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ABSTRACT 

In recent years, a number of concurrency control protocols have been proposed to improve 
performance within Distributed Real Time Database Systems. Speculative Locking (SL) allows 
parallelism and execution of multiple instances of conflicting transactions to improve 
performance in Distributed Database Systems. This research extends SL by proposing two 
concurrency control protocols: Preemptive Speculative Locking (PSL), and Priority Inheritance 
Speculative Locking (PiSL). PSL allows preemption and abortion of lower priority transactions 
when conflict occurs, whereas PiSL allows the lower priority transaction to inherit the priority of 
the blocked transaction and continue execution. Using a distributed real-time transaction 
processing simulator that supports nested transaction model, an extensive set of experiments 
have been conducted which demonstrate that both PSL and PiSL outperform SL. Among the 
two proposed protocols, PSL performs better when data contention and system load are high. 
The performance metrics include number of transactions that meet their deadlines, and resource 
utilization. 



preempt and abort any lower priority transaction in case of lock conflict thus giving the 

higher priority transaction a chance to meet the deadline. PiSL, on the other hand, attempts to 

prevent any wasted work by avoiding preemption by a higher priority transaction. Instead, 

the lower priority transaction inherits the priority of the blocked transaction. This gives both 

transactions an opportunity to meet their deadline whenever possible. 

Using a distributed real-time transaction processing simulator that supports nested transaction 

model, an extensive set of experiments have been conducted to study the proposed protocols 

under varying system configurations. Both of our proposed protocols have been shown to 

consistently outperform SL protocol. However, when comparing PSL to PiSL, PSL has been 

shown to outperform PiSL when data contention and system load are high, whereas PiSL has 

been shown to have a better performance when data contention and system load are relatively 

low. 
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Chapter 1 

Introduction 

With globalization, there is a push for an increase in global connectivity, integration and 

interdependence in the economic, social, technological, cultural, political and ecological 

spheres. In the technological sphere, multinational networked organizations' need for 

exchange of information has led to the development of applications that are heavily 

dependent on globally distributed and constantly changing data. In these applications, 

transactions must not only execute correctly, but also complete within a specific time frame. 

For example, in internet stock market applications, computers of a brokerage firm are linked 

to monitor different stock markets and conduct required trading operations. These computers 

manage huge amounts of information for stock market as well as client's accounts, which 

may reside at different sites, and require timely execution of transactions [1]. When a client 

asks for a stock price or requests a transaction, the system must not only respond in a short 

amount of time, but also should receive current and accurate market information and the 

balance of the client's account in order to satisfy both the client and the brokerage firm. 

Other similar applications include Computer Aided Design and Computer Aided 

Manufacturing (CAD/CAM), Massively Multiplayer Online Games (MMOG) [10], airline 

online booking systems, telecommunication systems, e-commerce systems and real time 

traffic navigation systems. Such applications introduce the need for distributed real-time 

database systems. 
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A Distributed Real-Time Database System (DRTDBS) is a collection of multiple, logically 

interrelated databases distributed over a computer network where transactions have an 

explicit timing constraint, usually specified in the form of a deadline. In such a system, data 

shared among transactions is spread over a computer network and transactions are considered 

successful when they commit within a specified time frame. Moreover, transactions may 

access the database concurrently and share data. This requires that they maintain the 

database's logical consistency in addition to their time constraint. This requires concurrency 

control and priority mechanisms to be in place. 

Furthermore, to respond to the need of applications that rely on DRTDBS, a transaction 

model known as nested transaction has been widely adopted [1, 2, 3, 4, 5]. A nested 

transaction is considered as a hierarchy of subtransactions in which each subtransaction may 

contain other subtransactions, or contain atomic database operations (read or write) [4]. A flat 

transaction, on the other hand, contains only atomic database operations. Referring to the 

previous example of a stock market application where computers manage huge amounts of 

information, some subtransactions of the nested transaction will monitor the stocks while 

others deal with the client account. A failed subtransaction is re-executed without influencing 

other subtransactions [5]. In the case of a flat transaction, the whole transaction would be 

rolled back. More details on flat and nested transaction models will be presented in the next 

section. 

A lot of work has been devoted to the study of concurrency control protocols and priority 

mechanism for DRTDBS. The objectives are to design protocols which can minimize the 

number of transactions that miss their deadlines while maintaining database consistency [6]. 
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The goal of this thesis is to develop an efficient real time concurrency control mechanism for 

nested transactions in a DRTDBS. 

1.1. Transaction 

A transaction is a program/script/query that accesses and manipulates (reads or writes) data 

items in a database. In a database system, transactions must be processed reliably. To ensure 

this, a database system must guarantee the properties of Atomicity, Consistency, Isolation 

and Durability (ACID) for each transaction [7]. 

Atomicity requires that a transaction runs all its operations in order to have an effect on the 

database. If the transaction cannot run the totality of its operations, then the database will 

remain in an unchanged state. Consistency refers to the fact that a transaction is correct; 

when executed alone or executed with other correct transactions, a transaction should take 

the database from one consistent state to another. The Isolation property requires that 

intermediate results of a transaction are not visible to other transactions; transactions must 

see a consistent database at all times. Durability refers to the fact that transactions' results are 

permanent in the database once transactions commit, regardless of failures afterwards. 

A single transaction might require several queries, each reading and/or writing information in 

the database. When this happens, it is important to be sure that the database is not left with 

only some of the queries carried out. For example, when transferring funds from one account 

to another, even though this process might consist of multiple individual operations (such as 
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debiting one account and crediting another); it is considered as a single transaction. The 

transfer of funds can be completed or it can fail for multiple reasons, however atomicity 

guarantees that one account will not be debited if the other is not credited as well. 

Consistency, on the other hand, ensures that this transfer of funds does not break the integrity 

constraint of the database. If an integrity constraint within the database states that all 

accounts must have a positive balance, then any transaction violating this rule must be 

aborted. Moreover, isolation guarantees that no operation outside the transaction can ever see 

the data in an intermediate state; a bank manager can see transferred funds on one account or 

the other, but never on both accounts- even if he/she runs his/her query while the transfer is 

still being processed. Finally, durability ensures that once the transfer of funds has been 

completed, the transaction will persist and cannot be undone, even in case of a system failure. 

It is common in database systems to have several transactions run simultaneously and share 

data. It is important to ensure that these simultaneous transactions do not interfere with each 

other. One possible way to ensure non-interference of transactions running simultaneously 

and database integrity is to execute one transaction after another, i.e. serially. Since this is too 

restrictive, an interleaved or concurrent execution of transactions is more desirable; however, 

the final result is expected to be the same as that of a serial execution. This is called a 

serializable execution. Concurrency control algorithms are used to ensure serializable 

execution of transactions in a database system. Concurrency control mechanisms will be 

discussed further in the next section. 
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1.1.1. Flat Transaction vs Nested Transaction model. 

Flat transactions are those that have a single start point and a single termination point. In this 

model, a transaction consists of a set of partially ordered atomic read and write operations. 

The flat transaction model has been widely used in the area of databases. However, the flat 

transaction model is unfit to support the requirements of complex and advanced database 

applications like internet stock trading systems, real time traffic navigation system and 

Computer Aided Design and Computer Aided Manufacturing^AD/CAM) [1,2]. This is due 

to the fact that these database applications are by nature long, complicated (in term of the 

complexity of operations involved in performing a transaction) and require access to data 

items at various network sites [1]. 

As an example, let us consider an online purchasing application that deals with internet 

purchasing activity. An internet purchasing activity consists of different steps or operations 

which include: selecting the product, providing payment information such as a credit card 

number, providing personal data so that the credit card can be authorized and providing an 

email address so that the company supplying the product can immediately confirm the 

customer's order. In the flat transaction model, the whole process of purchasing can be 

considered as a single transaction in which each operation must complete successfully in 

order to commit the transaction. If one of the operations fails, the whole transaction will be 

rolled back. However, if each operation was considered as a subtransaction of the main 

transaction, a failed operation can be easily restarted without affecting the whole transaction. 

For example, if the authorization process fails, the system should not abort the whole 
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transaction, but request the customer to provide the correct personal information. This has led 

to the concept of nested transactions [11]. 

A nested transaction extends the flat transaction by allowing a transaction to invoke a 

primitive operation or initiate a subtransaction [1]. The root transaction, which is not 

enclosed in any transaction, is called the top level transaction. Parent transactions are 

transactions that have subtransactions, known as their children. Transactions without any 

children are called leaf transactions. A nested transaction is modeled as a tree of transactions 

where subtransactions are either nested or flat transactions. As illustrated in Figure 1, 

Transaction Ti represents the top level transaction or root transaction, Tu, T1.2 and T1.3 are 

the children of Ti. Transaction To is the parent of T0.1, T0.2 and T0.3. Transactions Tu, 

To and Tu.i are nested transactions, whereas T1.2, T0.1, T0.2, T1.3.3, Tu.1.1 and Tu.1.2 are 

flat transactions and represent leaf transactions. Also, superiors of a given subtransaction 

include all transactions on the path from the subtransaction to the root, not including the 

subtransaction itself. For example, transactions Tu and Tu.i are superiors of transaction 

Tu.1.1. Inferiors of a transaction are those transactions which are part of the subtransaction 

hierarchy spanned by the transaction, not including the transaction itself. As illustrated in 

Figure 1, transaction Tu.1.1 and Tu.i are the inferiors of transaction Tu. 
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T1 

T1.1 

T1.1.1 

I 

T1.2 

T1.3.1 

T1.1.1.1 T1.1.1.2 

T1.3 

T1.3.2 T1.3.3 

Figure 1: Nested Transaction Model 

A top level transaction has all the ACID properties discussed earlier. Hence, top level 

transactions must be isolated from each other, and, in case of failure, they must be rolled 

back without side effects to other transactions. Subtransactions, on the other hand, appear 

atomic to each other and may commit or abort independently. A nested transaction is not 

allowed to commit until all its subtransactions have committed. However, if a subtransaction 

is aborted or fails, its parent is not required to abort. Instead, the parent is allowed to perform 

its own recovery. The possible choices of the parent includes the following: (1) retry the 

subtransaction, (2) initiate another subtransaction that implements an alternative action, (3) 

ignore the condition of failure, and (4) abort if the nested transactions do not have enough 

time to execute completely [1]. The commit of a transaction depends on the outcome 

(commit or abort) of its superior; even if a transaction commits, the abortion of one of its 

superiors will undo its effects. All updates of a transaction are considered permanent only 

when the enclosing top level transaction commits. 



Unlike in the flat model where failure of any of the operations within a transaction result in 

the failure of the whole transaction, a subtransaction failure in a nested transaction model 

only affects itself and its inferiors. Therefore, the nested transaction model provides a 

powerful mechanism for both fine tuning the scope of roll backs and ensuring safe intra-

transaction concurrency in applications with complex structures. These advantages make 

nested transaction models especially suitable for real-time distributed environments [1]. The 

model used in this research is the nested transaction model. 

1.1.2. Real time transactions 

Real time transactions are transactions which, on top of meeting the correctness requirement, 

must complete by a specified time, usually in the form of a deadline. Missing this deadline 

can seriously affect the usefulness of the completing transaction. Hence, with real time 

transactions, the goal is not only to maintain database consistency, but also to satisfy the 

transaction deadline. Furthermore, the number of transactions that commit before their 

deadline must be maximized. 

Real time transactions can be divided into three categories: firm, hard and soft [7]. This is 

illustrated in Figure 2 [12] where firm, hard and soft transactions are compared to non real 

time transactions. As Figure 2 demonstrates, unlike non real-time transactions, real-time 

transactions must take transactions deadline into consideration. Depending on the category to 
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which a real time transaction belongs, missing its deadline may result in a catastrophe or may 

be ignored: 

• Hard deadline transactions are those that must complete their work before their 

deadlines, otherwise the results can be catastrophic. One can say that a large negative 

value is imparted to the system if a hard deadline is missed. These are usually safety-

critical activities, such as those that respond to life or environment-threatening 

emergency situations [12]. 

• Soft deadline transactions are transactions that can execute to completion regardless 

of their deadlines, but their contributed value to the system decreases as time 

progresses after the given deadline. Typically, their value drops to zero at a certain 

point past the deadline. For example, if components of a transaction are assigned a 

deadline derived from the deadline of the transaction, then even if a component 

misses its deadline, the overall transaction might still be able to make its deadline 

[12]. This illustrates the case of a nested transaction where subtransactions are 

assigned a deadline that is derived from the parent transaction. 

• Firm deadline transactions are transactions that are useless once they expire their 

deadlines, and therefore are aborted and their work is undone (rolled back) if they 

reach their deadline before completing their work [1]. In a nested transaction 

environment, a top level transaction might have a firm deadline while its 

subtransactions have a soft deadline. 

9 
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Soft 

Non Real Ti 

dH 

me 

dS dF 

dF - Deadline for Firm Deadline transaction 
dS - Deadline for Soft Deadline transaction 
dH - Deadline for Hard deadline transaction 

Time 

Figure 2: Types of real-time transactions 

In order to maintain database consistency and satisfy transaction deadline, real time 

transactions are assigned priorities so that their access to critical resources (CPUs, disks and 

data items) can be ordered [7]. Giving priority to transactions determines which transactions 

should be executed first and which transactions can be safely blocked or restarted in case of a 

data conflict. Hence, in order to maximize the number of transactions that commit before 

their deadline, some transactions may be preempted. When two transactions are competing 

for the same data, the transaction with lower priority can be preempted. This gives the 

transaction with higher priority an opportunity to complete and release the conflicting data, 

giving the low priority transaction an opportunity to complete as well. 

