one replica, and then cloning its state to the other replicas.) Although

there will thus be multiple instances (on separate nodes) of internal objects referenced by

the same capability, there should be no problems caused by this, since—by the definition

of internal object—only the parent object or its internal ob jects may possess the capability

to an internal object, and the object search will always locate the correct (local) instance.

44

Thus, state cloning may be used to copy the state of a replica to the other replicas without

causing the problems with respect to internal objects described in Section 1 (concerning

references to internal objects contained in the replica's state), since under this scheme all

replicas may use the same capabilities for referencing internal objects. This scheme is an

extension of a facility already supported by the Clouds kernel for cloning read-only objects

such as code. This scheme is called vertical replication, since it maintains the grouping of

internal objects with their parent object.

The other naming scheme makes fewer assumptions about the lookup mechanism than

vertical replication, but requires more kernel modifications. In the second scheme, each

instance of the replicas' internal objects is again named by the same capability, at least as

far as the user is concerned; however, the kernel maintains several additional bits associated

with each capability identifying a unique instance. (These additional bits may be derived,

for example, from the birth node of the instance.) When a (parent) replica invokes an

operation on an internal object, the kernel selects one of the replicas of the internal object

according to some scheme (e.g., iteration through the list of nodes containing such objects

until an available copy is located). Thus, a set of replicas of internal ob jects is maintained in

a "pool" for access by all parent replicas. Again, each parent appears to use the same (user)

capability to reference a given internal object, so the problems of state cloning disappear.

Since this scheme maintains a logical grouping of the copies of an internal object, rather

than grouping internal objects with their parent object, this scheme is called horizontal

replication. One such naming scheme is described in a paper by Ahamad et al. [Aham87]

The attractions of the vertical replication scheme are that it is conceptually simple,

that it requires no modifications to the kernel capability-handling mechanisms, and that,

by requiring coresidence, it enforces a property which enhances availability. To see this,

recall that independent failure modes are desirable among different replicas of a replicated

object, since the probability that the replicated object will be available is the probability

that any one of the set of replicas will be available. On the other hand, dependent failure

modes are desirable among a given replica and its internal objects, since the probability that

the given replica will be available is the probability that all of the set of internal objects

will be available. Requiring coresidence of objects related by logical nesting introduces

dependence of their failure modes.

Unfortunately, the vertical replication scheme is not viable in general, since the coresi-

dence requirement may sometimes be unrealistic. It may sometimes be the case that it is

45

impossible to satisfy coresidence, due to the size of nested objects (making it impossible to

accommodate them on the same node), or due to insufficient space because of previously-

existing objects on that node. Thus, vertical replication must be abandoned as lacking

sufficient generality in its applicability. Fortunately, the horizontal replication scheme does

not share this drawback.

The horizontal replication scheme has been further developed in a recent paper by

other researchers on the Clouds project. [Aham87a,] However, the invocation scheme may

be altered to take advantage of coresidence when possible. The search scheme used for

invocation of replicated objects in the paper cited above involves a random choice among

the set of replicas. This differs markedly from the current Clouds search scheme for non-

replicated objects, which is essentially as follows:

if <object found locally> then

<perform invocation on local object>

else

<perform global search>

end if

This search scheme may be modified to take advantage of coresidence as follows:

if <object found locally> then

<perform invocation on local object>

else

if <object is replicated> then

<select randomly among the set of replicas>

else

<perform global search>

end if

end if

Note that, if only one replica is stored per node, the local search involves only the so-called

"user capability;" that is, it does not involve the extra bits used by the "kernel capability"

to distinguish among replicas. If one allows more than one replica per node, some use of the

kernel capability must be made to select an appropriate instance; this may require specific

knowledge of which replicas are stored at which nodes.

46

5.1.2 Invocation of Lock and Copy Events

Support of the Distributed Locking mechanism requires modification of the Aeolus/Clouds

object and action management facilities in two areas.

• When an operation attempts to obtain a lock on an instance of a replicated object,

locks are obtained at some appropriate subset of its replicas, by invoking the lock event

handler on that object. (Using terminology introduced by Ahamad and Dasgupta,

[Aham87a] the replica at which the original invocation took place is called the pri-

mary cohort [p-cohort]; the other members of the locked subset of replicas are called

secondary cohorts [s-cohorts].)

• During the handling of the precommit event of the controlling action, the state of

each p-cohort touched by that action is copied to its s-cohorts, by invoking the copy

event handler on each p-cohort.

In Section 1, two methods of copying object state applicable to the Clouds model were

identified:

• idemexecution, or execution of an invocation at each member of the set of replicas;

and

• cloning, or execution of an invocation at a single replica, and then explicitly copying

its state to the other replicas.

Because of the drawbacks of idemexecution (including the possibility of repeated invoca-

tions on objects external to the replicated object, as well as the difficulty of handling in-

vocations with non-deterministic results in this scheme), the most viable mechanism seems

to be cloning. However, the Distributed Locking mechanism does not preclude the use of

idemexecution in the copy event, and provides primitives for its support.

Since a replicated object may have an arbitrary structure of logically nested objects, it

is a non-trivial problem to determine exactly what state of which objects must be copied

to implement a cloning operation. That is, it does not suffice to merely copy the state of

the p-cohort to its s-cohorts; the states of all objects nested with respect to the p-cohort

which were involved in the given operation must also be copied to their respective replicas

47

(the nested objects of the s-cohorts). Fortunately, the Clouds action mechanism provides a

means of determining which objects must be cloned: the action manager maintains a list

of objects touched by an action. (This is the reason behind requiring that invocations on

replicated ob jects take place in the context of an action.) Indeed, one need only perform

cloning upon commit of an action, since the results of an action become visible to other

actions only after commit. At that time, the so-called "shadow set" of each touched object

is available. (In very simplified terms, this is the set of pages in the object's recoverable

area which have been modified by the action.) If the constraint is made that all replicated

objects be recoverable, then to implement cloning, one need only copy the shadow set of

each touched object to the other replicas in that object's set, and perform the commit

actions of storage management at each replica. The shadows are committed at each of the

s-cohorts as if the shadows had been produced by execution at that s-cohort.

5.1.3 Primitives for Lock and Copy Event Handlers

If the user wishes to provide application-specific handlers for these events, the same system-

provided primitives used in the construction of the default handlers are available for use in
programming user-specified handlers. These primitives, and their purposes, include those

for such purposes as:

• acquisition at a specific replica of the currently-requested lock (with the same mode

and value, if any), for implementing lock propagation;

• invocation at a specific replica of the same operation (with the same parameters)

requested at the current replica, for implementing idemexecution;

• broadcast of state shadow sets to all replicas holding a specified lock (with a specified

mode and value), for implementing cloning via shadows; and

• invocation at a specific replica of an arbitrary operation, for implementing cloning via
logs or state reconciliation strategies.

The intention is to provide facilities at a level sufficiently low to accommodate all schemes of

interest. Some other useful predefined objects, such as those implementing list abstractions,

are available for such purposes as maintaining and traversing the list of replicas at which

locks have been obtained (and to which the object state must later be copied).

48

The primitives described above are encapsulated in an Aeolus pseudo-object called Dis-

tLock. The definition of DistLock is presented in its entirety in Appendix F.

implementation of pseudo object quorum is

! Here, we define handlers for the lock and copy events which

! implement quorum consensus. This pseudo object is imported

! by any availspec wishing to use its predefined handlers.

import DistLock

procedure quorum_lock 0 is
! A simple -minded lock event handler for quorum consensus.

! Locks are obtained on at least a minimum quorum assignment

! specified by the assignment matrix generated by the

! importing availspec.

this_version ,

max_version : version_number

num_locked ,

good_replica : replica_number

begin

! Find out how many replicas have been locked already by

! the current action.

num_locked := DistLock currently_locked()

! Initially, the latest version seen is set to this

! instance's version number.

max_version := DistLock my_version()

49

! Attempt to lock all available replicas.

for r in replica_number[1 .. DistLock C degree()] loop

if DistLock 0 lock_replica(r, this_version) then

num_locked += 1

if this_version > max_version then

max_version := this_version

good_replica := r
	

! remember the latest version

end if

end if

end loop

! At least a quorum of replicas must have been locked. If

! not, abort the invoking action.

if num_locked < DistLock C quorum_size() then

Abort_Myself()

end if

! If there is a later version of the state than that of

! this replica, copy it here. (This updates the local

! version number.)

if good_replica <> DistLock C my_replica() then

if not DistLock 0 get_state(good_replica) then

Abort_Myself() ! replica was unavailable

end if

end if

! Copy the local state to all replicas which have version

! number less than that of the local copy.

for r in replica_number[1 .. DistLock C degree()] loop

if not DistLock 0 send_state(r) then

Abort_Myself() ! replica was unavailable

end if

end loop

end procedure ! quorum_lock

50

procedure quorum_copy is

! The copy event handler for quorum consensus. The shadow set

! is copied to the set of replicas locked in the lock event.

begin

if not DistLock 0 broadcast_shadows() then

Abort_Myself() ! copy was unsuccessful

end if

end procedure ! quorum_copy

end implementation. ! quorum

Figure 8: Lock and Copy Event Handlers for Quorum Consensus

5.1.4 Examples of Event Handlers in Distributed Locking

A sample implementation of lock and copy event handlers using the General Quorum
Consensus algorithm are given in Figure 6. The treatment of these event handlers has been

kept on a fairly naive level to avoid obscuring neither the general lines of the algorithm

used nor the use of the Distributed Locking primitives. The handlers are encapsulated in

a pseudo-object called quorum which may be imported by an availspec in order to use its
handlers.

As described in a previous section, the replica of an object at which an operation is
invoked is called the primary cohort or p-cohort; a request for a lock at the p-cohort causes its
lock event handler to be activated. The handler for the lock event, here called quorum_lock,

attempts to lock each other available replica (called secondary cohort or s-cohort) by use
of the lock_replica Distributed Locking primitive; if successful, this primitive returns the
version number of the new s-cohort as an out parameter. The maximum version number

over all s-cohorts is determined and compared with the version number of the p-cohort;

if the latter is not the latest version, the state of the s-cohort having the latest version is

copied to the p-cohort. In any case, at this point the latest state is copied to all s-cohorts

having earlier states. If the number of s-cohorts is not at least as great as the quorum

51

assignment for the requested lock mode, the enclosing action is aborted.

When the action enclosing the operation invocation prepares to commit, the copy event

handler (here called quorum_copy) is activated. This handler uses the broadcast_shadows

primitive to copy the shadow set (of changed pages) of the p-cohort to the s-cohorts locked

in all activations of the lock event handler by the current action. If the copy is successful,

the shadow sets are committed at the s-cohorts as well as the p-cohort to yield the updated

state.

There are obvious improvements which might be made to this simple version of quorum.

For example, quorum_lock relies on the lock_replica primitive to "fall through" when an

attempt is made to lock a replica which is already an s-cohort. A more sophisticated imple-

mentation could maintain a set of replica numbers representing the current set of s-cohorts

in order to avoid the overhead of a remote invocation for each redundant lock_replica

call.

The use of the broadcast_shadows primitive in quorum_copy requires that the states of

all s-cohorts be identical to that of the p-cohort when the lock event handling is complete,

so that the shadow set broadcast during the copy event can be committed into a common

permanent state at each replica; this is achieved by copying the state of the replica with the

latest version number to those replicas with earlier versions of the state. This implementa-

tion assumes that it is uncommon for the version number of a replica to be "out of synch"

with its fellow replicas, which is a reasonable assumption if most, if not all, replicas are

available to become s-cohorts during each lock event. If this assumption is invalid, it may

be more efficient to avoid copying of the latest state to the s-cohorts during the lock event

and copying shadow sets during the copy event by copying the entire state of the p-cohort

to the s-cohorts during the copy event.

52

A Permanent Heap Example

This appendix contains the Aeolus source code for an example permanent heap object.

definition of recoverable object permheap is

! Gives the publically-visible definitions provided by the

! permheap object.

operations

procedure allocate (size : unsigned)

returns address modifies

! Return a pointer to a block of memory of the given

! size (in words) in permanent memory.

procedure free (block : address) modifies

! Dispose the block of memory indicated by block.

end definition. ! permheap !

implementation of ! recoverable ! object permheap is

! Support for the permanent heap, using per-action variables

! for recovery management.

import list

! The definition part of the LIST object is shown here for

! clarity.

! definition of local object list (elem_type: type) is

-- This object implements a linked list abstraction.

-- The object is parameterized by the element type of

-- the list; if the element type is specified to be

-- permanent by a (recoverable) importing object, then

53

-- the linked list itself will be allocated in

-- permanent storage (only recoverable objects may

-- declare permanent variables). The list is

-- initially empty. Mutual exclusion is provided on

\f6modifies operations.

! operations

procedure add (elem: elem_type) modifies

1 	-- Adds elem to the list.

1 	procedure append (1: list) modifies

-- Appends all elements in list 1 to this

-- list. Use of the object type list here

-- with no parameters implies that list 1 must

-- have the same element type as this list.

procedure remove (elem: elem_type) modifies

-- If elem is on the list, removes it.

procedure find (elem: elem_type) returns boolean examines

-- If elem is on the list, returns TRUE,

-- otherwise FALSE.

procedure nth (n: unsigned, notthere: out boolean)

returns elem_type modifies

-- If the nth element exists, returns it and

sets notthere to FALSE, otherwise sets

notthere to TRUE.

! end definition. -- list

! The local declarations of the permheap object.

! Here, we give the names of alternate handlers for some of the

! action events. Note that no alternate handler is given for the

! abort event (see section 6).

action events

permheap_boa overrides boa,

permheap_commit overrides commit,

permheap_top_precommit overrides toplevel_precommit

! The perm_blockentry type is used for the maintenance in

! the permanent.heap of the list of free storage blocks. Each

! block is uniquely identified by its address.

type perm_blockentry is permanent new address

! The list of free storage blocks. Since the base type of this

! list is permanent, the list itself is allocated in permanent

! storage. This list may be modified only during the

! toplevel_precommit action event. The size of each entry is

! stored in the first word of that entry.

freelist : permanent list(perm_blockentry) := new list

! The blockentry type is used in the declaration of the

! per-action variables below. Pointers to this type are

! allocated on the normal (not the permanent) heap, and may be

! modified outside of the toplevel_precommit event handler.

type blockentry is new address

! The per-action variables for permanent-heap recovery

! management. We will maintain lists of memory blocks allocated

! and freed by each action. These lists are initialized in the

! handler for the BOA action event.

per action

allocated, freed : list(blockentry)

end per action

! When an action allocates a block of permanent storage, it must

! obtain a lock on that block until it commits to prevent other

! actions from attempting to allocate that block. Rather than

! associate a lock with the actual storage block, we lock the

! block's address (of type blockentry). Recall that locks

! obtained by an action are propagated to its parent upon nested

! commit, and released upon abort or toplevel commit.

entry_lock : lock (busy :) domain is blockentry

procedure first_fit (size : unsigned) returns blockentry is

! A private operation of the permheap object. Given a

! size in words, first_fit finds the first entry on the

! freelist for a block of storage of size at least as

! large as size and returns a pointer to that entry.

! (For the purposes of this example, we will assume that such

! a block exists.) Of course, another strategy could also be

! used here (such as best fit, or fragmentation and

! compaction). We'll assume that repeated invocations of

! first_fit by the same action return different

! addresses.

begin

! The details of this operation are omitted here. Even if

! an appropriate block of storage is found on the

! freelist, first_fit must also test the

! entry_lock to check whether this block has not

! already been allocated by some as yet uncommitted action.

end procedure ! first_fit !

! allocate and free are public operations of the

! permheap object.

procedure allocate (! size : unsigned !) ! returns address ! is

! Return the address of a block of memory of the given

! size in permanent storage. Since the block is from

! the freelist, its former contents are expendable. The

! Set_Lock operation used here is non-blocking, i.e., it

! returns immediately with value FALSE if the requested lock

! is not available.

entry : blockentry

begin

loop 	! keep going until we find an available block

entry := first_fit(size)

if Set_Lock(entry_lock, busy, entry) then

! add the entry to the ALLOCATED list for this

! action

Self.allocated Q add(entry)

return address(entry)

end if

end loop

end procedure ! allocate !

procedure free (! block : address !) is

! Add a block of memory to the freed list for

! freeing during toplevel precommit.

entry : blockentry

notthere : boolean

i : unsigned := 1

begin

! First, scan the allocated list to see if

! block was allocated by the current action

loop

entry := Self.allocated 0 nth(i, notthere)

if notthere then

exit .

elsif entry = blockentry(block) then

! Yes, so remove it from allocated list

Self.allocated 0 remove(entry)

ReleaseLock(entry_lock, busy, entry)

return . 	! we're done

end if

i += 1

end loop

! If we get here, block wasn't allocated by the

! current action, so put it on the freed list

Self.freed 0 add(entry)

end procedure ! free !

! The following are the alternate action event handlers for this

! object.

procedure permheap_boa () is

! The alternate handler for the BOA (beginning of

! action) event. The initial states of the per-action

! variables for the current action are set to be the same as

! those of its immediate ancestor; the effect is that the

! child action may view modifications made by its parent

! action before the child action was created,.

status : action_status

level : action_level

begin

! see if we're in a nested action

Void(ActionManager © Tell_ID(status, level))

if level = nested_action then ! copy the parent's variables

Self.allocated := ObjCopy(Parent.allocated)

Self.freed 	:= ObjCopy(Parent.freed

else ! this is a top-level action; allocate empty lists

Self.allocated := new list

Self.freed 	:= new list

end if

end procedure ! permheap_boa !

procedure permheap_commit 0 is

! The alternate handler for the commit action event.

! We'll propagate the items on the allocated and

! freed lists of this action to the corresponding lists

! of its parent action.

status : action_status

level : action_level

begin

! see if we're in a nested action

Void(ActionManager C Tell_ID(status, level))

if level = nested_action then

Parent.allocated := ObjCopy(Self.allocated)

Parent.freed 	:= ObjCopy(Self.freed

end if

end procedure ! permheap_commit !

procedure permheap_top_precommit () is

! The alternate handler for the toplevel_precommit

! action event. We'll traverse the freed list, adding

! each entry there to the actual freelist in permanent

! storage; then, we'll traverse the allocated list,

! removing each entry there from the freelist.

entry : blockentry

notthere : boolean

i : unsigned := 1

begin

! Add each entry on the freed list to the

! freelist in permanent storage

loop

entry := Self.freed 0 nth(i, notthere)

if notthere then

exit .

end if

! Convert the entry to the permanent type before adding

! to freelist.

freelist C add(perm_blockentry(entry))

end loop

! Remove each entry on the allocated list from the

! freelist; the locks on these entries will be

! released automatically.

loop

entry := Self.allocated 0 nth(i, notthere)

if notthere then

exit .

end if

freelist C remove(perm_blockentry(entry))

end loop

end procedure ! permheap_top_precommit !

inithandler is 	! handler for the initialization object event

begin

! Perform initialization (not shown) of freelist to

! indicate that all of the permanent heap is available.

end inithandler

! The DELETE object event handler for this object is by default

! NULL.

end implementation. ! permheap !

B Resilient Symbol Table Definition

This appendix contains the Aeolus source code for the definition part of a resilient symbol

table object.

implementation of object symtab

!(name_type : type, value_type : type)! is

! Single-copy symbol table object using the lock mechanisms of

! Aeolus/Clouds for synchronization and to ensure view atomicity.

! This implementation of the symbol table uses the recoverability

! features of Clouds to provide resiliency. The use of

! per-action variables to maintain "intention lists" of entries

! inserted or deleted during an action also helps ensure view

! atomicity, since each action gets its own version of the

! per-action variables. Since this object is recoverable, we

! will not explicitly release locks; rather, when a lock is

! obtained by a nested action, it will be propagated to the

! immediate ancestor when the nested action commits, and will be

! released when the top-level ancestor commits. The symbol table

! structure and its entries are kept in permanent storage. Since

! permanent storage may be altered only at toplevel precommit, we

! maintain two "intention lists" of non-permanent entries which

! contain those entries which are inserted or deleted by an

! action. The entries in these lists will be transferred to the

! permanent symbol table during toplevel precommit.

import list, keyed_list

! Here, we give the names of alternate handlers for some of the

! action events. Note that we need not override the abort event.

action events

symtab_boa overrides boa,

62

symtab_commit overrides commit,

symtab_top_precommit overrides toplevel_precommit

! The per-action variables for the symbol table are where we

! maintain the "intention lists" of entries inserted and deleted

! by an action. The inserted list entries are keyed on the

! name field, but also include the value field. The deleted

! list entries need merely give the name field. These variables

! are initialized in the handler for the BOA action event.

per action

inserted : keyed_list(name_type, value_type)

deleted : list(name_type)

end per action

! Each bucket of the hash table is a list of names and values,

! keyed by the name field. The list objects are kept in

! permanent storage, and thus modify operations on them may be

! invoked only during toplevel precommit. (However, examine

! operations may be invoked at any time.)

type bucket_list is permanent new keyed_list(name_type, value_type)

! The symbol table structure itself is an array of bucket lists.

! The array is also kept in permanent storage, and may be altered

! only at toplevel precommit. Since action management ensures

! that only one action may be in the toplevel precommit handler

! at a time, there is no need to explicitly enforce mutual

! exclusion on the symbol table buckets, as is done in the

! nonrecoverable version of the symtab object by means of

! critical regions.

MAXBUCKET : const integer := 101 	! or whatever

63

type hash_range is new unsigned[1 .. MAXBUCKET]

symtable : permanent array[hash_range] of bucket_list

! The symtable_lock allows the entire symbol table to be locked.

! This lock is set (in exact mode) in the exact_list operation for

! purposes of getting an exact listing of the state of the symbol

! table. Operations which change the state of the symbol table

! must wait for completion of any outstanding exact_list

! operations and vice versa.

symtable_lock : lock (exact 	: [exact]

nonexact : [nonexact])

! The NAME lock allows the user to lock the name which is to be

! used in one of the symbol table operations. The purpose of

! this lock is to assure the view atomicity of these operations,

! that is, to provide synchronization such that concurrent users

! of the symbol table do not view the results of other actions

! before those actions are committed.

name_lock : lock (write : 0

read : [read]) domain is name_type

procedure hash (name : name_type) returns hash_range is

! This hash function is a local (nonpublic) procedure of the

! symtab object.

begin

NULL 	! the usual type of stuff

end procedure ! hash

procedure sym_find (name : name_type

value : out value_type) returns boolean is

64

! The sym_find routine is a local (nonpublic) procedure of the

! symtab object. It assumes that the caller has obtained the

! necessary locks.

begin

return 	Self.inserted find(name, value)

or (not Self.deleted find(name)

and symtable[hash(name)] C find(name, value))

end procedure ! sym_find

procedure insert (! name : name_type

! value : value_type 	,

! error : out boolean !) is

! The insert operation adds an entry to the inserted list for

! this action, if the entry is not found; otherwise, error is

! set to TRUE. The entry will placed into the permanent

! symbol table at toplevel precommit.

dummy : value_type

begin

Await_Lock(name_lock, write, name)

error := sym_find(name, dummy)

if not error then

Await_Lock(symtable_lock, nonexact)

Self.inserted C add(name, value)

end if

end procedure ! insert

procedure delete (! name : name_type

! error : out boolean !) is

! If the delete operation finds an entry with value field =

! name, it adds the entry to the deleted list; otherwise,

! error is set to TRUE. The entry will be deleted from the

65

! permanent symbol table at toplevel precommit.

dummy : value_type

begin

error := FALSE

Await_Lock(name_lock, write, name)

if Self.inserted 0 find(name, dummy) then

! If this action has inserted the name, it must already

! have a nonexact lock on the symbol table. In this case,

! Await_Lock() would just return immediately, since we

! already have the lock. Therefore, we won't bother

! invoking Await_Lock().

Self.inserted 0 remove(name)

else if symtab[hash(name)] 0 find(name, dummy) then

Await_Lock(symtable_lock, nonexact)

Self.deleted 0 add(name)

else

! name not in the permanent symbol table or inserted by

! this action

error := TRUE

end if

end procedure ! delete

procedure lookup 0 name

! error

! The lookup operation

! then tries to locate

! returns its value if

: name_type

: out boolean 	! returns value_type ! is

sets a read lock on the name entry, and

that entry with name field = name and

it succeeds.

value : value_type

begin

Await_Lock(name_lock, read, name)

66

Await_Lock(symtable_lock, nonexact.)

error := not sym_find(name, value)

return value

end procedure ! lookup

procedure quick_list () is

! The quick_list operation provides a quick (dirty) listing of

! names currently in the symbol table.

begin

! First, display the stuff in the permanent symbol table

for i in hash_range loop

symtable[i] C display()

end loop

! Now, display entries added by this action or its

! children, if any

Self.inserted CI display()

end procedure ! quick_list

procedure exact_list () is

! The exact_list operation provides a listing of the exact

! state of the symbol table at a given point in time. To do

! this, it locks the whole symbol table, thereby excluding any

! changes during preparation of the listing. Thus, although

! exact_list, lookup, and quick_list operations may execute

! concurrently, and insert and delete operations which access

! different hash buckets may also execute concurrently, insert

! and delete operations must block on exact_list operations

! and vice versa.

begin

Await_Lock(name_lock, read, name)

Await_Lock(symtable_lock, exact)

67

quick_list()

end procedure ! exact_list

procedure symtab_boa () is

! The alternate handler for the BOA (beginning of action)

! event. The initial states of the per-action variables for

! the current action are set to be the same as those of its

! immediate ancestor; the effect is that the child action may

! view modifications made by its parent action before the

! child action was created.

status : action_status

level : action_level

begin

! see if we're in a nested action

Void(ActionManager @ Tell_ID(status, level))

if level = nested_action then ! copy the parent's variables

Self.inserted := ObjCopy(Parent.inserted)

Self.deleted := ObjCopy(Parent.deleted)

else ! this is a top-level action; allocate empty lists

Self.inserted := new keyed_list

Self.deleted := new list

end if

end procedure ! symtab_boa

procedure symtab_commit 0 is

! The alternate handler for the commit action event. If this

! is a nested action, we propagate the inserted and deleted

! lists of this action to its parent.

status : action_status

level : action_level

68

begin

! check whether we're in a nested action

Void(ActionManager @ Tell_ID(status, level))

if level = nested_action then

Parent.inserted := ObjCopy(Self.inserted)

Parent.deleted := ObjCopy(Self.deleted)

end if

end procedure ! symtab_commit

procedure symtab_top_precommit () is

! The alternate handler for the toplevel precommit action

! event. We traverse the deleted and inserted lists for this

! action tree, performing the actual changes to the permanent

! symbol table.

name 	: name_type

value 	: value_type

not_there : boolean

n 	: unsigned

begin

! First, we will traverse the deleted list, and delete the

! given entries from the permanent symbol table

n := 1

loop

name := Self.deleted nth(n, not_there)

if not_there then

exit .

end if

symtable[hash(name)] 	remove(name)

n += 1

end loop

! Similarly, we traverse the inserted list for this action

n := 1

loop

name := Self.inserted Q nth(n, value, not_there)

if not_there then

exit .

end if

symtable[hash(name)] 	add(name, value)

n += 1

end loop

end procedure ! symtab_top_precommit

inithandler is

! Here, we initialize the permanent symbol table.

! (Initialization of permanent structures is possible because

! the initialization handler of a recoverable object is

! performed implicitly as a toplevel precommit handler.)

begin

for i in hash_range loop ! each bucket is initially empty

symtable[i] := new bucket_list

end loop

end inithandler

end implementation.

C Resilient Symbol Table Implementation

This appendix contains the Aeolus source code for the implementation part of a resilient

symbol table object.

implementation of object symtab

!(name_type : type, value_type : type)! is

! Single-copy symbol table object using the lock mechanisms of

! Aeolus/Clouds for synchronization and the critical region

! and shared constructs for mutual exclusion. Since this

! object is not recoverable, we will explicitly release locks.

import keyed_list

! Each bucket of the hash table is a list of names and values,

! keyed by the name field.

type bucket_list is new keyed_list(name_type, value_type)

! The symbol table structure itself is an array of bucket lists.

! Each bucket is shared, and thus must be modified only within a

! critical region.

MAXBUCKET : const integer := 101 	! or whatever

type hash_range is new unsigned[1 .. MAXBUCKET]

symtable : array[hash_range] of shared bucket_list

! The symtable_lock allows the entire symbol table to be

! locked. This lock is set (in exact mode) in the

71

! exact_list operation for purposes of getting an exact

! listing of the state of the symbol table. Operations which

! change the state of the symbol table must wait for completion

! of any outstanding exact_list operations and vice versa.

symtable_lock : lock (exact 	: [exact] ,

nonexact 	[nonexact])

procedure hash (name : name_type) returns hash_range is

! This hash function is a local (nonpublic) procedure of

! the symtab object.

begin

NULL 	! the usual type of stuff

end procedure ! hash

procedure insert (! name : name_type

	

! value : value_type 	,

! error : out boolean 0 is

! The insert operation adds an entry to the appropriate

! bucket of the symbol table.

dummy 	value_type

bucket_num : hash_range

begin

bucket_num := hash(name)

Await_Lock(symtable_lock, nonexact)

region symtable[bucket_num] do

error := symtable[bucket_num] 0 find(name, dummy)

if not error then

symtable[bucket_num] 0 add(name, value)

end if

end region

Release_Lock(symtable_lock, nonexact)

end procedure ! insert

procedure delete (! name : name_type

! error : out boolean !) is

! If the delete operation finds an entry with value

! field = name in the appropriate bucket, it removes

! that entry.

dummy 	: value_type

bucket_num : hash_range

begin

bucket_num := hash(name)

Await_Lock(symtable_lock, nonexact)

region symtable[bucket_num] do

error :=

not symtable[bucket_num] 0 find(name, dummy)

if not error then

symtable[bucket_num] 0 remove(name)

end if

end region

Release_Lock(symtable_lock, nonexact)

end procedure ! delete

procedure lookup (! name : name_type

! error : out boolean

! returns value_type ! is

! The lookup operation sets a read lock on the

! name entry, and then tries to locate that entry with

! name field = name and returns its value if it

! succeeds.

value 	: value_type

begin

Await_Lock(symtable_lock, nonexact)

error := not symtable[hash(name)] 0 find(name, value)

Release_Lock(symtable_lock, nonexact)

return value

end procedure ! lookup

procedure quick_list() is

! The quick_list operation provides a quick (dirty)

! listing of names currently in the symbol table.

begin

for i in hash_range loop

symtable[i] 0 display()

end loop

end procedure ! quick_list

procedure exact_list () is

! The exact_list operation provides a listing of the

! exact state of the symbol table at a given point in time.

To do this, it locks the whole symbol table, thereby

! excluding any changes during preparation of the listing.

! Thus, although exact_list, lookup, and

! quick_list operations may execute concurrently, and

! insert and delete operations which access

! different hash buckets may also execute concurrently,

! insert and delete operations must block on

! exact_list operations and vice versa.

begin

Await_Lock(symtable_lock, exact)

quick_list()

Release_Lock(symtable_lock, exact)

74

end procedure ! exact_list

inithandler is

! Here, we initialize the symbol table.

begin

! each bucket is initially empty

for i in hash_range loop

region symtable[i] do

symtable[i] := new bucket_list

end region

end loop

end inithandler

end implementation.

75

D Resilient Symbol Table with Resilient Type Construct

This appendix contains the Aeolus source code for the implementation part of a resilient

symbol table object using the 'resilient type' construct.

implementation of object symtab

!(name_type : type, value_type : type)! is

! Single-copy symbol table object using the declarative resilient

! type feature to replace the imperative combination of the

! permanent and per-action variable features.

import keyed_list

! Each bucket of the hash table is a list of names and values,

! keyed by the name field.

type bucket_list is new keyed_list(name_type, value_type)

MAXBUCKET : const integer := 101 	! or whatever

type hash_range is new unsigned[1 .. MAXBUCKET]

! The symbol table structure itself is an array of bucket lists.

! Here, the structure type is declared to be resilient, with a

! representation in permanent storage which is modifiable only at

! top-level precommit. The resilient type specification also

! defines the relationship of the modifies operations of the

! object to the representation of the type. The syntax used

! here is:

<operation name> (<key parameter> E, <value parameter>])

[reverse <operation name>] : <rep modification>

76

! The <rep modification> is a statement specifying the effect of

! the given operation on the representation of (a variable of)

! the resilient type. If the operation may reverse the effect of

! another operation, this is indicated by use of the reverse

! clause. The effect of the resilient type specification is, for

! each modifies operation, to generate an list which is used to

! maintain "intentions" of modifications caused by invocations

! of that operation by an action. The "intentions" lists are

! automatically initialized for a new action and propagated up

! the action tree as in the symtab example using permanent and

! per-action variables. Then, at top-level precommit, the

! "intentions" are translated automatically into modifications

! of the representation. A visibility rule governing both the

!- permanent representation and the modification "intentions" of

! an action is specified in the with visibility clause. Finally,

! an iterator may be defined which yields all visible elements of

! the resilient type; thus, it may be specified to iterate over

! the "intentions" of an action as well as the permanent

! representation.

type symtable_type is

resilient array[hash_range] of bucket_list

with modifies operations

insert (name, value) :

rep[hash(name)] C add(name, value) ,

delete (name) reverse insert :

rep[hash(name)] C remove(name)

end operations

visibility (name : name_type, out value : value_type) is

insert(name, value)

or (not delete(name)

and rep[hash(name)] CI find(name, value))

end visibility

iterator (out value : value_type) returns name_type is insert :

77

for i in bucket_range loop

return rep[i] C iterate(value)

end loop

end iterator

end resilient

symtable : symtable_type

! The symtable_lock allows the entire symbol table to be locked.

! This lock is set (in exact mode) in the exact_list operation for

! purposes of getting an exact listing of the state of the symbol

! table. Operations which change the state of the symbol table

! must wait for completion of any outstanding exact_list

! operations and vice versa.

symtable_lock : lock (exact 	: [exact]

nonexact : [nonexact])

! The NAME lock allows the user to lock the name which is to be

! used in one of the symbol table operations. The purpose of

! this lock is to assure the view atomicity of these operations,

! that is, to provide synchronization such that concurrent users

! of the symbol table do not view the results of other actions

! before those actions are committed.

name_lock : lock (write : ❑

read : [read]) domain is name_type

procedure hash (name : name_type) returns hash_range is

! This hash function is a local (nonpublic) procedure of the

! symtab object.

begin

NULL 	! the usual type of stuff

end procedure ! hash

78

! "intentions" of the current action.

! This operation invokes the insert operation of the resilient

! symtable to add the given item to the insertion

! error : out boolean !) is

! value : value_type

procedure insert (! name : name_type

dummy : value_type

begin

Await_Lock(name_lock, write, name)

error := symtable 0 visibility(name, dummy)

if not error then

Await_Lock(symtable_lock, nonexact)

symtable 0 insert(name, value)

end if

end procedure ! insert

procedure delete (! name : name_type

! error : out boolean !) is

! This operation invokes the delete operation of the resilient

! symtable to add the given item to the deletion

! "intentions" of the current action.

dummy : value_type

begin

error := FALSE

Await_Lock(name_lock, write, name)

if symtable C visibility(name, dummy) then

Await_Lock(symtable_lock, nonexact)

symtable ' delete(name)

else

! name not in the permanent symbol table or inserted by

79

! this action

error := TRUE

end if

end procedure ! delete

procedure lookup (! name : name_type

! error : out boolean 	! returns value_type ! is

! The lookup operation sets a read lock on the name entry, and

! then tries to locate that entry with name field = name and

! returns its value if it succeeds.

value : value_type

begin

Await_Lock(name_lock, read, name)

Await_Lock(symtable_lock, nonexact)

error := not symtable CI visibility(name, value)

return value

end procedure ! lookup

procedure quick_list () is

! The quick_list operation provides a quick (dirty) listing of

! names currently in the symbol table by invoking the

! iterator of the resilient symtable.

name : name_type

value : value_type

begin

for name in symtable Q iterate(value) loop

! invoke display operations on name - value pair

end loop

end procedure ! quick_list

procedure exact_list 0 is

80

! The exact_list operation provides a listing of the exact

! state of the symbol table at a given point in time. To do

! this, it locks the whole symbol table, thereby excluding any

! changes during preparation of the listing. Thus, although

! exact_list, lookup, and quick_list operations may execute

! concurrently, and insert and delete operations which access

! different hash buckets may also execute concurrently, insert

! and delete operations must block on exact_list operations

! and vice versa.

begin

Await_Lock(name_lock, read, name)

Await_Lock(symtable_lock, exact)

quick_list()

and procedure ! exact_list

end implementation.

81

E Ad-Hoc Replicated Symbol Table

This appendix contains the source code for an ad-hoc implementation of a replicated sym-

bol table object. This implementation is based on the symbol table presented in earlier

appendices. Is uses a master/slave (or 'hot spare') for replication control.

implementation of object symtab !(replica_number : integer,

name_type 	: type 	,

value_type 	: type)! is

! A version of the resilient symbol table object presented in

! Appendix C using ad hoc techniques to implement

! replication.

import list, keyed_list

! Here, we give the names of alternate handlers for some of the

! action events. Note that we need not override the abort event.

action events

symtab_boa overrides boa,

symtab_commit overrides commit,

symtab_top_precommit overrides toplevel_precommit

! The per-action variables for the symbol table are where we

! maintain the "intention lists" of entries inserted and deleted

! by an action. The inserted list entries are keyed on the

! name field, but also include the value field. The deleted

! list entries need merely give the name field. These variables

! are initialized in the handler for the BOA action event.

per action

inserted : keyed_list(name_type, value_type)

deleted : list(name_type)

end per action

82

! The definitions of MAXREPLICAS, replica_range, and

! version_vector should actually appear in the definition part of

! symtab, but are shown here for convenience.

MAXREPLICAS : const integer := 2

constraint replica_range is integer[1 .. MAXREPLICA]

type version_vector is array[replica_range] of integer

! The actual declarations of the implementation part.

recoverable

here, there : replica_range

! for storing values of replica numbers

partner : symtab()

! Object pointer to the partner object

master : boolean

! remember whether this instance is master or slave

local_version : version_vector

! The local_version vector is used to store version numbers

! of the local state (the here entry) and of the last

! version of the local state known to be consistent with

! the partner's state (the there entry). Note, however,

! that only one copy (per instance) of the actual state is

! maintained.

end recoverable

! Each bucket of the hash table is a list of names and values,

83

! keyed by the name field. The list objects are kept in

! permanent storage, and thus modify operations on them may be

! invoked only during toplevel precommit. (However, examine

! operations may be invoked at any time.)

type bucket_list is permanent new keyed_list(name_type, value_type)

! The symbol table structure itself is an array of bucket lists.

! The array is also kept in permanent storage, and may be altered

! only at toplevel precommit. Since action management ensures

! that only one action may be in the toplevel precommit handler

! at a time, there is no need to explicitly enforce mutual

! exclusion on the symbol table buckets, as is done in the

! nonrecoverable version of the symtab object by means of

! critical regions.

MAXBUCKET : const integer := 101 	! or whatever

type hash_range is new unsigned[1 .. MAXBUCKET]

symtable : permanent array[hash_range] of bucket_list

! The symtable_lock allows the entire symbol table to be locked.

! This lock is set (in exact mode) in the exact_list operation for

! purposes of getting an exact listing of the state of the symbol

! table. Operations which change the state of the symbol table

! must wait for completion of any outstanding exact_list

! operations and vice versa.

symtable_lock : lock (exact 	: [exact] ,

nonexact : [nonexact])

! The NAME lock allows the user to lock the name which is to be

! used in one of the symbol table operations. The purpose of

84

! this lock is to assure the view atomicity of these operations,

! that is, to provide synchronization such that concurrent users

! of the symbol table do not view the results of other actions

! before those actions are committed.

name_lock : lock (write :

read : [read]) domain is name_type

procedure hash (name : name_type) returns hash_range is

! This hash function is a local (nonpublic) procedure of the

! symtab object.

begin

NULL 	! the usual type of stuff

end procedure ! hash

procedure sym_find (name : name_type

value : out value_type) returns boolean is

! The sym_find routine is a local (nonpublic) procedure of the

! symtab object. It assumes that the caller has obtained the

! necessary locks.

begin

return 	Self.inserted 0 find(name, value)

or (not Self.deleted C find(name)

and symtable[hash(name)] 0 find(name, value))

end procedure ! sym_find

procedure sym_insert (! name 	: name_type

! value 	: value_type 	,

! newversion : integer

! error 	: out boolean !) is

! The sym_insert operation adds an entry to the inserted list

! for this action, if the entry is not found; otherwise, error

85

! is set to TRUE. The entry will placed into the permanent

! symbol table at top-level precommit.

! The sym_insert operation is called either by the insert

! operation shown below (if this instance is the master), or

! by the partner as an update operation (if this instance is

! the slave). The symtable_lock and name_lock are obtained by

! the caller. If newversion is greater than 0 (that is, the

! sym_insert operation was called remotely), then this new

! version number is installed in the local_version array.

dummy : value_type

begin

error := sym_find(name, dummy)

if not error then

Self.inserted add(name, value)

end if

end procedure ! sym_insert

procedure insert (! name : name_type

! value : value_type 	,

! error : out boolean !) is

! If this instance is the master, it sets the symtable_lock

! and the name_lock, and then calls the sym_insert operation

! both locally and at the slave partner (if available) to do

! the actual insertion. If this instance is the slave, it

! calls the master (if available) to do the insertion just as

! if the call had originated there. If the master is not

! available, the slave makes itself the master and performs

! the insertion. Note that, since only the master can call

! the sym_insert operation (which actually performs the

! insertion), it is not necessary to set locks at the slave.

newversion : integer

86

aid 	: action_id

success 	: boolean

begin

if master then

newversion := local_version[here] + 1

AwaitLock(symtable_lock, nonexact)

AwaitLock(name_lock, write, name)

sym_insert(name, value, 0, error)

local_version[here] := newversion

if partner_available then ! update at the partner

aid := action(partner Q sym_insert(name, value,

newversion, error))

Wait_Completion(aid, success)

! block until the nested action commits or aborts

if Status(aid, FALSE) = committed then

local_version[there] := newversion

else

partner_available := FALSE

end if

end if

else

! this instance is the slave; request the master

! to update both of us

aid := action(partner insert(name, value, error))

Wait_Completion(aid, success)

if Status(aid, FALSE) = committed then ! become master

partner_available := FALSE

master 	 := TRUE

newversion 	:= local_version[here] + 1

AwaitLock(symtable_lock, nonexact)

AwaitLock(name_lock, write, name)

87

sym_insert(name, value, 0, error)

local_version[here] := newversion

end if

end if

end procedure ! insert

procedure symtab_boa 0 is

! The alternate handler for the BOA (beginning of action)

! event. The initial states of the per-action variables for

! the current action are set to be the same as those of its

! immediate ancestor; the effect is that the child action may

! view modifications made by its parent action before the

! child action was created.

status : action_status

level : action_level

begin

! see if we're in a nested action

Void(ActionManager Tell_ID(status, level))

if level = nested_action then ! copy the parent's variables

Self.inserted := ObjCopy(Parent.inserted)

Self.deleted := ObjCopy(Parent.deleted)

else ! this is a top-level action; allocate empty lists

Self.inserted := new keyed_list

Self.deleted := new list

end if

end procedure ! symtab_boa

procedure symtab_commit () is

! The alternate handler for the commit action event. If this

! is a nested action, we propagate the inserted and deleted

! lists of this action to its parent.

status : action_status

level : action_level

begin

! check whether we're in a nested action

Void(ActionManager @ Tell_ID(status, level))

if level = nested_action then

Parent.inserted := ObjCopy(Self.inserted)

Parent.deleted := ObjCopy(Self.deleted)

end if

end procedure ! symtab_commit

procedure symtab_top_precommit () is

! The alternate handler for the toplevel precommit action

! event. We traverse the deleted and inserted lists for this

! action tree, performing the actual changes to the permanent

! symbol table.

name 	: name_type

value 	: value_type

not_there : boolean

n 	: unsigned

begin

! First, we will traverse the deleted list, and delete the

! given entries from the permanent symbol table

n := 1

loop

name := Self.deleted @ nth(n, not_there)

if not_there then

exit .

end if

symtable[hash(name)] @ remove(name)

n += 1

end loop

! Similarly, we traverse the inserted list for this action

n := 1

loop

name := Self.inserted 0 nth(n, value, not_there)

if not_there then

exit .

end if

symtable[hash(name)] 0 add(name)

n += 1

end loop

end procedure ! symtab_top_precommit

procedure set_partner

p : symtab(), rep_number : replica_range 0 is

! The set_partner operation is used by the creating process to

! initialize the partner capability.

begin

partner := p

there 	:= rep_number

end procedure ! set_partner

inithandler is

! Here, we initialize the permanent symbol table.

! (Initialization of permanent structures is possible because

! the initialization handler of a recoverable object is

! performed implicitly as a top-level pxecommit handler.)

begin

here := replica_number

master := here = 1 	! arbitrary choice

local_version := version_vector"{ 0 : MAXREPLICAS }

90

for i in hash_range loop ! each bucket is initially empty

symtable[i] := new bucket_list

end loop

end inithandler

end implementation.

91

F Aeolus Distributed Locking Primitives

This appendix contains the Aeolus definition part that serves as the user interface to the

Distributed Locking primitives.

definition of pseudo object DistLock is

! Interfaces to primitives provided for support of the

! Distributed Locking mechanism. This pseudo-object is

! imported automatically by every availspec, and is not

! available for use by other compilands.

type replica_number is new unsigned

! A replica_number is used to name an individual replica of a

! group. The naming scheme used here is the "horizontal"

! method as described in Chapter VII of this dissertation.

! The replica_number is concatenated by the system to the

! capability of the object to which the invoking availspec

! belongs to form an extended capability as defined by the

! horizontal scheme.

type version_number is new lOnguns

! A version_number is used to compare the currency of

! the states of replicas. The version number of an object is

! incremented whenever an invocation is performed on it, or

! when the state of the objected is updated by use of one of

! the designated operations described below.

operations

procedure lock_replica (rep : replica_number

ver : out version_number)

returns boolean modifies

! The lock_replica operation obtains the

92

! currently-requested lock at the replica denoted by rep.

! This operation should be invoked only within a lock event

! handler. The lock variable, domain value, and mode

! requested are obtained from the context of the lock

! event which caused the invocation of the handler.

! The replica denoted by rep is added to a list of the

! replicas touched by the current action.

! The version number of the state of rep is returned

! in the out parameter ver.

! If lock_replica is unable to obtain the lock on

! rep, or if the requested lock is already held

! at rep by the current action, the operation returns

! FALSE, otherwise TRUE.

procedure invoke_replica (rep : replica_number)

returns boolean modifies

! The invoke_replica operation causes the current operation

! to be executed at the replica denoted by rep. This

! operation should be invoked only within a copy event

! handler. The operation number and other parameters are

! obtained from the context of the lock which caused the

! invocation of the handler. The version number of rep

! is set to the value of that of the invoking object.

! This operation is used for implementing state copying by

! idemexecution. If the invocation on rep is

! unsuccessful, the operation returns FALSE, otherwise

! TRUE.

procedure broadcast_shadows 0 returns boolean modifies

! The broadcast_shadow operation causes the "shadow set"

! of the permanent state of the current action to be

! broadcast to all replicas at which locks were obtained by

! the current action via the lock_replica operation.

! The version numbers of the locked replicas are updated

93

! to equal that of the invoking object. This

! operation should be invoked only within a copy event

! handler. This operation is used for implementing state

! copying by cloning using shadows. If all locked

! replicas successfully receive the shadow set, the

! operation returns TRUE, otherwise FALSE.

procedure get_state (rep : replica_number)

returns boolean modifies

! The get_state operation causes the state of the

! replica denoted by rep to be transmitted to the

! current object. The state is installed at the current

! object, and its version number set to that of rep.

! If the transmission or installation fails, the operation

! returns FALSE, otherwise TRUE.

procedure send_state (rep : replica_number)

returns boolean modifies

! The send_state operation causes the state of the

! current object to be transmitted to the replica denoted

! by rep. The state is installed at rep, and

! its version number set to that of the current object. If

! the transmission or installation fails, the operation

! returns FALSE, otherwise TRUE.

	

procedure invoke_acceptor (rep 	: replica_number ,

state : address

	

len 	: longuns) modifies

! The invoke_acceptor operation causes the invocation

! of the accept event handler at the replica denoted by

! rep. The information the address of which is given by

! state and which is of length len bytes is copied to the

! environment of the accept handler at rep. This operation

! may be used in a copy event handler to implement state

94

! copying by cloning using logs, or in a reinit event

! handler to implement state reconciliation strategies.

procedure degree 0 returns replica_number examines

! The degree operation returns the total number of

! replicas of the current object including itself.

procedure my_replica () returns replica_number examines

! The my_replica operation returns the replica number of

! the current object.

procedure my_version () returns version_number examines

! The my_version operation returns the version number of

! the current object's state.

procedure quorum_size () returns replica_number examines

! The quorum_size operation returns the minimum size of

! a quorum for the currently-requested lock mode.

procedure currently_locked 0 returns replica_number

! The currently_locked operation returns the number of

! replicas on which the currently-requested lock mode has

I been obtained, including the current object.

end definition. ! DistLock

G Clouds Action Manager Interface

This appendix contains the interface to the Clouds action manager.

definition of pseudo object ActionManager is

! This object is implicitly imported by every object of class

! RECOVERABLE or AUTORECOVERABLE, and an instance with the

! same name is implicitly declared. Operations on this object

! instance need not be qualified by the object instance name.

type action_status is (active 	, quiesced , precommitted ,

committed , aborted , not_action)

! The meanings of the action states are as follows:

active 	- the action is still running

1 	quiesced 	- the action has not committed, but

may not perform any further operations

precommitted - the action has successfully prepared

for commit

committed 	- the action has successfully completed

aborted 	- the action has been aborted

not_action - the action ID referenced is unknown

1 	 by the system

type action_level is (toplevel_action, nested_action)

type action_ID is private

! Type defined by kernel object. (This actually is what is

! called the activity_ID type in [Ken186].)

type timeout_type is (default, relative, absolute)

! The value of a timeout_type indicates the meaning of an

! associated timeout_value, as follows:

If default, then the system-defined default timeout

96

value is used, and the supplied timeout value is

ignored.

If absolute, then the supplied timeout value is

interpreted as the time the action will cease to

exist in Lamport real time (i.e., close to but not

necessarily equal to wall-clock time.)

If relative, then the supplied timeout value is

interpreted as a "displacement" from the current

Lamport global time.

type timeout_value is new longuns

operations

procedure Tell_ID (status : out action_status ,

level : out action_level)

returns action_ID examines

! If the caller is attached to an action, returns the

! action ID, and places the status and nesting level of

! the caller's action in the \f6out parameters. If the

! caller is not attached to an action, the parameter

! status has value not_action.

procedure Status (aid 	: in action_ID ,

clear : in boolean)

returns action_status examines

! Returns the status of the action referenced by aid.

! If the parameter clear is TRUE, and the action is in

! the committed or aborted state, all information about

! the action is forgotten by the system.

procedure Set_Timeout (aid 	: in action_ID

type 	: in timeout_type

value : in timeout_value

97

status : out action_status) modifies

! If the parameter aid refers to a valid action, and the

! status of the action is active, quiescent, or

! precommitted, the timeout value previously assigned to

! that action is replaced by the specified value (in

! milliseconds). In any case, the status of the action

! is returned in the \f6out parameter status. See above

! for explanation of timeout_type.

procedure Get_Timeout (aid 	: in action_ID

status : out action_status)

returns timeout_value examines

! If the parameter aid refers to a valid action, and the

! status of the action is active, quiescent, or

! precommitted, the timeout value previously assigned to

! that action (in milliseconds) is returned. This

! timeout value is the absolute Lamport clock time when

! this action will expire (see explanation of

! timeout_type above). If the above conditions are not

! fulfilled, value is zero. The status, of the action is

! returned in the \f6out parameter status.

procedure Get_Time 0 returns timeout_value examines

! The current global Lamport clock time is returned.

procedure Abort (aid : in action_ID)

returns action_status modifies

! Abort the action designated by aid, returning status

! aborted if successful. If unsuccessful, the current

! status of that action is returned.

procedure Abort_Myself 0 returns action_status modifies

! Abort the current action, returning status aborted if

! successful. If unsuccessful, the current status of

98

! that action is returned.

! [Same as Abort(Tell_ID(...))].

procedure Commit () returns action_status modifies

! Commit will be interpreted by action management

! dependent on the current context of the calling

! sequence. If the current process is not linked to an

! action, it will always be interpreted as an object

! management return. If the process is attached to an

! action, then it will be interpreted as an action

! management Commit operation only if it is the initial

! operation in the calling sequence. This is somewhat

! equivalent to the statement "Object operations

! performed during an action must totally finish."

procedure Wait_Completion (aid 	: action_ID

success : out boolean) examines

! This is a very general wait. It assumes very little

! about the relationship between the current (calling)

! action and the action denoted by aid, i.e., whether

! aid is a child of the current action. Wait_Completion

! sets the parameter success to TRUE if the wait was

! successful, or FALSE if the action denoted by aid is

! unknown. The caller is expected to obtain the actual

! status of aid (and, if aid is a child of the current

! action, clear its child status field) with an

! Action_Status call.

end definition. ! ActionManager

99

H Aeolus/Clouds Feature Summary

In this appendix, a summary of the features provided by the Aeolus/Clouds system is

presented. In particular, the portion of the system which supports each feature is mentioned.

The features are divided into three main groups: those which support objects in general,

those which support actions, and those which support the interactions of actions with

objects.

In this discussion, the terms "kernel" and "ob ject manager" (OM), "storage manager"

(SM), and "action manager" (AM) refer to the prototypes as described by Spafford [Spaf86],

Pitts [Pitt86], and Kenley [Ken186], respectively.

H.1 Features Supporting Objects

Specification of the state and operations of an object in Aeolus is achieved by the combina-

tion of a definition part and an implementation part for that object. The definition

part specifies the external interface of the object; the implementation part provides spec-

ifications of the object data as well as code for the operations and any internal procedures

of the object.

H.1.1 Persistent State

The persistence of the state of a Clouds object between successive invocations of that object

is guaranteed by the Clouds object management system. The object state consists of the

global variables of the object as specified in the object implementation part; local variables

of operations and internal procedures are maintained on a per-process stack and are thus

considered volatile (i.e., they do not persist between invocations). The Aeolus compiler

provides the OM with information about the size and location of the object state via the

object header. Note that persistence does not imply permanence, which is a resilience

property (see the discussion of permanent variables below).

100

H.1.2 Object Instance Creation

Object instance creation is achieved in Aeolus by use of an allocator, which generates a

capability to an object of the specified type. This capability may then be assigned to a

variable or used for invocations. Use of the allocator construct to create a Clouds object

instance requires the compiler to generate an invocation of the Create operation on the

TypeTemplate of the specified object type. The TypeTemplate may in turn generate kernel

calls as required for creating and initializing the various segments required by the object

state.

If an allocator is used to create an instance of a non-Clouds object, the compiler generates

a call to the memory allocation routine of the Aeolus RTS, which creates a data area of the

appropriate size on the heap for use as the object state. The pointer thus generated is used

as a "sysname" for the object.

H.1.3 Object Invocation

Invocation of an operation on a Clouds object currently requires three steps: reformatting

of the in parameters of the invocation from the internal Aeolus format as provided on

the object stack into the format required for Clouds RPC; a kernel call to perform the

actual RPC (called from the Aeolus RTS routine ObjInvoke); and reformatting of the out

parameters of the invocation from the Clouds kernel format into the internal Aeolus format.

The reformatting operations are artifacts of the kernel parameter format, and are performed

by the common object operation entry point (ObjEntry) provided by the Aeolus runtime

system. (A more congenial design of the kernel parameter format would eliminate the need

for this reformatting.)

The RPC kernel call is provided with the addresses of the newly-formatted in and

out parameter areas, as well as the number of the object operation to be invoked and

the invoker's access rights to the invokee. (A description of operation invocation from the

kernel side, as well as the necessary bookkeeping by the kernel, is provided in Spafford's

dissertation, p. 43ff and p. 82ff.) The kernel takes care of copying the parameters to the

remote node in the case of a remote invocation, and passes its parameters to the ObjEntry

routine of the invokee, the address of which it obtains from the object header. ObjEntry

has access to the vector of operation addresses in the invoked object, and calls the operation

101

denoted by the given operation number. The operation returns to the ObjEntry routine,

which invokes the kernel to handle return of the RPC.

Invocation of an operation on a non-Clouds object is essentially the same as a regular

internal procedure call, with the exception that the pointer to the object state (on the heap)

is passed as a "hidden" parameter to the operation.

H.1.4 Object Event Handlers

The object events include at least the initialization and deletion of an object. The code

of user-specified handlers for object events is specified in the implementation part of an

object. The addresses of object event handlers are placed at predefined indices in the

operation address vector for that object. If a handler for one of the object events is not

provided by the user, a default handler for that event is generated by the Aeolus compiler

(possibly using code in the RTS). In the prototype, the handlers are invoked by the kernel

calls for object creation and deletion, although equivalently these could be called by the

Create and Delete operations of the object type's TypeTemplate.

H.2 Features Supporting Actions

Support for actions consists of the action invocation mechanism as well as several additional

operations provided by the AM. The use of an action invocation causes the compiler to

generate a call to the Create_Action operation of the AM. The interface to this operation

is described on p. 18 of Kenley's thesis. (This operation is not made available in the

programmer's interface to the AM.) The interface requires specification of whether creation

of a top-level or nested action is desired; if a non-action process requests a nested action, a

top-level action is created.

The Create.Action operation returns an action identifier which may be used in invo-

cations on the AM to query and modify the status of the new action. The AM operations

available to the programmer are described in Appendix G.

102

11.3 Features Supporting Action/Object Interactions

Support for interactions of actions with objects includes: features for specifying mutual

exclusion; features for specifying view atomicity via synchronization; and features support-

ing resilience, including action event handlers, recoverable areas, per-action variables, and

permanent variables.

11.3.1 Mutual Exclusion: Critical Regions

When a type is given the attribute shared, the compiler associates a semaphore with each

variable or structure element of that type. The use of a critical region causes the Aeolus

compiler to generate P and V calls on the semaphore associated with the shared variable

specified in the critical region; these calls encapsulate the critical region, ensuring exclusive

access to the region. Operations on semaphores are supported by the kernel.

11.3.2 Synchronization: Locks and Autosynch

The specification of a lock type causes the Aeolus compiler to generate a matrix of mode

compatibilities for that type based on the given compatibility clause. This matrix is stored

with the object state. Each row of the matrix corresponds to one of the modes of the lock,

and specifies which modes of the lock are compatible with that mode.

Information about the locks held by an action is kept with the action control block for

that action. This information is kept outside of the object state for efficiency reasons, i.e.,

to avoid having to map in the object state for each object touched by an action in order

to propagate the locks held by that action to its parent. The kernel structures necessary

for this bookkeeping are described on p. 42-47 of Kenley's thesis. A parallel structure is

maintained in the software PCB for a non-action process to hold information about locks

obtained by that process.

If a lock is specified to have a domain, any code necessary to interpret domain values in

calls on that lock is generated by the Aeolus compiler. The lock operations supported by

the AM treat domain values passed to them as uninterpreted bit strings, as described on

p. 41 of Kenley's thesis.