To illustrate the principle of priority, let us consider a set of transactions with release time r, 

deadline d and runtime estimate E, and the data requirement as shown in Table 1. 

Transaction Ti and T2 both update item X. Therefore these transactions must be serialized. If 
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the earliest deadline is used to assign priority to transactions, then T2 has the highest priority, 

followed by T3 and finally Ti. Figure 3 and figure 4 [17] are used for this illustration. A time 

line is shown at the bottom of each figure and a scheduling profile is shown for each 

transaction. An elevated line means that the transaction is executing on the CPU. A lowered 

line means that the transaction is not executing. The cross hatching shows when the 

transaction has a lock on a data object. The cross hatching begins when the lock is granted 

and ends when the lock is released. Finally, the scheduler assumes that estimates are perfect 

and ignores the time required to make scheduling decisions or rollback transactions. 

Transaction 

Ti 

T2 

T3 

R 

0 

0.5 

1 

E 

3.5 

2 

1.5 

d 

10 

4 

5 

Update 

X 

X 

Y 

Table 1: Transactions Data Requirement 

X Locked-" 

T2 

T3 

__—^"x Locke*—" 

-""Y Locked--"" 

Figure 3: Real Time Transactions without Priority Policy. 
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Figure 4: Real Time Transactions with Priority Policy. 

In Figure 3, transaction Ti is the only job in the system at time 0, so it gains the processor 

and executes until time 0.5, when transaction T2 arrives. During this time, Transaction Tj 

requests and gains an exclusive lock on data object X. At time 1, T3 arrives in the system and 

starts executing. Although T2 has a higher priority than Ti and T3, it is not given any special 

consideration. Tj, T2 and T3 timeshare the CPU and T2 has to wait for Ti to release the lock 

on X in order to access X. T2 must wait for Ti since the requesting transaction always waits 

for the lock holding transaction to finish and release its locks. This is true even when the 

requesting transaction has a very high priority. As a result T2 misses its deadline. Only Ti and 

T3 meet their deadlines. 

In Figure 4, on the other hand, an alternative approach is used. In this approach, one adopted 

by the High Priority policy, conflict is resolved in favour of the transaction with the higher 

priority. The favoured transaction, in this case T2, is allowed to lock the contested object (X) 

and simultaneously, the lower priority transaction Ti holding the lock is preempted. By 

preempting Ti, T2 is given a chance to meet its deadline, and since Ti has a long deadline it 

still meet its deadline as well. Hence, T], T2 and T3 all meet their deadlines. 
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1.2. Commit Protocol 

In distributed database systems, commit protocols are used to ensure transactions atomicity. 

This is accomplished through an exchange of messages, in multiple phases, between the 

participating sites where the operations of a distributed transaction are executed. One of the 

protocols that are most widely used in practice is the Two Phase Commit (2PC) protocol 

[15]. In its basic form, 2PC proceeds in two phases: the voting phase and the decision phase 

[15, 18]. In the first phase, known as the voting phase, the site where the transaction was 

originally generated (generally called the coordinator) sends a PREPARE message to all the 

sites involved (participants) in the transaction, asking them to vote on whether to commit or 

abort the transaction. If, for any reason, any of the participants responds NO, the coordinator 

decides to roll back the local transaction and sends an ABORT message to all participants. 

Conversely, if all the received responses are YES, the coordinator then decides to commit the 

local transaction and informs all the participating sites by sending a COMMIT message. The 

phase when the coordinator informs the participant about its decision to commit or abort the 

transaction is the second phase, and it is known as the decision phase. A YES vote indicates 

that the local operations have been successfully executed, and the update could be made 

permanent or durable even if a failure occurs. A participant that votes NO can unilaterally 

abort, whereas a participant that votes YES must wait for the coordinator decision to commit 

or abort. The participants must also acknowledge the coordinator's decision. This protocol is 

illustrated in Figure 5 [18]. 
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Coordinator Participant Participant 

Lee | 

I wait 

1 < | | : Write log Vote : Yes or No 

I I : Force Write log Decision : commit / abort 

Figure 5: Two Phase Commit 

In a nested transaction model, the site at which the top level transaction is committing acts as 

the coordinator and the rest of the sites at which subtransactions of the committing top level 

transaction have been executed act as participants. In this model, when a subtransaction 

commits, it releases its locks and transfers them to its parent. Hence, a subtransaction's 

commit protocol is different from that of a top level transaction [1]. As a subtransaction 

commits, it sends a READY TO COMMIT message to its parent's site. In the message, the 

subtransaction includes the list of all the locks it is holding. Upon receiving the message, for 

each lock of the subtransaction, the parent's site sends a message to the site holding the lock 

to inform it of the lock transfer. After the parent's site receives all the messages from its 

subtransactions, it assesses the messages. Upon completion of the parent transaction, and 

depending on the type of messages that came from all the subtransactions' sites, a COMMIT 
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or ABORT message will be sent to all the sites where the subtransactions are located. If it is a 

COMMIT message, then all the subtransactions will be committed; otherwise, they will all be 

aborted. Once the message is received by the subtransactions' sites, all the locks that were 

transferred from the subtransactions to the parent transaction are released. The protocols 

developed in this research utilize this commit model. 

1.3. Concurrency Control 

Concurrency control is an important mechanism for synchronizing a database access to 

maintain the database's consistency. Transactions operating on a database system must take 

the database from one database state to another without losing the database's correctness. As 

mentioned earlier, serializable execution ensures that transactions that run simultaneously do 

not interfere with each other. Concurrency control algorithms are used to guarantee 

serializable execution of transactions in a database system, while maintaining the integrity of 

the database. Most concurrency control algorithms fall into three categories: lock-based, 

timestamp-ordered and optimistic. Locking algorithms, especially the Two-Phase Locking 

(2PL) protocol, are the most widely used algorithms [19]. 

When two transactions are competing for the same data item, one solution is to make one 

transaction wait until the other transaction releases the data item common to both 

transactions. To ensure this, database systems provide locks to data items. If a transaction 

requests a lock on a data item and the lock has not been given to some other transaction, the 

requesting transaction can get the lock and keep it as long as the particular data item is being 
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operated upon. If the requested lock has been granted to some other transaction, then, the 

requesting transaction must wait. This mechanism ensures serializability within a database 

system. 

To reduce a transaction's wait time, there are two types of locks that can be used, depending 

on whether a transaction wants to perform a read operation or a write operation on a data 

item. These are readlocks and writelocks [13]. In a readlock, a transaction locks the data item 

in a shared mode. Any other transaction intending to read the same data item can also obtain 

a readlock. In writelock, a transaction locks the data item in an exclusive mode. If one 

transaction wants to write on a data item, no other transaction may get either a readlock or a 

writelock on that data item. Regardless of the type of lock, after a transaction has finished 

operating on a data item, the transaction performs an unlock operation. This operation allows 

the data item to be made available to other transactions that might be waiting. 

In the Two-Phase Locking protocol, all lock operations are required to precede any unlock 

operation. Hence, the execution of a transaction consists of two phases: the first phase, which 

is the locking phase, and the second phase, also known as the unlocking phase [8]. The first 

phase may also be considered as a growing phase in which locks are acquired but may not be 

released. By releasing the lock, a transaction is considered to have entered the second phase, 

also known as the shrinking phase. In the shrinking phase, locks are released but new lock 

may not be acquired. When the transaction terminates, all remaining locks are automatically 

released. The instance just before the release of the first lock is called the lockpoint [13]. 

Figure 6 illustrates these two phases as well as the lockpoint. 
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Figure 6: Two Phase Locking and Lock Point 

There is a challenge of extending both the serializability argument and the concurrency 

control algorithms to the distributed execution environment [14]. hi this environment, data is 

spread across multiple sites, and operations of a given transaction may execute at multiple 

sites. Hence, the serializability argument becomes more difficult to specify and enforce. To 

address this challenge, the 2PL protocol is combined with the 2PC protocol to create what is 

commonly known as the distributed two phase lock (Distributed 2PL) protocol [16]. More 

details about how Distributed 2PL works will be given in the next chapter. 

In a real time environment where the execution of concurrent transactions is scheduled to 

meet timing constraints, transactions are assigned priorities according to their deadline. If 

2PL is used as the concurrency control protocol for such transactions, a problem, known as 

priority inversion, arises [7]. Priority inversion occurs when a high priority transaction is 

o o 
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o 
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blocked by a lower priority transaction, which is an undesirable event. For example, let us 

consider two transactions TH and TR competing for the same data item. TH is holding the lock 

and TR is requesting for the lock held by TH- According to 2PL principle, TR has to wait until 

TH releases the lock. If TR is of higher priority than TH, priority inversion occurs. One 

solution to this problem is to restart the lower priority lock holder, and let the higher priority 

lock requester get the lock. This protocol is called the High Priority Two-Phase Locking (HP-

2PL) protocol [17]. 

1.4. Contribution 

Distributed 2PL, HP-2PL and many other locking protocols, extending the basic 2PL 

protocol, have been proposed to address the issue of concurrency control in distributed 

database systems and real-time database systems. For example, real-time database systems 

require that transactions complete by a specified time. To meet this requirement, the basic 

2PL protocol has been extended to take into consideration transactions priority. This resulted 

in the conception of the HP-2PL protocol. 

The Speculative Locking (SL) protocol [9], one of the extensions of 2PL, is an efficient 

concurrency control protocol, especially in distributed environments. SL improves 

performance over 2PL by allowing more parallelism among conflicting transactions, without 

violating serializability criteria. To achieve this parallelism, SL allows a transaction to 

release its lock on a data item whenever the transaction produces corresponding after-images 

after its execution. The waiting transaction uses the before and after images of the 
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uncommitted data item, from its predecessor, to perform speculative executions, and retains 

one of the executions depending on the termination of the preceding transaction. This 

parallelism makes SL adequate for distributed environments. However, SL does not take into 

account transactions' time constraint, making it inadequate for distributed real-time database 

systems. 

This thesis proposes an extension to SL by incorporating the time constraint requirement. It 

suggests two approaches to enhance SL and make it more adequate for a distributed real-time 

database environment, where nested soft deadline transaction model has been adopted: 

1. The first approach, the Preemptive Speculative Locking (PSL) protocol, involves an 

integration of the priority driven preemptive scheduling approach with SL to increase the 

probability of transactions, in DRTDBS, to meet their deadlines. In PSL, a transaction 

with a higher priority is granted access to data items by preempting and restarting the 

lock holder transaction/subtransaction with a lower priority. By ensuring that higher 

priority transactions are not delayed by lower priority transactions, PSL reduces the 

number of transactions that miss their deadlines. However, in doing so, any work done by 

a lower priority transaction is lost whenever it is preempted and aborted to advance a 

higher priority transaction. 

2. The second approach, the Priority Inheritance Speculative Locking (PiSL) protocol, 

attempts to prevent any waste of work that a transaction has already completed. With this 

approach, any transaction that has been granted access to a data item cannot be preempted 

regardless of its priority. Instead, PiSL uses the following approach: whenever a higher 

priority transaction is blocked by a lower priority transaction, the priority of the lower 
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priority transaction is raised to the priority of the blocked transaction. This ensures that 

the lower priority transaction completes its execution without being further interrupted 

and then passes the lock (data item) to the waiting higher priority transaction. With this 

approach, both the lower and the higher priority transactions get an opportunity to meet 

their deadlines whenever possible. 

A detailed description of PSL and PiSL is provided in chapter 3. 

1.5. Thesis Organization 

The rest of this thesis is organized as follows: In chapter 2, several approaches to 

concurrency control in distributed real time databases are investigated. Their strengths and 

weaknesses, relative to the proposed concurrency control protocols, are discussed. In chapter 

3, the proposed concurrency control protocols, PSL and PiSL, are explained in detail. 

Chapter 4 focuses on the simulation model and analysis of results. Finally, chapter 5 provides 

the summary of the thesis and outlines future directions. 
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Chapter 2 

Literature Review 

Concurrency control ensures that transactions within databases are executed in a correct and 

safe manner. This is done through mechanisms that coordinate operations within transactions 

that execute concurrently. Concurrent execution of transactions increases the probability of 

transactions' processes to interfere with each other, due to access to shared data items. 

Concurrency control mechanisms allow transactions in a database system to access shared 

data without interfering with each other. Many studies have been dedicated to concurrency 

control mechanisms, and various algorithms have been developed. This chapter examines 

several of these algorithms and their performance, as well as their limitations, in distributed 

real time database environments. 

2.1. Locking vs Optimistic Concurrency Control Mechanisms 

Due to its simplicity, Two Phase Locking (2PL) is one of the most commonly used 

concurrency control mechanisms within conventional Database Management Systems 

(DBMS) [19]. As previously explained, 2PL requires that each transaction issues lock and 

unlock requests in two phases, a growing phase and a shrinking phase. In the growing phase, 

a transaction may obtain locks but not release any lock, and in the shrinking phase, it may 

release locks but not obtain any new lock. This ensures serializability within DBMS. 
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Many variations of 2PL have been developed. For example, in Strict Two Phase Locking 

[20], also known as pessimistic 2PL, a data item is locked when there is an outstanding 

operation on it. If a lock request is denied, the requesting transaction is blocked until the lock 

is released. On the other hand, in optimistic based protocols, all locks are allowed to be 

granted when they are requested, based on the assumption that a conflict is rare [21]. 