If an object is given the attribute autosynch, the compiler generates a domainless

103

multiple reader/single writer lock. (Recall that a domainless lock effectively has a domain

of the entire object.) Also, at the beginning of each operation with the attribute modify,

the lock is set in write mode; at the beginning of each examine operation, the lock is set

in read mode. If the object is a non-Clouds or nonrecoverable Clouds object, code is

generated at the end of the operation to release the lock. If an operation has neither of the

attributes modify or examine, the compiler does not generate code to acquire or release the

lock.

11.3.3 Action Event Handlers

The compiler generates action event handlers in essentially the same fashion as object event

handlers, including the use of default handlers from the RTS when no user-specified handler

is provided. Invocation of action event handlers, however, is performed by the AM. The

AM may be requested to invoke an action event by three means: an explicit request by

an object touched by the action; an implicit request, such as a return from an operation

invoked as an action (which causes a return to the AM itself, and is considered an implicit

commit); or an explicit request by an external process or action. Additional AM support

for action event handling is described on p. 63-77 of Kenley's thesis.

11.3.4 Recoverable Areas

Information on the size of each recoverable area of an object is stored by the Aeolus com-

piler in that object's header. This information is used by the Create operation of the

TypeTemplate for that object type to generate segment information in the kernel object

descriptor for the new instance. The AM also uses this information to determine when it

must call on the SM for special treatment.

As described on p. 35-39 of Kenley's thesis, when an action enters an object with a

recoverable area (RA) for the first time, the AM copies the page table descriptors for the

RA from the action's parent (or, for a top-level action, from the object's primary page

map). This copy of the page table descriptors forms the action's version of the RA, and

is used on subsequent invocations of the object by that action. Support required from the

AM to manage the RA on operation return is described on p. 64 of Kenley's thesis. On

commit of a nested action, the AM replaces the parent action's version of the RA with that

104

of the committing action; on top-level commit, the AM replaces the appropriate portion of

the primary page map with the committed version (Kenley, p. '74). On abort, the current

action's version is cleaned up (Kenley, p. 77).

H.3.5 Autorecoverable Objects

When an object is given the attribute autorecoverable, the Aeolus compiler essentially

considers its entire state to be a recoverable area. Management of this RA is identical

to that of user-specified RAs. Also, the compiler generates default handlers for all action

events in an autorecoverable object.

H.3.6 Per- Action Variables

Treatment of per-action variables is similar in many respects to that of recoverable areas.

The Aeolus compiler places information about the size of the per-action variables of an

object in the object's header. This information is used by the AM to generate space for a

new copy of the per-action variables when an action first touches the object.

Because the action must access both its own per-action variables and those of its parent,

the per-action variables are not made part of the object page map for this action (as are

recoverable areas). Rather, the per-action variables are maintained by the AM, and pointers

for those of the current action and for those of its parent are passed as "hidden" parameters

on each operation invocation (see p. 63 of Kenley's thesis for a rationale for this design).

All other maintenance of per-action variables, including propagation up the action tree,

is the responsibility of the object programmer. This may be accomplished by means of

programmer-specified action event handlers.

H.3.7 Permanent Variables

When a type is given the attribute permanent, the Aeolus compiler allocates space for

variables or structures of that type in permanent storage. (Dynamically-allocated values

of that type are allocated in the permanent heap.) These values may be initialized during

the initialization object event; otherwise, they may be modified only during the top-level

precommit action event. At all other times, they are considered to be read-only values.

105

The compiler places information about the location and extent of the permanent storage

area in the object's header. This information is used by the Create operation of the

TypeTemplate of that object type to generate segment information in the kernel object

descriptor for each new instance. It is also used by the AM to signal the SM that this

segment requires special treatment during top-level precommit or abort, as described on p.

69-77 of Kenley's thesis. During top-level precommit, the SM ensures through the use of

shadows that modifications to permanent storage are atomic.

106

References

[Aham87] Ahamad, M., P. Dasgupta, R. J. LeBlanc, and C. T. Wilkes. 'Fault-Tolerant

Computing in Object Based Distributed Operating Systems.' Proceedings Of The

Sixth Symposium On Reliability in Distributed Software and Database Systems, (IEEE

Computer Society), Williamsburg, VA, March 1987. Technical Report GIT-ICS-87-16,

School of Information and Computer Science, Georgia Insitute of Technology, Atlanta,

GA, 1987.

[Aham87a] Ahamad, M., and P. Dasgupta. 'Parallel Execution Threads: An Approach to
Fault-Tolerant Actions.'

[Allc82] Allchin, J. E., and M. S. McKendry. 'Object- Based Synchronization and Recov-

ery.' Technical Report GIT-ICS-82-15, School of Information and Computer Science,

Georgia Insitute of Technology, Atlanta, GA, 1982.

[Allc83] Allchin, J. E., and M. S. McKendry. 'Synchronization and Recovery of Actions.'

Proceedings Of The Second Symposium On Principles Distributed Computing (ACM
SIGACT/SIGOPS), Montreal, August 1983.

[Allc83a] Allchin, J. E. 'An Architecture for Reliable Decentralized Systems.' Ph.D. Diss.,

School of Information and Computer Science, 'Georgia Insitute of Technology, Atlanta,

GA, 1983.

[Birm84] Birman, K. P., T. A. Joseph, T. Raeuchle, and A. El-Abbadi. 'Implementing Fault-

Tolerant Distributed Objects.' Proceedings Of The Fourth Symposium On Reliability

in Distributed Software and Database Systems, Silver Spring, MD, October 1984.

[Birm85] Birman, K. P. 'Replication and Fault -Tolerance in the ISIS System.' Proceedings

Of The Tenth Symposium On Operating System Principles (ACM SIGOPS), Orcas
Island, Washington, December 1985.

[Birm87] Birman, K. P., and T. A. Joseph. 'Exploiting Virtual Synchrony in Distributed

Systems.' Tethnical Report TR 87-811, Department of Computer Science, Cornell Uni-
versity, Ithaca, NY, February 1987.

[Dasg87] Dasgupta, P., R. LeBlanc, and W. Appelbe. 'The Clouds Distributed Operating

System: Functional Description, Implementation Details, and Related Work.' Technical

107

Report GIT-ICS-87-28, School of Information and Computer Science, Georgia Insitute

of Technology, Atlanta, GA, 1987.

[El-A85] El-Abbadi, A., D. Skeen, and F. Cristian. 'An Efficient, Fault-Tolerant Protocol for

Replicated Data Management.' Proceedings Of The Fourth Symposium On Principles

Of Database Systems, (ACM SIGACT/SIGMOD), March 1985.

[Grei86] Greif, I., R. Seliger, and W. Weihl. 'Atomic Data Abstractions in a Distributed Col-

laborative Editing System.' Conference Record Of The Thirteenth Symposium On Prin-

ciples Of Programming Languages (ACM SIGACT/SIGPLAN), St. Petersburg Beach,

FL, January 1986.

[Her184] Herlihy, M. 'Replication Methods for Abstract Data Types.' Ph.D. Diss., Labora-

tory for Computer Science, Massachusettes Institute of Technology, Cambridge, MA,

May 1984.

[Her185] Herlihy, M. 'Atomicity vs. Availability: Concurrency Control for Replicated Data.'

Technical Report CMU-CS-85-108, Computer Science Department, Carnegie-Mellon

University, Pittsburgh, PA, February 1985.

[Her185a] Herlihy, M. 'Using Type Information to Enhance the Availability of Partitioned

Data.' Technical Report CMU-CS-85-119, Computer Science Department, Carnegie-

Mellon University, Pittsburgh, PA, April 1985.

[Her187] Herlihy, M., and J. M. Wing. 'Avalon: Language Support for Reliable Distributed
Systems.' Proceedings Of The Seventeenth International Symposium On Fault - Tolerant

Computing, Pittsburgh, PA, July 1987.

[Hone86] Honeywell, Inc. 'Fault Tolerant Distributed Systems.' Interim Scientific Report,
Computer Science Center, Honeywell, Inc., Golden Valley, MN, November 1986.

[Jose85] Joseph, T. A. 'Low-Cost Management of Replicated Data.' Ph.D. Diss., Depart-

ment of Computer Science, Cornell University, Ithaca, NY, November 1985.

[Jose86] Joseph, T. A., and K. P. Birman. 'Low Cost Management of Replicated Data in

Fault-Tolerant Distributed Systems.' Transactions On Computer Systems (ACM) 4,

no. 1, February 1986.

108

[Ken186] Kenley, G. G. 'An Action Management System for a Distributed Operating Sys-

tem.' M.S. Thesis, School of Information and Computer Science, Georgia Insitute of

Technology, Atlanta, GA, 1986.

[LeB185] LeBlanc, R. J., and C. T. Wilkes. 'Systems Programming with Objects and Ac-

tions.', Proceedings Of The Fifth International Conference On Distributed Computing

Systems, Denver, CO, July 1985.

[Lisk83] Liskov, B., M. Herlihy, P. Johnson, G. Leavens, R. Scheifler, and W. Weihl. 'Pre-

liminary Argus Reference Manual.' Programming Methodology Group Memo 39, Labo-

ratory for Computer Science, Massachussetts Institute of Technology, Cambridge, MA,

October 1983.

[Lisk83a] Liskov, B., and R. Scheifler. 'Guardians and Actions: Linguistic Support for

Robust Distributed Systems.' Transactions On Programming Langauges And Systems

(ACM) 5, no. 3, July 1983.

[Lisk84] Liskov, B. 'Overview of the Argus Language and System.' Programming Method-

ology Group Memo 40, Laboratory for Computer Science, Massachussetts Institute of
Technology, Cambridge, MA, February 1984.

[Long87] Long, D. D. E., and J.-F. Paris. 'On Improving the Availability of Replicated

Files.' Proceedings Of The Sixth Symposium On Reliability in Distributed Software and

Database Systems, (IEEE Computer Society), Williamsburg, VA, March 1987.

[McKe85] McKendry, M. S. 'Ordering Actions for Visibility.' Transactions On Software

Engineering (IEEE) 11, no. 6, June 1985.

[Pitt86] Pitts, D. V. 'Storage Management for a Reliable Decentralized Operating System.'

Ph.D. Diss., School of Information and Computer Science, Georgia Insitute of Tech-

nology, Atlanta, GA, 1986.

[Pitt87] Pitts, D. V., and P. Dasgupta. 'Object Memory and Storage Management in the

Clouds Kernel.' Technical Report GIT-ICS-87-15, School of Information and Computer
Science, Georgia Insitute of Technology, Atlanta, GA, 1987.

[Skee85] Skeen, D. 'Determining the Last Process to Fail.' Transactions On Computer Sys-

tems (ACM) 3, no. 1, February 1985.

109

[Spaf86] Spofford, E. H. 'Kernel Structures for a Distributed Operating System.' Ph.D.

Diss., School of Information and Computer Science, Georgia Insitute of Technology,
Atlanta, GA, 1986.

[Weih83] Weihl, W., and B. Liskov. 'Specification and Implementation of Resilient Atomic
Data Types.' Symposium On Programming Language Issues In Software Systems, June
1983.

[Wilk85] Wilkes, C. T. 'Preliminary Aeolus Reference Manual.', Technical Report GIT-ICS-

85/07, School of Information and Computer Science, Georgia Institute of Technology,

Atlanta, GA, 1985.

[Wilk86] Wilkes, C. T., and R. J. LeBlanc. 'Rationale for the Design of Aelous: A Sys-
tems Programming Language for an Action/Object System.', Proceedings Of The 1986

International Conference On Computer Langauges (IEEE Computer Society), Miami,
FL, October 1986.

[Wi1k87] Wilkes, C. T. 'Programming Methodologies for Resilience and Availability.' Ph.D.

Diss., School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1987.

110

Fault Tolerant Software Technology for

Distributed Computer Systems

Final Report

August 4, 1988

F30602-86-C•0032
G36-645

Richard J. LeBlanc

1

1, Summary of Project

This report documents the results of the project entitled "Fault Tolerant Software Technology for
Distributed Computing Systems," a two year effort performed at Georgia Institute of Technology as
part of the Clouds Project. The Clouds Project is building an object-oriented distributed operating sys-
tem and studying how such a system supports the development of distributed applications, with a partic-
ular concern for highly available, fault-tolerant applications. The Clouds kernel supports objects as the
fundamental encapsulation of data. Objects define permanent virtual address spaces and may allow
access to and modification of their data through arbitrary, programmer-defined operations. Objects
operations are invoked using capabilities which allow system-wide access to an object via the kernel-
based capability interpretation mechanism. The kernel also provides atomic actions (corresponding
roughly to the database notion of atomic transactions) in order to support the construction of reliable
applications.

The design philosophy of the Clouds system is that the fundamental tools needed for the develop-
ment of distributed applications are (1) a mechanism for distributed data access and (2) support for
dealing with component failures. The object mechanism described above is designed expressly to sup-
port location-transparent data sharing. Processes interact not by passing messages to one another, but
rather by accessing a shared object. This approach allows the processes to directly share the common
part of their collective state rather than to attempt to communicate state changes directly to one another
via messages.

Since the state of a computation is captured by the set of objects it access and modifies, it is
important that component failures do not lead to inconsistent states in which some but not all of a list
of related changes to objects have been completed. The atomic action mechanism provides such an
assurance. An atomic action can be defined to consist of any number of operation invocations on a set
of objects.

The project consisted of two research tasks. The goal of each task was the production of a techn-
ical guidebook outlining and analyzing tools and techniques for the development of fault tolerant
software for distributed computing systems.

The title of Task 1 was "Programming Techniques for Resilience and Availability." The work of
this task focused heavily on problems related to replication, since replication is the key ingredient of
any scheme to provide highly available applications or services. Issues discussed in the guidebook
include defining resilient data areas, naming replicas, locking in the presence of replicas, state propaga-
tion to replicas when actions commit, and fault tolerant action execution. Much of the discussion is in
terms of the Aeolus language which we use to program objects for the Clouds system.

The title of Task 2 was "Action-Based Programming for Embedded Systems." The major issue
addressed by this task is the seeming incompatibility of the idea of large-grained atomic actions with
the irreversible operations frequently performed by embedded systems. Substantial consideration is
given to the problem of preserving information about irreversible operations so that recovery mechan-
isms invoked by action aborts (or exceptions) can produce a meaningful system state, though not the
same state as would be produced by a pure atomic action mechanism.

1.1. Applicability to Existing Systems

The resilience work in Task 1 focuses on features in the Aeolus language designed to support the
definition of resilient objects. Its major point of general applicability is in how it relates to the more
general concept of checkpointing. It illustrates the value and power of allowing a programmer to
specify what must be checkpointed and how it is to be recovered.

The availability work in Task 1 is again somewhat specialized for the Clouds environment. How-
ever, it should be viewed as a model for the importance of allowing a mixture of contribution by the
system and the programmer. The basic idea of the solution presented is that the system provides a
basic framework and supporting mechanisms for availability while the programmer contributes policy
implementations that are customized for a particular application.

2

The embedded system work of Task 2 has a more direct general application. It generalizes the
atomicity concept by integrating forward and backward recovery, thus removing the incompatibility
between the (generalized) atomicity concept and irreversible operations.

A common thread through all of the results is the importance of providing ways for a programmer
to use application semantics in developing customized recovery, resilience and availability solutions,
while at the same time providing the most powerful supporting mechanisms possible.

2. Programming Techniques for Resilience and Availability

In keeping with the title of this task, the most significant results presented in the Task 1 guide-
book concern language features for resilient types and availability specifications. In keeping with our
concern for providing powerful supporting mechanisms, it is significant to note that both of these
features are declarative. Our intent is to allow a programmer, as far as possible, to specify resilience
and availability requirements, leaving detail work to a compiler and runtime library.

Resilience and availability are crucial to our basic goal: fault tolerant software for distributed
computing systems. By resilience we mean the survivability and consistency of data despite crashes
and other detectable faults. We define availability to mean accessibility of data despite network parti-
tions or failures of some sites in a distributed system. Together with a mechanism that ensures forward
progress (continued execution of jobs despite failures), these properties provide fault tolerance.

Resilient types are a mechanism for specifying customized update and recovery mechanisms in an
object designed to be modified by atomic actions. Such modifications imply that multiple versions of
the object must be maintained while uncompleted actions exist. Use of customized operations based on
object semantics in this context allows far more efficient use of atomic actions than would be possible
if a generalized recovery scheme were used. In the later case, a copy of the entire data space of the
object would have to be made for each active version of the object. Use of the resilient type technique
allows all versions to be represented within a single address space.

The features for availability support presented in the guidebook are collectively known as distri-
buted locking. They deal with support for managing replicas of an object in order to increase the availa-
bility of the service provided by the object. Using distributed locking, a programmer first writes a
definition and implementation of an object as if only a single instance of the object was going to exist.
(Resilient types might be used in the object implementation.) The programmer then writes an availabil-
ity specification for the object, specifying the number of replicas, the the replication control policies to
be used, and the relative availabilities of the modes of each lock type specified in the object. The most
significant aspect of this specification is the replication control policy part. It allows the programmer to
designate how concurrency control and consistency maintenance are to be performed, considering, as
usual, object semantics. The mechanisms designated may be either taken from system libraries or sup-
plied by the programmer.

3. Action-Based Programming for Embedded Systems

The work performed for this task was based on the idea that embedded systems include irreversi-
ble operations, that is, operations that interact with the physical environment. The performance of such
operations appears incompatible with the concept of an atomic action, since atomic actions rely on roll-
back (or more generally, backward recovery) to restore their initial state in the case of a failure. The
work we have done generalizes the atomicity concept by integrating forward and backward recovery,
thus removing the incompatibility between the (generalized) atomicity concept and irreversible opera-
tions.

The solutions developed involve software recovery techniques presented within the framework of
action-based programming. The recovery techniques described in the handbook represent a synthesis of
exception handling and action-based programming. Exception handlers are associated with individual
units of work (actions) rather than with procedures or objects. The exception handlers have access to
system services not otherwise accessible in a program. These services are used to achieve appropriate
forward recovery. To emphasize the nature of these enhancements, exception handlers are termed

3

recovery handlers.

A more general unanticipated result of our work is that the approach we present can be used not
only to increase the fault tolerance of a software system, but also to simplify management and mainte-
nance of the system. For example, if actions are robust, it will be possible to bring an individual
machine down for maintenance without extensive coordination. A robust action will abort when the
site goes down and either restart when it comes up or make alternative arrangement in the interim. Our
approach can also be used to support software maintenance and upgrades. We describe how recovery
handlers can remap the code and data windows of the associated action during recovery. This mechan-
ism provides on-line access to backup versions of software and can be used to transfer control from the
old version to a new version of the code for an action.

4. Appendices

The following papers based on and related to work performed during the course of this project are
included as appendices:

"Fault Tolerant Computing in Object Based Distributed Systems" by Mustaque Ahamad, Partha Dasg-
upta, Richard J. LeBlanc, and C. Thomas Wilkes. From the Proceedings of the Sixth Symposium on
Reliability in Distributed Software and Database Systems (March, 1987).

"Distributed Locking: A Mechanism for Constructing Highly Available Objects" by C. Thomas Wilkes
and Richard J. LeBlanc. An abbreviated version of this paper will appear in the Proceedings of the
Seventh Symposium on Reliability in Distributed Systems (October, 1988).

"The Clouds Distributed Operating System" by Partha Dasgupta, Richard J. LeBlanc and William F.
Appelbe. From the Proceedings of the 8th International Conference on Distributed Computing Systems.

Appendix A

Fault Tolerant Computing in
Object Based Distributed . Operating Systems

Mustaque Ahamad, Partha Dasgupta,
Richard J. LeBlanc, & C. Thomas Wilkes

School of Information and Computer Science
Georgia Institute of Technology, Atlanta, GA 30332-0280

Abstract

Replication of data has been used for enhancing its availability in the presence of
failures in distributed systems. Data can be replicated with greater ease than
generalized objects. We review some of the techniques used to replicate objects for
resilience in distributed operating systems.

We discuss the problems associated with the replication of objects and present a
scheme of replicated actions and replicated objects, using a paradigm we call PETs
(parallel execution threads). The PET scheme not only exploits the high availability
of replicated objects but also tolerates site failures that happen while an action is
executing. We show how this scheme can be implemented in a distributed object
based system, and use the Clouds operating system as an example testbed.

1. Introduction

A distributed system consists of many computers which are connected via
communication links. The increased number of components (i.e., machines, devices
and communication links) increases the chances of a failure in the system (or
decreases the mean time between failures). Guarding against the effects of failures
is one of the key issues in distributed computing. In this paper, we discuss

t This research was partially supported by NASA under contract number NAG-I-430 and by NSF under contract
number DCS•84-05020.

Authors' Address:
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

Phone:
(404) 894 2572

Electronic Address:
{mustaq ,partha,rich , wilkes} @ Gatech. edu
{akgua ,allegra,hplabs,ihnp4}Igatech I {inustaq ,partha,rich,wilkes}

A-2

approaches that provide forward progress despite the failure of some components in
a distributed computing system.

Our model of the distributed system is a prototype under development at Georgia

Tech named Clouds. Clouds is a decentralized operating system providing location
transparency, transactions, and robustness in an object based environment. In this
paper, we present a review of known techniques for fault tolerance using replication.
Then we discuss the salient features and architecture of Clouds. Finally, we present
mechanisms needed for replication, probes, and parallel action threads for providing
fault tolerant computing in Clouds. We discuss the pitfalls and the solutions to the

problem of providing replication of objects having a general structure, which is more
complex to achieve than replication of flat data (data that is accessed through read
and write operations, such as files).

2. Replication Techniques for Database Systems

The use of replication to enhance availability was first studied in the area of
distributed database systems, and was later adopted in the area of distributed
operating systems.

2.1 Concurrency Control of Replicated Data

One of the main issues in handling of replicated data in database systems is to
maintain consistency. This is achieved by concurrency control protocols. The
concurrency control and recovery techniques for replicated data are summarized by
Wright[Wrig84] He classifies these methods as conservative (pessimistic, blocking) and
optimistic (non-blocking).

Conservative Concurrency Control Methods Examples of conservative methods are
voting SCheMeS,[G79, Thaln79] primary copy methods ,[St°n79] and token-passing
schemes.[- 1-378] These methods ensure consistency of the replicated data by requiring
access to a special copy or a set of copies of the data. Primary copy methods allow
access to a copy during a network partition only if the partition possesses the
designated primary copy of the data. Token-passing schemes are an extension of
primary copy methods. A token is passed among sites holding a copy of data, and
the copy at the site currently holding the token is considered the primary copy. In
the voting schemes, each copy of the data is assigned a (possibly different) number
of votes and a partition possessing a majority of the votes for that object may access
it. The conservative schemes are called blocking since the data is not available at a
site in a partition which does not possess the primary copy (or token or majority of
votes). Thus, the access must block until the partition is ended, even if a copy of the
data is available in the partition. Indeed, under these schemes it is possible that no

partition may have access to the data.

- A-3 -

Optimistic Concurrency Control Methods The optimistic methods do not seek to

ensure global consistency of replicated data during partitions. [Davi81, Davi82] Thus,

accesses are not blocked if a replica of the data is available in the partition in

question. Rather, inconsistencies in the replicas are resolved by use of backouts or
compensatory actions during a merge process, once the partition is ended. It is
assumed that the number of such inconsistencies will be small (hence, optimistic).
However, tradeoffs may be made between consistency and availability. For

example, the Data-Patch tool for designing replicated databases[Bl 3482, Garog 31 assumes
that, rather than strict consistency, a reasonable view of the database should be

maintained to enhance availability.

3. Replication in Operating Systems

Research in database systems has been limited to consideration of flat data, and
as we show later, the generalization to replication of objects having arbitrary
structure leads to many problems. These include the mechanisms used for the

copying of state among replicas and having to deal with multiple instances of a single
operation invocation (or a procedure call). The distributed operating systems that
provide replication of objects or abstract data types include the Eden system

developed at the University of Washington, the ISIS system at Cornell, and the
Circus replicated call facility built on top of Unix. The replication of abstract data
types has also been studied by Herlihy.

Eden The Eden system[Ahne83) has been operational at the University of Washington
since April 1983. Support for replication in the Eden system has been studied at
both the kernel level and the object level. The kernel level implementation of
replication support is called the Replect approach (for replicated Ejects, or Eden
objects), while the object level implementation is called R2D2 (for Replicated
Resource Distributed Database). Both implementations use quorum consensus for
concurrency control.

ISIS The ISIS system developed at Cornell(Birm 84,134m851 supports k-resilient objects
(operations on such an object survives up to k site failures) by means of checkpoints.
This system provides both availability and forward progress; that is, even after up to
k site failures, enough information is available at the remaining sites possessing the
object replicas that work started at the failed sites can continue at these remaining
sites. This is accomplished through a coordinator-cohort scheme, where a transaction
executes at the coordinator site and the updates it performs on any objects are

propagated to the cohort replicas. one replica acts as master during a transaction to
coordinate updates at the other slave replicas (cohorts). The choice of which replica
acts as coordinator may differ from transaction to transaction. The object state is
copied from the coordinator to the cohorts. We call this method of state propagation

cloning. This operation has been described as propagating a checkpoint of the entire
coordinator,Pirms 41 or, in a more recent paper, as propagating the most recent

I
- A-4 -

111 	 version in a version stack.[]

In ISIS, a transaction is not aborted when a machine on which its coordinator is

running fails (transactions are usually aborted only when a deadlock situation

arises).• Rather, the transaction is resumed at a cohort from the latest checkpoint.

111 This cohort becomes the new coordinator. Operations which the coordinator had

executed after the latest checkpoint took place must be re-executed at the new

coordinator.

Circus Cooper has investigated a replicated procedure call mechanism called Circus

which was implemented in UNIX.[GxP851 In Cooper's scheme, although replicas of a

module have no knowledge of each other, they are bound (via run-time support)

into a server called a troupe which may be accessed by clients. (The client knows

that the server is replicated.) A module in Circus may have arbitrary structure,

containing references to other modules. However, the module is currently required

to be deterministic. His scheme uses idemexecution (operation execution at each

replica) for state propagation. When a troupe accesses an external troupe, results of

operations on modules of the server troupe are retained by the callees. These results
are associated with call sequence numbers, and are returned when subsequent calls

by the replicas of the caller troupe with the same sequence numbers are

encountered. This avoids the inconsistencies that can be caused by multiple

executions of the same call.

Herlihy's Work Herlihy[lier184] uses semantic knowledge of arbitrary abstract data

types (objects) to enhance the quorum consensus concurrency control method.

Analysis of the algebraic structure of data types is used in the choice of appropriate

intersections of voting quorums.

4. Basics of the Clouds Operating System

Clouds is a distributed operating system that supports objects and actions. The rest

of this paper deals with a set of techniques that implement generalized replicated

objects in the framework of the Clouds operating system. We discuss the salient

features of Clouds in this section. For a more detailed description, the reader is

referred to [Dasg85].

Figure 1 shows the hardware configuration of the Clouds prototype. The Clouds

operating system provides support for the following facilities:

Distribution Clouds has been designed with loosely coupled distribution in mind.

The hardware architecture consists of a set of general purpose machines connected

by an Ethernet. The software architecture is a set of cooperating sub-kernels, which

implement a monolithic view of the distributed system.

- -_; 	 10Mbyte

V,VA
111/750 1' I 	onmuy connection

11 	p'4 SM byte
LI._ 	 4 -

(dual - Potted disks)

456Mbytel"
64`

10Mbyte

Ethernet

7:1:1111_71T'

Li= Workstations.

- A-5 -

_ _ wo. ondary connection

foT15---t— y e

11/750

456Mbyt0) I I --• — •

•

Figure 1. The Clouds Hardware Configuration

Object Based All system components, services, user data, and code are

encapsulated in objects. The object structure is shown in Figure 2. The Clouds

universe is a set of objects (and nothing but objects). An object is a permanent

entity, occupying its own virtual address space. Processes can weave in and out of

objects through entry points defined in the object space. The only way to access data

in an object is to use a process that executes the code in the object via an entry

point.

Location Independence The Clouds objects reside in a flat, system-wide name

space (the system name space is flat, the user name space need not be). There are no

machine boundaries. Any process that has access to an object can invoke an

operation defined by the object. This creates a unified view of the system as one

large computing environment consisting of objects, even though each site in the

system maintains a high degree of autonomy.

Synchronization Objects are sharable, that is several processes can invoke the

object concurrently. This can pose synchronization problems. Clouds implements an

automatic as well as custom synchronization support for concurrent access to objects.

(Automatic synchronization uses two-phase locking, using read and write locks.

Custom synchronization is the responsibility of the object programmer.)

heap (per process)

volatile.

per- procoss

data segment 	J'

permanent

data S egment 	 I 	—T
Loch:

a
Capabilitios

p ermanent
heap

	J J

system services
(synch, commit etc.)

entry

points

code segment

u.or - donne°
operations

- A-6

aobal Data

Figure 2. The Clouds Object Structure

Actions To prevent inconsistency in the data stored in objects, Clouds supports
top-level and nested actions. Two-phase commit it used to ensure that all objects
touched by an action are either updated successfully on a commit or are rolled back
in case of explicit aborts or failures. The action management system tracks the
progress of actions and maintains information about objects touched by the action
and its subactions. The action management system uses the mechanisms provided by
the recovery management component of the Clouds kernel, for performing the
commit or abort operations when a action terminates or fails. Recovery management
is implemented as part of the storage manager.

Clouds is designed to support a high degree of fault-tolerance. The mechanisms
that provide this support are the topic of discussion in the rest of this paper. The
following section discusses the approaches.

5. Fault Tolerance

One of the basic goals that motivated the design of Clouds was achieving fault
tolerance. Several of the mechanisms currently supported by Clouds are geared to
this end. Thus, we believe it is an ideal environment for building a fault tolerant
system. We review some of the low level details that provide such support.

1. 	The object invocation strategy was designed for fault tolerant systems.
When a process invokes an object (using its capability), and the object is not
available locally, a global search-and-invoke is initiated.[sPaf 86] This will
successfully invoke the object if it is reachable. Failure of any site not

- A-7 -

containing the object will not affect the invocation. The invocation will also

find the object, if reachable, irrespective of where it is located, even if it

was moved around in the recent past. Migration, failure, creation and

deletion of objects etc. do not adversely affect the invocation mechanism.

2. All disk systems are dual-ported (or if possible, multi-ported). If a site

fails, the disks belonging to the failed site are re-assigned to other working

sites. Due to the location search-and-invoke mechanism, this switch can be

done on the fly, and the objects that were made inaccessible due to the

failure become accessible.

3. Users are not hard-wired to the sites, but are attached to logical sites

through a front-end Ethernet (multiple Ethernets may be used for higher

reliability, without changing our algorithms or architecture). If the site the

user is attached to fails, some other site takes over and the user still has

access to the system.

4. The system maintains consistency of all data (objects) in the system by using

the atomic properties of actions (or transactions). Clouds implements nested
atomic actions. This is the function of the action management system,

which uses the synchronization and recovery provided at the kernel level.

The commit and abort primitives are implemented in the kernel,Tin 861 and

the action manager implements the policies. Nested actions have semantics

similar to that defined in[mmal] and are used to firewall failed subactions.

All these mechanisms provide a certain degree of fault tolerance, that is, the

system is not affected adversely by failures. Some actions are aborted, but the

system as a whole continues functioning in spite of site failures. Though dual porting

of disks does simulate some replication (that is, if a site fails, the data stored at the

site is still available through an alternate path), this mechanism is not completely

general because it can not tolerate media crashes. Also, actions executing on the

failed site are forced to abort.

The action management scheme provides backward recovery and ensures that all

data in the system remain consistent in spite of failures. However, this does not

guarantee forward progress, as failures cause actions to abort. Fault tolerance should

imply some guarantee of forward progress, that is an action should be able to

continue in spite of a certain number of failures. We now discuss strategies that

guarantee forward progress despite failures.

5.1 Primary/Backup Actions and Probes

One of the methods that allows fault tolerant behavior is the use of the

primary/backup paradigm for actions. This paradigm is also used for fault-tolerant

scheduler, monitor, and other subsystems requiring some degree of

reliability.[McKe84, Dasgs6] In this scheme, a. fault-tolerant action is really two actions,

- A-8 -

one being the primary, which does the work, and the other being a backup, which is

a hot standby. The primary and backup use probes to ensure both are up. If the

primary fails, the backup takes over (and creates a new backup). If the backup fails,

the primary creates a new backup.

The primary/backup system can be implemented using the Clouds probe

management system. In Clouds, a probe can be sent from a process to another

process or an object. The probe causes a quick return of status information of the

recipient. Probes work synchronously, and use high priority messages and non-

blocking routines so that the response time is practically guaranteed. This allows use

of timeouts to check for reachability or liveness.

If a particular object is unavailable due to some failed component (even though

we have dual ported disks), both the primary and the backup actions are doomed to

fail. Thus the primary/backup scheme has to be augmented with increased

availability of objects. Replication is the well known technique for achieving higher

availability of data.

5.2 Replication of Objects

Maintaining consistency of replicated data (i.e., files) is simpler than maintaining

consistency of replicated objects because only the read and write operations are

provided to access data. Objects, on the other hand, are accessed through

operations defined in the objects, which in turn can call operations defined in other

objects. This gives rise to the following problems:

1. Due to non-determinism, the same operation invoked on two identical

copies of an object may produce different results. Thus non-determinism

cannot be handled in the Circus system, because it uses idemexecution.

2. Due to the nested nature of the objects, two copies of a replicated object

may make a call to a non-replicated object, causing two calls where there

should have been one. This can happen in the ISIS system when the

coordinator crashes and some other site becomes the coordinator. In Circus

this happens when the caller object is replicated.

3. Maintaining varying degrees of replication of objects produces a fan-in fan-

out problem that is not easy to handle. Also, the naming scheme for

replicated objects presents a non-trivial problem.

The generality of the abstract object structure supported by Clouds poses

problems for replication methods which are not presented by objects of lesser

generality. The problem lies in the possibility of the arbitrarily complex logical

nesting of Clouds objects. Although Clouds objects may not be physically nested

(that is, one object may not physically contain another object), an object may contain

a capability to another object. If object A creates another object B, and retains sole

access to B's capability (by refraining from passing the capability to other objects

- A-9 -

and also not registering the capability with the object filing system [OFS]), we say

that object B is internal to object A. The internal object B may be regarded as being

logically nested in object A. If, on the other hand, object A passes B's capability to

some object not internal to A, or if A registers B's capability with the OFS, we say

that B is external to A. An external object is potentially accessible to objects that

may not be internal to the object's creator.

Problems arise with replication schemes when internal and external objects are

mixed together in the same structure, i.e., when an object may contain capabilities to

both internal and external objects. These problems are associated with the method

which is used to propagate the state of a replicated object among its replicas.

External objects cause problems when idemexecution is used to propagate state

changes among replicas. If the replicated object invokes an operation on an external

object (e.g., a print queue server), then under idemexecution, that operation will be

executed by each replica. If the operation being performed on the external object is

not idempotent, this can cause serious problems (e.g., multiple submissions of a job

to the print queue). Also, trouble may arise when idemexecution is used if the

operation on the external object is non-deterministic (for instance, random number
generation, or disk block allocation among multiple concurrent processes).

On the other hand, internal objects cause problems when cloning is used to

propagate state. For example, assume that each replica of an object creates a set of

internal objects. Then, when an operation is performed on one of the replicas, its

state under cloning is copied to each of the other replicas. However, since the

capabilities to the internal objects of the replicas are contained in their states, each

replica now contains capabilities to the internal objects of the replica at which the

operation was actually executed. Thus, the information about the internal objects of

the other replicas is lost.

6. Replication Mechanisms

6.1 Replicated Actions

We have developed a scheme called replicated actions. Each replicated action

runs as a nested action and has its own thread of execution. Each thread of control is

called a Parallel Execution Thread or PET. The degree of the replicated action is the

number of PETs that comprise the action. The degree is determined statically at the

the time the top level action is created. If all objects touched by the action are

replicated k times and the degree of the replicated action is also k, we can have each

PET executing on a different copy of the object.

Briefly, the PET scheme sets up several parallel, independent actions, performing

the same task, using a possibly different set of replicas of the objects in question.

These actions follow different execution, paths, on different sites, but only one of

them is allowed to commit. The scheme is depicted in Figure 3, and its

- A-10 -

PET #1
	

PET 42
	

PET #

Updated
data 1

• o.

•

f „ dl
•

I
I

1

Figure 3. Parallel Execution Threads of 3-degree

implementation details are presented in Section 6.4.

The PET scheme for replicated objects has several advantages. Firstly, up to k-1
transient failures (in a PET scheme with k threads), are automatically handled
because the remaining PETs will commit the action. This contrasts with the ISIS
scheme in which one of the sites having a replica has to detect the failure of the
coordinator and assume responsibility for the execution of the action. However it is
possible for an action in ISIS to commit while all the PETs may abort in our scheme.
The possibility of this happening is considerably reduced as the degree of the PETs
are increased. Thus this scheme presents a trade off between computation and
replication (overhead) and the degree of fault tolerance.

A replica of an object that is replicated k times can receive multiple calls (as in
ISIS and Circus) when the PET degree is more than k. Thus a replica has to retain
results to avoid executing the same call operation again. However a caller will not
receive multiple results as in Circus and we do not have to collate the returned
results. Also since only a single PET is allowed to commit, cloning is used for state
copying and non-deterministic operations do not cause inconsistent state in the
replicas. The problem of internal (or nested) objects is solved by a modification of
the capability (naming) scheme, which is described below.

6.2 • Naming Replicated Objects

Replicated objects and actions provide support for guaranteeing forward progress
when system components fail. This introduces the problem of naming replicated

- A-11-

objects. In Clouds, the system uses a capability based naming scheme. A capability

is a system name which uniquely identifies one object in the distributed system.

Under this scheme, a k-replicated object is named by k different capabilities. This

makes naming considerably more difficult, and since capabilities are stored within an

object, state copying via cloning causes the problems described earlier.

To solve this we propose a minor modification to the capability scheme. When

replication is supported by the kernel, at the user level, all copies of the replicated

object have the same capability, and thus one capability refers to a set of objects. A

flag in the capability tells the kernel that the capability points to a set of replicas of

the object.

The kernel can then append a copy number to generate unique references to the

objects. The kernel uses the <capability:copy-number> pair to invoke operations.

Thus the kernel can choose to invoke the appropriate copy (or several copies)

depending upon the replication algorithms used to resolve an invocation on a

replicated object.

Replication Flag

1 = Replicated Object
0 = non — Replicated.

unique identifier
	 aa.--CSS flags

	
R Copy Number

User Capability

System Capability

Figure 4. Capability Scheme for Replicated Objects

Since all references to the object, as far as the program is concerned, are still

made through a unique capability, which points to all the copies, any naming

problems at the user level disappear (when replication is supported by the kernel).

Constructing the <capability:copy-number> pair can be effectively handled at the

kernel level, using one of several techniques. (For example, the copy number 1 is

always valid, and this copy, as well as other copies, contain information about the

total number of copies, and thus all copies are accessed by the range 1..max.) This

scheme is depicted in Figure 4.

6.3 Invocation of Replicated Objects

The invocation scheme for replicated objects has to follow the scheme outlined

above. The kernel interface handles invocation as follows. For simplicity, in this

section we will assume all the actions have only one thread of control (1-PET). We

will generalize the scheme in the next section.

- A-12 -

A process executing on behalf of an action requests the invocation of an
operation defined by an object. The kernel examines the capability and detects
whether the object is replicated or not. If it is not replicated, the invocation proceeds

as a normal Clouds invocation. If the capability points to a replicated object, the
kernel has to choose one of the replicas. If a local copy of the object is available, the
kernel invokes the local copy, else it tries to invoke any one copy, by appending the
copy number and sending out an invocation request on the broadcast medium.
Typically, the kernel chooses copy number 1, and if that fails it tries subsequent
copies. This sequential searching is not necessary, as the kernel can use previous
history to decide which replica to use.

PET #1 Commits

ying of State

Figure 5. State Copying on PET Commit

• • • • .7:1

Once a replica is used for an action, the kernel takes note of that, and stores it
with the action id, and all later invocations are directed to that replica. Thus only a
single replica of each replicated object is used to execute one action. The other
replicas are not touched, until the action decides to commit. When an action
commits, the replica it touched is copied to all other replicas. This is done by copy
requests from the action management systems to all the replicas (using the copy
number scheme). All accessible replicas are updated and their version numbers
updated. (Note that if the source object has a copy number lower than a replica, the
action has to be aborted.) The version copying strategy is shown in Figure 5.

The version numbers are also used to bring failed sites up-to-date on startup. On
startup, all replicas at the site having version numbers less than the highest version
number on the network are reinstated.

6.4 Handling PETs

The above scheme using 1-PET execution is prone to failures in certain cases.
These include cases where a replica becomes unavailable after it has been invoked,
the replica invoked was not up-to-date and when the site coordinating the action
fails.

The N-PET (N> 1) case decreases the chances of transaction abort due to the
transient failures described in the earlier paragraph. All the separate PETs have

- A-13 -

different co-ordinating sites and execute independently.

When the first thread invokes a replicated object, the invocation proceeds as
above, that is a replica is chosen to service the action. The second thread also
proceeds similarly, but a different replica is chosen. The replica choice does not have
to be different, but the reliability increases if they are, so we use a random choice
scheme. Note that the same object is chosen (as there is no choice) if the object is
not replicated. Multiple invocations of the same object, due to multiple threads of
control are handled by a collator. The commit phase is however different.

In this scheme, ONLY one PET can be allowed to commit. If more than one
PET reaches commit point, each PET issues a pre-commit, which checks if all the
primary copies it touched are still available. If any thing is not reachable, the PET
aborts. Of the remaining PETs any one has to be chosen to commit (In fact if all of
them are allowed to proceed, they will overwrite each others results and may cause
deadlocks during commit time.) The co-ordinating site with the highest site number
wins the match and commits the PET that was associated with the site. The commit
causes the replicas touched by this PET to be copied to all other replicas. The co-
ordinating sites that lost the commit war, do not abort the PETs, but wait for the
commit of the winner to be over. If the commit fails the co-ordinator with the next
highest site number attempts the commit. (Note that the previous commit could have
attempted to overwrite the replicas touched by this PET, but the pre-commit causes
a special copy of all the replicas to be retained, and this copy is used for the
commit.)

Transient failures cause failed PETs, but the chances of all PETs failing decreases
as the number of PETs is increased. Also, failures during commit are taken care of,
by the other PETs. Of course it is possible for all the PETs to abort, but the chances
of this happening decrease as the replication degree and • the PET degree is
increased.

7. Concluding Remarks

There are two major contributions of this research.

1. The object replication scheme is not as straightforward as data replication. The
capability scheme allows reference to a set of objects and the cloning technique
ensures correct execution in spite of generalized and nested objects, as well as
non-deterministic objects.

2. Replication enhances availability, that is, actions can be run on a system that
has some sites or data missing due to failures. Handling transient failures are
not possible in most replicated schemes, that is, if an action touches an object,

and the object later becomes inaccessible, before the action commits, the action
has to abort. Also, once an action has visited a site, the failure of that site
before the action commits can lead to action failure. The PET scheme allows

- A-14 -

the action to proceed, with high probability of success, in a unreliable

environment, where sites fail and restart during the execution time of the

action.

We are currently involved with designing the lower level algorithms and

modifying the Clouds action management scheme to implement the PET method of

providing fault tolerance in the Clouds operating system. This involves the

implementation of the collators, the kernel primitives to choose the appropriate

replicas, the mechanisms that ensure distinct PETS choose distinct replicas and so

on. Once the implementation is complete, we will be able to experimentally study

the reliability of this approach.

REFERENCES

[A1me83] 	Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe. "The

Eden System: A Technical Review." TECHNICAL REPORT 83-10-05,
University of Washington Department of Computer Science, October

1983.

[Birm84] 	Birman, K. P., T. A. Joseph, T. Raeuchle, and A. El-Abbadi.

"Implementing Fault-Tolerant Distributed Objects." PROCEEDINGS OF

THE FOURTH SYMPOSIUM ON RELIABILITY IN DISTRIBUTED SOFTWARE AND

DATABASE SYSTEMS, Silver Spring, MD (October 1984): 124-133.

[Birm85] 	Birman, K. P. "Replication and Fault-Tolerance in the ISIS System."

PROCEEDINGS OF THE TENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES

(ACM SIGOPS), Orcas Island, Washington (December 1985). (Also

released as technical report TR. 85-668.)

[Blau82] 	Blaustein, B., R. M. Chilenskas, H. Garcia-Molina, D. R. Ries, and T.

Allen. "Partition Recovery Using Semantic Knowledge." (TECHNICAL
REPORT), Computer Corporation of America, Cambridge, MA,

November 1982.

[Coop85] 	Cooper, E. "Replicated Distributed Programs." PROCEEDINGS OF THE

TENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM SIGOPS),

Orcas Island, WA (December 1985): 63-78. (Available as Operating

Systems Review 19, no. 5.)

[Dasg85] 	Dasgupta, P., R. LeBlanc, and E. Spafford. "The Clouds Project:

Design and Implementation of a Fault-Tolerant Distributed Operating

System." TECHNICAL REPORT Grr-Ics-85/29, School of Information and

Computer Science, Georgia Institute of Technology, Atlanta, GA,

1985.

- A-15 -

[Dasg86] 	Dasgupta, P. "A Probe-Based Monitoring Scheme for an Object-
Oriented Distributed Operating System." PROCEEDINGS OF THE

CONFERENCE ON OBJECT ORIENTED PROGRAMMING SYSTEMS, LANGUAGES AND

APPLICATIONS (ACM SIGPLAN), Portland, OR (Sept. 1986): 57-66.
(Also available as Technical Report GIT-ICS-86/05.)

[Davi81] 	Davidson, S., and H. Garcia-Molina. "Protocols for Partitioned
Distributed Database Systems." PROCEEDINGS OF THE SYMPOSIUM ON

RELIABILITY IN DISTRIBUTED SOFTWARE AND DATABASE SYSTEMS, Pittsburgh,
PA (July 1981).

[Davi82] 	Davidson, S. "An Optimistic Protocol for Partitioned Distributed
Database Systems." PH.D. Diss., Department of Electrical Engineering
and Computer Science, Princeton University, 1982.

[Garc83] 	Garcia-Molina, H., T. Allen, B. Blaustein, R. M. Chilenskas, and D.
R. Ries. "Data-Patch: Integrating Inconsistent Copies of a Database
after a Partition." PROCEEDINGS OF THE THIRD SYMPOSIUM ON RELIABILIT:'

IN DISTRIBUTED SOFTWARE AND DATABASE SYSTEMS, Clearwater Beach, FL
(October 1983).

[Giff79] 	Gifford, D. K. "Weighted Voting for Replicated Data." PROCEEDINGS

OF THE SEVENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM
SIGOPS), Pacific Grove, CA (December 1979).

[Her184] 	Herlihy, M. "Replication Methods for Abstract Data Types." PH.D.
DISS. , Laboratory for Computer Science, Massachussetts Institute of

Technology, Cambridge, MA, May 1984. (Also released as Technical
Report MIT/LCSaR-319.)

[LeLa78] 	LeLann, G. "Algorithms for Distributed Data-Sharing Systems Which
Use Tickets." PROCEEDINGS OF THE THIRD BERKELEY WORKSHOP ON

DISTRIBUTED DATA MANAGEMENT AND COMPUTER NETWORKS, Berkeley, CA
(August 1978).

[McKe84] McKendry, M. S. 	"Fault-Tolerant Scheduling Mechanisms."
(UNPuBusHED TECHNICAL REPORT), School of Information and
Computer Science, Georgia. Institute of Technology, Atlanta, GA, May
1984. (Draft only.)

[Moss81] 	Moss, J. "Nested Transactions: An Approach to Reliable Distributed
Computing." TECHNICAL REPORT Mrr/LcsaR-260, MIT Laboratory for
Computer Science, 1981.

[Pitt86] 	Pitts, D. V. "-Storage Management for a Reliable Decentralized
Operating System." PH.D. Diss., School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA, 1986. (Also

- A-16 -

released as Technical Report GIT-ICS-86/21.)

[Spaf86] 	Spafford, E. H. "Kernel Structures for a Distributed Operating

System." PH.D. Drss., School of Information and Computer Science,

Georgia Institute of Technology, Atlanta, GA, 1986. (Also released as

technical report GIT-ICS•86/16.)

[Ston79] 	Stonebreaker, M. "Concurrency Control and Consistency of Multiple

Copies of Data in Distributed INGRES." TRANSACTIONS ON SOFTWARE

ENGINEERING (IEEE) 5, no. 3 (May 1979).

[Thom79] Thomas, R. H. "A Majority Consensus Approach to Concurrency

Control for Multiple-Copy Databases." TRANSACTIONS ON DATABASE

SYSTEMS (ACM) 4, no. 2 (June 1979).

[Wrig84] 	Wright, D. D. "Managing Distributed Databases in Partitioned

Networks." PH.D. Drss.., Department of Computer Science, Cornell

University, Ithaca, NY, January 1984. (Also available as Cornell

University Technical Report 83-572.)

Appendix B

Distributed Locking:
A Mechanism for Constructing

Highly Available Objects

	

C. Thomas Wilkes* 	Richard J. LeBlanc, Jr.t

	

University of Lowell 	Georgia Institute of Technology

April 4, 1988

Abstract

Distributed Locking refers to a methodology for constructing replicated ob-
jects from single-site implementations in an action-based object-oriented sys-
tem such as the Clouds project. It also refers to the mechanism provided to
support this methodology in Clouds. This mechanism assumes no particular
policy for control of replica concurrency and consistency; rather, it provides
primitives with which a wide range of policies may be supported. Also, by use
of extensions to the Aeolus systems programming language supporting repli-
cation events, the specification of the availability properties of an object is
abstracted from the object implementation. Thus, a replicated object may be
constructed from a single-site implementation, or changes made in the policies
used for control of a replicated object, with little or no change to the object
implementation. Examples of the specification and use of the quorum con-
sensus replication control policy using the Distributed Locking primitives are
described.

`This work was performed while the author was with the School of ICS at Georgia Tech. Author's
present address: Department of Computer Science, University of Lowell, One University Avenue,
Lowell, MA 01854. Internet: wilkesi(Ohawk.tdowelLedu

'Author's address: School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA 30332-0280. Internet: rich%lynxClgatech.edu

7

-B -

Distributed Locking:
A Mechanism for Constructing Highly Available Objects

1. Introduction
Among the benefits claimed for distributed computing are improvements in system fault
tolerance and reliability, and increased availability of data and services. The Clouds project at
Georgia Tech is one of a number of recent proposals in which reliability in a distributed system is
based on the use of atomic actions, a generalization of the transaction concept of distributed
databases. As part of the Clouds project, we have designed and implemented a high-level
language providing access to the synchronization and recovery features of the Clouds system; this
language is being used to implement those levels of the Clouds system above the kernel level. It
also provides a framework within which to study programming methodologies suitable for
systems based on the action concept, such as Clouds. Among the properties needed by systems
data structures, the design of which must be addressed by such methodologies, are resilience—
survivability and consistency of the data despite crashes and other faults; and availability-
increased possibility of access to data despite network partitions or failures of some sites in a
multicomputer system. Together with a mechanism that ensures forward progress—continued
execution of jobs despite failures, these properties provide fault tolerance in the system.

In this paper, we describe some of the results of a study of methods of achieving fault tolerance in
the Clouds system, in particular achieving increased availability of objects in Clouds. The
remainder of this introduction presents the problems explored by this work. Section 2 describes
the model of distributed computation in which the problems posed by the research were examined
(the Clouds system) and the tools which were used to address these problems (the Aeolus'
programming language). In Section 3, we present a methodology for achieving available services
by conversion of resilient single-site implementations into replicated implementations. A
mechanism with which we proposes to support this methodology, called Distributed Locking, is
also described in Section 3. In Section 4, we describe a linguistic feature for the specification of
the availability properties of an object replicated via Distributed Locking. The language runtime
support features (primitives) required to support Distributed Locking, as well as operating system
support needed to support these features, am presented in Section 5. In Section 6, previous work
in database systems is presented as well as work in the operating system area that is relevant to
the author's research. Finally, the conclusions which we have drawn from this research are
summarized in Section 7, as are plans for future extensions of this work.

The work described in this paper is, in general, concerned with situations in which sites fail by
halting, that is, fail-stop failures [Schl83]; in particular, malicious activity by failed sites (so-
called Byzantine failures) are not considered here.

1.1 The Need for Availability

Even if a computation is distributed, it is subject to a single point of failure if any of the data
objccts involved in that computation exist at only a single node. The provision of resilience
alone cannot eliminate the problems caused by site or network failures; although inconsistencies
introduced by such failures have been abolished, any objects existing only at a failed site are
unavailable for the duration of the failure, and thus no computation may proceed which requires

1. Aeolus was the king of the winds in Greek niyiholul y.

-B-2-

those objects. A method for eliminating these bottlenecks is data replication, that is, the
maintenance of copies of an object at multiple sites.

The use of replication introduces the problem of maintaining the consistency of the individual
replicas when operations are executed on them. A common requirement for consistency is that
the replicated object maintain single -copy semantics, that is, that the state of each replica be
consistent with that which would have been obtained had the object existed only at a single site
and had the same sequence of operations been applied to it. This is achieved by a combination of
a mechanism for controlling concurrency among the replicas, and of a mechanism for copying the
state obtained by an operation execution among the replicas.

These mechanisms have been the subject of much study, both in the areas of database systems
and of operating systems. Indeed, it has been found that single-copy semantics is too stringent a
requirement in some applications. (See [Wilk87] for a discussion of previous work in this area.)
However, most previous work on such mechanisms has been concerned with "flat" data, such as
files. The unique problems posed for these mechanisms by the object construct used in systems
such as Clouds are discussed in the following section; in so doing, we also introduce some
terminology used in the remainder of this paper.

1.1.1 Problems of Replication in Object-Based Systems In the course of research on methods of
achieving availability in object-based systems such as Clouds, we have found that the generality
of the abstract object structure supported by Clouds poses problems for replication methods
which are not presented by a less general, flat object structure (for instance, files or queues).

(a) representation of (b) physical nesting (c) logical nesting
an object 	 or objects 	orobjects

Figure 1. Pictorial Representation of Object Nesting

The problem lies in the possibility of the arbitrarily complex logical nesting of Clouds objects.
Although Clouds objects may not be physically nested (that is, one object may not physically
contain another object), an object may contain a capability to another object. If an object A
creates another object B, and retains sole access to B's capability (hy refraining from passing the
capability to other objects, either explicitly or through an intermediary such as an object directory
service), object B is said to bc inirrnal to object A. The internal object B may be regarded as
being logically nested in object A. (A pictorial representation of physical and logical nesting is
shown in Figure 1.) on the other hand, object A passes B's capability to sonic object not
internal to A, or if A registers B's capability with an Object directory service, B is said to be an
external object; an external object is potentially accessible by objects not internal to the object

-B-3-

1

♦ Replicated object

.4_ Internal object

♦ External object

Figure 2. Replicated Object with Internal and External Object References

which created the external object.

Problems arise with replication schemes when internal and external objects are mixed together in
the same structure, i.e., when an object may contain capabilities to both internal and external
objects. (An example of such an object is represented in Figure 2.) These problems are
associated with the method which is used to propagate the state of a replicated object among its
replicas. One such method is to execute at each replica the computation from which the desired
state results; this scheme is called idemexecution. Another method is to execute the computation
at one replica, and then copy the state of that replica to the other replicas; this scheme is called
cloning. (Representations of the idemexecution and the cloning methods are shown in Figure 3.)
Note that the scheme which is used to ensure that the replicas maintain consistent states (e.g.,
quorum consensus) is not involved in these problems, and is considered separately in this
investigation.

External objects cause problems when idemexecution is used to propagate state among replicas.
If the replicated object performs some operation on an external object (e.g., a print queue server),
then—under idemexecution—that operation will be repeated by each replica. If the operation
being performed on the external object is not idempotent, this can cause serious problems (e.g.,
multiple submissions of a job to the print queue). Also, trouble may arise due to idemexecution
if the operation on the external object is non-deterministic (for instance, random number
generation, or disk block allocation among multiple concurrent processes).

On the other hand, internal objects cause problems when cloning is used to propagate state. For
example, assume that each replica of an object creates a set of internal objects. Then, when an
operation is performed on one of the replicas, its state—under cloning—is copied to each of the
other replicas. However, the capabilities to the internal objects of the replicas arc contained in
their states; thus, each replica now contains capabilities to the internal objects of that replica on
which the operation w- •ctually performed, and the information about the internal objects of the

—B-4-

(a) single (unreplicated)
object operation

(b) idemexecution on replicated object

(c) clone (copy) state
	

(d) cloning on replicated object

Figure 3. Replicated State-Copying Methods

other replicas is lost. This problem is illustrated in Figure 4.. In Figure 4 (a), each replica has a
capability to its individual internal object. In Figure 4 (b), an operation execution has taken place
at the leftmost replica in the figure, and its state has been cloned to the other two replicas; the
states of the other replicas now contain capabilities to the internal object of the leftmost replica
rather than to their own internal objects.

1.2 The Need for Distributed Locking

In recent years, several researchers have presented algorithms that have explored the feasibility of
trading consistency for availability in specific applications, or have taken advantage of semantic
knowledge of typed objects to increase resilience or availability of these objects. (This related
work is described in Section 6.) It has become clear from this research that, in certain
applications, the ability to exploit trade-offs between consistency and availability, and to make
use of the semantic knowledge of objects towards these goals, is not only feasible but desirable.
It thus seemed inadvisable to limit the user to any pre-specified algorithm; none seemed sufficient
to handle all of the potential applications. Accordingly, the focus of the research presented here
changed to the question of how the various algorithms and techniques might be supported in the
Clouds system in a general and efficient manner.

Features to support programming for resilience were introduced into the Aeolus testbed language
at a relatively early stage, as these model closely the mechanisms provided by the Clouds kernel;
these features are described in Section 2. Features to support programming for availability, on
the other hand, were designed at a relatively late stage of this research. Our first attempts to
program available objects in Aeolus soon convinced us, due to their ad hoc nature, of the
desirability of linguistic support in this area. In these early attempts the manual addition of
support for replication to an object originally designed as a single - site implementation was

distressingly inelegant; an example of the result of this strategy is supplied elsewhere I Wilk87].
This experience suggested that a proper goal would he automation (to whatever extent possible)

— B -5-

(a) before cloning of state
	

(b) after cloning of state

Figure 4. State Cloning with Internal Objects

of the process of deriving a replicated implementation of an object from its single-site
implementation. The resulting Distributed Locking mechanism, described in Section 3, provides
support for the control of concurrency and state-copying among replicas of an object while
making no assumptions about the policies used for this control. The abundance of replication-
control algorithms that has appeared in the literature in recent years, often taking advantage of the
semantics of a particular application, makes it clear that limiting support to any particular policy
would be undesirable. Rather, primitives are provided to support programming of custom
replication-control policies which may take advantage of semantic knowledge of objects;
however, options are provided for the automatic use of one of several common replication-control
algorithms, if desired. This is in accord with the philosophy of the Clouds system as
demonstrated by its treatment of the issues of synchronization and recovery. The linguistic
support added to Aeolus to aid the programmer in the specification of the availability properties
of an object is described in Section 4.

2. The Aeolus/Clouds Model

In this section, we provide an overview of the model of distributed, computation embodied in the
Aeolus/Clouds system. The background of the Clouds distributed operating system project, as
well as the major concepts and facilities presented by the Clouds system, are presented here; a
more complete description of the system may be found in a recent overview paper [Dasg87].
Also, the major features of the Aeolus language arc described briefly.