Checking for conflict is preformed when the transaction wishes to commit. For example, 

Optimistic Two Phase Locking allows all the operations to be executed when they are 

requested, even if they are not compatible, with the assumption that conflicts between 

operations will not occur. However, to ensure consistency, Optimistic Two Phase Locking 

performs a check at the commit stage to confirm that all the operations assumed to be 

compatible are indeed compatible [20]. 

Both pessimistic and optimistic based concurrency control protocols provide an acceptable 

degree of concurrency [13]. However, through simulation studies, it has been shown in [20] 

that optimistic based concurrency control protocols are especially more effective when 

network latency is low or when there is a low level of concurrency. When network latency is 

high or when there is a medium or high level of concurrency, pessimistic based concurrency 

control protocols perform better. Also, when the rate at which transactions arrive is low, 

optimistic based concurrency control protocols perform better than pessimistic based 

concurrency control protocols [13]. Finally, in a system with a significant resource 

contention, pessimistic based concurrency control protocols perform better than optimistic 

based concurrency control protocols [26]. 
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Following either the pessimistic or optimistic model, or a combination of both models, many 

algorithms have been developed to accommodate distributed or real time database 

environments. These algorithms will be examined in the following sections. 

2.1.1. Distributed 2PL 

For a distributed database environment, distributed 2PL combines the principles behind 2PL 

and 2PC. As mentioned earlier, the combination of 2PL and 2PC ensures global serialization 

[16]. When a transaction is executing, it sets locks directly at the primary execution node, 

and indirectly, through its subtransactions, at other nodes. The coordinator of these 

subtransactions initiates the 2PC protocol only after receiving an acknowledgement for all 

the subtransactions operations. Hence, when the coordinator initiates the 2PC protocol, by 

sending the PREPARE message, all the subtransactions have surely obtained all the locks 

that they will need. All locks are held until the transaction is either successfully committed or 

aborted. Consequently, it is guaranteed that a transaction releases a lock at any given site 

only after it has finished acquiring locks at all sites. This enforces the 2PL discipline and 

guarantees global serializability [16]. 

When there is a lock conflict, the transaction requesting the lock is blocked until the 

transaction holding the lock releases the lock. This locking may lead to a deadlock situation. 

A deadlock is a permanent, circular wait condition [22]. A set of transactions is deadlocked if 

and only if each of the transaction waits for the lock held by other transactions from this set. 

All transactions from this set are in a waiting state, i.e., are blocked, and none of them will 
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become unblocked without outside interference. This is illustrated in Figure 6, which 

represents a wait-for graph containing a cycle. A wait-for graph is a directed graph that 

indicates which transactions are waiting for which other transactions. Nodes of the graph 

represent transactions and the edges represent the "waiting for" relationship [23]. In the 

scenario represented by Figure 6, if Ti, T2 and T3 belong to different sites, then a global 

deadlock situation rises. 

Ti must wait for T2 to 

release read lock on y2 

L 

T3 must wait for 1\ to 

release read lock on xi 

T3 

T2 must wait for T3 to 

release read lock on Z3 

Figure 7: Deadlock Scenario 

In a distributed database environment, sites may be connected through a Wide Area Network. 

As a result, communication between sites can be very slow. This may lengthen the time 

required for 2PC, which is a part of Distributed 2PL. Consequently, the time needed by a 

transaction to wait for a lock may increase, as well as the probability of a deadlock situation. 

In fact, it has been proven that distributed database environments are more susceptible to 

thrashing (degradation in system performance) than centralized systems because of increased 
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lock holding times due to inter-node communication and commit protocols [24]. To avoid 

such a scenario and to improve system performance, a concurrency control mechanism 

known as distributed wait-depth limited was suggested. 

2.1.2. Distributed Wait-Depth Limited 

In an attempt to prevent deadlocks, the Distributed Wait-Depth Limited (Distributed WDL) 

concurrency control mechanism limits the wait depth of blocked transactions to one, by 

carefully selecting and restarting some of the blocked transactions [24]. The wait depth is the 

distance of a blocked transaction from the root node(s) of the respective acyclic (deadlock 

free) waits-for graph [33]. The following example [24] explains distributed WDL. Let us 

consider a distributed database environment where there is a set of global transactions {Tj}. 

Each transaction Tj has an originating or primary node, denoted by P(Tj), with a starting time 

denoted by t(Tj). The progress made by a transaction involved in a lock conflict or its 

"length" is denoted by L(T) for transaction T. If Tj has a subtransaction at node k, this 

subtransaction is denoted by T;k. There are two concurrency control subsystems at each node 

k, the local concurrency control (LCC) which manages locks and wait relationships for all 

subtransactions T;k executing at node k, and the global concurrency control (GCC) which 

manages all wait relations that include any transaction Tj with P(Tj) = k and that makes 

global restart decisions for any of the transactions in this set of wait relationships. There is a 

send function that transparently sends messages between subsystems whether they are at the 

same or different nodes. The general scheme of the distributed WDL is as follows: 1) 

whenever an LCC schedules a wait between two subtransactions (Tjk-̂ Tjk), this information, 
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consisting of two messages (Tj->Tj, P(Tj),t(Tj)) and (P(Tj), t(Tj),Tj->Tj), is sent to the GCC of 

the primary nodes of the corresponding global transactions P(Tj) and P(Tj) and 2) each GCC 

will asynchronously determine if transactions should be restarted, using their waiting and 

starting time information [24]. 

However, due to the fact that in Distributed WDL, LCC and GCC operate asynchronously, a 

condition may temporarily arise in which the wait-depth of subtransactions is greater than 

one. Fortunately, such condition will eventually be resolved by a transaction committing or 

by being restarted by GCC. Moreover, if the subtransaction waiting for the lock belongs to 

the same node as the subtransaction holding the lock, i.e. P(T;) = P(Tj), then LCC will only 

generate information consisting of only one message (T;->Tj) sent to their common node 

[24]. 

The Distributed WDL algorithm can be demonstrated by a simple example illustrated by 

Figure 8 [24] which consists of three transactions Ti, T2 and T3, with primary nodes 1, 5 and 

9. Distributed WDL works as follow: 

1. At node 3, T13 requests a lock held in an incompatible mode by T23. As a result, the 

LCC schedules (Tn->T23), and sends messages to the GCC at nodes P(Ti) and P(T2). 

2. Concurrently, at node 7, T27 requests a lock in an incompatible mode by T37. The 

LCC schedules (^27-^37), and as in the previous case, sends messages to the GCC at 

nodes P(T2) and P(T3). 

3. At some later time, these various messages are received and wait graphs are updated 

by the GCC at nodes 1, 5 and 9. After both messages for the GCC at node 5 are 

received, there is a wait chain of depth 2. 
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4. The GCC at node 5 determines, using the local current time and the recorded starting 

time for each transaction (since P(T2) = 5, its starting time is available locally), that 

L(T2) > L(T3) and L(T2) > L(Ti). Consequently, following the distributed WDL 

concurrency control scheme, it decides to restart T3, and sends a restart message to 

the transaction coordinator at node P(Ts) = 9. 

5. The transaction coordinator at node 9 receives the restart message and begins a 

transaction restart by sending restart messages for all nodes executing a 

subtransaction T3k and the GCC update messages to the LCC as well as the one at 

node 5. 
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Figure 8: Simple Example of Distributed WDL Method 
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Similar to distributed 2PL, distributed WDL ensures global serializability. It also has a better 

performance than distributed 2PL, especially in high processing power systems with a high 

degree of lock contention. This is due to the fact that transaction blocking, a situation that 

commonly occurs with distributed 2PL, is reduced by selectively restarting locked 

transactions. The restarting ensures that deadlocks (local or distributed) are prevented from 

occurring by limiting the wait-depth of blocked transactions to no more than one. 

However, under distributed WDL the number of transaction restarts increases as data 

contention increases. This situation may degrade the system performance, especially in a 

system with lower processing power. In fact, it has been shown in [24] that in low processing 

power systems, distributed 2PL slightly outperforms distributed WDL. Furthermore, not all 

situations where the wait-depth of blocked transactions/subtransactions is greater than one 

lead to a deadlock. Hence, by restarting any transaction/subtransaction involved in wait-depth 

of more than one, the system performance is likely to degrade due to unnecessary restarts. 

Also, the exchange of messages between nodes, under distributed WDL, is extensive. This 

can be a serious drawback due to communication overhead. Finally, distributed WDL may 

still result in a considerable amount of transaction blocking and thrashing in a high data 

contention environment resulting in a decreased system performance. 

29 



2.1.3. Distributed Optimistic Concurrency Control 

Optimistic concurrency control protocols delay conflict resolution between transactions until 

a transaction is near completion. This is based on the assumption that conflict between 

concurrent transactions is rare. This characteristic allows optimistic concurrency control 

protocols to be non-blocking and deadlock free. 

Optimistic concurrency control protocols operate in three phases: read phase, validation 

phase and write phase [21]. During the read phase, the transaction reads the values of all data 

items it needs from the database and stores them in local variables. Updates are applied to the 

local copy of the data and announced to the database system by a pre-write operation. In the 

validation phase, the system ensures that all the committed transactions have executed in a 

serializable fashion. For a read-only transaction, this phase consists of checking that the data 

values read have not been modified. For a transaction that contains updates, this phase 

consists of determining whether the current transaction leaves the database in a consistent 

state, with serializability maintained. Finally, following a successful validation phase, the 

write phase updates transactions. During the write phase, all changes made by the transaction 

are permanently stored into the database. 

In a distributed database environment, a distributed transaction creates a subtransaction at all 

the sites where the transaction has operations. To support such an environment, the optimistic 

concurrency control protocol has been extended into the Distributed Optimistic Concurrency 

Control (DOCC) protocol. In DOCC, transaction validation is performed at two levels: local 
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and global [25]. The local validation level involves acceptance of each subtransaction locally. 

The global validation level involves acceptance of a distributed transaction on the basis of 

local acceptance of all subtransactions. Similar to distributed 2PL, DOCC involves 2PC 

principles to ensure global serializability. 

Unlike distributed 2PL, DOCC provides a non-blocking and deadlock free environment [25] 

in a distributed database system. However, in DOCC, if a conflict is detected during the 

validation phase, the transaction must be restarted. This may lead to an unnecessarily high 

number of transaction restarts, resulting in high overhead and serious system performance 

degradation, especially when some near-to-complete transactions have to be restarted. 

Another problem is starvation, a situation where transactions may never succeed due to 

repeated restarts [25]. 

2.1.4. Checkpointing Optimistic Concurrency Control 

One of the problem with optimistic concurrency control algorithms is that wasted processing 

incurred due to transactions failing their validation increases rapidly with transaction size 

(the number of data items accessed by a transaction). Wasted processing can be reduced by a 

technique known as checkpointing. Checkpointing was suggested in [26], and it is applied at 

the transaction level. This is accomplished by using volatile savepoints, also referred to as 

markpoints or checkpoints. The execution state of a transaction preceding access to data 

items is saved in the memory to make a volatile savepoint. If it is determined at validation 
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time that the data item has been modified, then the execution of the transaction can be 

resumed from the latest checkpoint preceding the access to the modified data items. 

Checkpointing introduces a trade-off between increased processing and mean transaction 

response time versus the processing that is saved when a transaction encounters a data 

conflict [26]. Checkpointing can be beneficial in a system where data contention is high. 

However, when the level of data contention is low and the checkpointing cost is relatively 

high, checkpointing is no longer beneficial. In fact, this situation may be unfavourable to 

system performance due to the needless use of resources in keeping track of all the 

transaction checkpoints. Another limitation of checkpointing is its potential for becoming 

complex in a distributed database environment. Also, in a distributed database environment, 

checkpointing may result in a very high communication overhead due to an extensive inter-

node and inter-site communication. To reduce some of the limitations of checkpointing, 

especially in a distributed database environment, an approach known as Low-Cost 

Checkpointing was suggested in [27]. 

In the basic checkpointing approach for distributed databases, there are two kinds of 

checkpoints: (1) local checkpointing, which refers to the checkpointing process locally at one 

site and (2) global checkpointing, which refers to a set of local checkpoints, one at each site, 

with some degree of synchronization among them. The aim of the basic checkpointing is to 

maintain a transaction-consistent global checkpoint, i.e., the set of local checkpoints, which 

constitute the global checkpoint. This global transaction-consistent checkpoint can be used 

for global reconstruction after a transaction restart. Although the global transaction-consistent 
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checkpoint has the capability of performing a global reconstruction, it has the limitation of 

being very slow [27]. 

Low-Cost Checkpointing introduces a technique known as the Loosely-Synchronous 

LocalFuzzy Checkpointing (LSLFC) [27] to assist in global reconstruction. The main 

difference between the loosely synchronized technique and the fully synchronized technique 

used in the basic checkpoint approach resides in the way synchronization of checkpoints is 

done. Fully synchronized checkpointing is done only when there is no active transaction in 

the database system. In this scheme, before writing a local checkpoint, all sites must have 

reached a state of inactivity. Conversely, in loosely synchronized checkpointing, each site is 

not compelled to write its local checkpoint in the same global interval of time. Instead, each 

site can choose the point of time to stop processing and take the checkpoint. A distinguished 

site locally manages a checkpoint sequence number and broadcasts it for the creation of a 

checkpoint. Each site takes local checkpoint as soon as possible, and then resumes normal 

transaction processing. It is then the responsibility of the local transaction managers to 

guarantee that all global transactions run in the intervals bounded by checkpoints with the 

same sequence numbers [27]. 