2.1 The Clouds System

The Clouds distributed operating system project has been under development at Georgia Tech
since late 1981; the central concepts were developed by Allchin and McKendry in a pair of early
papers [A11c82, Allc83], and the Clouds architecture was described in full in Allchin's
dissertation rAllc83al. The goal of the Clouds project is the implementation of a fault-tolerant
distributed operating system based on the notions of objects, actions, and processes, to provide an
environment for the construction of reliable applications on unreliable hardware. The basic
approach is to exploit the redundancy available in distributed systems which consist of multiple
computers connected by high-speed local area networks. Such systems arc called multicornputcrs
or computer clusters. In Clouds, the notion of an object may be used to represent system
components, such as directories or queues. A set of changes to objects may be grouped into an
action, which corresponds roughly to the transaction concept of distributed database work,
providing an "all or nothing" assurance of atomic execution (a property sometimes called failure

-B -6-

atomicity). The underlying support system ensures that, even if the actions extend across
multiple machines, the changes will occur in totality or not at all. At this level, the support
system, known as the Clouds kernel, is maintaining the consistency of the objects. It ensures that
objects either reflect the effects of an action totally or not at all—no intermediate states are
possible. This guarantee of an action's totality permits one to characterize the effects of hardware
component failures: they cause actions to fail. Since a failed action is guaranteed to have had no
effects on the objects with which it interacted, the action may be restarted without concern for
potential inconsistencies it might have created.

Actions in Clouds go beyond the related notion of transactions in a database system. Rather than
modelling all access to objects as simple reads or writes, the Clouds approach supports arbitrary
operations on objects and allows a programmer to take advantage of operation semantics to
increase concurrency, and thereby, performance. Through appropriate use of encapsulation,
concurrent actions can be allowed to change objects without violating serializability.

A powerful feature of Clouds is the separation of the two components the traditional notion of the
serializability of atomic actions, failure atomicity and view atomicity. Failure atomicity, as
mentioned above, refers to the "all or nothing" property of atomic actions; view atomicity
requires that the effects of an uncommitted action are not seen by other actions until commital
occurs, thus avoiding the problem of "cascading aborts" of actions which have viewed
intermediate states of an uncommitted action that later is aborted. This separation of the recovery

and synchronization aspects of serializability allows the Clouds programmer to design objects
that, while maintaining an appearance of serializability to the outside world, may violate strict
serializability internally—in ways based on the programmer's knowledge of the object's
semantics—in the interest of system efficiency.

Objects, actions, and processes am fundamental concepts supported by the Clouds architecture.
To support these concepts, recovery and consistency are incorporated into the basic virtual
memory mechanism [Pitt86,Pitt87]. Synchronization mechanisms to control the interactions of
actions are also provided. It is with these capabilities that Clouds is meant to support the data
integrity required for the implementation of reliable, distributed application programs.

The detailed design of the Clouds kernel is discussed in Spafford's dissertation [Spaf861. A
prototype of the Clouds kernel, also described by Spafford, has been implemented on a hardware
testbed consisting of VAX® 750s connected by a 10Mbps Ethernet, several dual-ported disk
drives, and Sun 3 Workstations® running UNIX®--also attached to the Ethernet--that provide a
user interface to the Clouds system. The Clouds kernel is implemented "on the bare machine,"
that is, it is not implemented on top of some other operating system such as UNIX. Thus, the
features of objects, actions, and processes have been implemented in the lowest levels of the
kernel, allowing use of the Clouds concepts in the construction of the operating system itself. At
these lowest levels, we attempt to avoid implementing policies, instead providing mechanisms
with which policies may be constructed. Some policies are embedded in subcomponents of the
kernel. The storage management system [Pitt86] implements support for action-based stable
storage within the object virtual memory mechanism. The action manager]Ken186] controls the
interaction of actions with objects, including creation, committal, and abonion of actions, a

a VAX is a registered trademark of 	 'orp.

e Sun Workstation is a registered irademaik of Sun MICCOSySti.:111S. Inc.

a UNIX is a registered trademark of Al%C:[..

—B-7-

time-based orphan detection facility. and support for lock-based synchronization. Those kernel
subcomponents implementing policy am intended to be replacable with minimal changes to the
rest of the kernel. For instance, the storage management system could be replaced with another
implementing log-based recovery, or the action manager changed to support timestamp-based
synchronization, without fundamental changes to other kernel subcomponents.

The Clouds system above the kernel level consists of a set of fault-tolerant servers which provide
system services (such as object filing, job scheduling, printer spooling, and the like) to
application programs. (It is for the construction of this level of the Clouds system that the Aeolus
programming language was designed; the kernel itself has been implemented in the C language.)

The location-transparency and resilience mechanisms provided by the Clouds architecture are
used to support the operating system itself and its services. Thus, the system itself is
decentralized (in the sense that the system can survive the failure of any node) and resilient. The
Clouds system may be considered to consist of a set of fault-tolerant objects which in
combination provide a reliable environment for applications.

21 The Aeolus Programming Language

In this section we provide a brief overview of the Aeolus programming language. More complete
discussions of Aeolus may be found in previous publications [Wilk85, Wilk86, Wi1k87].

Aeolus developed from the need for an implementation language for those portions of the Clouds
system above the kernel level. Aeolus has evolved with these purposes:

• to provide the power needed for systems programming without sacrificing readability or
maintainability;

• to provide abstractions of the Clouds notions of objects, actions, and processes as features
within the language;

• to provide access to the recoverability and synchronization features of the Clouds system; and

• to serve as a testbed for the study of programming methodologies for action-object systems
such as Clouds [LeB185].

The intended users of Aeolus are systems programmers working on servers for the Clouds
system. Clouds provides powerful features for the efficient support of resilient objects where the
semantics of the objects are taken into account; it is assumed that the intended users have the
necessary skills to make use of these features. Thus, although access to the automatic recovery
and synchronization features of Clouds is available, we have avoided providing very-high-level
features for programming resilient objects in the language, with the intention of evolving designs
for such features out of experience with programming in Aeolus.

2.2.1 Support For Synchronization Aeolus provides access to the action manager's support for
synchronization via a lock construct. An unusual aspect of Aeolus/Clouds locks is that they are
associated not with the specific data being locked, but rather with values in some domain. Thus,
an lock is obtained for a value of an object, and not on the object itself. Thus, for instance, a lock
may he obtained on a file name even if that file does not yet exist. Another interesting feature of
Aeolus/Clouds locks is that they provide a mechanism for the specification of arbitrary locking
modes and arbitrary compatibilities between the different modes, thus allowing the lock to be
tailored to the specific synchronftation semantics of a subset of object operations. For example:

type file_lock 	 (: I real I, 	write : [])
domain is string(FILE NAME SIZE)

-B -8-

The declaration of file_lock defines a lock type over the domain of strings representing
filenames, in which the usual multiple reader/single writer synchronization is specified by the
compatibilities among the read and write modes of the lock.

All locks obtained during execution in the environment of a nested action are retained and
propagated to the immediate ancestor of that action upon committal unless explicitly released by
the programmer. Locks obtained under an action are automatically released if the action aborts or
successfully performs a toplevel commit. Thus, a two-phasp locking protocol (2PL) is
maintained, with violations to 2PL allowed (via explicit release of locks) if the programmer
deems such violations acceptable. A lock is available to be granted under a nested action even if
conflicting locks are held under one or more of the ancestors of that action, but not if conflicting
locks are held under an action which is not an ancestor of the nested action [Allc83a]. The power
of the Aeolus/Clouds lock construct in supporting user-defined synchronization lies in the
specification of arbitrary locking modes, and arbitrary compatibilities between those modes, as
well as the dissociation of locks from the locked variables.

222 Support for Objects The object construct provides support for data abstraction in Aeolus.
A collection of related data items may be encapsulated within an object, which also may provide
operations (procedures that operate) on the data. The only access to the data of an object is via
these operations; thus, an object can strictly control manipulation of its encapsulated data,
helping guarantee the invariants of the abstraction. The declaration of the object defines a type,
called an object type, which may be used in the declaration of variables to hold capabilities to
instances of that object type.

Aeolus provides a hierarchy of object classifications sharing a common implementation and
invocation syntax which offers a trade-off of functionality and efficiency. The object
classifications fall into two groups: the so-called Clouds object classifications
(autorecoverable, recoverable, and nonrecoverable) may make use of the
object management facilities and (for autorecoverable and recoverable types) the
action management facilities, while the non-Clouds object classifications (local and pseudo)
do not use any of the Clouds facilities for action or object management and provide data-
abstraction facilities usable "locally" (without resorting to the system facilities supporting
distribution of objects). On the other hand, the Clouds object classifications provide access to the
support for data abstraction provided by the Clouds system when the expense of that support is
warranted; the separate classifications of Clouds objects allow the programmer to specify the
degree of support (and of incurred expense) required. The object classifications arc described in
more detail in the papers cited above; while the autorecoverable classification provides
the paradigm most often presented by other action systems, that is, completely automatic
recovery of the entire object state, the recoverable classification is of more interest here in
that it allows the programmer to tailor object recovery based on the semantics of the object via
mechanisms described below.

The global variables of an object are called collectively the object's state. In an object of class
recoverable, part of the object state may be specified to he in a recoverable area: also, the
programmer may specify an action events part and/or a per-action variables part. Recoverable
areas, action events, and per-action variables are described below.

In order to allow the object to participate in its own creation and deletion, an ob j„;
implementation part contains specifications of handlers for the so-called ()Neil' events. The
object events include the hut or.ohiect initialiiation event, the handler lor which is executed
whenever an instance of the object is created by use of an allocator: the remit or object
reinitialization event, the handler for which is executed—if the object has registered its desire kw

-B-9-

reinitialization with the action manager—when the system is reinitialized after a crash or network
partition; and the delete or object deletion event, the handler for which is executed when the
object instance is destroyed.

An invocation of an object operation looks much like a procedure invocation, except that, outside
the implementation part of the object itself, an operation name must be qualified by the name of a
variable representing an instance of that object type (or, for pseudo -objects, by the name of the

object type itself). Thus, for an instance of a bounded -stack type. the programmer might write

stack_instance @ push(elem)

When an object invokes one of its own operations, however, the usual procedure call syntax is
used.

Invocations of pseudo-object and local object operations have semantics essentially similar to
those of calls to procedures local to a compiland. The situation is different for operations
declared in objects which use the Clouds object-management facilities (i.e., the so-called
"Clouds objects"). Invocations of operations on Clouds objects are handled by the compiler
through operations on the Clouds object manager on the machine on which the invoking code is
running. The Clouds object on which the operation is being invoked need not be located on the
same machine as the invoking code; the object manager then makes a remote procedure call
(RPC) to the object manager on the machine on which the called object resides. The location—
local or remote—of the object being operated upon, however, need not concern the programmer,
as the RPC process is transparent above the object-management level.

2.2.3 Support for Actions The action concept provides an abstraction of the idea of work in the
Clouds system; an action represents a unit of work. Actions provide failure atomicity, that is,
they display "all-or-nothing" behavior: an action either runs to completion and commits its
results, or, if some failure prevents completion, it aborts and its effects arc cancelled as if the
action had never executed.

Support for actions in the Aeolus language is relatively low-level. At present, the methodology
of programming with actions is not as well-understood as the methodology of programming with
objects; thus, rather than providing high-level syntactical abstractions such as those available for
object programming, Aeolus allows access to the full power and detail of the Clouds system
facilities for action management. The major syntactic support provided by Aeolus for action
programming is in the programming of action events, recoverable areas, permanent and per-
action variables, and action invocations.

At several points during the execution of an action, the action interacts with the action manager
of the Clouds system to manage the states of objects touched by that action, including writing
those states to permanent (stable or safe) storage, and recovering previous permanent states upon
failure of an action. Thus, failure atomicity may be provided by the action management system.
The action events include:

event name 	 purpose

	

BOA 	beginning of action
t op leve 1 p 	arm i t, 	prepare for commit of a toplevel action

	

nested pi: (-comrt -li.t. 	prepare lor commit of a nested action

	

conunir 	normal end of action (LOA)

	

,ibor r 	abnormal end of action

The interactions with the Clouds action manager necessary when such events take place arc done
by default prc . 7edures suppli(.)y the Aeolus compiler and runtime system: these procedures arc

-B -10-

called action event handlers. When an action event occurs for a particular action, the action
manager(s) involved invoke the event handlers for each object touched by that action.

As was described above, by use of the autorecoverable class of object, the programmer
may take advantage of the recovery facilities of the Clouds system by having the compiler
generate the necessary code automatically. This automatic recovery mechanism requires
recovery of the entire state of the object, and uses the default action event handlers. However, it
is sometimes possible for the programmer to improve the performance of object recovery by
providing one or more object-specific event handlers which make use of the programmer's
knowledge of the object's semantics; these programmer-supplied event handlers then replace the
respective default event handlers for that object. Thus, if object class keyword recoverable
is specified in the definition header of the object being implemented, the programmer may give
an optional action event part in the object's implementation part. Following the keywords
action events, the programmer lists the name of each action event handler provided by the
object implementation as well as the name of the action event whose default handler the specified
handler is to override. Thus, for example, the specification (in an object implementing a
bounded-stack abstraction):

action events
stack_BOA overrides BOA,
stack_nested_precommit overrides nested_precommit

indicates that the default handlers for the BOA and nest ed_precommit action events are to
be replaced by the procedures named stack_BOA and stack_nested_precommit,
respectively, for the bounded-stack object type only.

As mentioned above, if an object being implemented is of class recoverable, then some of
its variables may be declared in a recoverable arca. When a nested action first invokes an
operation on a recoverable object ("touches" that object), the action is given a new version of the
recoverable area which initially has the same value as the version belonging to the action's
immediate ancestor. The set of versions belonging to uncommitted actions which have touched a
recoverable object is maintained on a version stack by a Clouds action manager. When a nested'
action commits, its version replaces that of its immediate ancestor. When a toplevel action
commits, its version is saved to permanent storage. If an action is aborted, its version is popped
from the version stack. Thus, recoverable areas (in conjunction with appropriate use of
synchronization) provide view atomicity, that is, an action does not see the intermediate
(uncommitted) results of other actions. Also, the use of recoverable areas allows the programmer
to provide finer granularity in the specification of that part of the object state which must be
recoverable, since the use of automatic recovery on an object (the autorecoverable object
class) requires recovery on the entire state of the object. The interaction with the action manager
necessary to manage the states of recoverable areas is implemented by the action event handlers
as described above. Again, thc default event handlers may be overridden by programmer-
supplied event handlers for the entire object to achieve better performance.

It may sometimes be desirable to make large data structures resilient. In such cases, the

recoverable area mechanism may be inefficient, since it requires the creation of a new version of

the entire recoverable area for each action which modifies the area. Often in such cases the

programmer may takel aLvantage (ii knowledge of the lei to ltleti Lil . the data Ntruclurc to c.Ificiently

program the recovery of the data structure. The Aeolus langtiale provides two constructs which

aid in the custom programming of data recovery, the so-called permanent and per - action
variables, constructs proposed by McKendry IN1cKe851.

-B -11-

Any type may be given the attribute permanent. This attribute indicates that members of that
type are to be allocated on the permanent heap, a dynamic storage area in the object storage of
each object instance. This area receives special treatment by the Clouds storage manager, in
particular, it is shadow-paged during the t oplevel_pr ecomtnit action event.

Aeolus also provides the per-action variable construct. A per-action variable specification
resembles a recoverable area specification, and its semantics is also similar, in that each action
which touches an object with per-action variables gets its own version of the variables; however,
the programmer may access the per-action variables not only of the current action, but also of the
parent of the current action. Also, per-action variables are allocated in non permanent storage,
that is, in storage the contents of which may be lost upon node failure. The variables in a per-
action specification are accessed as if they were fields in a record described by the specification;
two entities of this "record type" are implicitly declared: Self and Parent, which refer
respectively to the per-action variables of the current action and its immediate ancestor.

Permanent and per-action variables may be used together to simulate the effect of recoverable
areas at a much lower cost in space per action. In general, the per-action variables are used to
propagate changes to the resilient data structure up the action tree; these changes are then applied
during the toplevel_precommit action event to the actual data structure in permanent
storage. The use of permanent and per-action variables is shown more fully in the Aeolus papers
cited above.

The right-hand side of an assignment statement may take the form of an action invocation. Here,
the right-hand side (which consists of an operation invocation which, if the operation is value-
returning, is embedded in another assignment statement) is invoked as an action; the action ID of
this action is assigned to the variable designated by the left-hand side of the action invocation.
Thus, for example, if the bounded-stack object mentioned above were defined as a recoverable
object, one might invoke one of its operations as an action:

aID := action(stack_instance @ push(elem))

The action ID may be used as a parameter in operations on the action manager which provide
information about the status of the action, cause a process to wait on the completion of an action,
or explicitly cause an action to commit or abort. By use of additional syntax not shown here, the
programmer may specify that an action be created as a "top-level" action, that is, as an action
with no ancestors; a top-level action cannot be affected by an abort of any other action.
Otherwise, the action is created as a "nested" action, that is, as a child (in the so-called action
tree) of the action which created it; as described below, a nested action may be affected by an
abort of one of its ancestors. Optionally, a timeout value may be specified in the action
invocation clause; if the action has not committed by the expiration of this timeout, the action
will be aborted. If no timeout value is specified, a system-defined default value is used. The
detailed semantics of action invocations, and requirements on objects that may have operations
invoked as actions, arc described in the papers on Aeolus cited above.

3. Overview of Distributed Locking

In this section, we outline a model of concurrency control and replication management for the
Clouds system, called Distributed Locking (1)1). The linguistic and nmtime mechanisms
required to support DL are described in tire Ibllowing sections.

In the DI. methodology, derivation of a replicated object from its single-site implementation
consists essentially of two steps:

—B-12-

1. The user writes a single-site definition and implementation of the object. This
implementation includes specification of all lock types used by the object to ensure view
atomicity in the presence of concurrently-executing actions.

2. The user writes an availability specification (availspec) for the object. This specifies
the number of replicas of each instance of the object to be generated, the replication control
policies to be used, and (optionally) the relative availabilities of the modes of each lock
type specified by the object. If no availspec is provided, the object is assumed to be
nonreplicated.

The availspec construct is discussed in detail in Section 4. Note that availabilities are
expressed in terms of the modes of locks rather than in terms of operations. Together with the
domain notion, with which lock granularities are expressed in Aeolus/Clouds, this gives the user
more latitude in the expression of relative availabilities than is provided in related work
(described in Section 6).

The automation of replication provided by the DL methodology is based on a concept similar to
that of action events and object events as discussed in Section 2. The programmer may specify
the interaction of an object with the action management system at critical points in the processing
of an action via writing handlers for the action events; handlers for object events allow the object
to participate in its creation and destruction. In a similar spirit, we have identified two critical
points in the handling of an operation invocation on a replicated object: the lock event, during
which the invocation attempts to synchronize some subset of the replicas of the object; and the
copy event, during which the state resulting from the invocation is transmitted to the subset of
replicas synchronized during the corresponding lock event. These events correspond to the
concurrency control and consistency maintenance aspects of replication control, respectively.
Note that the names we have chosen for these events reflect the lock-based synchronization and
stable storage-based recovery mechanisms of Clouds; extensions to other synchronization and
recovery methods are considered briefly in Section 7. For reasons examined in Section 5, we
require that an invocation on a replicated object be made in the context of an action.

Policies for control of concurrency among replicas, and for control of the copying of state among
replicas, are expressed in a lock object event handler and a copy action event handler,
respectively, in the availspec for an object. Preprogrammed default handlers for these
events, implementing commonly-used schemes such as quorum consensus, may be requested by
the user if appropriate. If the user wishes to provide application-specific handlers for these
events, the same system-provided primitives used in the construction of the default handlers are
available for use in programming user-specified handlers. These primitives are described in
Section 5, and example event handlers using the primitives arc also presented there.

4. Availability Specifications

As discussed in Section 6, the Consensus Locking model of Herlihy allows the specification of
the availability properties of an abstract data type in terms of the initial and final quorums
required for an operation. It has already been mentioned that in the Distributed Locking model it
makes sense to speak of the availability properties of lock modes (rather than of operations, as in
other schemes). Some means is needed of allowing the prograzmuer to specify these availability
properties for an object without roluiring modification of the single-copy version of the object
definition or implementation.

In Distributed Locking as implemented in the Aeolus/Clouds system, the availability properties
of a replicated object are specilied in a separate compiland for that object type, called the
avct, ability specification part (or a Vd i 1 spec, for short). The properties specified in an

—B -13-

availspec include the number of replicas, the replication management algorithm desired (e.g.,

quorum assignment, available-copies, etc.), the name of each lock type declared by the
implementation of that object along with the names of that lock's modes, and (optionally) the
availability relationships among the modes of each lock type used by the implementation of that
object. All internal and/or non-Clouds objects used by a replicated object must also have a
replication specification; this requirement is applied recursively to these objects. The availability
information of a non-Clouds object is inherited by the object which imports it; thus, the effect is
as if locks declared by non-Clouds objects were instead declared by the importing Clouds object.

If a voting method is chosen, the quorum assignments for each lock may be derived from the
replication specification using integer programming methods. The availability relationships
among locking modes, expressed as relative availabilities, may be transformed into constraints on
the space of feasible solutions; the objective function may be chosen to maximize the minimum
availability over the locking modes subject to these constraints. The construction of this linear
program is discussed in more detail later in this chapter. This information is transformed by the
Aeolus compiler into a table of replication management information which is stored in the
TypeTemplate of the Clouds object (the TypeTemplate is used by the Clouds system to
generate instances of an object type). This information is placed in the header information of
each object instance and is used by the Distributed Locking primitives to guide the selection of
sets of replicas for Distributed Locking (see Section 5).

The Aeolus availability specification bears some resemblance to the fault-tolerance specification
of the HOPS system (cf. Section 6). However, in HOPS the programmer must select among
several predefined policies for replication control; there is no provision for user programming of
these policies. The ability of the programmer to specify lock and copy event handlers as
well as the provision of primitives in support of programming these handlers allows the use of a
wider range of replication control policies with the Aeolus availspec construct.

4.1 Example of an Availability Specification

A sample avail spec making use of the quorum event handlers is given in Figure 5. This
availspec applies to a resilient symbol table object, the definition for which is presented in
Appendix A; the implementation of this object is presented and discussed in detail in [Wilk87].
For the purposes of this example, we will describe only the locks declared in the symbol table
implementation.

For synchronization purposes, a lock is declared which allows the entire symbol table to be
locked:

symtable_lock : lock (exact : (exact] , nonexact : [nonexact

Note that operations acquiring symtable_lock in exact mode may run concurrently with
other operations acquiring it in exact mode, and similarly for nonexact mode; however,
operations attempting to acquire the lock in exact mode must block on those holding it in
nonexact mode, and vice versa. The use of symtable _ lock is to lock out changes during
the exact_list operation. Thus, the insert and delete Operations acquire this lock in
nonexact mode, while the exact_l ist operation acquires it in exact mode; the
lookup and quick_1 i operations need not acquire the lock at all.

The resilient symt ab object must operate in an action environment; thus, additional
synchronization is needed 10 assure the view atomicity of modilications. For this purpose, a new
Iock variable is introduced which controls the visibility of names in the symbol table:

-B- 14-

availspec of object symtab (d : unsigned) is

! Availability specification of the symbol table object using
! the quorum consensus scheme. The DistLock pseudo object
! definitions are imported automatically by all availspecs,
! but we must import the quorum definitions to use its
! predefined handlers.

import quorum

! First, we specify the degree of replication (the number of
! replicas). Here, the degree is taken from an additional
! parameter, d, which is specified during creation of an
! instance of this object.

degree is d

! The resilient symtab object defines two locks, each with two
! modes. We define the relative availabilities for the modes

! of each lock as follows. The relative availabilities are
! used in the constraints of an integer program which is used
! in turn to generate the quorum assignments for each lock
! mode.

lock symtable_lock with exact = nonexact

lock name lock with read > write

! The definitions of the lock and copy events. Here, we just
! use the predefined handlers for quorum consensus.

availspec events
quorum_lock overrides lock_event,
quorum_copy overrides copy_event

end availspec. ! symtab

Figure 5. Availability Specification for the Resilient Symbol Table

name_lock : lock (write : []
read : [read]) domain is name_type

This lock defines the usual multiple reader/single writer protocol over values of name_type
(that is, the type of keys). The inser t arid delete operations acquire this lock in write
mode: the = ir"Id operation acquircc II in r.?;_id mode. ThIN, attempts to insert or delete a given
name may not execute concurrently with each other or with attempts to read that name.

The degree of replication (i.e.. the number of replicas IOr a given instance of symtab) is given
as a formal parameter to the ,ay.11..1spec: the actual parameter is supplied (in addition to any
object parameters specified by the definition part of the object) during creation of object

—B-15-

instances.

The availspec also specifies the relative availabilities of the modes of each lock declared by
symtab. Here, the two modes of symtable_lock are declared to have the same availability
level; however, the read mode of name_lock is declared to be more available than the
write mode. The relative availability declarations are used to determine the size of quorums
for each mode.

Finally, the alternate handlers for the lock and copy events are specified. Here, the
quorum_lock and quorum_copy operations made accessible by importing the quorum
pseudo-object are used.

4.2 Computing Quorum Assignments

When a voting method is used for replication control, the system requires information about the
minimum number of replicas required to constitute a quorum for each lock mode. As shown in
the example availspec in the previous section, the programmer may specify the relative
availabilities of the modes of each lock. This information is used to generate constraints for an
integer program which computes the actual quorum requirements; the requirements for the modes
of each lock of the object are then stored in the object state in an array associated with that lock.
A primitive is provided for use in a lock event handler which returns the minimum quorum
size associated with the lock and mode active at the invocation of the handler (that is, the request
for which caused the lock event). The Distributed Locking primitives are described in Section
5.

The integer program used to generate the quorum information for each lock is built as follows. If
the ith variable of the integer program represents the minimum number of replicas required to
constitute a quorum for mode i of the lock, then the objective function is chosen to minimize the
maximum value over all of the variables. As the availability of a mode is inversely proportional
to the size of the quorum required for that mode, the objective function has the effect of
maximizing the minimum availability over the modes. The relative availabilities of the locking
modes as specified by the programmer in the avail spec are used as constraints on the integer
program; if no relative availabilities were specified, the availabilities of the modes are taken to be
equal. There are additional constraints generated by the requirement of voting methods that the
quorums of each pair of modes intersect (that is, that the sum of each pair of variables be greater
than or equal to the degree of replication plus one), as well as that the value of each variable be
nonnegative and be less than or equal to the degree of replication.

5. Support for Distributed Locking

As defined in Section 3, the term Distributed Locking refers to a methodology for deriving a
replicated implementation from its single-copy version, as well as to a mechanism to support this
methodology. A powerful feature of Distributed Locking is that it does not assume any particular
policy for replication control. Although the user may easily specify use of one of several default
policies in the areas of replica concurrency control and state copying, it also allows the user to
explicitly program policies for these purposes. The mechanisms provided by Distributed Locking
for support of both default and user-programmed policies arc described below.

5.1 Naming Replicated Objects

The mechanism required for support of Distributed Locking requires modifications to the Clouds
object naming scheme to support replication.

-B -16-

We have considered two different capability-based naming schemes which may be used in
support of state cloning, as described in Section 1. The first scheme requires minimal changes to
the Clouds kernel, but relies on facets of the Clouds object lookup mechanism which may not be
applicable to other systems. In Clouds, the search for an object begins locally (that is, on the
node which invoked the search), and—if the object is not found locally—proceeds to a broadcast
search. If the internal objects belonging to a replica are constrained to reside on the same node as
their parent object, then the local search will locate the local instance of the internal object. (This
constraint is not considered to be onerous, since the internal objects of each replica need to be
highly available to that replica in any case, and thus should logically reside on the same node as
the parent replica.) Thus, each replica of an object (each of which resides on a separate node) may
maintain its set of internal objects using the same capabilities as each other replica. (This
situation may be created by initializing one replica, and then cloning its state to the other
replicas.) Although there will thus be multiple instances (on separate nodes) of internal objects
referenced by the same capability, there should be no problems caused by this, since—by the
definition of internal object—only the parent object or its internal objects may possess the
capability to an internal object, and the object search will always locate the correct (local)
instance. Thus, state cloning may be used to copy the state of a replica to the other replicas
without causing the problems with respect to internal objects described in Section 1 (concerning
references to internal objects contained in the replica's state), since under this scheme all replicas
may use the same capabilities for referencing internal objects. This scheme is an extension of a
facility already supported by the Clouds kernel for cloning read-only objects such as code. This
scheme is called vertical replication, since it maintains the grouping of internal objects with their
parent object.

The other naming scheme makes fewer assumptions about the lookup mechanism than vertical
replication, but requires more kernel modifications. In the second scheme, each instance of the
replicas' internal objects is again named by the same capability, at least as far as the user is
concerned; however, the kernel maintains several additional bits associated with each capability
identifying a unique instance. (These additional bits may be derived, for example, from the birth
node of the instance.) When a (parent) replica invokes an operation on an internal object, the
kernel selects one of the replicas of the internal object according to some scheme (e.g., iteration
through the list of nodes containing such objects until an available copy is located). Thus, a set
of replicas of internal objects is maintained in a "pool" for access by all parent replicas. Again,
each parent appears to use the same (user) capability to reference a given internal object, so the
problems of state cloning disappear. Since this scheme maintains a logical grouping of the copies
of an internal object, rather than grouping internal objects with their parent object, this scheme is
called horizontal replication. One such naming scheme is described in a paper by Ahamad et al.
[Aham87]

The attractions of the vertical replication scheme are that it is conceptually simple, that it requires
no modifications to the kernel capability-handling mechanisms, and that, by requiring
coresidence, it enforces a property which enhances availability. To sec this, recall that
independent failure modes are desirable among different replicas of a replicated object, since the
probability that the replicated object will he available is the probability that any one of the set of
replicas will be available. On the other hand, dependent failure modes are desirable among a
given replica and its internal objects. since the probability that the given replica will be available
is the probability that all or the set of internal objects will he available. Requiring coresidence of
objects related by logical nesting introduces dependence of their fail u re modes.