Hence, LSLFC eliminates the need to maintain a globally transaction-consistent state when 

checkpointing. Instead, each site takes local fuzzy checkpoints that are loosely synchronized. 

A fuzzy checkpoint represents any state of the database [27]. The loose synchronization 

allows the system to be brought back to a globally transaction-consistent state without 

lengthy log analysis and extensive message exchange. LSLFC does reduce communication 

overhead and provides better performance than basic checkpointing, but it still does not 
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eliminate the unnecessary use of resources in keeping track of checkpoint in an environment 

where data contention is low. 

The protocols examined so far provide some advantages for distributed database systems, but 

they also suffer from various limitations. Pessimistic/locking based algorithms or optimistic 

based algorithms provide better system performance depending on the system environment. 

For example, optimistic based algorithms are effective when the network latency is low or 

when there is a low level of concurrency, whereas pessimistic based algorithms work better 

when the network latency is high or when there is a medium or high level of concurrency 

[20]. Consequently, several hybrid algorithms that combine both pessimistic and optimistic 

approaches have been suggested. 

2.1.5. Hybrid Concurrency Control Algorithms 

Hybrid concurrency control algorithms are those that combine both locking and optimistic 

techniques. For example, Optimistic Dummy Locking (ODL) [28] combines a locking 

method and an optimistic method, by using dummy locks, on top of read and write locks, to 

test the validity of a transaction. Dummy locks are long term locks, but they do not conflict 

with any other locks. A dummy lock can be interpreted as a special mark, such that it is 

possible to check its existence. It works as follows: when a transaction Tj issues a read lock 

command for an item X, if the data item is not already in its workspace, a read lock is 

demanded on the data item. When the read lock is granted, a dummy lock is requested on the 

data item by Tj. A dummy lock request is always granted because it does not conflict with 
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any other lock. Then, the value of the data item X is read and the read lock is released. A 

dummy lock can be released by the transaction itself during the validation test or by another 

transaction Tj when Tj performs an actual pre-write operation (in its own private workspace) 

on this data item. When the dummy lock of a transaction Tj is released by another transaction 

Tj, transaction Tj is said to be invalidated and Tj is immediately restarted. However, if 

transaction Tj terminates successfully, without releasing any dummy locks on any of the data 

items it holds, then the validation test is applied to Tj. Therefore, the use of dummy locks 

helps in identifying transactions to be aborted, and such transactions are restarted without 

performing unnecessary operations. ODL is deadlock free and can improve performance by 

avoiding unnecessary operations for invalidated transactions. However, ODL can still result 

in a high number of transaction restarts in cases where data contention is high or when 

transactions are especially long. Also, keeping track of the dummy locks introduces an extra 

overhead to the system, especially in a distributed environment. 

Another algorithm proposed in [25] suggests an optimistic approach where phase-dependent 

control is utilized, such that a transaction is allowed to have multiple execution phases with 

different concurrency control methods in different phases. This algorithm uses optimistic 

concurrency control in the first phase and locking in the second phase. If the transaction is 

restarted in the first phase, then the pessimistic concurrency control is used to limit 

transaction re-executions to one. This approach limits the number of transaction restarts, but 

suffers from the limitation of both the optimistic and pessimistic approaches. 

Finally, a hybrid technique known as optimistic locking architecture, proposed in [29], 

provides locking for high conflict data items and optimistic access for the rest. This is 
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achieved through the use of a data structure called lock buffer that maintains an optimal level 

of locks in the system. This approach enhances the performance of the basic optimistic 

concurrency control model by automatically providing locking for highly conflict-prone data 

items. This enhancement is achieved through the design of the lock manager. The lock 

manager maintains a finite lock buffer. Each slot in the lock buffer holds locks and pending 

locks requests for a single data item. Hence, the number of data items with active locks 

cannot exceed the number of slots in the buffer. Whenever a lock request for a data item X is 

received by the lock manager, the lock manager first attempts to locate X in the lock buffer. 

If it is found, the lock manager attempts to post the lock in the corresponding slot. The lock 

request can either be granted or be blocked in the same manner as pure locking, depending on 

the status of the existing lock on X. If X is not located in the lock buffer, a slot must be 

located for posting the lock request. If a free slot exists, it will be used; otherwise a victim 

slot must be selected. If the number of data items for which locks are requested exceed the 

size of the lock buffer, locks may be evicted from the lock buffer. All transactions affected 

by such an eviction of locks automatically become optimistic with respect to the evicted data 

items. 

To illustrate optimistic locking architecture, let us consider the following extreme scenarios 

[29]. In the first scenario, the size of the lock buffer is zero; as a result, all the lock requests 

get rejected and there are never any active locks. In this scenario all transactions become 

optimistic with respect to all the data items in their read and write sets, and the system 

becomes purely optimistic. In the second scenario, the number of slots is greater than or 

equal to the number of data items in the database; then each lock request can be granted 
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without evicting any existing data items and locks. In this scenario, the system is no longer 

purely optimistic. In fact, in this scenario, the system may become purely pessimistic. 

Although optimistic locking architecture is self-tuning [29], i.e. it does not require the 

transaction manager, the transaction or the user to specify which data items or transactions 

are optimistic, it still suffers from the limitations of transaction blocking and transaction 

restarts. A transaction usually needs more than just one data item to execute; hence the 

probability of securing only data items that are not in the lock buffer is very minimal. Also, 

by reducing the size of the lock buffer to zero, the system becomes purely optimistic. On the 

other hand, if the number of slots is greater than or equal to the number of data items in the 

database, then each lock request can be granted and the system must use some locking or 

validation mechanism to maintain data consistency. Hence, deciding the right size of the lock 

buffer can be challenging. 

2.2. Static Locking vs Dynamic Locking Algorithms 

In Distributed Real Time Database Management Systems, every transaction entering the 

system has an arrival time, deadline, criticality and an estimated execution time associated 

with it. However, a transaction may or may not need to know all the data items it might 

access during its execution. In this section, based on whether or not a transaction needs to 

know all the data items it will access, various aspects of locking techniques and their 

respective performance in a distributed real time database environment will be examined. 
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Scheduling algorithms based on locking approach can be classified according to whether they 

take advantage of the data access pattern of transactions or not, i.e., static or dynamic [8]. 

When a transaction enters the system, it gets split into subtransactions depending on the 

location of the required data items. A subtransaction is allowed to lock any given data item 

only once during its execution time. In Static Locking, a transaction acquires all the locks it 

needs before it begins its execution. In Dynamic Locking, a transaction may start its 

execution without acquiring all the needed locks. Hence, subtransactions in Dynamic 

Locking will request for access to data items as need arises. Subtransactions are then granted 

access by the scheduler based on their priority. 

Moreover, in Dynamic Locking, lock conflicts are resolved by blocking. Hence, in case of 

conflict, a higher priority transaction arriving in the system will block any conflicting lower 

priority transaction. The lower priority lock-holding transaction will then be rolled back to 

the point where it first accessed the contested data item and then wait. In Static Locking, on 

the other hand, in case of conflict, a higher priority transaction will restart any lower 

transaction holding any lock needed by the higher priority transaction. Furthermore, in static 

locking, global deadlock is avoided by ensuring that locks acquired by a transaction during 

its execution are held until it has committed or aborted. This ensures that global serialization 

order is the same as the local serialization order. 

Dynamic locking based protocols have been shown to perform better than static locking 

based protocols [30, 31], but they are prone to deadlock [32]. Static locking based protocols, 

on the other hand, offer the advantage of creating a non-deadlocking environment. This is 

due to the fact that all the data items needed by a transaction are acquired before the 
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execution starts. This offers a great advantage in a distributed environment since global 

deadlock can be avoided. However, using transaction restarting as a mean of resolving 

conflict between higher priority transactions and lower priority transactions may result in 

system degradation. Hence, following the static locking model, several non-preemptive real 

time concurrency control algorithms for distributed real time database systems have been 

suggested. These algorithms will be examined in the next section. 

2.3. Real Time Static Locking Protocols 

The sole condition of any static locking based protocol is to acquire all the locks needed by a 

transaction before it starts its execution. This ensures a deadlock-free environment and can be 

very beneficial in a distributed database environment where global deadlocks must be 

avoided. This is due to the fact that a global deadlock can be expensive to be detected and 

resolved [22]. However, when transaction restart is not used in solving conflicts between 

higher and lower priority transactions, the sole condition of static based locking protocols 

may no longer be favourable for distributed real time database environment since blocking 

time of higher transaction can be arbitrary long. This is due to prolonged blocking as a result 

of waiting for multiple locks. Also, priority blocking of the lock holding transaction by other 

intermediate priority transactions can cause system delay. Finally, the commit time is usually 

lengthy in distributed systems; this may result in further performance degradation. Different 

approaches have been suggested in [32] to address some of these limitations and a summary 

of these approaches is presented here-below. 
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The Real-time Static Two Phase Locking (RT-S2PL) protocol aims to resolve the problem of 

prolonged blocking [32]. Under RT-S2PL, each lock in the database is labelled with a 

priority equal to the priority of the highest priority transaction which is waiting for that lock. 

With this approach, no lower priority transaction can access the lock; only incoming 

transactions of higher priority than the waiting transaction can access the lock. This reduces 

blocking of higher priority transactions due to the fact that no lower priority transaction can 

have access to the lock, unless it came into the system earlier. Hence, no lower priority 

transaction is allowed to set locks if any of its required locks are awaited by a higher priority 

transaction even though the locks are free. However, the blocking time of higher priority 

transactions is unbounded due to the possibility of priority preemption by other intermediate 

priority transactions preventing the lower priority, lock-holding transaction from using the 

CPU [32]. 

The Real-Time Static Two Phase Locking with Resource Priority (RT-S2PL-RP) attempts to 

reduce the blocking time of higher priority transactions due to priority preemption of CPU in 

RT-S2PL. To achieve this, RT-S2PL-RP uses the following approach: whenever there is a 

blocked higher priority transaction, any lower priority transactions is prevented from setting 

locks, even though the requested locks of these lower priority transactions are not the ones 

requested by the higher priority transactions [32]. The RT-S2PL-RP approach is 

unfortunately too restrictive and goes against the principle of concurrency. This has the 

consequence of degrading system performance. 

Finally, Real-time Static Two Phase Locking with Priority Inheritance (RT-S2PL-PI) 

attempts to use priority inheritance to solve the problem of blocking of lower priority 
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transactions by implementing the following scheme: whenever a higher priority transaction is 

blocked by a lower priority transaction, the priority of the lower priority transaction is raised 

up to that of the higher priority transaction in order to prevent the preemption by other 

intermediate priority transactions [32]. This scheme does not have the limitations of the RT-

S2PL-RP approach, but it is potentially detrimental to the adopted CPU scheduling 

algorithm. In RT-S2PL-RP, a transaction may be blocked by more than one transaction due 

to the fact that required locks may be locked by different transactions. Hence, all of these 

transactions will be raised to the same priority even though their original priorities are 

different. 

To illustrate this limitation let us consider the following example [32] that involves four 

transactions: Tj, T2, T3 and T4 with priority T4>T3>T2>Tj. The locks required by T4, T3, T2 

and Ti are {4,8}, {3,7}, {2,6} and {1,2,3,4,5} respectively. Assume that Ti, T2 and T3 

successfully obtain their required locks and start their processing. Since T3 has the highest 

priority amongst the transactions which have obtained their locks, T3 is executing and Ti and 

T2 are suspended. When T4 arrives, it is blocked. If RT-S2PL-PI is used, all Ti, T2 and T3 will 

be set to be the same priority as T4. Therefore, all the three transactions, Ti, T2 and T3, will 

be executing at the same priority even though their initial priorities are different. This will 

affect the schedulability of the system. The aim of assigning different priorities to the 

transactions will become ineffective [32]. 

However, this limitation can be solved by using two levels of priority [32]. The system 

should distinguish inherited priorities and original priorities. If the transactions have similar 

inherited priority, their original priorities have to be compared to decide which transaction 
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should be selected for execution first. This, unfortunately, adds an extra step whenever an 

operation needs to be performed within a transaction. 

2.4. Speculative Locking Protocol 

Speculative Locking (SL) protocol extends the standard 2PL by allowing parallelism among 

conflicting transactions [9]. In 2PL, a transaction holds an exclusive lock on a data item until 

completion of commit and then the lock is released. In SL, the waiting transaction is allowed 

to access the locked data item whenever the lock-holding transaction produces corresponding 

after-images during execution. The waiting transaction then accesses both the before and 

after-images and carries out speculative executions and retains one execution based on the 

termination of the preceding transactions. The before-image and after-image refer to the 

value of a data item before and after being modified by a transaction. While preserving 

serializability, SL improves performance over 2PL due to the parallelism among conflicting 

transactions. 

To illustrate SL, let us consider Figure 9 [9]. Figure 9(a) represents the processing a 

transaction where the notation Si, e; and Cj/aj denote the start of execution, completion of 

execution and the transaction commit phase where the transaction can either commit or abort. 