Unfortunately, the vertical replication scheme is not viable in general, since the coresidence
requirement may sometimes be unrealistic. It may sometimes be the case that it is impossible to

satisfy coresidence, due to the size of nested objects (making it impossible to accommodate them
on the same node), or due to insufficient space because of previously-existing objects on that
node. Thus, vertical replication must be abandoned as lacking sufficient generality in its
applicability. Fortunately, the horizontal replication scheme does not share this drawback.

The horizontal replication scheme has been further developed in a recent paper by other
researchers on the Clouds project [Aham87a]. However, the invocation scheme may be altered to
take advantage of coresidence when possible. The search scheme used for invocation of
replicated objects in the paper cited above involves a random choice among the set of replicas.
This differs markedly from the current Clouds search scheme for non-replicated objects, which is
essentially as follows:

if <object found locally> then
<perform invocation on local object>

else
<perform global search>

end if

This search scheme may be modified to take advantage of coresidence as follows:

if <object found locally> then
<perform invocation on local object>

else
if <object is replicated> then

<select randomly among the set of replicas>
else

<perform global search>
end if

end if

Note that, if only one replica is stored per node, the local search involves only the so-called "user
capability;" that is, it does not involve the extra bits used by the "kernel capability" to
distinguish among replicas. If one allows more than one replica per node, some use of the kernel
capability must be made to select an apprOpriate instance; this may require specific knowledge of
which replicas are stored at which nodes.

5.2 Invocation of Lock and Copy Events

Support of the Distributed Locking mechanism requires modification of the Aeolus/Clouds object
and action management facilities in two areas.

I. When an operation attempts to obtain a lock on an instance of a replicated object, locks arc
obtained at some appropriate subset of its replicas, by invoking the lock event handler on
that object. (Using terminology introduced by Ahamad and Dasgupta [Aham87a], the
replica at which the original invocation took place is called the primary cohort [p-cohort];
the other members of the locked subset of replicas are called secondary cohorts [s-
cohorts].)

2. During the handling of the precommit event of the controlling action, the state of each p-
cohort touched by that action is copied to its s-cohorts, by invoking the c f vy event handler
on each p-cohort.

In Section 1, two methods of copying object state applicable to the Clouds model were identified:

1. idetnexecution, or execution of an invocation at each member of the set of replicas; and

—B-18-

2. cloning, or execution of an invocation at a single replica, and then explicitly copying its
state to the other replicas.

Because of the drawbacks of idemexecution (including the possibility of repeated invocations on
objects external to the replicated object, as well as the difficulty of handling invocations with
non-deterministic results in this scheme), the most viable mechanism seems to be cloning.
However, the Distributed Locking mechanism does not preclude the use of idemexecution in the
copy event, and provides primitives for its support.

Since a replicated object may have an arbitrary structure of logically nested objects, it is a non-
trivial problem to determine exactly what state of which objects must be copied to implement a
cloning operation. That is, it does not suffice to merely copy the state of the p-cohort to its s-
cohorts; the states of all objects nested with respect to the p-cohort which were involved in the
given operation must also be copied to their respective replicas (the nested objects of the s-
cohorts). Fortunately, the Clouds action mechanism provides a means of determining which
objects must be cloned: the action manager maintains a list of objects touched by an action. (This
is the reason behind requiring that invocations on replicated objects take place in the context of
an action.) Indeed, one need only perform cloning upon commit of an action, since the results of
an action become visible to other actions only after commit. At that time, the so-called "shadow
set" of each touched object is available. (In very simplified terms, this is the set of pages in the
object's recoverable area which have been modified by the action.) If the constraint is made that
all replicated objects be recoverable, then to implement cloning, one need only copy the shadow
set of each touched object to the other replicas in that object's set, and perform the commit
actions of storage management at each replica. The shadows are committed at each of the s-
cohorts as if the shadows had been produced by execution at that s-cohort.

53 Primitives for Lock and Copy Event Handlers;

If the user wishes to provide application-specific handlers for these events, the same system-
provided primitives used in the construction of the default handlers are available for use in
programming user-specified handlers. These primitives, and their purposes, include those for
such purposes as:

• acquisition at a specific replica of the currently-requested lock (with the same mode and
value, if any), for implementing lock propagation;

• invocation at a specific replica of the same operation (with the same parameters) requested at
the current replica, for implementing idemexecution;

• broadcast of state shadow sets to all replicas holding a specified lock (with a specified mode
and value), for implementing cloning via shadows; and

• invocation at a specific replica of an arbitrary operation, for implementing cloning via logs or
state reconciliation strategies.

The intention is to provide facilities at a level sufficiently low to accommodate all schemes of
interest. Some other useful predefined objects, such as those implementing list abstractions, arc
available for such purposes as maintaining and traversing We list of replicas at which locks have
been obtained (and to which the object state must later be copied).

The primitives described above are encapsulated in an Aeolus pseudo-object called Distl.ock.
The definition of Disthock is presented in its entirety in Appendix 13

-B - 19-

implementation of pseudo object quorum is

! Here, we define handlers for the lock and copy events which
! implement quorum consensus. This pseudo object is imported
! by any availspec wishing to use its predefined handlers.

import DistLock

procedure quorum lock () is
! A simple-minded lock event handler for quorum consensus.
! Locks are obtained on at least a minimum quorum assignment
! specified by the assignment matrix generated by the
! importing avaspec.

this_version ,
max_version : version_number
num_locked
good_replica : replica_number

begin
! Find out how many replicas have been locked already by
! the current action.
num_locked 	DistLock @ currently_locked()

! Initially, the latest version seen is set to this
! instance's version number.
max_version := DistLock @ my_version()

! Attempt to lock all available replicas.
for r in replica_number[1 	DistLock @ degree()] loop

if. DistLock @ lock replica(r, this_version) then
num_locked += I
if this_version > max_version then

max_version := this_version
good_replica 	r

! remember which replica has the latest version
end if

end if
end loop

! At least a quorum of replicas must have been locked. If
! not, abort the invoking action.
if num_locked < DistLock @ quorum_size() then

AbortMyself()
end if

! If there is a later version of the state than that - of
! this replica, c.:-)py it here. 	(This npdat 	th(, locdi
! version number.)

if good_replica 	> DistLock @ my_replleA() t:fl,;r1

if not DistLort 	get_state(good_replica) then
uort_MyseL:() 	! replloa was anavailable

-B-20-

end if
end if

! Copy the local state to all replicas which have version
! number less than that of the local copy.
for r in replica_number(1 	DistLock @ degree()] loop

if not DistLock @ send_state(r) then
Abort_Myself() 	replica was unavailable

end if
end loop

end procedure ! quorum lock

procedure quorum_copy is
! The copy event handler for quorum consensus. The shadow set
! is copied to the set of replicas locked in the lock event.

begin
if not DistLock @ broadcast_ shadows() then

Abort_Myself() ! copy was unsuccessful
end if

end procedure ! quorum_copy

end implementation. ! quorum

Figure 6. Lock and Copy Event Handlers for Quorum Consensus

5.4 Examples of Event Handlers in Distributed Locking

A sample implementation of lock and copy event handlers using the General Quorum
Consensus algorithm are given in Figure 6. The treatment of these event handlers has been kept
on a fairly naive level to avoid obscuring neither the general lines of the algorithm used nor the
use of the Distributed Locking primitives. The handlers are encapsulated in a pseudo-object
called quorum which may be imported by an avail spec in order to use its handlers.

As described in a previous section, the replica of an object at which an operation is invoked is
called the primary cohort or p-cohort; a request for a lock at the p-cohort causes its lock event
handler to be activated. The handler for the lock event, here called quorum lock. attempts
to lock each other available replica (called secondary cohort or s-cohort) by use of the
lock_replica Distributed Locking primitive; if successful, this primitive returns the version
number of the new s-cohort as an out parameter. The maximum version number over all s-
cohorts is determined and compared with the version number of the p-cohort; if the latter is not
the latest version, the state of the s-cohort having the latest version is copied to the p-cohort. In
any case, at this point the latest state is copied to all s-cohorts having earlier states. If the number
of s-cohorts is not at least as great as the quorum assignment for the requested lock mode, the
enclosing action is aborted.

When the action enclosing the operation invocation prepares to commit, the copy event handler
(here called quorum_copy) is activated. This handler uses the broadcast shadows
primitive to copy the shadow set (of changed pages) oh . the p-cohort to the s-cohorts locked in all
activations of the lock event handler by the current action. If the copy is successful, the
shadow sets arc committed at the s-cohorts as well as the p-cohort to yield the updated state.

—B-21-

There are obvious improvements which might be made to this simple version of quorum. For
example, quorum lock relies on the lock_replica primitive to "fall through" when an
attempt is made to lock a replica which is already an s-cohort. A more sophisticated
implementation could maintain a set of replica numbers representing the current set of s-cohorts
in order to avoid the overhead of a remote invocation for each redundant lock_replica call.

The use of the broadcast_shadows primitive in quorum_copy requires that the states of

all s-cohorts be identical to that of the p-cohort when the lock event handling is complete, so
that the shadow set broadcast during the copy event can be committed into a common
permanent state at each replica; this is achieved by copying the state of the replica with the latest
version number to those replicas with earlier versions of the state. This implementation assumes
that it is uncommon for the version number of a replica to be "out of synch" with its fellow
replicas, which is a reasonable assumption if most, if not all, replicas are available to become s-
cohorts during each lock event. If this assumption is invalid, it may be more efficient to avoid
copying of the latest state to the s-cohorts during the lock event and copying shadow sets
during the copy event by copying the entire state of the p-cohort to the s-cohorts during the
copy event.

6. Related Work
In this section, previous work on the properties of resilience and availability in distributed
applications is examined. The issues of resilience in work related to Clouds have been examined
in previous Clouds dissertations [A11c83a, Spaf86, Pitt86]; The discussion in this chapter thus
concentrates on the issues of availability as treated by other researchers, except where the
previous work relates to the linguistic support for resilience as provided in Aeolus.

The study of the use of replication to enhance availability first occurred in the area of distributed
database systems, and was later adopted in the area of distributed operating systems. Thus, the
problems in the control of concurrency among replicated objects were studied and, for the most
part, solved by database researchers; the concurrency control methods used by the operating
systems projects described below are largely derived from the database research. A survey of this
work appears in a recent book by Bernstein et al. [Bcm87] The history of these efforts is also
summarized by Wright [Wrig84]. However, the research in database systems has been limited to
consideration of "flat" objects, such as records or files; as was shown in Section 1, the
generalization to arbitrary structure of objects in distributed operating systems research leads to
problems related to the mechanisms used for the copying of state among replicas.

6.1 Replication in Database Systems

As with most of the topics involved in the study of distributed systems, the synchronization and
recovery of replicated data was first studied in the area of distributed database systems.
Examples of database concurrency control methods methods arc voting schemes
[Giff79,Thom79], available-copy methods [Good83], primary copy methods [Ston79], and
token-passing schemes [LeLa78]. The intent of these methods is to ensure consistency of the
replicated data by requiring access to a special copy or set of copies of the data during failures or
partitions. Primary copy methods allow access to a copy during a network partition only if the
partition possesses the designated primary copy of the data. Token-passing schemes arc an
extension of primary copy methods; a token is passed a—^ng sites holding a copy of data, and
that copy at the site currently holding the token is considered the primary copy. Yet another
extension of primary copy methods are the voting schemes. Each copy of the data ()Neu is
assigned a (possibly different) number 01 votes; a partition possessing a majority of the votes for
that object may access it.

-B -22-

Finally, available-copy methods follow a "read-one, write-all-available" discipline. A read
operation may access any initialized copy (that is, one which has already processed a write
operation). A write operation must access all copies; those which are unavailable for writing are
called missing writes. A validation protocol, which runs after all reads and writes of a
transaction have either been processed or timed out, guarantees one-copy serializability. This
protocol ensures that all copies for which missing writes were recorded are still unavailable, and
that all copies accessed are . still available. Several researchers have recently proposed
enhancements to the original available-copies algorithm [Skee85, EI-A85, Long87].

El Abbadi has recently proposed a paradigm for developing and analyzing concurrency control
protocols for replicated databases, especially those handling partition failures [El-A87]. He has
also proposed a new protocol, developed within this paradigm, which allows read and write
access to data despite partitions.

6.2 Replication in Operating Systems

Previous work in the area of replication of data in distributed operating systems includes the ISIS
system at Cornell, the Eden system and the Emerald language at the University of Washington,
the Argus system at MIT, Cooper's work on the Circus replicated procedure call facility at
Berkeley, the HOPS project at Honeywell, Inc. and Herlihy's work at MIT (General Quorum
Consensus) and CMU (Avalon).

6.2.1 ISIS The ISIS system developed at Cornell [Birm84, Birm85] supports k-resilient objects
(objects replicated at k+1 sites and which can tolerate up to k failures) by means of checkpoints
and the "available copies" algorithm. ISIS objects can refer to other objects, although
apparently all such "nested" objects are considered to be external. This system provides both
availability and forward progress; that is, even after up to k site failures, enough information is
available (at the remaining sites possessing an object replica) that work started at the failed sites
can continue at these remaining sites. This is accomplished through a coordinator-cohort
scheme, where one replica acts as master during a transaction to coordinate updates at the other,
"slave" replicas ("cohorts"). The choice of which replica acts as coordinator may differ from
transaction to transaction. The object state is apparently copied from the coordinator to the
cohorts via a cloning operation; this operation has been described as propagating a checkpoint of
the entire coordinator [Birm84], or, in a more recent paper, as propagating the most recent
version in a version stack [Birm85]. In the current system, it is assumed that the network is not
subject to partitioning.

In ISIS, a transaction is not aborted when a machine on which its coordinator is running fails
(transactions are usually aborted only when a deadlock situation arises). Rather, the transaction is
resumed at a cohort from the latest checkpoint, in what is called restart mode; this cohort
becomes the new coordinator. Operations which the coordinator had executed after the latest
checkpoint took place must be re-executed at the new coordinator.

In the course of an operation on a k-resilient object, the coordinator may perform operations on
other objects to which it contains references. Such operations on "nested" objects arc called
external actions. Inconsistencies can arise due to external actions performed during restart mode;
operations performed on external objects by the new coordinator in this mode were also
performed by the old coordinator belOre it failed. Thus, unless the operations on external objects
are idempotent, inconsistencies can arise. (This problem is closely related to the problem of
idernexecution on external objects, discussed in Section 1.) This problem is solved in ISIS by
requiring external objects to retain results of operations; these retained results are associated with
a transaction ID. When a new coordinator takes over from a failed coordinator and enters restart
mode, it uses the same IDs for its external operations, and rather than re-execute these operations,

—B -23-

the external objects merely return the associated results.

There is also an idemexecution scheme due to Joseph [Jose85,Jose86] which was apparently
implemented as an experiment using the ISIS system as a testbed, rather than as part of the ISIS
replication mechanism itself. In Joseph's scheme, the coordinator performs the requested
operation, and then instructs its cohorts to perform the same operation.

Recently, a new version of the ISIS system, called ISIS-2, has been designed; it is anticipated that
this new system will be operational by Fall 1987. The ISIS-2 design exploits a new abstraction
called the virtually synchronous process group [Birm87]. In this abstraction, a distributed set of
processes cooperate to perform work in an environment in which broadcasts, failures, and
recoveries are made to appear synchronous.

6.22 Eden and Emerald The Eden system [Alme83,B1ac86] was under development at the
University of Washington from September 1980 until late 1986; the system has been operational
on a collection of VAX systems (and later Sun workstations) since April 1983. Support in the
Eden system for replication has been studied at both the kernel level and the object level. The
kernel level implementation of replication support is called the Replect approach (for replicated
"Ejects," or Eden objects), while the object level implementation is called R2D2 (for
"Replicated Resource Distributed Database"). Both implementations use quorum consensus for
concurrency control.

In Eden, objects are active, that is, each object encapsulates—besides data and operations on the
data—one or more active processes which are permanently associated with that object.
Normally, an object has two forms: an active form (AF) which exists in volatile memory, and a
passive representation (PR), which is a checkpoint of the AF on disk. The PRs are maintained in
permanent object databases (PODs), one of which exists on each node in the system. In the
unreplicated case, an object has only one AF and one PR at any time.

In the Replect approach [Prou85], although the PR of the object is replicated, the object still has
only one AF at any time. Thus, one capability is used to refer to all replicas of the object. Hence,
a Replect is referenced by the user in the same way as a normal object; the Replect mechanism is
transparent to clients of a Replect. A transaction management facility is required to ensure that
multiple AFs are not produced by competing transactions despite crashes. (The basic Eden
system does not provide a transaction management facility.) Updates are performed by selecting
one of the PODs to act as transaction manager in a master/slave protocol.

In the R2D2 approach [Pu85], each replica is a complete object, consisting of an AF as well as a
PR. Each replica is unaware of the others, but clients must refer to the replicated object by using
a set of capabilities (to the multiple AFs), one for each replica; thus, this mechanism is less
transparent than the Replect approach. R2D2 objects are stored in a replicated hierarchical
directory structure. Invocations on objects replicated using R2D2 must use a specialized
transaction manager (called R2D2TM), which traverses the replicated directory and handles the
multiple updates on members of the set of replicas. Members of the set which arc unavailable
due to crashes arc replaced via regeneration. The level of the directory in which the unavailable
object is maintained must be updated to reflect the replacement.

The basic Eden system was not designed to handle partitions I Noe.S.SI. The two replication
approaches described above compensate for this lack in differing degrees. Using the R21)2
approach, an object will he able to regenerate it its partition contains a copy of the PR and a
suitable number of machines, and will then he able to continue to operate. I lowever, upon the
resolution of the partition, the states of competing versions of the object must he merged. Thus,
the Eden authors prefer to use voting methods, allowing simple merging of partitions, although

—B -24-

replicas in a partition without a majority will be unable to operate. Using the Replect approach,
on the other hand, problems arise even with voting methods due to the problem of avoiding
having multiple AFs. If a partition contains a quorum of PRs, but the AF is gone, it is not
possible to tell if the AF is inactive (dead) or in another partition. If one is to allow multiple AFs,
a state-merging scheme must also be provided, since the isolated AF may be updated with no
attempt to checkpoint to the PRs.

No mention is made in the Eden references of support for arbitrary structure of objects or of the
associated problems of state propagation.

Another project at the University of Washington is concerned with the design and
implementation of an object-oriented language for distributed applications [Blac86a, Blac87].
Emerald provides a hierarchy of object classifications similar to that provided by Aeolus (as
described in Section 2); however, selection of an appropriate classification for an object is made
automatically by the Emerald system. Emerald does not at present provide support for fault
tolerance.

623 Argus The Argus system at MIT [Lisk83,Lisk84,Lisk83a, Weih83] is a language and
system for distributed applications which has evolved from the CLU language. Argus provides
an object construct (called Guardian) which encapsulates data and processes, giving an
abstraction of a physical node or server. Argus also retains the cluster construct from CLU,
which provides functionality similar to that of local objects in Aeolus; however, the syntax of
Guardians is not similar to that of clusters. Resilience in Argus is based on the notion of system-
provided primitive atomic data types, from which user-defined atomic data types may be
constructed. These primitive atomic data types also define the synchronization properties of the
user-constructed types. Experience with programming a distributed, collaborative editing system
in Argus has been described by Greif et al. [Greiliti]; one criticism arising out of this experience
was that they were sometimes forced to use a Guardian where a cluster might have been more
appropriate.

Recent work at MIT has been concerned with availability issues in distributed services
[Lisk86, Lisk87]. The researchers have developed a method for constructing highly-available
services which maintain a form of view atomicity despite the presence of old information in their
states. This method requires that the properties of the information be stable in the sense that once
a property becomes true, it dots not change thereafter. Availability methods possessing this
property are useful in applications such as distributed garbage collection.

6.2.4 Circus Cooper has investigated a mechanism called the replicated procedure call, which
he implemented at Berkeley in a system called Circus [Coop84, Coop85]. In Cooper's scheme,
although replicas of an object have no knowledge of each other, they are bound (via run-time
support) into a server called a troupe which may be accessed by client objects. (The client
objects know that the server is replicated.) An object in Circus may have arbitrary structure,
containing references to both internal and external objects. However, the object is currently
required to be deterministic. His scheme uses idemexceution for slate propagation. When a
troupe accesses an external troupe (a so-called "many-to-many" call), results of operations on
objects of the server troupe are retained by the callers; these results are associated with call
sequence numbers, and are returned when subsequent calls by the replicas of the caller troupe
with the same sequence numbers are encountered. ihus avoiding the inconsistencies p()ssible with
klemexecution on external objects. Concurrency control is by majority voting. Thus, if a
partition does not have a Majority 01 troupe ritentberS, invocations will not he able to proceed.

-B -25-

6.2.5 The HOPS Project The Honeywell Object Programming System (HOPS) [Hone86] under
development at Honeywell, Inc., has research goals similar to those of our methodology research.
The stated goals of the HOPS project are:

• to alleviate what is seen as a lack of experience in the field of distributed systems in
implementing mechanisms which perform failure detection, failure recovery, and resource
reconfiguration;

• to provide programming support for developing fault-tolerant distributed applications; and

• to assess the actual benefits and costs of such mechanisms in terms of performance,
reliability, and availability.

HOPS consists of an implementation language derived from Modula-2 together with a distributed
runtime support system. The language requires that HOPS objects (or HOPjects) be specified in
three parts: an interface specification, a body (or implementation specification), and a fault
tolerance specification. In the latter, the programmer may specify attributes and policies relating
to recovery, concurrency control, and replication which are to be used for that object, thus giving
the programmer a choice among several mechanisms provided by HOPS in each of these areas.
The distributed runtime system (together with the underlying host operating system) provides
facilities for naming and addressing objects, communication, failure detection and recovery, local
and distributed transaction management, concurrency control, recovery, and replication. HOPS is
currently being implemented on a network of Sun-3 workstations under the Sun version of Unix
4.2.

Mechanisms for achieving fault tolerance in HOPS include the distributed recovery block (DRB)
mechanism and distributed conversations. (The recovery block and conversation mechanisms are
described in detail in a book by Anderson and Lee [Ande81] as well as in the HOPS report cited
above.) Basically, the combination of the DRB and conversation mechanisms provide fault
tolerance by what is essentially "software modular redundancy." Processes at two or more nodes
execute one of a set of differing sections of code (called try blocks) which implement the same
specified function; the results of these try blocks must pass the same acceptance test (possibly
with majority voting), or the participating processes are rolled back to a checkpoint (called a
recovery line) and retry the computation with their alternate try blocks. Thus, both fail-stop and
some Byzantine-style failures may be detected and tolerated by this scheme.

6.2.6 General Quorum Consensus and Avalon Herlihy's work on General Quorum Consensus
[Her184] concerns the extension of quorum intersection methods to take advantage of the
semantic properties of abstract data types. Previously, work on quorum methods—mostly in the
database area—has been limited to a simple read/write model of operations. Herlihy's extensions
allow the selection of optimal quorums for each operation of an abstract data type based on the
semantics of that operation and its interaction with the other operations of the data type.

Herlihy's method is based on the analysis of the algebraic structure of abstract data types. This
entails the construction of a "quorum intersection graph," each node of which represents an
operation of the data type, and each edge of which is directed from the node representing an
operation 01 to the node representing operation 02, where each quorum of 02 is required to
intersect each quorum of 0/. From the quorum intersection graph, optimal quorums for each
operation may be calculated, given the number of replicas of the data, and the desired availability
of each operation in relation to the other operations of the data type.

I lerlihy shows that his method can enhance the concurrency of operations on replicated data over
that obtained from a read/write model of operations. lie also claims advantages for his methods
in the support of on - the - ily reconfiguration 01 replicated data, and in enhancing the availability of

-B-26-

the data in the presence of network partitions.

More recently, Herlihy has developed two new methods for integrating concurrency control and
recovery for abstract data types, called Consensus Locking and Consensus Scheduling. In these
schemes, Herlihy requires that the quorum intersection relation and the lock conflict relation (the
complement of the lock compatibility relation) for an object satisfy a common serial dependency
relation on that object; he notes that, in practice, the lock conflict and quorum dependency
relations will be the same [Her185]. A detailed comparison of Consensus Locking is presented in
[Wi1k87].

A third scheme, called Layered Consensus Locking, extends the Consensus Locking method by
associating a level with each activity in the system [Her185a]. Activities at a higher level are
serialized after activities at a lower level. If an activity executing at a given level is unable to
make progress after a failure with its current quorum assignment, it may restart at a higher level
and switch to another quorum assignment. Each initial quorum for an invocation at level n is
required to intersect with each final quorum for an event at levels <= n.

Herlihy and Wing recently have been developing a set of linguistic features, called Avalon, for
support of transaction processing [Her187]. Avalon is intended to be implemented as extensions
to pre-existing languages such as Ada and C++, and is built on the Camelot distributed system
developed at CMU. Avalon provides support for action event handling resembling that provided
by Aeolus, as described in Section 2. Avalon also provides support for testing serialization orders
dynamically.

7. Conclusions and Future Directions
In this paper, methods of achieving resilience and availability in the Clouds system have been
examined. In the course of this work, we have designed a systems programming language
providing access to the Clouds features of objects and actions, features which—used in
conjunction with the Aeolus runtime support—provide powerful support for resilience of data
and computations. Although automatic support for resilient objects—the paradigm provided by
other systems with goals similar to those of Clouds--is provided as an option in Aeolus, facilities
are also provided that allow the programmer to specify resilience mechanisms more appropriate
to the semantics of the object when desirable.

We have taken a similar approach in designing a scheme, Distributed Locking, for supporting
high availability of Clouds objects. Most distributed system projects providing support for
replication assume a certain policy for replication control, usually quorum consensus. In the
course of recent research, several algorithms for replication control displaying availability
properties more desirable than those, of other algorithms in some situations have been proposed.
Thus, it seemed advisable to provide the capability of supporting several different policies for
replication control rather than assuming any one policy. Predefined policies may be accessed as
defaults if the programmer so desires; however, since a replication control scheme other than one
of those foreseen as a pre-programmed policy may prove more appropriate to the semantics of a
given object, our scheme also allows the programmer to develop new policies using the same
library of support primitives used to develop the default policies.

7.1 Performance of Distributed Locking

We consider the Distributed Locking mechanism in the Farm &scribed in this paper to he a tool
for research into replication t ehniyues rather than a production system for real-world
applications. However, it may he instructive to estimate the perlOrmance of the mechanism in a
sample application in order to demonstrate how such estimates may be derived in other cases;

—B -27-

these derivations would be useful primarily for comparison of different replication techniques.
As a sample application, we assume a replicated object of degree three, each replica having a
permanent storage area consisting of ten pages, and using the quorum consensus handlers (as
described in Section 5) for replication control. For simplicity, we also assume that the action
being performed on the replicated object consists of an operation invocation that does not visit
other objects, and that this operation causes the entire permanent storage area to be shadowed (the
worst case).

The two-phase commit protocol in Kenley's action management design [Ken186] requires a total
of four message/acknowledgment pairs per site visited by an action. In Phase I (the Prepare
phase), the coordinating site must send each visited site a prepare message; if all goes well, each

visited site responds with a prepared message indicating success. In Phase II (the Completion
phase), if all visited sites have responded positively to the prepare message, the coordinator sends
a commit message to each visited site; if commit is successful, each visited site responds with a

committed message.

In the Clouds prototype, a message/acknowledgement pair for a message of maximum size 1.5
Kbytes requires approximately thirty malpeconds [Stri88]. (The network driver has not yet been
examined for possible performance improvements.) Thus, the messaging overhead of an action
commit is 120 ms per site, to which must be added 60 ms for the action manager to write a
commit log at the coordinating site.

Timings for writing to stable storage in the Clouds prototype have been measured by Pitts
[Pitt86]. To install the shadow version, there is a constant overhead of approximately 120 ms;
there is also a cost per page of the shadow set which ranges between 25 ms (if the write is
sequential and does not require a seek) and 51 ms (if the write is random). (These figures are
based on a driver for a relatively small, slow disk; a driver for a much faster disk has recently
been developed, and should yield much better performance figures, perhaps one-third or better of
those of the slow disk.)

If a communications environment is assumed that does not allow broadcast, then messages must
be sent separately by action management to each replica of an object touched by an action to
perform a commit. If the quorum consensus protocol is used, separate messages must also be
sent to each replica to transmit the shadow set of the coordinating site (p-cohort in the
terminology of Section 5) to the other replicas (s-cohorts); a maximum of three 512-byte pages
may be transmitted per message. However, stable storage processing may be done concurrently
at each replica once the shadow set is transmitted. Let R represent the degree of replication of the
invoked object, and P be the number of pages of permanent storage in the object. Then, for a
non-broadcast environment, the overhead of the quorum consensus copy event, i.e., the time
required to commit the simple action invocation described above on a replicated object, is given
by:

120R+60 + 30r 	(R-1) + 51P+ 120

where the first term represents the contribution by action management overhead, the second term

the time required to transmit rile shadow set to the s-cohorts (excluding the p-cohort), and the
third term the time required to write the shadow set to stable storage at each replica (assuming the
worst case in which all writes arc random); all constants are in milliseconds. For the sample
application described above (where R=3 and P=10). a commit or the simple action would require
approximately 1290 ms.

—B-28-

In the Clouds prototype, the action management messages as well as the shadow sets may be
broadcast to the replicas, thus eliminating the need for sequential messages to each replica. In
this environment, the overhead of the copy event reduces to:

120+60 + KIP/ +51P+120

and the copy event of the sample application would require approximately 870 ms in the worst
case. (If the estimates given above for the performance of the faster disk are assumed, the
overhead becomes approximately 510 ms.) Note that this expression does not depend R, the
number of replicas. The expression is indeed close to the overhead involved in committing a
single-site object on a different site than the coordinator for the action; the expression for the
single-site case does not include the second term (the overhead of broadcasting the shadow set to
the s-cohorts). The time to commit the single-site object is thus approximately 750 ms for the
slow disk in the worst case. If all writes on the slow disk were sequential (perhaps a more normal
case), the overheads would be 610 ms for the replicated object vs. 490 ms for the single-site
object.