Figure 9(b) represents a 2PL scenario and Figure 9(c) a SL scenario. As illustrated in Figure 

9(b), if Ti is reading and writing pages X and Y, Transaction T2 will not be allowed to access 

the after-image of X until Tj has completed its commit processing. In SL, on the other hand, 

as illustrated in Figure 9(c), when Ti completes processing and produces the after-image X' 
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and Y', T2 is immediately given access to both the before-image X and the after-image X'. T2 

then carries out speculative executions T21 and T22 to produce the after-images X" and X'". 

When transaction Ti completes processing, T2 proceeds into the commit phase and retains 

T22 if Ti commits or T21 if Ti aborts. If there is another transaction T3 waiting for T2, it will 

follow the same procedure as illustrated in Figure 10 [9]. Serializability is maintained in SL 

through the commit dependency that is created between competing transactions. 
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SJ: start execution 
e;: end execution 
c;: commit execution 
a;: abort execution 
Ti: Transaction 1 
T2: Transaction 2 
r: read 
w: write 
X,Y,Z: data objects 

Figure 9: Comparison between 2PL Variants and SL: (a) Processing of Ti, (b) 
Processing with 2PL and (c) Processing with SL. 
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Figure 10: Depiction of Tree Growth and the Speculative Executions 

In 2PL, pages can be locked in shared or exclusive mode, i.e. Read (R) or Write (W) mode. A 

page can be accessed simultaneously by two or more transaction when it is in a read mode. In 

SL, the write mode is divided into two: execution-write (EW) and speculative write (SPW). 

A transaction can only request a read lock (r) and an execution-write lock (EW). When a 

speculative execution takes place, the EW-lock is converted to a speculative-write (SPW) 

lock allowing other transactions to get access to the locked data. This is illustrated through 

the lock compatibility matrix of 2PL and SL represented in Table 2 [9]. The lock 

compatibility matrix of SL shows that only one transaction holds an EW-lock on the data 

item at any point in time. However, multiple transactions can hold the R and SPW-locks 

simultaneously. This is different from the 2PL lock compatibility matrix where multiple 

transactions can hold locks simultaneously only when all the transactions are in the R-lock 

mode. 
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Table 2: Locks Compatibility Matrix 

Sites involved in a Distributed Database Systems (DDBS) are usually connected through a 

wide area network (WAN). Hence, inter-node or inter-site communication in DDBS can be 

quite slow. This can affect the execution time of transactions that require remote data access. 

The most affected part of the transaction execution is the commit phase due to an extensive 

amount of inter-node/inter-site communication that takes place. The time to commit in such a 

scenario may account up to 80 percent of the transaction time [9]. This could result in serious 

performance degradation in 2PL due to the fact that data items become unavailable to the 

waiting transaction for longer durations. This limitation is eliminated by SL, by allowing 

speculative executions, resulting in a better system performance in distributed database 

environment. 
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Compared to all the protocols (pessimistic based protocols, optimistic based protocols and 

hybrid protocols) investigated in the above sections, SL offers many more combined benefits 

for a distributed environment. These include: 

1. The ability to allow parallelism in transaction execution to improve concurrency in 

distributed environment. 

2. The ability to not compromise serializability during transaction execution. 

3. The ability to allow speculative executions of transactions that alleviate the effect of 

longer commit time for transactions in a distributed environment. 

4. The ability to avoid cascading aborts but still allow early data accessibility. 

Hence, from a Distributed Database Management System point of view, SL has the potential 

to provide better performance than all the other locking and optimistic concurrency control 

variants analyzed in this chapter. SL improves the throughput performance of DDBSs [9]. 

However, SL does not take transaction's time constraints into consideration, making it unfit 

for Distributed Real Time Database System (DRTDBS). This is due to the fact that SL does 

not take into account the priority of a transaction when scheduling transactions. 

Although transaction throughput can be beneficial for DRTDBS, it is crucial to minimize the 

number of transactions that miss their deadlines. To achieve this, there is a need to modify or 

extend SL by giving it the capability to take into consideration a transaction priority when 

scheduling transactions. This requirement necessitates new algorithms: the Priority Based 

Speculative Locking protocols that will be explained in detail in the next chapter. 
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Chapter 3 

Priority-Based Speculative Locking Protocols. 

3.1. System Model 

To evaluate the performance of the proposed protocols, the discrete event simulation model 

described in [35] was used. This model consists of a set of databases which are physically 

partitioned, in a non replicated manner, over a number of sites connected by a network. 

These sites can contain one or more server nodes that in turn host one or more databases. The 

database is modeled as a collection of pages. As illustrated in Figure 11, nodes and sites can 

be interconnected through a wide area networks or a local area networks. 
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Figure 11 : Sites and Nodes in a Distributed Database System Model 
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Each node is a representation of a computer system that is comprised of processors, disks, 

and cache/buffer. Each node may host one or more databases, each of which contains a set of 

pages that are located on one or more disks. Each site in the model consists of a Transaction 

Generator which generates transactions, a Transaction Manager which models the execution 

behaviour of a transaction, a Resource Manager which controls the system resources 

(processors, disks and buffers) and a Scheduler which implements the concurrency control 

algorithms (Figure 12). 
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Figure 12 : Simulation System Model 
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3.1.1. Transaction Generator 

The Transaction Generator, also called the Workload Generator, generates transactions and 

defines their characteristics. The characteristics of a transaction include its inter-arrival time, 

slack, worksize and update probability [35]. Different statistical distribution models such as 

constant, normal, Poisson and uniform distributions are used to control the trends of values 

assigned to these transaction characteristics. 

Probability distributions of random inputs such as worksize, slack and inter arrival time must 

be specified to carry out a simulation. The appropriate choice of a distribution model depends 

on the trends that best model specific characteristics. For example, the Poisson distribution 

has been proven to best model inter arrival time. The uniform distribution, on the other hand, 

is fit to model a quantity that randomly varies between two values but about which little else 

is known [36]. Hence, in this study, transactions' inter-arrival times are modeled using 

Poisson distribution, whereas transactions' worksize and slack values use uniform 

distribution. 

Transaction inter-arrival time represents the amount of time between two consecutive 

transactions generated by the same transaction generator. Thus, a larger inter arrival time 

translates into fewer transactions arriving, thus representing a low load system. The number 

of pages a transaction is expected to process when it enters the system is specified by the 

transaction worksize. It should also be noted that the pages processed by a transaction may or 

may not have to be written back to the disk. The update probability, set by the Transaction 

Generator, represents the probability that any given page will be written back to the disk. 
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The amount of time that a transaction Tj needs to complete depends on the number of pages 

that are expected to be processed by the transaction (Tj(pages)), the amount of time that a 

processor needs to process a page (processor ticks) and the amount of time needed to access a 

page located on a disk (disk ticks) or a swap disk (swap disk ticks). Several different 

scenarios can be considered: 

1. All the pages needed by the transaction are located in the buffer/cache and the cache 

is located on the same node as the transaction. If the amount of time is represented in 

ticks, then the amount of ticks needed by a transaction T; is: 

Tj ticks = Tj (pages in cache) Xprocessor ticks 

2. Some or all the pages needed by the transaction are located on the disk and the cache 

is not full. Also, the disks and the cache hosting all pages needed by the transaction 

are located on the same node as the transaction. In this case the amount of time 

needed will be: 

Tj ticks = (Tj (pages on cache) + Tt (pages on disk)) X processor ticks + 

Tj (pages on disk) Xdisk ticks 

3. Some or all the pages needed by the transaction are located on the disk and there is 

not enough space in the cache. In this case, some of the pages residing in the cache 

need to be temporarily placed to the swap disk. Considering that the disks, swap disk 

and cache hosting the pages needed by the transaction reside on the same node as the 

transaction, the number of ticks needed by Tj is: 

Tj ticks = (Tj (pages on cache) + T (pages on disk)) Xprocessor ticks + 

number of pages to be moved from cache X swap disk ticks + 

Tj (pages on disk) Xdisk ticks 
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4. If one or more pages needed by the transaction reside on a disk or cache located on a 

different node than the transaction, then the transaction will have to create one or 

more subtransactions to access the needed page(s). In this case, inter-node 

communication delay needs to be taken into consideration when estimating the 

amount of time needed by a transaction to complete. 

5. If one or more pages are held by another transaction, then the transaction will have to 

wait until all the pages it needs are released. 

Scenarios 4 and 5 introduce complexities that can make it difficult or impossible to estimate 

the amount of time needed by a transaction to complete. Hence, when assigning transaction 

slack, which is an estimate of how long the execution of a transaction can be delayed and still 

meet its deadline [1, 36], one needs to take into consideration all of the possible scenarios. 

The characteristics of the Transaction Generator also include the page range and size. Page 

range represents the range of pages that transactions generated at this location are expected to 

access. Size, on the other hand, represents the number of transactions that this Transaction 

Generator will create. 

In the case of a nested transaction model, which is the model used in this study, the 

Transaction Generator only generates top level transactions, which in turn generate 

subtransactions. In a distributed database system, data items (represented in this simulation 

model as pages) may be located on any site or any node. Also, in a database environment 

which does not support any replication, data items can only be located at one location at a 

time [34]. Hence, subtransactions are generated depending on the location(s) of the pages that 

the transaction need to access. 
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To illustrate this, let us consider Figure 13 which represents a nested transaction in a 

distributed environment. The Transaction Generator generates Tj on Nodeo- Tj needs to 

access data items X, Y and Z located respectively on Nodei, Node2 and Node3. As a result, Tj 

spawns three subtractions T,.i, T;.2 and Tj.3. These subtransactions will operate on their 

respective nodes and locally access and process the data items they need (Tj.iX, T^Y and 

TjjZ). After processing is done, all of the subtransactions will report the result back to 

transaction T,. 

Nodei Nodeo 

Node3 

Figure 13 : Nested Transaction Model in Simulation 

Another characteristic of a transaction executing in a real-time environment is its priority. 

Priority assignment policies manage how transaction time constraints are used to assign a 

priority to a transaction. Several priority assignment policies are used for scheduling 
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transactions. These include: (1) First Come First Serve, a policy that assigns the highest 

priority to the transaction with the earliest arrival time; (2) Earliest Deadline First, where the 

transaction with the earliest deadline is assigned the highest priority; (3) Shortest Job First, 

where the transaction that requires less work is given a higher priority [1]. Of these, the 

policy that assigns priority to a transaction based on its deadline has been broadly used [1,7] 

and has been found to be the best policy in terms of success ratio in most cases [2]. For a 

nested transaction, we have adopted the model that assigns subtransactions the same priority 

as their parent transaction. 

3.1.2. Transaction Manager 

The Transaction Manager manages the execution of transactions from the time they enter the 

system until they leave the system. The primary purpose of the Transaction Manager is to 

pass operations within a transaction to the concurrency control manager and establish which 

site the transaction is destined for [35]. For example, in the case of a nested transaction, if the 

operation is subtransaction activation, the Transaction Manager will forward the 

subtransaction to the appropriate site's transaction manager. Other purposes include 

controlling the maximum number of active transactions and managing transactions waiting 

queues. 
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3.1.3. Scheduler 

The Scheduler, also called the Concurrency Control Manager, is responsible for the 

coordination of data access in order to keep the database in a correct and consistent state at 

all times. This is achieved through the use of concurrency control protocols. Furthermore, the 

Concurrency Control Manager ensures serialization of transactions operations and avoids 

cascading aborts by ordering operations within a transaction [36]. Finally, as the coordinator 

of data access, the Concurrency Control Manager is in charge of handling deadlocks. 

When a transaction requests a lock, it sends an access request to the Scheduler. The 

Scheduler validates serializability with other concurrent transactions and then forwards the 

request to the cache or disk. In case of a data conflict with an existing transaction, this 

validation may lead to blocking of the request or preemption of the transaction holding the 

requested data item. This blocking/preemption of transactions prevents both the loss of 

serializability and future cascading aborts. Also, depending on the concurrency control 

protocol used, if there is no data conflict, the Scheduler may ensure that the priority of the 

transaction is taken into consideration in prioritizing data access for the requesting 

transaction. Finally, the Scheduler is in charge of checking for any possibility of deadlock. If 

a deadlock is detected, one of the transactions involved in the deadlock will be aborted. The 

choice of the transaction to be restarted depends on the deadlock resolution model adopted 

for the simulation. 
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3.1.4. Resource Manager 

The Resource Manager manages shared access to system resources. These resources include 

processors, disks, network and cache. Processors are managed through a processor manager 

and disks are managed through a disk manager. A processor represents a computer processor 

and can only process one page at a time. However, each node can host more than one 

processor. A disk is a representation of a non-volatile storage on a computer. A disk may 

contain many pages, but only allows one operation (either a read or a write) to be performed 

on one of its pages at a time. The network represents the links that connect different nodes 

and sites. Finally, a cache, also known as buffer, represents a volatile computer memory. 

Before a transaction can access a page, the page has to be moved from the disk into cache. A 

page held in cache will not be released until the transaction which requested the page is either 

completed or aborted. If the cache is full, then some of the pages that are not locked will be 

swapped to a physical disk known as the swap disk to create space on the cache. If all of the 

pages in the cache are locked, then depending on the priority of the transaction requesting 

access to pages, the incoming transaction may either be blocked until there is enough room in 

the cache, or a group of pages locked by a lower priority transaction may be swapped out to 

the disk. Once there is room in the cache, any pages that were swapped to the disk are 

returned to the cache. 