A similar analysis may be performed of the additional activity required during the lock event
handling. Considering the handler for quorum consensus, the worst case occurs when all replicas
are available to be locked (requiring R-1 messages to perform the locking), and when the latest
version must be copied to all s-cohorts (requiring FP/1 (R-1) messages). The overhead for the
sample application in this worst case would thus be approximately 300 ms. If the state is up-to-
date at all cohorts at the time of the lock event, however, the overhead would reduce to just
that involved for the locking messages, in this case 60 ms.

7.2 Current Status

The first prototype of the Clouds operating system has been implemented and is operational. This
version is referred to Clouds v.1. This is being used as an experimental tcstbcd by the
implementors. Results of performance tests with this prototype arc available in other
publications on Clouds [Spaf86,Pitt86], and are summarized in [Dasg87]. The experience with
this version has taught us that the approach is viable. It also taught us how to do it better.

The lessons learned from this implementation are being used to redesign the kernel and build a
new prototype. The basic system paradigm, the semantics of objects, and the goals of the project
remain unchanged and v.2. will be identical to v.l. in this respect.

The structure of Clouds v.2. is different. The operating system will consist of a minimal kernel
called Ra. Ra will support the basic function of the system, that is location independent object
invocation. The operating system will be built on top of the Ra kernel using system level objects
to provide systems services (user object management, synchronization, naming, atomicity and so
on).

The Ra implementation is now in progress. The action management subsystem, the design of
which is described in Kenley's thesis lKen1861, is being redesOted to work with Ra. A compiler
and runtime system for the Aeolus language have been implemented in a Pascal variant (with
some C and assembler in the runtime system): the compiler is being rewritten in Aeolus tor
portability purposes. Implementation of Distributed I.ockiii will he posihle °lice the redesigned
action managcment subsystem is iii iThice. as Ilie interlaces to action mank , ement From Aeolus
already exist.

— B -29 -

7.3 Future Directions

The version of the Distributed Locking scheme described in this paper is based on the, policies of
lock-based synchronization and stable storage-based recovery, implemented by the action
management and storage management subsystems of Clouds, respectively. As mentioned in
Section 2, the Clouds kernel is designed so that these subsystems may be replaced with others
implementing different policies. We are currently considering the effects on the DL mechanism
of the replacement of locks with timestamp-based synchronization, and the replacement of
shadowed stable storage with log-based recovery. We anticipate that these changes will require
additions to the library of primitives supporting DL.

In addition, we are considering the effects on DL of relaxing the fail-stop assumption. This will
require primitives supporting the reconciliation of replica states which have diverged via
operating in separate partitions. These primitives may be used in conjunction with the
reinifialization object event described in Section 2.

8. Acknowledgements

We would like to express our appreciation to our co-workers on the Clouds project, past and
present, on whose work and ideas we have built. We would especially like to thank David Pitts
for his comments on earlier drafts of this paper.

This work was funded in part by NSF grant DCR-8405020, by NASA grant NAG-1-430, and by
RADC Contract Number F30602-86-C-0032.

—B-30-

REFERENCES

[Aham87] 	Ahamad, M., P. Dasgupta, R. J. LeBlanc, and C. T. Wilkes. "Fault-Tolerant
Computing in Object Based Distributed Operating Systems." PROCEEDINGS OF

THE SIXTH SYMPOSIUM ON RELIABILITY IN DISTRIBUTED SOFTWARE AND DATABASE

SYSTEMS (IEEE Computer Society), 'Williamsburg, VA (March 1987): 115-125.

[Aham87a] Ahamad, M., and P. Dasgupta. "Parallel Execution Threads: An Approach to
Fault-Tolerant Actions." TECHNICAL REPORT GIT-ICs-87/16, School of
Information and Computer Science, Georgia Institute of Technology, Atlanta, GA,
March 1987.

[Allc82] 	Allchin, J. E., and M. S. McKendry. "Object-Based Synchronization and
Recovery." TECHNICAL REPORT G1T-ICS-82/15, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1982.

[Allc83] 	Allchin, J. E., and M. S. McKendry. "Synchronization and Recovery of
Actions." PROCEEDINGS OF THE SECOND SYMPOSIUM ON PRINCIPLES OF

DISTRIBUTED COMPUTING (ACM SIGACT/SIGOPS), Montreal (August 1983).

[Allc83a] 	Allchin, J. E. "An Architecture for Reliable Decentralized Systems." PH.D.
Diss., • School of Information and Computer Science, Georgia Institute of
Technology, Atlanta. GA, 1983. (Also released as technical report GIT-ICS-
83/23.)

[Alme83] 	Alines, G. T., A. P. Black, E. D. Lazowska. and J. D. Noe. "The Eden System: A
Technical Review." TECHNICAL REPORT 83-10-05, University of Washington
Department of Computer Science, October 1983.

[Ande81] 	Anderson, T., and P. A. Lee. Fault Tolerance, Principles and Practice.
Englewood Cliffs, NJ: Prentice-Hall International, 1981.

[Bem87] 	Bernstein,. P. A., V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Reading, MA: Addison-Wesley, 1987.

[Birm84] 	Birman, K. P., T. A. Joseph, T. Raeuchle, and A. El-Abbadi. "Implementing
Fault-Tolerant Distributed Objects." PROCEEDINGS OF THE FOURTH SYMPOSIUM
ON RELIABILITY IN DISTRIBUTED SOFTWARE AND DATABASE SYSTEMS, Silver
Spring, MD (October 1984): 124-133.

[Birrn85] 	Birman, K. P. "Replication and Fault-Tolerance in the ISIS System."
PROCEEDINGS OF THE TENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES

(ACM SIGOPS), Orcas Island, Washington (December 1985). (Also released as
technical report TR 85-668.)

[Birm87J 	Binnan, K. P., and T. A. Joseph. "Exploiting Virtual Synchrony in Distributed
Systems." TECHNICAL REPORT TR 87-81I, Department of Computer Science,
Cornell University. Ithaca, NY, February 1987.

1131ac.86a) 	Black, A., N. Hutchinson. E. Jul. and II. Levy. "Ohject Sirucnire in the Nmerald
System." TECHNICAL. R[I ,()RT 86-04-03, Depanniern of Computer Science,
University of 	 se:1111c, WA. April 1956.

IBlacS71 	Black, A., N. Hutchinson, E. Jul, II. Levy, and L. Caner. "Distribution and
Abstract Types in Emerald." TRANSACTIONS ON SOF1WARE. ENGINEERING (IEEE)

—B-31-

13, no. 1 (January 1987). (Also available as University of Washington Technical
Report 85-08-05.)

[Blac86] 	Black, A. P., E. D. Lazowska, J. D. Noe, and J. Sanislo. "The Eden Project: A
Final Report." TECHNICAL REPORT 86-11-01, Department of Computer Science,
University of Washington, Seattle, WA, 1986.

[Coop84] 	Cooper, E. "Circus: A Replicated Procedure Call Facility." PROCEEDINGS OF
THE FOURTH SYMPOSIUM ON RELIABILITY IN DISTRIBUTED SOFIWARE AND

DATABASE SYSTEMS, Silver Spring, MD (October 1984): 11-24.

[Coop85J 	Cooper, E. "Replicated Distributed Programs." PROCEEDINGS OF TIIE TENTH
SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM SIGOPS), Orcas Island,
WA (December 1985): 63-78. (Available as Operating Systems Review 19, no. 5.)

[Dasg87] 	Dasgupta, P., R. LeBlanc, and W. Appelbe. "The Clouds Distributed Operating
System: Functional Description, Implementation Details, and Related Work."
TECHNICAL REPORT GIT-ICS-87-28, School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA, July 1987. (To appear in
the Proceedings of the Eighth International Conference on Distributed Computing
Systems..)

[El-A85] 	El-Abbadi, A., D. Skeen, and F. Cristian. "An Efficient, Fault-Tolerant Protocol
for Replicated Data Management." PROCEEDINGS OF THE FOURTH SYMPOSIUM
ON PRINCIPLES OF DATABASE SYSTEMS (ACM SIGACT-SIGMOD) (March 1985).

[El-A87] 	El-Abbadi, A. "A Paradigm for Concurrency Control Protocols." PH.D. DISS.,
Department of Computer Science, Cornell University, Ithaca, NY, 1987.

[Giff79] 	Gifford, D. K. "Weighted Voting for Replicated Data.- PROCEEDINGS OF TIIE
SEVENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM SIGOPS),
Pacific Grove, CA (December 1979).

[Good83] 	Goodman, N., D. Skeen, A. Chan, U. Dayal, R. Fox, and D. Ries. "A Recovery
Algorithm for a Distributed Database System." PROCEEDINGS OF TIIE SECOND
SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (ACM SIGACT-SIGMOD),
Atlanta, GA (March 1983).

[Grei86] 	Greif, I., R. Seliger, and W. Wcihl. "Atomic Data Abstractions in a Distributed
Collaborative Editing System." CONFERENCE RECORD OF THE THIRTEENTH
SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES (ACM
SIGACT/SIGPLAN), St. Petersburg Beach, FL (January 1986). (Extended
Abstract.)

[Her184] 	Herlihy, M. "Replication Methods for Abstract Data Types." PH.D. [Ass.,
Laboratory for Computer Science, Massachussetts Institute of Technology,
Cambridge, MA, May 1984. (Also released as Technical Report MIT/LCS/FR-
319.)

iller185I 	Herlihy, M. "Atomicity vs. Availability: Concurrency Control for Replicated
Data." TECHNICAL REPola Con! -CS-85-108, Compiler Science Dcpartment,
Carnegie - Mellon University, Pittsburgh, PA, February 1985.

iller185aj 	Herlihy, M. "Using •I'ype littOrmation to Frill:wee the Availability of Partitioned
Data." TECHNICAL REPORT CMU-CS-85-] 19, Computer Science Department,
Carnegie-M 'loin University, Pittsburgh. PA, April 1985.

—B-32-

[Her187] 	Herlihy, M. P., and J. M. Wing. "Avalon: Language Support for Reliable
Distributed Systems." PROCEEDINGS OF THE SEVENT'EENTII INTERNATIONAL

SYMPOSIUM ON FAULT-TOLERANT COMPUTING, Pittsburgh, PA (July 1987). (Also
available as Technical Report CMU-CS-86-167.)

[Hone86] 	Honeywell, Inc. "Fault Tolerant Distributed Systems." INTERIM SCIENTIFIC

REPORT, Computer Sciences Center, Honeywell Inc., Golden Valley, MN,
November 1986. (RADC Contract No. F30602-85-C-0300.)

[JoseS5] 	Joseph, T. A. "Low-Cost Management of Replicated Data." PH.D. Diss.,
Department of Computer Science, Cornell University, Ithaca, NY, November
1985. (Also released as Technical Report TR 85-712.)

[Jose86] 	Joseph, T. A., and K. P. Birman. "Low Cost Management of Replicated Data in
Fault-Tolerant Distributed Systems." TRANSACTIONS ON COMPUTER SYSTEMS

(ACM) 4, no. 1 (Febuary 1986): 54-70.

[Ken186] 	Kenley, G. G. "An Action Management System for a Distributed Operating
System." M.S. THESIS, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as technical report
GIT-ICS-86/0 1.)

[LeB185] 	LeBlanc, R. J., and C. T. Wilkes. "Systems Programming with Objects and
Actions." PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING SYSTEMS, Denver (July 1985). (Also released, in
expanded form, as technical report GIT-ICS-85/03.)

[LeLa78] 	LeLann, G. "Algorithms for Distributed Data-Sharing Systems Which Use
Tickets." PROCEEDINGS OF THE THIRD BERKELEY WORKSHOP ON DISTRIBUTED

DATA MANAGEMENT AND COMPUTER NETWORKS, Berkeley, CA (August 1978).

[Lisk83] 	Liskov, B., M. Herlihy, P. Johnson, G. Leavens, R. Scheifler, and W. Weihl.
"Preliminary Argus Reference Manual." PROGRAMMING METHODOLOGY GROUP
MEMO 39, Laboratory for Computer Science, Massachussetts Institute of
Technology, Cambridge, MA, October 1983.

[Lisk83a] 	Liskov, B., and R. Scheifler. "Guardians and Actions: Linguistic Support for
Robust Distributed Programs." TRANSACTIONS ON PROGRAMMING LANGUAGES
AND SYSTEMS (ACM) 5, no. 3 (July 1983).

[Lisk84] 	Liskov, B. "Overview of the Argus Language and System." PROGRAMMING
METHODOLOGY GROUP MEMO 40, Laboratory for Computer Science,
Massachussetts Institute of Technology, Cambridge, MA, February 1984.

[Lisk86] 	Liskov, B., and R. Ladin. "Highly-Available Distributed Services and Fault-
Tolerant Distributed Garbage Collection." PROGRAMMING METHODOLOGY
GROUP MEMO 48, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, May 1986.

ILisk871 	Liskov, 	B. 	"Ilighly-Available 	Distributed 	Services." 	PROGRAM MING

METHODOLOGY GROUP MEMO 52. Laboratory for Computer Science,
NI aSSZICIIUSCIIS Institute of Technology. Cambrid ge, NIA, February 1987.

lLong87! 	Long, D. I). F., and J. -F. 1),a - k. "On Improving ilic 	 of Replicated
Files.'' PRocuoiNcs OF DIE SIDI! SYMPOSIUM ON RELIABILITY IN DISTRIBUTED

SOFTWARE AND DA TA Bil.%T SYSTEMS (IEEE Computer Society), Williamsburg, VA

—B-33-

(March 1987): 77-83.

[McKe85] 	McKendry, M. S. "Ordering Actions for Visibility." TRANSACTIONS ON
SOFTWARE ENGINEERING (IEEE) 11, no. 6 (June 1985). (Also released as technical
report GIT-ICS-84/05.)

[Noe85] 	Noe, J. D., A. B. Proudfoot, and C. Pu. "Replication in Distributed Systems: The
Eden Experience." TECHNICAL REPORT TR-85-08-06, Department of Computer
Science, University of Washington, Seattle, WA, September 1985.

[Pitt86] 	Pitts, D. V. "Storage Management for a Reliable Decentralized Operating
System." PH.D. DISS., School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as Technical Report
GIT-ICS-8621.)

[Pitt87] 	Pitts, D. V., and P. Dasgupta. "Object Memory and Storage Management in the
Clouds Kernel." TECHNICAL REPORT GIT-ICS-87/15, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, March 1987.
(To appear in the Proceedings of the Eighth International Conference on
Distributed Computing Systems.)

[Prou85] 	Proudfoot, A. B. "Replects: Data Replication in the Eden System." M.S. THESIS,
Department of Computer Science, University of Washington, Seattle, WA,
December 1985. (Also released as University of Washington Technical Report
TR-85-12-04.)

[Pu85] 	Pu, C., J. Noe, and A. Proudfoot. "Regeneration of Replicated Objects: A
Technique for Increased Availability." TECHNICAL REPORT TR-85-04-02,
Department of Computer Science, University of Washington, Seattle, WA, April
1985.

[Sch183] 	Schlichting, R. D., and F. B. Schneider. "An Approach to Designing Fault-
Tolerant Computing Systems." TRANSACTIONS ON COMPUTER SYSTEMS (ACM) 1,
no. 3 (August 1983): 222 -238.

[Skee85] 	Skeen, D. "Determining the Last Process to Fail. — TRANSACTIONS ON COMPUTER
SYSTEMS (ACM) 3, no. 1 (February 1985): 15-30.

[Spaf86] 	Spafford, E. H. "Kernel Structures for a Distributed Operating System." PH.D.
Diss., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (Also released as technical report GIT-ICS-
86/16.)

[Ston79] 	Stonebreaker, M. "Concurrency Control and Consistency of Multiple Copies of
Data in Distributed INGRES." TRANSACTIONS ON SOFTWARE ENGINEERING
(IEEE) 5, no. 3 (May 1979).

[Stri88] 	Strickland, 11. "Networking Support for a Distributed Operating System." M.S.
THESIS, School of Information and Computer Science, Georgia Institute of
Technology. Atlanta, (IA, 1988. (In progress.)

iTlion179j 	Thomas, R. ii. '`.;\ Majority Consensus Approach to Concurrency Control for
Multiple-Copy Databases." 7VIA's1(71(WS' ON 0.17111til.CE SYSTEMS (ACN..1) 4, no. 2
(June 1979).

I We i 118 3 1
	

Weihl, W., and B. Liskov. "Specification and Implementation of Resilient

—B-34-

Atomic Data Types." SYMPOSIUM ON PROGRAMMING LANGUAGE ISSUFS IN

SOFTWARE SYSTEMS (June 1983).

[Wilk85] 	Wilkes, C. T. "Preliminary Aeolus Reference Manual." TECHNICAL REPORT
GIT-ICS -85107, School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1985. (Last Revision: 17 March 1986.)

[Wilk86] 	Wilkes, C. T., and R. J. LeBlanc. "Rationale for the Design of Aeolus: A Systems
Programming Language for an Action/Object System." PROCEEDINGS OF THE

1986 INTERNATIONAL CONFERENCE ON COMPUTER LANGUAGES (IEEE Computer
Society), Miami, FL (October 1986): 107-122. (Also available as Technical
Report GIT-ICS-86/12.)

[Wilk87] 	Wilkes, C. T. "Programming Methodologies for Resilience and Availability."
PH.D. Diss., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1987. (Also available as Technical Report GIT-ICS-
87/32.)

[Wrig84] 	Wright, D. D. "Managing Distributed Databases in Partitioned Networks." PH.D.
Diss., Department of Computer Science, Cornell University, Ithaca, NY, January
1984. (Also available as Cornell University Technical Report 83-572.)

-B -35-

Appendix A
In this appendix, the Aeolus definition part for a resilient symbol table object is presented. This
example is used in Section 4.

definition of local object symtab
(name_type : type, value_type : type) is

! Single-copy symbol table object using the Aeolus/Clouds lock
! mechanisms for synchronization. The definition part
! contains specifications of public constants, types, and
! operations defined by this object. When compiled, it
! produces a symbol table file which may be imported by other
! objects using this object in their implementations.

operations

procedure insert (name : name_type
value : value_type ,
error : out boolean) modifies

! The insert operation places an entry into the
! symbol table. error is set if an entry with the
! same name already exists.

procedure delete (name : name_type
error : out boolean) modifies

! If the delete operation finds an entry with the
! given name, it removes the entry from the symbol table
! and frees its storage space.

procedure lookup (name : name_type
error : out boolean)

returns value_type examines
The lookup operation tries to locate the entry with
the given name and returns its value if it succeeds.
error is set if the entry is not in the table.

procedure quick_list () examines
The quick_list operation provides a quick (dirty)
listing of all names currently in the symbol table.

procedure exact_list () examines
The exact_list operation provides a listing of the
exact state of the symbol table at a given point in time.
To do this, it locks the whole symbol table, thereby
excluding any changes during preparation of the listing.
Thus, although exact_list, lookup, and
quick_list operations may execute concurrently, and
insert and delete operations which access
different hash buckets may also execute c --:nci.rr, , mt. ly,
insert and delete < o rat ions must block on

. exact_list operat:-ns.

end definition.

-B -36-

Appendix B

In this appendix, the Aeolus definition part serving as the user interface to the Distributed
Locking primitives is presented. This interface is discussed in Section 5.

definition of pseudo object DistLock is

! Interfaces to primitives provided for support of the
! Distributed Locking mechanism. This pseudo-object is
! imported automatically by every availspec, and is not
! available for use by other compilands.

type replica_number is new unsigned
! A replica_number is used to name an individual replica of a
! group. The naming scheme used here is the "horizontal"
! method as described in Chapter VII of this dissertation.
! The replica_number is concatenated by the system to the
! capability of the object to which the invoking availspec
! belongs to form an extended capability as defined by the
! horizontal scheme.

type version_number is new longuns
! A version_number is used to compare the currency of
! the states of replicas. The version number of an object is
! incremented whenever an invocation is performed on it, or
! when the state of the objected is updated by use of one of
! the designated operations described below.

operations

procedure lock_replica (rep : replica_number
ver : out version_number)

returns boolean modifies
! The IMIKJepliCa operation obtains the
! currently-requested lock at the replica denoted by rep.
! This operation should be invoked only within a lock event
! handler. The lock variable, domain value, and mode
! requested are obtained from the context of the lock
! event which caused the invocation of the handler.
! The replica denoted by rep is added to a list of the
! replicas touched by the current action.
! The version number of the state of rep is returned
! in the Out parameter ver.
! If lock_replica is unable to obtain the lock on
! rep, or if the requested lock is already held
! at rep by the current action, the operation returns
! 	i,SE, otherwise TRUE.

—B -37-

procedure invoke_replica (rep : replica_number)
returns boolean modifies

! The invoke_replica operation causes the current operation
! to be executed at the replica denoted by rep. This
! operation should be invoked only within a copy event
! handler. The operation number and other parameters are
! obtained from the context of the lock which caused the
! invocation of the handler. The version number of rep
! is set to the value of that of the invoking object.
! This operation is used for implementing state copying by
! idemexecution. If the invocation on rep is
! unsuccessful, the operation returns FALSE, otherwise
! TRUE.

procedure broadcast_shadows () returns boolean modifies
! The broadcast_shadow operation causes the "shadow set"
! of the permanent state of the current action to be
! broadcast to all replicas at which locks were obtained by
! the current action via the lock replica operation.
! The version numbers of the locked replicas are updated
! to equal that of the invoking object. This
! operation should be invoked only within a copy event
! handler. This operation is used for implementing state
! copying by cloning using shadows. If all locked
! replicas successfully receive the shadow set, the
! operation returns TRUE, otherwise FALSE.

procedure get_state (rep : replica_number)
returns boolean modifies

! The get_state operation causes the state of the
! replica denoted by rep to be transmitted to the
! current object. The state is installed at the current
! object, and its version number set to that of rep.
! If the transmission or installation fails, the operation
! returns FALSE, otherwise TRUE.

procedure send_state (rep : replica_number)
returns boolean modifies

The send_state operation causes the state of the
current object to be transmitted to the replica denoted
by rep. The state is installed at rep, and
its version number set to that of the current object. If
the transmission or installation fails, the operation

. returns FALSE, otherwise TRUE.

—B-38-

	

procedure invoke_acceptor (rep 	: replica_number ,
state : address

	

len 	: longuns) modifies
! The invoke_acceptor operation causes the invocation
! of the accept event handler at the replica denoted by
! rep. The information the address of which is given by
! state and which is of length len bytes is copied to the
! environment of the accept handler at rep. This operation
! may be used in a copy event handler to implement state
! copying by cloning using logs, or in a remit event
! handler to implement state reconciliation strategies.

procedure degree 0 returns replica_number examines
! The degree operation returns the total number of
! replicas of the current object including itself.

procedure my_replica () returns replica_number examines
! The my_replica operation returns the replica number of
! the current object.

procedure my_version () returns version_number examines
! The my_version operation returns the version number of
the current object's state.

procedure quorum_size () returns replica_number examines
! The quorum_size operation returns the minimum size of
! a quorum for the currently-requested lock mode.

procedure currently_locked () returns replica_number
! The currently_locked operation returns the number of
! replicas on which the currently-requested lock mode has
! been obtained, including the current object.

end definition. ! DistLock

Appendix C

The Clouds Distributed Operating System: t

Functional Description, Implementation Details

and
Related Work.

Partha Dasgupta, Richard J. LeBlanc jr., & William F. Appelbe.

School of Information and Computer Science

Georgia Institute of Technology

Atlanta GA 30332

Abstract

Clouds is an operating system in a novel class of distributed operating

systems providing the integration, reliability and structure that makes a

distributed system usable. Clouds is designed to run on a set of general

purpose computers that are connected via a medium-to-high speed

local area network. The structure of Clouds promotes tran.sparency,

support for advanced programming paradigms, and integration of

resource management, as well as a fair degree of autonomy at each

site.

The system structuring paradigm chosen for the Clouds operating sys-

tem, after substantial research, is an object/thread model. All instances
of services, programs and data in Clouds are are encapsulated in

objects. The concept of persistent objects does away with the need for

file systems, and replaces it with a more powerful concept, namely the

object system. The facilities in Clouds include integration of resources

through location transparency; support for various types of atomic
operations, including conventional transactions: advanced support for

achieving fault tolerance, and provisions for dynamic reconfiguration.

1. Introduction

Clouds is a distributed operating system under develop-

ment. The goal of the Clouds project is to develop an instance of

a class of distributed operating systems that provide the integra-

tion, reliability and structure necessary to make distributed com-

puting system usable.

Clouds is designed to run on a set of general purpose com-

puters (uniprocessors or multiprocessors) that are connected via a
medium-to-high speed local area network. The major design

objectives for Clouds arc:

• Integration of resources through cooperation and location

transparency.

• Usable support for various forms of atomicity, including

transaction processing, and the ability to achieve fault toler-

ance (if needed).

ibis research was partially supponed by NASA under contract number NAG-I -430
and NSF under contract number DCS-8316590 and CCR-8619886.

• Efficient design and implementation.

• Simple and uniform interfaces for distributed processing.

The paradigm used for defining and implementing the

software structure of the Clouds system, chosen after substantial

research is an object/thread model. This model provides threads

to support computation and objects to support an abstraction of

storage. (These concepts arc defined in sections 2 though 4).

This model has been augmented to support atomicity of compu-

tation to provide support for reliable programs [A183, ChDa87].

In this paper, we provide a functional description of the system

(sections 2 to 6), some implementational details (section 7), and

discussion of related work (section 9).

1.1. Current Status

The first version of the Clouds operating system has been

implemented and is operational. This version is referred to

Clouds v.l. This is being used as an experimental testbcd by the

implementors.

Some of the performance figures for Clouds v.l. were:

Local Invocations 	10 mscc

Remote Invocations 	40 mscc
Commit of 1 page data 	180 mscc

These figures are large due to several factors. The VAX architec-

ture was not very suitable for implementing objects, and flushing

of the translation buffers for each invocation causes the local

invocation to be more expensive than expected IRaKh881. The

Ethernet hardware used in our VAX-11/750 is slow, and coupled

with a non-optimized driver gives us poor performance on round
trip messages and hence large remote invocation times. The disk

used in the commit tests was also exceedingly slow (40msec

seek, 25msec/page write.) However, the experience with this ver-

sion has taught us that the approach works. It also taught us how

to do it. better.

The lessons learned from this implementation are being

used to redesign the kernel and build a new version. The basic

system paradigm, the semantics of objects and threads and the

goals of the project remain unchanged and v.2. will be identical

to v.l. in this respecL

The structure of Clouds v.2. is different. The operating sys-

tem will consist of a minimal kernel called "Ra". Ra will support

the basic function of the system, that is location independent

object invocation. The operating system will be built on top of

the Ra kernel using system level objects to provide systems ser-

vices (user object management, synchronization, naming, atomi-

city and so on.)

- C-2 -

2. Objects

All data, programs, devices and resources on Clouds are

encapsulated in entities called objects. The only entity recog-

nized by the system, other than an object is a thread. A Clouds
object, at the lowest level of conception, is a virtual address

space. Unlike virtual address spaces in conventional operating

systems, a Clouds object is neither tied to any process nor is

volatile. A Clouds object exists forever (like a file) unless expli-
citly deleted. As will be obvious in the following description of

objects, Clouds objects are somewhat 'heavyweight', that is they

arc suited for storage and execution of large-grained data and

programs. This is due to the fact that invocation and storage of

objects bear some non-trivial overhead.

Every Clouds object is named. The name of an object, also

known as its capability, is unique over the entire distributed sys-

tem and does not include the location of the object. That is, the

capability-based naming scheme in Clouds creates a uniform, flat

system name space for objects, and allow for object mobility

needed for load balancing and reconfiguration.

An object consists of a named address space, and the con-

tents of the address space. Since it does not contain a process, it

is completely passive. Hence, unlike objects in some object

based systems, a Clouds object is not associated with any server

process. (The first system to use passive objects, though in a

multiprocessor system was Hydra [Wu74, WuLe811).

Threads are the active entities in the system, and are used

to execute the code in an object (details in sections 2 and 3). A

thread executes in an object by entering it through one of several

entry points, and after the execution is complete the thread

leaves the object. Several threads can simultaneously enter an

object and execute concurrently (or in parallel, if the host

machine is a multiprocessor.)

Objects have structure. They contain, minimally, a code

segment, a data segment and a mechanism for extending limits

of storage allocated to the object. Threads that enter an object
execute in the code segment. The data segment is accessible by

the code in the code segment, but not by any other object. Thus
the object has a wall around it which has some well-defined

gateways, through which activity can come in. Data cannot be

transmitted in or out of the object freely, but can be moved as

parameters to the code segment entry points (see discussion on

threads).

Clouds objects can be defined by the user or defined by the

system. Most objects are user-defined. Some examples of

system-defined objects are device drivers, name-service handlers,

communication systems, systems software, utilities, and so on.

The basic kernel (Ra) is not an object; it is an entity that
provides the support for object invocation. A complete Clouds
object can contain user-defined code and data; system-defined

code and data that handle synchronization, recovery and commit;

a volatile heap for temporary memory allocation; a permanent

heap for allocating memory that will remain permanent as a part

of the data structures in the object; locks; and capabilities to

other objects.

Files in conventional systems can be conceived of a special
case of a Clouds object. Thus, Clouds need not support a file

system, but uses an object system. This is discussed in further
detail in section 4.

Though, Clouds objects can be created, deleted and mani-
pulated individually, the operating system is designed to support

a class and instantiation mechanism. An object in the system

can be an instance of its template. An object of a certain type is

created by invoking a 'create' operation on the template of this

type. Each template is created by invoking a create operation on

a single template-template, which can create any template, if pro-

vided, as argument, the code and data definitions of the template.
The templates, the template-template and all the instances

thereof, are regular Clouds objects, and, as discussed earlier,

they exist from the time of creation, until explicitly deleted.