Another simulation parameter is the maximum number of active transactions [35]. This 

parameter sets a limit on the number of transactions that can be simultaneously active at a 

node. If this limit is met, then all other transactions are forced to wait outside the node until 
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there is space available in the node. Hence, the higher the value of the maximum active 

transactions parameter, the higher the number of active transactions in the system may be. 

This gives the maximum active transaction parameter a certain level of control over the 

system load and data contention within the system. 

3.2. Description of Priority-Based Speculative Locking Protocols 

The Priority-Based Speculative Locking Protocols use the Speculative Locking (SL) 

protocol's underlying architecture [9], but incorporate the notion of transaction priority when 

scheduling transactions, in order to improve performance within Distributed Real-Time 

Database Systems (DRTDBS). The Priority-Based Speculative Locking Protocols have been 

demonstrated to improve performance in DRTDBS due to the fact that they address both 

distributivity and time constraint issues. 

In a distributed database environment data items can be distributed over multiple sites. These 

sites communicate through a network structure composed of local area networks (LAN) and 

wide area networks (WAN). WAN communication, required for remote data access, takes up 

a considerable portion of transaction execution time. SL addresses this issue of data 

distributivity by allowing more parallelism between conflicting transactions without violating 

the principle of serializability [9]. This results in an increase in transaction throughput within 

distributed database systems. In distributed real-time database systems, however, the key 

goal is to minimize the number of transactions that miss their deadlines. Hence, increased 
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transaction throughput is not enough if one aims to improve performance in distributed real 

time database systems. This makes SL inadequate for distributed real time database systems. 

To illustrate this limitation of SL, let us consider the diagram (Figure 14) [9] representing a 

SL scenario: 

• Ti, T2, T3 and T4 represent different incoming transactions in a specific order, i.e. Ti 

came in the system earlier than T4 

• xi, x3... .x„ represent data items 

• a represents an abort situation 

• c represents a commit situation 

• Tj Xj represents transaction T; locking data items Xj 
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Figure 14 : Speculative Locking Scenario 

• Ti is the first transaction to come into the system and naturally it accesses the data 

item it needs (xj). 

57 



• Before Ti is done with xi, i.e. before it has committed xi, T2 comes into the system 

and requests access to xi as well. This creates an access conflict on xi between Ti and 

T2 

• To avoid unnecessary waiting of T2, the before and after images of the data item upon 

which there is conflict, in this case xi (the before image) and x2 (the after image), are 

given to the waiting transaction T2. 

• As a result T2 proceeds with two speculative executions and will wait until Ti has 

committed to decide which version of its execution should be kept. 

• If T1X1 commits, T2x2 will be kept, otherwise in case Ti aborts, T2xi will be kept. 

• The rest of the speculative executions from other incoming transactions follow the 

same principle. 

Using the SL approach, no incoming transaction has to go through unnecessary waiting. 

However, a certain commit dependency is created between transactions, i.e. Ti has to commit 

before T2 and T2 has to commit before T3 and so on. This commit dependency is necessary to 

ensure serializability, which is required in order to maintain information consistency. 

However, this may cause some transactions to miss their deadlines. For example, if T4 is of 

higher priority than Ti, T2 and T3, but came into the system last, T4 may miss its deadline due 

to the fact that it has to wait for Ti, T2 and T3 to commit before it can commit. To address this 

limitation, each transaction's priority needs to be taken into consideration when scheduling 

transactions. Two approaches are suggested in this study: priority preemption and priority 

inheritance. These approaches lead to the two proposed protocols, Preemptive Speculative 

Locking (PSL) and Priority Inheritance Speculative Locking (PiSL) 
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3.2.1. Preemptive Speculative Locking 

Preemptive Speculative Locking (PSL) takes transaction's priority into consideration when 

scheduling transactions. This allows access to data items in a prioritized manner. PSL 

extends SL by allowing any incoming higher priority transaction to preempt and abort any 

lower priority transaction, in case of a lock conflict. To illustrate this, let us consider Figures 

15, 16 and 17, which represent different PSL scenarios. 
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Figure 15 : PSL structure before preemption 
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Figure 16 : PSL structure during preemption 
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Figure 17: PSL after Preemption 

Suppose we have a transaction T4 coming into the system while T3, T2 and Ti are executing 

(Figure 15). T4 is of higher priority than T2 and T3. Under PSL, T4 will abort T3 (Figure 15) to 

allow T4 to access resources held by T3 (Figure 16). By aborting T3, T4 is given a chance to 

finish within its time limit. If T4 had to be attached to the tree as a 4th level transaction 

(Figure 13), as in SL, T4 would have to wait for Ti, T2 and T3 to commit before it could 

commit. Hence, by preempting the lower priority transactions (T3), T4 is given a greater 

chance of meeting its deadline. 

However, it should be noted that T2 is not aborted, in spite of the fact that it is of lower 

priority than T4. In order to allow access to data items requested by T3, T2 must first complete 

its operations on the corresponding data items. Under PSL, only transactions that have not 

completed operations on the data items requested by higher priority transactions are aborted 

incase of conflict. 
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PSL favours transactions with higher priority in order to give them a chance to meet their 

deadline. However, in doing so, PSL causes execution work done by lower priority 

transactions to be lost because these are preempted and aborted in order to advance a higher 

priority transaction. For example, by preempting and aborting T3 to advance T4, any work 

already done by T3 is lost (Figure 16, 17). As a result T3 will have to restart its execution and 

may miss its deadline. Hence, with PSL, T3 risks its chance of meeting its deadline in order 

to give T4 a chance to meet its deadline. This situation may result in three scenarios: 

1. T3 has enough time and it still meet its deadline in spite of being restarted. This 

presents the best case scenario, where all transactions (T3 and T4) meet their 

deadlines. 

2. T3 does not have enough time to meet its deadline. In this case T4 meet its deadline, 

but T3 misses its deadline due to being restarted. 

3. T4 still misses its deadline despite being favoured, or T4 is preempted by another 

incoming higher priority transaction. In this case, all the work achieved by T3 is 

needlessly lost. 

To avoid situations similar to the second scenario, and especially the third scenario, a 

different approach needs to be adopted to address the issue of transaction priority. In this 

approach, a transaction's priority is still taken into consideration in scheduling transactions, 

but transaction restart is conditional. When a higher transaction needs to access a data item 

held by a lower priority transaction, the higher priority transaction checks if the lower 

priority transaction is close to completion, and if its request for the data item can be delayed. 

This involves checking the status of each data item held by the lower priority transaction. If 

the lower priority transaction is a nested transaction, checking the status of each of its data 
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items will involve sending messages across the network, to each site where a subtransaction 

of the nested transaction is located. This may result in a very high and expensive inter node 

message exchange, which can result in the higher priority missing its deadline or in both 

transactions missing their deadlines. 

To illustrate this, let us consider two transactions Ti and T2 that are competing for the 

resource X. T2 is of higher priority than Ti, but Ti was granted access to X before T2. Ti has 

also been granted access to other data items A, B, C, D and E. Suppose that Ti and T2 are 

located on nodeo and A, B, C, D and E are located on Nodei, Node2, Node3, Node4 and 

Nodes, respectively. In order to access all the data items located outside the node where Ti is 

located, Ti must spawn subtransactions Tu, T1.2, T1.3, T1.4 and T1.5 to access A, B, C, D and 

E, respectively. If the conditional restart approach is used to solve the data conflict between 

Ti and T2 over X, the Transaction Manager of nodeo will need to exchange messages with the 

Transaction Managers of Nodei, Node2, Node3, Node4 and Nodes to check the status of all 

the subtransactions (Tu, T1.2, T1.3, T1.4, T1.5) in regards to the data items (A, B, C, D, E) they 

are accessing. Based on the information gathered from this exchange of messages and the 

current status of T2, the Scheduler will decide either to proceed with the restart of Ti or not. 

This extensive exchange of messages, especially in a WAN environment, may result in a 

delay that may cause both transactions to miss their deadlines. Missing of both transactions' 

deadlines is possible if the Scheduler decides that Tj need to be restarted when T2 is close to 

missing its deadline. Hence, while conditional restart can be beneficial in a non-distributed 

database system, it is risky to adopt it in a distributed environment where inter-node 

communication can be expensive and time consuming. 
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3.2.2. Priority Inheritance Speculative Locking 

Priority Inheritance Speculative Locking (PiSL) attempts to prevent wasting any work that a 

transaction has already completed. In this approach, if a transaction is already executing, or it 

has been granted access to a data item, it cannot be preempted and aborted regardless of its 

priority. PiSL uses the following approach in order to solve data conflict between 

transactions: whenever a higher priority transaction is blocked by a lower priority transaction, 

the priority of the lower priority transaction is raised to the priority of the blocked 

transaction. This approach ensures that the lower priority transaction completes its execution 

without interruption and then passes the lock (data item) to the waiting higher priority 

transaction as soon as the lock is available. 

To illustrate this, let us consider the following diagrams (Figures 18-21) 
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Figure 18: PiSL before any lock conflict 
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Figure 19: PISL during transfer of transaction priority 
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Let us consider 5 transactions (Ti, T2, T3, T4 and T5) that are competing for the same data 

item xi. The priority of these transactions is as follow T2<Ti<T3<T5<T4. Transaction Tj is the 

first transaction to enter the system. At this point, there is no hold on the data item xi, and 

thus, Ti is allowed to lock xi. Later on, T2 enter the system; however, since T2 is of lower 

priority than Ti, T2 waits until Tj produces an after-image X2 to start execution. After Ti 

produces the after-image, X2, T2 is allowed to access both xi and X2 (Figure 18). As soon as 

T2 accesses xi and X2, T3 enters the system. T3 is of higher priority than Ti and T2,but instead 

of preempting and aborting T2, as it is done with PSL, T3 passes its priority to T2. This gives 

T2 a chance to quickly complete its execution work, as it will be favoured in the priority 

queue of the processor. Then, once it finishes, T2 grants T3 access to the locks it is holding. 

However, suppose that as T3 waits to be granted access to the lock, T4 enters the system. T4 is 

of higher priority than T3 and passes its priority to T2. In this situation, as soon as T2 

produces after-images of the lock it has been holding, access to the lock will be granted to T4 

rather than T3 (Figure 19). As transaction T4 is being granted access to the lock, T5 comes 

into the system. The arrival of T5 does not make any change to the existing transactions 

priorities, since T4 is of a higher priority than T5; however, as soon as T4 is done with its 

execution, access to the lock is directly granted to T5 which is the next highest priority 

transaction (Figure 20). Finally, Ti commits and T5 completes its execution; as a result T2 

retains x2 and discards xi and T3 is finally granted access to the lock (Figure 21). 

PiSL takes into consideration a transaction's priority when scheduling transactions, but at the 

same time, it ensures that no work completed by other transactions is wasted. This approach 

solves the problem of useless restarts of lower priority transactions raised by PSL. By taking 
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each transaction's priority into consideration during the scheduling process, PiSL gives 

higher priority transactions a better chance to meet their deadlines. PiSL achieves this by 

ordering transaction access to data items in a prioritized way, whenever possible. By 

preventing any preemption and abortion in the system due to transaction priority, lower 

priority transactions are given a better chance to meet their deadlines as well. Although the 

approach adopted by PiSL does not guarantee that all the transactions will meet their 

deadlines, it may be useful in cases where a lower priority transaction has already 

accomplished a lot of work, or in case where a high priority transaction runs the risk of being 

preempted by another higher priority transaction as illustrated between T3 and T4 in Figures 

18-20. 

However, under some conditions, PiSL may not be beneficial. These conditions include: 

1. If the high priority transaction is close to missing its deadline. 

2. When there are not enough resources to quickly process the lower priority 

transactions that inherited their priority from the higher priority transaction. 

3. When the lower priority transactions that inherited their priority from the higher 

priority transaction still need a lot of time to accomplish their work. 
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Chapter 4 

Simulation Results and Analysis 

An extensive set of experiments has been carried out to study and compare the performance 

of the Priority-based Speculative Locking protocols (Preemptive Speculative Locking (PSL) 

and Priority Inheritance Speculative Locking (PiSL)) with the Speculative Locking protocol. 

The Distributed Real Time Transaction Processing System (DRTTPS) simulator [35] was 

used to conduct these experiments and collect statistical data for performance analysis that is 

presented in this chapter. 

4.1. Assumptions 

Some assumptions were made in order to conduct these simulation experiments. These 

assumptions are as follows: 

• When a transaction is created, all the pages required by the transaction are known. 

• When a transaction needs to access a data item that is located on a different node than 

the node where the transaction originated, a subtransaction will be created. 

• Once a transaction commits, it cannot be rolled back. 
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• The hardware (disks, swap disks and processors) are free of failure. 

• Access to cache or buffer is instantaneous. 

• The network is fully connected. 

The above assumptions simplify the design of the simulator, but they do not impact the 

modelling of a realistic scenario. 

4. 2. Performance Metrics 

The main performance metric used for performance analysis is the percent of transactions 

completed on time (PTCT). The PTCT value ranges from 0 to 100 percent and represents all 

the transactions existing in the system. In the upcoming experiments, achieving a PTCT of 

100 percent is the goal. However, due to resource limitations and the nature of distributed 

real-time database systems, expecting a PTCT of 100 percent for any of the protocols is 

unrealistic. 

The other performance metric used for this experiment is related to the utilization of 

resources within the distributed real-time database system. These resources are located on 

each node that constitutes the distributed system and include the processors, disks and swap 

disks. These additional metrics comprise: (1) percent of processor utilization (PPU), (2) 

percent of disk utilization (PDU) and (3) percent of swap disk utilization (PSDU). PPU, PDU 
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and PSDU values vary between 0 and 100 percent. These additional metrics provide an 

insight into the trends of the utilization of resources for PSL, PiSL and SL protocols. 

4.3. Baseline Configuration 

The performance evaluation of PSL, PiSL and SL protocols start with the creation of a 

baseline configuration. The parameter values chosen for the baseline configuration provide a 

blueprint for the upcoming experiments. The explanation and values chosen for the baseline 

parameters are provided in Table 3. These values represent a moderately loaded system 

where transactions are not allowed to share data items. For example, as mentioned earlier, the 

update probability, set in the Transaction Generator, represents the probability that any given 

page will be written back to the disk. By setting the Update parameter to 100, every data item 

that is accessed by a transaction will be updated. This prevents transactions from sharing the 

same data items, hi the upcoming experiments, different system parameters are varied to 

analyze their impact on the performance of PSL, PiSL and SL. 

Parameter 

Inter A rrivalTime 

WorkSize 

Update 

SimTransSize 

Meaning 

Time separating the arrival of two consecutive 

transactions into the system 

Number of pages accessed by a transaction 

Percent Probability that a page will be updated 

Number of transactions created in the simulator 

Value 

75 ticks 

4-12 

100 

200 
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Nodes 

MaxActiveTrans 

Processors 

ProcTime 

ProcHype 

Disks 

DiskTime 

SwapTime 

Pages 

CacheSize 

Number of nodes in the system 

Maximum number of active transactions per node 

Number of processors per node 

Amount of time to process a page 

Processor Hyper-Threading 

Number of disks per node 

Amount of time to read a page from the disk 

Amount of time to swap a page: from cache/buffer to 

disk and vice versa 

Number of pages per disk 

Size of the system cache/buffer per node 

4 

30 

1 

15 ticks 

Disabled 

2 

35 ticks 

35 ticks 

100 

75 pages 

Table 3: Baseline Configuration parameters 

4.4. Running Simulations 

The DRTTPS, described in [35], provides a set of tools that can be used to carry out 

simulations. These tools provide graphical user interfaces to create, manage and analyse 

results from simulations. These include the setup tool, the simulator tool and the report tool 

that are used to carry out the simulations whose results are presented in this chapter. 

The setup tool (Figure 22) allows the user of the DRTTPS to create the simulation topology, 

the site structure, the node structure and set the values for the configuration parameters. Also, 
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the setup tool provides the functionality to initiate the running of simulations and save 

configurations. As mentioned earlier, the simulation model consists of a number of sites 

connected by a network. This constitutes the simulation topology. Moreover, each site 

contains one or more nodes that consist of components such as processors, disks and buffers. 

The behaviour of these components is controlled through the manipulation of parameters. 
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Figure 22: DRTTPS Setup Tool 
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The simulator tool (Figure 23) takes the configuration from the setup tool and runs the 

simulations, generating simulation statistics. These statistics are represented by graphs that 

are displayed in real time. The simulator tool also provides a real time description of event 

portraying the progress within each component of a node. This provides an insight on how 

the components interact during the simulation. 
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The report tool (Figure 24) is used to view the graphs and statistics generated by the 

simulator tool once the simulations complete. The statistics contained in the report tool are 

used to generate the graphs that are presented in the upcoming experiments. 
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4.5. Experiment 1: Baseline Simulations. 

Using the baseline configuration, this first set of experiments analyses the impact of the 

Inter ArrivalTime, WorkSize, Processors, MaxActiveTrans and CacheSize on the performance 

of PSL, PiSL and SL protocols. These parameters are varied to observe how they affect the 

behaviour of these protocols. This also allows the comparison of performance of protocols 

against one another. 

4.5.1. Arrival Rate 

In this experiment the value of the InterArrivalTime parameter is varied. The 

Inter ArrivalTime determines the number of ticks that separate the creation of two subsequent 

transactions, by the workload generator. The metric used in this experiment is the PTCT, and 

the results are presented in Figure 25. 
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Percent of Transactions Completed on Time vs Transactions 
Arrival Rate 
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Transactions Inter Arrival Time 

90 

Figure 25: Experimentl-InterArrivalTime: PTCT for baseline configuration 

Figure 25 shows that the InterArrivalTime has a direct impact on the performance of all the 

protocols. At lower values, the performance of each of the protocols is low. As the 

Inter ArrivalTime increases, the performance of each of the protocols also increases. This is 

due to the fact that a slower arrival rate of transactions results in a lower system load, 

whereas a faster arrival rate of transaction in the system results in a higher system load. Also, 

the higher the system load, the higher the competition for data items and the lower the 

performance of the protocols and vice versa. However, it should be noted that regardless of 

the value of the InterArrivalTime, PSL and PiSL outperform SL. 
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4.5.2. Work Size 

In this experiment, the value of the WorkSize parameter is varied. The WorkSize parameter 

represents the number of pages that each transaction in the system needs to process in order 

to complete. The value of the WorkSize parameter is specified in the form of a range of 

numbers (2-12, 3-12... 6-12). This range defines a set of possible values for the number of 

pages to be processed by each transaction within the system. For example, a WorkSize of 4-

12 specifies that each transaction within the system must process between 4 pages and 12 

pages. The actual number of pages accessed is determined by a chosen distribution that uses 

the specified range. This experiment allows the analysis of the impact of WorkSize on the 

performance of PSL, PiSL and SL. PTCT is the metric used to measure performance in this 

experiment. The results from this experiment are presented in Figure 26. 

By determining the number of pages that each transaction in the system need to process, the 

WorkSize parameter indirectly determines how long a transaction needs to stay in the system. 

The more pages that a transaction needs to process, the longer it will likely take to complete. 

Also, the period that a transaction stays in the system has a direct impact on the system load. 

The longer transactions remain in the system, the higher the system load will be. Further, the 

more pages each transaction in the system needs to process, the higher the probability of data 

conflict will be, due to a higher level of competition for data items. Due to these two factors 

(system load and probability of data conflict) the WorkSize has the potential to affect the 

performance of PSL, PiSL and SL. 
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Figure 26: Experiment 1-WorkSize: PTCT for the baseline configuration 

Figure 26 shows that when the WorkSize has lower values, the performance of each of the 

protocols is relatively high. This is due to the fact that when the WorkSize is low, the system 

is less loaded, and data conflict is relatively rare. However, as the WorkSize increases, the 

system load increases, as well as the probability of data conflict. This results in decreased 

performance for each of the protocols. However, Figure 26 clearly shows that when one 

compares the protocols to each other, PSL and PiSL perform better than SL regardless of the 

workload. 
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4.5.3. Maximum Active Transactions 

In this experiment, the value of MaxActiveTrans parameter is varied. The MaxActiveTrans 

parameter determines the maximum number of transactions that are allowed to be active at 

the same time within a node. As soon as this maximum value is reached within a node, the 

system will no longer allow any other transaction to enter the node. Consequently, all 

incoming transactions are queued outside the node until there is space available in the node 

again. Hence, if the value of the MaxActiveTrans is low, few transactions can be 

simultaneously active in a node. On the other hand, if the value of the MaxActiveTrans is 

high, then many active transactions are allowed to reside simultaneously in a node. It should 

also be noted that when a transaction is queued outside a node, it is in an inactive mode, 

meaning it is not allowed to access any resources or data items located within the node. 

Therefore, if a transaction is queued outside a node for too long, it may miss its deadline. 

Consequently, if the value of the MaxActiveTrans is set to a very low value, the resources of 

a node may be underutilized. 

This experiment allows us to evaluate the impact of the MaxActiveTrans parameter on the 

performance of the protocols. The metric used for this experiment is the PTCT. The results 

from this experiment are presented in Figure 27. 
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Percent of Transactions Completed on Time vs Maximum Active 
Transactions 
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Figure 27: Experiment 1-MaxActiveTrans: PTCT for the baseline simulation 

Figure 27 shows that at low values of MaxActiveTrans, the performance of each of the 

protocols drops. This is due to the underutilization of resources within each node. As the 

MaxActiveTrans value increases, the performance of the protocols quickly increases. 

However, something interesting happens: instead of the performance of the protocols 

continuously increasing as the MaxActiveTrans increases, performance stabilizes at a certain 

point. As the value of MaxActiveTrans increases, the number of active transactions within 

each node increases. This eventually results in maximum resource utilization within each 

node. However, due to the fact that resources in a node are limited, and data items are 

accessed in a controlled manner, transactions that are waiting for access to resources or data 

items are queued within the node. Hence, after the MaxActiveTrans value hits a certain point, 
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any further increase to this value no longer impacts the performance of the protocols. 

However, it should be noted that regardless of the value of MaxActiveTrans, PiSL and PSL 

once again outperform SL protocol. 

4.5.4. Number of Processors 

In this experiment, the Processor parameter is varied. The Processor parameter represents 

the number of processors per node. As mentioned earlier, each node can have one or more 

processors. Each processor can only process one page at a time. This experiment allows us to 

evaluate the impact of the number of processors per node on the performance of the 

protocols. The metric used for this experiment is the PTCT. Figure 28 presents the result of 

this experiment. 

Figure 28: Experiment 1-Processors: PTCT for the baseline simulation 
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Figure 28 shows that increasing the number of processors per node does not result in an 

increase in performance for any of the protocols. In fact, when there is only one processor per 

node, the performance of the protocols is slightly higher. As the number of processors 

increases to 2 processors per node and more, the performance of the protocols slightly 

decreases then stabilizes for any Processor value greater than 2. The slight decrease in 

performance as the number of processors increases from 1 to 2 is due to processor overhead. 

However, regardless of the number of processors, PiSL and PSL outperform SL. The reason 

why the number of processors per node does not affect the performance of the protocols is 

due to the fact that processors are being underutilized. Thus increasing their number does not 

improve performance. This will be further discussed in the upcoming experiments on system 

resources utilization. 

4.5.5. System Cache 

In this experiment, the CacheSize parameter is varied. The CacheSize parameter represents 

the size of system cache, also known as the buffer, at each node. The value of CacheSize 

determines the number of pages that the system cache can hold. As mentioned earlier, when a 

transaction requires access to a page, it first checks if the page is in the system cache. If the 

page is not available in the system cache, then the page must be fetched from the disk and 

loaded into the system cache before it can be accessed by the transaction. All the operations 

that the transaction needs to perform on the page occur while the page resides in the system 

cache. A page is moved back to the disk only when a transaction is done with it. Hence, 

when the number of pages held in the system cache is equal to the value of the CacheSize 
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parameter, no more pages can be loaded in the system cache. In this case, transactions that 

need access to pages that are not in the system cache will either have to wait, or some of the 

pages residing in the system cache will have to be swapped out to the swap disk to create 

space in the system cache. 

In this experiment, the impact of the system cache on the performance of the protocols is 

analyzed. The metric used for this experiment is the PTCT. The result of this experiment is 

presented in Figure 29. 
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Figure 29: Experiment 1-System Cache: PTCT for baseline simulation 

Considering that transactions perform operations only on pages residing in the system cache, 

in speculative based protocols, all of the speculative executions being performed place a 
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considerable demand on the system cache. Hence, the size of the cache has a direct impact on 

the performance of the PiSL, PSL and SL protocols. In this experiment, it can be observed 

that the performance of the protocols increases as the size of the system cache increases. At 

low CacheSize values, the performance of PiSL is below the performance of PSL and even 

SL at times. However as the value of CacheSize increases, PiSL performance picks up and 

surpasses the performance of SL and ends up slightly outperforming PSL. In subsequent 

experiments, more investigation will be conducted to further analyze the impact of the 

system cache size on the performance of PiSL, PSL and SL. 

4.6. Experiment 2: System Resources Utilization 

In this set of experiments, the utilization of system resources (disks, processors and swap 

disks) is analyzed under various system cache values. A comparison of the different 

protocols regarding their utilization of resources is also explored. Furthermore, this 

experiment provides some clarification on some of the protocols behaviours that were not 

fully explained in Experiment 1. 

4.6.1. Swap Disk Utilization. 

When a transaction needs to access a page, and there is no space available in the cache, then 

some of the pages currently in the cache may temporarily be swapped to a swap disk to create 

space in the system cache. Hence, the swap disk is used only when there is not enough space 

in the system cache. This experiment allows us to analyze the utilization of the swap disks by 
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each of the different protocols as the system cache size varies. The metric used in this 

experiment is the PSDU. 

Percent of Swap Disk Utilization vs. Cache Size 
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Figure 30: Experiment 2-Swap Disk: PSDU - System Resource Utilization 

Figure 30 shows that the utilization of the swap disk is significantly dependent on the size of 

the system cache. For smaller system cache, the utilization of the swap disk increases, going 

as high as 80% for a cache size of 15. This is due to the fact that demand on the system cache 

increases as transactions enter the system, since the cache must hold all the pages required by 

active transactions. As the system cache runs out of space, some of the pages currently 

residing in it must be swapped to the swap disk in order to make more cache space available. 

This results in increased utilization of the swap disk. Another interesting result that needs to 

be noted in the comparison of the protocols in term of the utilization of the swap disk, is that 

PSL seems to utilize the swap disk least. This observation is further explored in upcoming 

experiments. 
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4.6.2. Disk Utilization 

This experiment analyzes the utilization of the regular disk by each of the different protocols 

as the system cache size is varied. The metric used in this experiment is the PDU. 