3. Threads

The only form of activity in the Clouds system is the
thread. A thread can be viewed as a thread of control that exe-

cutes code in objects, traversing objects as it executes. Threads

can span objects, and can span machine boundaries. In fact.

machine boundaries arc invisible to the thread (and hence to the

user). Threads are implemented in the Clouds system as light-

weight processes, comprising of a PCB and a stack (but no vir-

tual space). A thread that spans machine boundaries is imple-

mented by several processes, one per site.

Upon creation, a thread starts up at an entry point of an

object. As the thread executes, it executes code inside an object

and manipulates the data inside this object. Thc code in the

object can contain a procedure call to an operation of another

object. When a thread executes this call, it temporarily leaves the

caller object and enters the called object, and commences execu-

tion there. The thread returns to the caller object after the execu-

tion in the called object terminates. The calls to the entry point
of objects are called object invocations. Object invocations can

be nested. The code that is accessible by each entry point is

known as an operation of the object.

A thread executes by processing operations defined inside

many objects. Unlike processes in conventional operating sys-

tems, the thread often cross boundaries of virtual address spaces.
Addressing in an address space is, however, limited to that

address space, and thus the thread cannot access any data outside

an address space. Control transfer between address spaces occurs

though object invocation, and data transfer between address

spaces occurs through parameters to object invocation.

When a thread executing in an object (or address space)

executes a call to another object, it can provide the called opera-

tion with arguments. When the called operation terminates, it

can send back result arguments. That is, object invocations may

carry parameters in either direction.

These arguments are strictly data, they may not be

addresses. Note that names (capabilities) are data. This restric-

tion is necessary as the address space of each object are disjoint,

and an addresses is meaningful only in the context of the

appropriate object. Parameter passing uses the copy-in-copy-out

method.

4. The Object/Thread Paradigm

The structure created by a system composed of objects and

threads has several interesting properties.

First, all inter-object interfaces are procedural. Object invo-

cations are equivalent to procedure calls on modules not sharing

global data. The modules are permanent. The procedure calls

work across machine boundaries. (Since the objects exists in a

global name space, there is no user-level concept of machine

boundaries.) Although local invocations and remote invocations

(also known as remote procedure calls or RPC) are differentiated

by the operating system, this is transparent to the applications

and systems programmers.

- C-3 -

Second, the storage mechanism used in the object-based
world is quite different from that used in the conventional
operating systems. Conventionally, the file is the storage
medium of choice for data that has to persist, especially since
memory is tied to processes and processes can die and lose all
the contents of their memory. However, memory is easier to
manage, more suited for structuring data and essential for pro-
cessing. The object concept merges these two views of storage,
and creates the permanent virtual space.

For instance, a conventional file is a special case of an
object. That is, a file is an object with operations such as read,
write, seek, and so on, defined in it. These operations transport
data in and out of the object through parameters provided to the
calls.

Though files can be implemented using objects, the need
for having files disappear in most situations. Programs do not
need to store data in file-like entities, since they can keep the
data in the data space in each object, structure appropriately.
The need for user-level naming of files transforms to the nccd
for user-level naming for objects.

Just as Clouds does not have files, it does not provide
user-level support for file (or disk) I/O. In fact there is no con-
cept of a "disk" or such I/O devices (except user terminals). The
system creates the illusion of a huge virtual memory space that
is permanent (non-volatile), and thus the need for using disk

storage from a programmer's point of view, is eliminated.

Messages are a paradigm of choice in message-based distri-
buted systems. In the object-thread paradigm, like the nccd for
I/O, the need for messages is eliminated. Threads need not com-
municate through messages. Thus ports are not supported. This
allows a simplified system management strategy as the system
does not have to maintain linkage information between threads
and ports.

Just as files can be simulated for those in need for them,
messages and ports can be easily simulated by an object consist-
ing of a bounded buffer that implements the send and receive
operations on the buffer. However, we feel that the need for tiles
and messages are the product of the programming paradigms
designed for systems supporting these features, and these are not
necessary structuring tools for programming environments.

A programmer's view of the computing environment
created by Clouds is apparent. It is a simple world of named
address spaces (or objects). These object live in computing sys-
tems on a LAN, but the machine boundaries are made tran-
sparent, creating a unified object space. Activity is provided by
threads moving around amongst the population of objects
through invocation: and data flow is implemented by parameter
passing. The system thus looks like a set of permanent address
spaces which support control flow through them, constituting
what we term object memory.

This view of a distributed system does have some pitfalls.
However these problems can be dealt with using simple tech-
niques (implemented by the system), which are outlined below.

Threads aborting due to errors will leave permanent faulty
data in objects they have modified. Failure of computers will
result in similar mishaps. Multiple threads invoking the same
object will cause errors due to race conditions and conflicts.
More involved consistency violations may be the results of non-
serializable executions. In a large distributed system, having
thousands of objects and dozens of machines, corruption due to
failure cannot be tolerated or easily repaired. The prevention of

such situations is achieved through the use of atomicity at the
processing level (not necessarily atomic actions). The following
section gives a brief overview of the atomicity properties sup-
ported by Clouds.

5. Atomicity

The action support is an area where the Clouds v.1. and
Clouds v.2. differ.

5.1. Actions in Clouds v.l.

In the first design, Clouds supported atomic actions and
nested actions somewhat based on the model defined by Moss in
his thesis [Mo8I]• Clouds v.1. extended Moss's model by allow-
ing custom tailored synchronization and recovery, as well as
interactions between actions and non-actions.

The synchronization and recovery properties can be local-
ized in objects, on a per object basis. The synchronization and
recovery can be handled by the system (to adhere to Moss's
semantics) or can be tailored by the user and thus provide facili-
ties beyond those allowed by standard nested transactions. Cus-
tomization is allowed by labeling of objects as "auto-sync" or
"custom-sync" and "auto-recoverable" and "custom-recoverable".
Further details can be found in Wi87].

5.2. Atomicity in Clouds v.2.

The support for atomicity in Clouds v.2. has is roots in the
above scheme, but has been changed in some respects. The fol-
lowing is a brief outline of the scheme. The actual methods used

are discussed in greater detail in [ChDa87].

Instead of mandating customization of synchronization and
recovery for application that cannot use strict atomicity seman-
tics, the new scheme support a variety of consistency preserving
mechanisms. The threads that execute are are of two kinds,
namely s-thread (or
standard threads) and cp-threads (or consistency-preserving

threads). The s-threads have a "best effon" execution scheme
and are not provided with any system-level locking or recovery.
The cp-threads on the other hand are supported by locking and
recovery schemes, provided by the system. When a cp-thread
executes, all pages it reads are read-locked and the pages it
updates are write-locked. The updated pages are written using a
2-phase commit mechanism when the cp-thread completes.

The data in the system has an instantaneous version and a
stable version. In fact, if nested threads are used, the data has a
stack of versions, the top being the instantaneous version and the
bottom being the stable version. All the threads work on the
instantaneous version. The data updated by cp-threads are com-
mitted when the cp-thread exits, while the data touched by the
s-threads are committed "eventually", using a best effort seman-

tics.

The cp-threads are allowed to interleave with s-threads, and
also the cp-threads can be used to provide heavyweight as well
as lightweight atomicity, using gcp and lcp operations, described
below.

All threads are s-threads when created. The handling of
cp-threads are programmed by the following scheme. All opera-
tions in objects in Clouds are tagged with a consistency label,
the labels used arc:

- C-4 -

• Globally-Consistent (gcp)

• Locally-Consistent (lcp)

• Standard (s)

• Inherited (i)
An object can have any number of different labels on the

operations. Also the same operation may have multiple entry
points, labeled at different atomicity levels.

A s-thread executing a gcp or lcp operation converts to a
cp-thread. A thread entering a lcp entry point, commits its
updates (inside this object) as soon as it exits the object. This
provides intra-object consistency rather than the inter-object con-
sistency provided by the gcp operations, and thus is a cheap
method of updating one object atomically. Locking and recovery
are automatic.

The standard entry points do not support any locking or
recovery. They can make use of "best-effort" semantics. They
can also be used for non-traditional purposes such as peeking at
incomplete results of actions (as they are not hindered by locking
and visibility rules of actions). Locks are available for synchron-
izing non-actions, but recovery is not supported.

The other labels as well as combination of these labels in
the same object (or in the same thread) lead to many interesting
(as well as dangerous) variations. The complete discussion of the
semantics as well as the implementation is beyond the scope of
this paper, and the reader is referred to [ChDa87]
6. Programming Support

Systems and application programming for Clouds involves
programming objects that implement the desired functionality.
These objects can be expressed in any programming language.
The compiler (or the linker) for the language, however, must be
modified to generate the stubs for the various entry points, invo-
cation handler, system call interfaces and the inclusion of default
systems function handling code (such as synchronization and
recovery.)

The language Aeolus has been designed to integrate the full
set of powerful features that the Clouds kernel supports. Aeolus
currently supports the features of Clouds v.l. but is being
expanded for added functionality of Ra and Clouds v.2.
[LeWi85, Wi85, WiLe86].

Aeolus is the first generation language for Clouds. It does
not support some of the features found in object-oriented pro-
gramming systems such as inheritance and subclassing. Provid-
ing support for these features at the language level is currently
under consideration.

7. Implementation Notes
The implementation of the Clouds operating systems has

been based on the following guidelines:

• The implementation of the system should be suitable for
general purpose computers, connected through popular net-
working hardware. Heterogeneous machincs, though not
crucial, should be allowed.

• Since the Clouds functionality is largely based on object
invocation, support for objects should be efficient in order
to make the system usable. Also, the naming, synchroniza-
tion and recovery systems should be implementable with
minimal overhead.

Since one of the primary aims of Clouds is to provide the
substrate for reliable, fault tolerant computing, the kernel
and the operating system should provide adequate support
for implementing fault tolerance. (Fault tolerance in not
discussed in this paper, the reader is referred to lAhDa871)

• The system design should be simple to comprehend and
implement.

7.1. Hardware Configuration

Clouds v.l. was built on a three VAX-11/750 computers,
connected through an Ethernet, equipped with RLO2 and RA81
disk drives. The user interface was through the Ethernet, accessi-
ble from any Unix machine.

Clouds v.2. will be implemented on a set of Sun-3 class
machines. The cluster of Clouds machines will be on an Ether-
net, and iuser will be able access them through workstations run-
ning Clouds as well as any Unix workstation.

7.2. Software Configuration and Kernel Structure
The kernel (version 2.) used to support Clouds is called Ra.

Ra is a native kernel running on bare hardware. The kernel is
implemented in C for portability, and because the availability of
C source for the UNIX kernel simplified the task of developing
hardware interfaces such as device drivers.

The kernel runs on the native machine and not on top of
any conventional operating system for two reasons. Firstly, this
approach is efficient As Clouds does not use much of the func-
tionality of conventional operating , systems (such as file
systems), building Clouds on top of a Unix-like kernel make
poor use of the host operating system. Secondly, the paradigms
and the support for synchronization, recovery, shared memory
;Ind so on; used in Clouds are considerably different from the
functionality provided by conventional operating systems, and
major changes would be necessary at the kernel level of any
operating system in order to implement Clouds.

The Ra kernel provides support for partitions, segments,
virtual spaces, processes and threads. These are the basic build-
ing blocks for Clouds. The partitions provide non-volatile
storage, the segments provide memory storage, which are used to
build objects, which in turn reside in virtual spaces. Processes
provide activity which are used to compose threads. A descrip-
tion of the design of Ra can be found in [BeHuKh87]

73. Object Naming and Invocation
The two basic activities inside the Ra kernel are system

call handling and object invocations. System call handling is
done locally, as in any operating system. The system calls sup-
ported by the Ra kernel include object invocation, memory allo-
cation, process control and synchronization, and other localized
systems functions. Object invocation is a service provided by
the kernel for user threads. The attributes that object invocation
satisfy are:

• Location independence.
• Fast, for both local and remote invocations.

• Failed machines should not hamper availability of objects
on working sites, from working sites.

• Moving objects between sites, reassigning disk units and so
on should be simple (for reconfiguration and fault tolerance
support).

- C-5 -

Location independence is achieved through a capability
based naming system. Availability is obtained through decentrali-
zation of directory information and a search-and-invoke stratcgy
coupled with a multicast based objcct location scheme, designed
for efficiency [AhAm87]. Speed is achieved by implementing
the invocation handlers at the lowest level of the kernel, on the
native machine.

7.4. Storage Mangement

The storage management system handles the function
required to provide the reliable, permanent object address spaces.
As mentioned earlier, unlike conventional systems, where virtual
address spaces are volatile and short-lived, Clouds virtual spaces
contain objects and are permanent and long lived. The first ver-
sion of the implementation is detailed in [Pi86].

The storage management system stores the object represen-
tations on disk, as an image of the object space. When an object
is invoked, the object is demand paged into its virtual space as
and when necessary. As the invocation updates the object, the
updated pages do not replace the original copy, but have shadow
copies on the disk. The permanent copy is updated only when a
commit operation is performed on the object. The storage
manager provides the support to commit an object using the
two-phase commit protocol.

7.5. User Interfaces

User interfaces can make or break an operating system.
Users do not like to switch systems, and have to re - learn the
interfaces. We plan to use Unix and X-windows as our interface
to Clouds. Unix programs can make use of Clouds facilities
through invocation support provided by a Clouds library on
Unix. Also, Clouds utilities will be available under X-windows.
This will have several implications:

Firstly, Clouds can be treated as a back-end system to the
Unix workstation, for distributed processing, computations,
object-oriented programs and atomic programs. All these facili-
ties will be available to Unix programs and the user.

Second. the user can access Clouds utilities through the X-
window system, and thus making the learning time much
smaller. We believe this approach will make Clouds easier to
access and use, and we hope to build a large user community
that is essential to the success of new operating systems.

8. Comparisons with Related Systems

Clouds is one of the several research projects that are
building object-based distributed environments. Although there
are differences between all the approaches. we feel that the area
of distributed operating systems is not mature enough to con-
clusively argue the superiority of one approach over the other. In
the following paragraphs we document the major differences
between Clouds and some of the better known projects in distri-
buted systems. (This list is not exhaustive).

One of the major difference between Clouds and some of
the systems mentioned below is in the implementation of the
kernel. Many systems implement the kernel as a Unix process',
while Clouds is implemented as a native operating system (as are
Mach and Alpha). Clouds is not intended to be an enhancement.
or replacement of, the UNIX kernel. Instead, Clouds provides a
different paradigm from that supported by UNIX (e.g.. the UNIX
paradigms of 'devices as files', unstructured files, volatile
address spaces, pipes, redirection etc.)

8.1. Argus

Argus is a language for describing objects, actions and
processes using the concept of a guardian. The language defines
a distributed system to be a set of guardians, each containing a
set of handlers. Guardians arc logical sites, and each guardian is
located at one site, though a site may contain several guardians.
The handlers are operations that can access data stored in the
guardian. The data types in Argus can be defined to be atomic,
and atomic data types changed by actions are updated atomically
when the action terminates [WcLi83, LiSc83]. The support for
Argus is built on top of Unix. and provides all the facilities of
the Argus language [Li87].

Some of the similarities between Argus and Clouds are in
the semantics of nested actions. Both use the nested action
semantics and locking semantics that are derived from Moss.
This includes conditional commit and lock inheritance. However
the consistency preserving mechanisms in Clouds have moved
away from Moss's action semantics, substantially, though retain-
ing the nested action semantics as a subset. Also the guardians
and handlers in Argus have somewhat more than cosmetic simi-
larities to objects in Clouds, as the design of Clouds was
influenced by Argus.

The differences include the implementation strategies, pro-
gramming support and support for reliability. The scheme of per-
manent virtual spaces provided by passive objects is a major
difference. As mentioned earlier, Argus is implemented on top
of a modified Unix environment. This is one of the reasons for
the somewhat marginal performance of the Argus system
observed in [GrSeWc86]. The programming support provided
by Argus is for the Argus language. Clouds on the other hand is
a general purpose operating system, not tied to any language.
Though Aeolus is the preferred language at present, we have
used C extensively for object programming. We have plans to
implement more object-oriented languages for the the Clouds
system.

8.2. Eden

Eden is a object-based distributed system, implemented on
the Unix operating system at the University of Washington. Eden
objects (called Ejects) use the active object paradigm, that is
each object consists of a process and an address space. An invo-
cation of the object consists of sending a message to the (server)
process in the object, which executes the requested routine, and
returns the results in a reply [Alm83, A113183, NoPr85].

Since every object in the system needs to have a process
servicing it, this could lead to too many processes. Thus Eden
has an active and a passive representation of objects. The passive
representation is the core image of the object stored on the disk.
When an object is invoked, it must be active, thus invoking a
passive object involves activating it. A process is created by
'exec'-ing the core image of the object (frozen earlier), and then
performs the required operation. The activation of passive
objects is an expensive operation. Also concurrent invocations of
objects are difficult and are handled through multithreaded
processes or coroutines.

file term kernel has been wed quite frequently to describe the owe service center of a
system. However when this service is provided by a Unix process rather than a resident,

intemipt driven monitor, the usage of the term is somewhat counter-intuitive.

- C-6 -

The active object paradigm and the Unix-based implemen-
tation are some of the major differences between Eden and
Clouds. Eden also provides support for transaction and replica-
tion objects (called Replects). The transaction support and repli-
cation were added after the basic Edcn system was designed and
have some limitations due to manner Unix handles disk I/O.

8.3. Cronus
Cronus is an operating system designed and implemented

at BBN Laboratories. Some of the salient points of Cronus are
the intergration of Cronus functions with Unix functions, the
ability of Cronus to handle a wide variety of hardware and the
coexistence of Cronus on a distributed set of machines running
Unix, as well as several other host operating systems [BeRe85.
GuDc86, ScTh86].

Like Eden, Cronus uses the active objects. This is neces-
sary to be able to make Cronus run on top of most host operat-
ing systems. Cronus objects are handled by managers. Often a
single manager can handle several objects, by mapping the
objects into its address space. The managers are servers and
receive invocation requests through catalogued ports. Any Unix
process on any machine on the network can avail of Cronus ser-
vices from any manager, by sending a message to the appropri-
ate manager. By use of canonical data forms, the machine depen-
dencies of data representations are made transparent. Irrespective
of the machine types, any Unix machine can invoke Cronus
objects in a location independent fashion.

8.4. ISIS
ISIS (version 1) is a distributed operating system,

developed at Cornell University, to support fault tolerant com-
puting. ISIS has been implemented on top of Unix. It uses repli-
cation and checkpointing to achieve failure resilience. If data
object is declared to be k-resilient, the system creates k+1 copies
of the object. The replicated object invocation is handled by
invoking one replica and transmitting the state updates to all
replicas. Checkpointing at each invocation is used to recover
from failures [13i85].

The goals and attributes of ISIS are different from Clouds.
ISIS is built on top of some interesting communication primi-
tives and is not built as a general purpose computing environ-
ment.

8.5. ArchOS and Alpha

Alpha is the kernel for the ArchOS operating system
developed by the Archons project at Carnegie Mellon University.
Like Clouds. the Alpha kernel is a native operating system ker-
nel designed to run on the special hardware called Alpha-nodes.
The Alpha kernel uses passive objects residing in their own vir-
tual spaces, similar to Clouds. ArchOS is designed for real time
applications supporting specialized defense related systems and
applications [Je85. No87].

The key design criteria for ArchOS and Alpha are time
critical computations and rather than reliability. Fault tolerance is
handled to an extent using communication protocols. Real time
scheduling has been a major research topic at the Archons pro-
ject.

8.6. V-System

The V operating system has been developed at Stanford
University. V is a compromise between message-based systems
and object-based systems. The basic core of V provides light-
weight processes and a fast communications (message) system.
V message semantics are similar to object invocations in the
sense that the messages are synchronous and use the send/reply
paradigm. The relationship between processes conforms to the
client-server paradigm. A client sends a request to the server,
and the client blocks until the server replies [Ch88].

V allows multiple processes to reside in the same address
space. Data sharing is through message passing, though shared
memory can be implemented through servers managing hounded
butlers. The design goals of V arc primarily speed and simpli-
city. V does not provide transaction and replication support.
These can be implemented, if necessary at the application level.

The radical difference between V and Clouds is the para-
digm used by Clouds.

8.7. Mach

Mach is a distributed operating system under development
at Carnegie Mellon lAc86I. Mach maintains object-code compa-
tibility with Unix. Mach extends the Unix paradigms by adding
large sparse address spaces, memory mapped tiles, user provided
backing stores, and memory sharing between tasks. Mach is
implemented on a host of processors including multiprocessors.

The execution environment for a Mach activity is a task.
Threads are computation units that run in a task. A single thread
in a task is similar to a Unix process. Ports arc communication
channels, supporting messages which are typed collection of data
objects. In addition, Mach supports memory objects, which are
collections of data objects managed by a server.

Support for transactions are not built into Mach, but can be
layered on top of Mach and has been implemented by Camelot
and Avalon [HeWi87J.

The approaches used by Mach and Clouds are fundamen-
tally different, as with V and Clouds.

9. Concluding Remarks

Clouds provides an environment for research in distributed
applications. By focusing on support for advanced programming
paradigms, and decentralized, yet integrated, control, Cloudy
offers more than 'yet another Unix extension/look-alike'. By
providing mechanisms, rather than policies, for advanced pro-
gramming paradigms, Clouds provides systems researchers an
adaptable, high-performance, 'workbench' for experimentation in
areas such as distributed databases, distributed computation, and
network applications. By adopting 'off the shelf' hardware, the
portability and robustness of Clouds are enhanced. By providing
a 'Unix gateway', users can make use of established tools. The
gateway also relieves Clouds from the necessity of providing
emulating services such as provided by Unix mail and text pro-
cessing.

The goal of Clouds has been to build a general purpose
distributed computing environment, suitable for a wide variety of
user communities, both within and outside the computer science
community. We are striving to achieve this through a simple
model of a distributed environment with facilities that most users

- C-7 -

would feel comfortable with. Also we are planning to experiment
with increased usage of the system by making it available to gra-
duate courses, and hope the feedback and the criticism we

receive from a large set of users will allow us to tailor, enhance
and perhaps redesign the system to fit the needs for distributed
computing, and thus give rise to wider usage of distributed sys-

tems.

10. Acknowledgements

The authors would like to acknowledge Martin McKendry
and Jim Allchin for starting the project and designing the first
version of Clouds. Gene Spafford and Dave Pitts for the imple-
mentation, Jose Bemabeau, Yousef Khalidi and Phil Hutto for
their efforts in making the kernel usable and for the design of
Ra. Also Mustaque Ahamad, Ray Chen, Kishore Ramachandran

and Henry Strickland for their participation in the project.

11. References

[Ac861 	Accetta M, et. al. Mach: A New Kernel Foundation for
Unix Development, Technical Report, Carnegie Mellon
University.

[AhAm87] M. Ahamad, M. Ammar, J. Bernabeu and M. Y. Khaldi, A
Multicast Scheme for Locating Objects in a Distributed
System. Technical Report GIT-ICS-87/01, School of Infor-
mation and Computer Science, Georgia Tech, January
1987.

[AhDa87] M. Ahamad and P. Dasgupta, Parallel Execution Threads:
An Approach to Atomic Actions. Technical Report G1T-
ICSD-87/16. School of Information and Computer Sci-
ence, Georgia Tech.

[Alm83] G. T. Almes, The Evolution of the Eden Invocation
Mechanism, Technical Report 83-01-03, Department of
Computer Science, University of Washington, 1983.

[A183] 	J. E. Allchin, An Architecture for Reliable Decentralized
Systems, Ph.D. Diss., School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA,
(Also released as technical report GIT-ICS-83/23,) 1983.

[A1B1831 G. T. Alines, A. P. Black and E. D. Lazowska and J. D.
Noe, The Eden System: A Technical Review, University of
Washington Department of Computer Science, Technical
Report 83- 10-05 October 1983.

[BeHuKh87]
J. M. Bemabeau Auban, P. W. Hutto and M. Y. A.
Khalicii, The Architecture of the Ra Kernel, Technical
Report GIT-ICS-87/35 School of Information and Corn-
puter Science, Georgia Institute of Technology, Atlanta,
GA, 1987.

[BeRc85] J. C. Berets, R. A. Mucci and R. E. Schantz, Cronus: A
Testbed for Developing Distributed Systems, October 1985
IEEE Communications Society, IEEE Military Communi-
cations Conference.

[Bi851 	K. P. Birman and others, An Overview of the ISIS Project,
Distributed Processing Technical Committee Newsletter,
IEEE Computer Society (7,2) October 1985 (Special issue
on Reliable Distributed Systems).

IC11881 	D. Cheriton The V Distributed System. Communications of
the ACM, March 1988.

[ChDa87] R. Chen and P. Dasgupta, Consistency-Preserving Threads:
Year Another Approach to Atomic Programming, Technical
Report GIT-ICS-87/43 School of Information and Com-
puter Science, Georgia Institute of Technology, Atlanta,
GA, 1987.

[Da86] 	P. Dasgupta, A Probe-Based Fault Tolerant Scheme for an
Object-Based Operating System, Proceeding of the 1st
ACM Conference on Object Oriented Programming Sys-
tems, Languages and Applications. Portland OR. 1986.

[GuDe861 R. F. Gurwitz, M. A. Dean and R. E. Schantz, Program-
ming Support in the Cronus Distributed Operating System,
May 1986, Proceedings of the Sixth International Confer-
ence on Distributed Computer Systems, IEEE Computer
Society.

[GrSeWe861
I. Greif, R. Seliger and W. Weihl Atomic Data Abstrac-
tions in a Distributed Collaborative Editing System.
(Extended Abstract) Conference Record of the Thirteenth
Symposium on Principles of Programming Languages,
ACM SIGACT/SIGPLAN, January 1986, St. Petersburg
Beach, FL.

[HeWi87] M. P. Herlihy and J. M. Wing, Avolon: Language Support
for Reliable Distributed Systems. Proceedings of the 17th
International Symposium on Fault-Tolerant Computing.
July 1987.

[Je8.5] 	E. D. Jensen et. al. Decentralized System Control, Techni-
cal Report RADC-TR-85-199, Carnegie Mellon University
and Rome Air Development Center, April 1985.

[LeNVi85] R. J. LeBlanc and C. T. Wilkes, Systems Programming
with Objects and Actions, Proceedings of the Fifth Interna-
tional Conference on Distributed Computing Systems,
Denver, July 1985. (Also released, in expanded form, as
technical report GIT-ICS-85/03)

[LiSc831 	B. Liskov and R. Scheiller, Guardians and Actions:
Linguistic Support for Robust Distributed Programs, ACM,
Transactions on Programming Languages and Systems (53)
July 1983.

[Li87] 	B. Liskov, D. Curtis, P. Johnson and R. Schcifer. Imple-
mentation of Argus. Proceedings of the Ilth ACM Sympo-
sium on Operating Systems Principles. November 1987.

[Mc84] 	M. S. McKendry, Clouds: A Fault-Tolerant Distributed
Operating System, Distributed Processing Technical Com-
mittee Newsletter, IFFF 1984, (Also issued as Clouds
Technical Memo No:42).

[Mo81] 	J. Moss, Nested Transactions: An Approach to Reliable
Distributed Computing, Technical Report MIT/LCS/TR-
260, MIT Laboratory for Computer Science, 1981.

[NoPr851 J. D. Noe, A. B. Proudfoot and C. Pu, Replication in Dis-
tributed Systems: The Eden Experience, Department of
Computer Science, University of Washington, Seattle, WA,
September 1985 Technical Report TR-85-08-06.

[No87] 	Northcutt J. D. Mechanisms for Reliable Distributed Real-
Time Operating Systems - The Alpha Kernel, Perspectives
in Computing, v16. Academic Press, 1987.

[Pi861 	D. V. Pius, Storage Management for a Reliable Decentral-
ized Operating System, Ph.D. Diss., School of Information
and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1986, (Also released as Technical Report
GIT-ICS-8681).

[Ra1088] U. Ramachandran and Y. A. Khalidi, Memory Manage-
ment Support for Object Invocation. Technical Report
GIT-ICS-88103. School of Information and Computer

- C-8 -

Science, Georgia Tech.

[ScTh86] R. E. Schantz, R. H. Thomas and G. Bono, The Architec-
ture of the Cronus Distributed Operating System, May
1986, Proceedings of the Sixth International Conference on
Distributed Computer Systems, IEEE Computer Society.

[Sp86] 	E. H. Spafford, Kernel Structures for a Distributed Operat-
ing System, Ph.D. Diss., School of Information and Com-
puter Science, Georgia Institute of Technology, Atlanta.
GA, 1986, (Also released as technical report GIT-ICS-
86/16).

[WcLi83] W. Weihl and B. Liskov, Specification and Implementation
of Resilient Atomic Data Types, Symposium on Program-
ming Language Issues in Software Systems, June 1983.

[Wi85] 	C. T. Wilkes, Preliminary Aeolus Reference Manual,
Technical Report GIT-ICS-85/07, School of Information
and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1985. (Last Revision: 17 March 1986)

[WiLe86] C. T. Wilkes and R. J. LeBlanc, Rationale for the Design
of Aeolus: A Systems Programming Language for an
Action/Object System. Proceedings of the IEEE Computer
Society 1986 International Conference on Computer
Languages. (Also available as Technical Report GIT-
ICS-86/12, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA, 1986.)

[Wi87] 	C.T. Wilkes Programming Methodologies for Resilience
and Availability. Ph.D.thesis, Georgia Tech, 1987, Techni-
cal Report GIT-ICS-87/32 School of Information and
Computer Science, Georgia Institute of Technology,
Atlanta, GA.

[Wu74] 	W. A. Wulf and others, HYDRA: The Kernel of a Mul-
tiprocessor Operating System, Communications of the
ACM, (17,6) June 1974.

IWuLc811 W. A. Wulf, R. Levin and S. P. Harbison, 11YDRAICinmp,
An Experimental Computer System, McGraw-Hill, Inc.,
1981.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314