Percent of Disk Utilization vs. Cache Size 
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Figure 31: Experiment 2-Disk: PDU - System Resource Utilization 

Figure 31 reveals some interesting output: the size of the system cache where PDU starts to 

drop corresponds to the size of the system cache where the PSDU starts to increase (Figure 

30). This is due to the fact that pages are not being read or updated in this situation, due to an 

intensive movement of pages between the system cache and the swap disk. In this case, the 

utilization of the disk is essentially traded for utilization of the swap disk. This results in an 

overall decrease in the performance of each of the protocols. Also, when comparing the disk 
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utilization of PiSL, PSL and SL, it can be observed from Figure 31 that the overall disk 

utilization is the same for each of the protocols. 

4.6.3. Processor Utilization 

In this experiment, the utilization of the processor is analyzed for each of the different 

protocols, as the system cache size varies. It should be noted that, only one processor is used 

per node for this experiment. The metric used for this experiment is the PPU, and the result is 

presented in Figure 32. 
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Examining Figure 32, one may make two major observations. First, similar to what was 

observed in Figure 31, one may note that there is a slight decrease in processor utilization 

when the size of the system cache is too low. Once again, this is due to the fact that pages are 

moving back and forth between the system cache and the swap disks instead of actually being 

processed. Similar to the disk, the utilization of the processor is traded for the utilization of 

the swap disk. 

The second observation is related to experiment 1. Figure 32 reveals that the PPU stabilizes 

at a certain system cache size, and thereafter does not change despite of an increase in the 

value of the system cache. This reveals that the processor is never fully utilized. This output 

clarifies the results of the analysis of the impact of the number of processors on the PTCT in 

experiment 1 (Figure 28). In that experiment, it was found that increasing the number of 

processors per node did not affect the increase in the PTCT. It can now be concluded that the 

lack of impact of the number of processors on the PTCT, as observed in Figure 28, is due to 

the fact that the processor is never fully utilized. 
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4.7. Experiment 3: Small System Cache 

In this set of experiments, the size of the system cache is reduced to analyze the overall 

performance of the protocols under different system loads and resources availability. The 

impact of the InterArrivalTime, WorkSize and MaxActiveTrans parameters on the 

performance of the protocols is analyzed for low system cache sizes. For this experiment the 

value of the CacheSize is reduced to 60. The performance metric used in this experiment is 

PTCT. 

4,7.1. Arrival Rate 

In this experiment, the impact of the Inter ArrivalTime on the performance of the protocols, 

when the system cache size is small, is analyzed. The result of this experiment is presented in 

Figure 33. 
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Figure 33: Experiment 3-InterArrivalTime: PTCT for Small System Cache 
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As in experiment 1, the performance of the protocols increases as the value of the 

InterArrivalTime parameter increases. However, in contrast to experiment 1 (Figure 25), PSL 

performs best here, followed by PiSL and finally SL. It should also be noted that, as shown 

by Figure 33, the difference in performance between PSL and SL is bigger in this experiment 

than in experiment 1. This is due to the fact that with PSL, when a lower priority transaction 

is aborted, its respective pages are removed from the system cache, freeing up space in the 

system cache. Moreover, as shown in experiment 1- Figure 29, the size of system cache has a 

direct impact on the performance of all the protocols. A small system cache has a negative 

impact on the performance of all the protocols. Hence, by freeing some space within the 

system cache, especially for system with small system cache where more space is really 

needed, PSL further increase the overall system performance. 

4.7.2. Work Size 

In this experiment, the impact of the WorkSize on the performance of the protocols is 

analyzed, in conditions where the system cache size is small. The result of this experiment is 

presented in Figure 34. 
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As in experiment 1, the performance of the protocols drops as the value of the WorkSize 

increases. Unlike in experiment 1 (Figure 26), PSL has the best performance, followed by 

PiSL and finally SL. However, as shown in Figure 34, when the WorkSize reaches a certain 

value, the gap between the protocols starts to decrease, as so does the overall performance of 

each of the protocols. This is due to the fact that the WorkSize influences the system load as 

well as data contention. As the WorkSize increases, the system load and data contention 

increase. In a case of a system with limited system cache, once the WorkSize reaches a 

certain value, the demand on the system cache added to the increased data contention 

adversely affect all the protocols and result in poor system performance. 
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4.7.3. Maximum Active Transactions 

In this set of experiments, the impact the MaxActiveTrans parameter on the performance of 

the protocols is analyzed in conditions where the system cache size is small. The result of this 

experiment is presented in Figure 35. 
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Figure 35: Experiment 3-MaxActiveTrans: PTCT for Small System Cache 

The output of this experiment shows the same trend as the output of experiment 1 (Figure 27). 

However, PSL shows a higher level of performance here compared to the other protocols, 

followed by PiSL, and finally SL. It should also be noted that the gap, in terms of 

performance, between PSL and SL has significantly increased. This is due, as previously 

explained, to the ability of PSL to free up space in the system cache when the space is really 

needed. 
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4.8. Experiment 4: Large System Cache 

This experiment is similar in nature to experiment 3. However, in this experiment, the value 

of the CacheSize parameter has been raised to 85. Hence, this experiment allows us to 

analyze the impact of the InterArrivalTime, WorkSize and MaxActiveTrans parameters on the 

performance of the PiSL, PSL and SL protocols when the system cache size is relatively 

large. The metric used for this experiment is the PTCT. 

4.8.1. Arrival Rate 

In this experiment, the impact of the Inter ArrivalTime on the performance of the protocols, 

under large system cache, is analyzed. The result of this experiment is presented in Figure 36. 
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Figure 36: Experiment 4-InterArrivalTime: PTCT for Large System Cache 
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As in experiment 1 (Figure 25) and experiment 3 (Figure 33), the performance of each of the 

protocols increases as the value of the InterArrivalTime increases. However, in contrast to 

experiment 3 (Figure 33), the performance of PiSL is better than the performance of PSL, 

except when the value of the InterArrivalTime is too low. As mentioned earlier, when the 

value of InterArrivalTime decreases, the system load increases. Hence, as shown in Figure 

36, PiSL does not perform well when the system load is too high, even when the system 

cache is relatively large. 

As the system cache increase, the ability of freeing up space in the system cache provided by 

PSL looses its impact on the performance of the protocols. In this case the performance of 

PiSL is better than the performance of PSL. This is due to the fact that with PiSL, there is no 

abortion of transaction that results in wasting of work. Moreover, in the case of a large 

system cache, there are enough resources to quickly process the lower priority transactions 

that inherited their priority from the higher priority transaction. This gives a chance to both 

higher and lower priority transactions to meet their deadline. However, as the 

InterArrivalTime decrease, there is more and more demand on the system cache due to the 

increased system load. This results in the decrease of performance for PiSL. 

93 



4.8.2. Work Size 

In this experiment, the impact of the WorkSize on the performance of the protocols, under 

large system cache situations, is analyzed. The result of this experiment is presented in 

Figure 37. 
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Figure 37: Experiment 4-Work Size: PTCT for Large System Cache 

The output of this experiment is similar to the output in experiment 1 (Figure 26) and 

experiment 3 (Figure 34); the performance of the protocols decreases as the value of 

WorkSize increases. However, in contrast to experiment 3 (Figure 34), the performance of 

PiSL does not lug behind PSL. In fact, for low WorkSize values, PiSL slightly outperforms 
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PSL. However, as the value of the WorkSize increases the performance of PiSL drops below 

the performance of PSL. 

This is due, as previously explained, to the ability of PiSL to avoid waste of work, by 

preventing any transaction abortion, combined with the fact that, in a system with large 

system cache, there are enough resources to quickly process lower priority transactions that 

inherited their priority from higher priority transactions. However, as mentioned in 

experiment 1, the WorkSize indirectly determines the system load. Hence, as the WorkSize 

increases, the system load increases, as well as the demand on system cache. This negatively 

affects the performance of PiSL, but, at the same time, the ability of PSL to free up space 

within the system cache gives PSL a better performance than PiSL. 

4.8.3. Maximum Active Transactions 

In this experiment, the impact of the MaxActiveTrans on the performance of the protocols, 

under high system cache situations, is analyzed. The result of this experiment is presented in 

Figure 38. 
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Figure 38: Experiment 4-MaxActiveTrans: PTCT for Large System Cache 

The trend in performance for the protocols in this experiment is similar to what was shown in 

experiment 1 (Figure 27) and experiment 3 (Figure 35). However, in this experiment, unlike 

in experiment 3 (Figure 35), the performance of PiSL is better than the performance of PSL. 

This is due, as previously explained, to the ability of PiSL to avoid waste of work combined 

with the advantage that a large system cache provides to PiSL. 
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4.9. Experiment 5: Swap Disk 

The impact of the CacheSize on the utilization of the swap disk was analyzed in Experiment 

2 (Figure 30). The output of that experiment showed that the swap disk is only used when the 

value of CacheSize is less than 50. In the previous experiments, the swap disks were not 

utilized since the value of CacheSize was greater than 50. In this experiment, the behaviour 

of the PiSL, PSL and SL protocols is analyzed when the swap disk is used. Hence, in this 

experiment, the value of CacheSize is reduced to 20. 

This set of experiments serves two purposes: 

1. The analysis of the impact of WorkSize and Inter ArrivalTime on the performance of 

the protocols, when swap disks are being utilized. These two parameters have been 

chosen due to the fact that they control the system load and data contention within the 

system. 

2. As the impact of WorkSize and Inter ArrivalTime is investigated, the utilization of the 

swap disk is studied, under various system loads and data contention levels, for the 

different protocols. 

The metric used for this experiment is the PTCT and the PSDU. The results of these 

experiments are presented in Figure 39-42. 
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4.9.1. Work Size 
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Figure 39 and Figure 40 show that the utilization of the swap disk is not totally dependent on 

the size of the system cache. Even though the size of the system cache used in this 

experiment is very small, the swap disk is not utilized when transactions work sizes are 

smaller. Hence, it can be concluded that the utilization of swap disk is dependent on both the 

size of the cache and the amount of data contention. 

When the swap disks are not being utilized, all of the protocols come close to a perfect 

performance. However, as data contention increases, the swap disks start being utilized, and 

at this point, the performance of all the protocols starts to drop. This is due to the increase in 

movement of pages between the system cache and the swap disks. In this case, as shown in 

experiment 2 (Figure 31, Figure 32), the utilization of the disk and the processor is traded for 

the utilization of the swap disks. This results in decreased performance for each of the 

protocols. However, when the protocols are compared to each other, PSL outperforms the 

other protocols. 

Finally, it should be noted that when comparing the performance of PSL and PiSL, there 

seems to be a direct connection between their performance and their utilization of the swap 

disks. Figure 40 shows that PSL uses less swap disks than PiSL. This is due to the fact that 

with PSL, when a lower priority transaction is preempted and aborted, its respective pages 

are removed from the system cache, freeing up space within the system cache which results 

in lower utilization of the swap disk, and increases the overall system performance. 
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4.9.2. Arrival Rate 

Figure 41 shows the impact of the Inter-ArrivalTime on the performance of the protocols 

when the swap disks are being utilized. The behaviour of the protocols is similar to what has 

been observed in previous experiments; the performance of each of the protocols increases as 

the value of Inter ArrivalTime increases. However, when considering both Figure 41 and 

Figure 42, it may be noted that at low InterArrivalTime values, swap disks utilization is 

relatively high and the performance of all of the protocols is poor. Conversely, a high 

InterArrivalTime results in the swap disks being utilized less which results in better 

performance for each of the protocols. 
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Chapter 5 

Conclusion and Future Direction 

With globalization, the need for exchange of information has led to the development of 

applications that are heavily dependent on globally distributed and constantly changing data. 

To support these applications, there is a need for distributed real time databases. The 

Speculative Locking protocol [9] provides an efficient approach in solving concurrency 

control issues within distributed database systems. SL improves the throughput performance 

of distributed database systems, but does not take transaction's time constraint into 

consideration, making it unfit for distributed real time database systems. In this thesis, this 

limitation was addressed by extending SL into two new concurrency control mechanisms 

(PSL and PiSL) that take into consideration the distributivity and time constraint issues of 

distributed real time database systems. 

An extensive study has been carried out using the DRTTPS simulator to compare the 

performance of the proposed protocols. These experiments have demonstrated the following: 

1. The Priority-based Speculative locking protocols consistently outperform the SL 

protocol. 

2. System load and data contention levels have a direct impact on the performance of all 

the protocols. 
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3. When data contention and system load are too high, PSL outperforms PiSL. For low 

data contention and low system loads, PiSL outperforms PSL. 

4. When the system is forced to use the swap disks, due to a small system cache and 

high data contention, PSL uses the swap disks less than PiSL and SL. In this case, 

PSL provides a better performance than PiSL. 

5.1. Future Work 

PSL provides better performance when there is a high amount of data contention and a high 

system load. On the other hand, PiSL performs better in systems with lighter loads and lower 

data contention. Our future study will involve the development of a protocol that will 

dynamically switch between PSL and PiSL depending on the status of the system. This 

protocol will take advantage of the strengths of both the PSL and PiSL protocols. 

Another interesting study that could be conducted in the future would be implementing PSL 

and PiSL in a real world distributed real time database system or in a prototype system where 

real world transactions would be used to study the behaviour of these respective protocols. 
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