4,538 research outputs found

    Conceptualizing a framework for cyber-physical systems of systems development and deployment

    Get PDF
    ABSTRACT Cyber-physical systems (CPS) refer to the next generation of embedded ICT systems that are interconnected, collaborative and that provide users and businesses with a wide range of smart applications and services. Software in CPS applications ranges from small systems to large systems, aka. Systems of Systems (SoS), such as smart grids and cities. CPSoS require managing massive amounts of data, being aware of their emerging behavior, and scaling out to progressively evolve and add new systems. Cloud computing supports processing and storing massive amounts of data, hosting and delivering services, and configuring selfprovisioned resources. Therefore, cloud computing is the natural candidate to solve CPSoS needs. However, the diversity of platforms and the low-level cloud programming models make difficult to find a common solution for the development and deployment of CPSoS. This paper presents the architectural foundations of a cloud-centric framework for automating the development and deployment of CPSoS service applications to converge towards a common open service platform for CPSoS applications. This framework relies on the well-known qualities of the microservices architecture style, the autonomic computing paradigm, and the model-driven software development approach. Its implementation and validation is on-going at two European and national projects

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City

    Full text link
    Modern cities and metropolitan areas all over the world face new management challenges in the 21st century primarily due to increasing demands on living standards by the urban population. These challenges range from climate change, pollution, transportation, and citizen engagement, to urban planning, and security threats. The primary goal of a Smart City is to counteract these problems and mitigate their effects by means of modern ICT to improve urban administration and infrastructure. Key ideas are to utilise network communication to inter-connect public authorities; but also to deploy and integrate numerous sensors and actuators throughout the city infrastructure - which is also widely known as the Internet of Things (IoT). Thus, IoT technologies will be an integral part and key enabler to achieve many objectives of the Smart City vision. The contributions of this paper are as follows. We first examine a number of IoT platforms, technologies and network standards that can help to foster a Smart City environment. Second, we introduce the EU project MONICA which aims for demonstration of large-scale IoT deployments at public, inner-city events and give an overview on its IoT platform architecture. And third, we provide a case-study report on SmartCity activities by the City of Hamburg and provide insights on recent (on-going) field tests of a vertically integrated, end-to-end IoT sensor application.Comment: 6 page

    Designing the Smart Operator 4.0 for Human Values: A Value Sensitive Design Approach

    Get PDF
    Emerging technologies such as cloud computing, augmented and virtual reality, artificial intelligence and robotics, among others, are transforming the field of manufacturing and industry as a whole in unprecedent ways. This fourth industrial revolution is consequentially changing how operators that have been crucial to industry success go about their practices in industrial environments. This short paper briefly introduces the notion of the Operator 4.0 as well as how this novel way of conceptualizing the human operator necessarily implicates human values in the technologies that constitute it. Similarly, the design methodology known as value sensitive design (VSD) is drawn upon to discuss how these Operator 4.0 technologies can be design for human values and, conversely, how a potential value-sensitive Operator 4.0 can be used to strengthen the VSD methodology in developing novel technologies

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition

    An Open Platform for Modeling Method Conceptualization: The OMiLAB Digital Ecosystem

    Get PDF
    This paper motivates, describes, demonstrates in use, and evaluates the Open Models Laboratory (OMiLAB)—an open digital ecosystem designed to help one conceptualize and operationalize conceptual modeling methods. The OMiLAB ecosystem, which a generalized understanding of “model value” motivates, targets research and education stakeholders who fulfill various roles in a modeling method\u27s lifecycle. While we have many reports on novel modeling methods and tools for various domains, we lack knowledge on conceptualizing such methods via a full-fledged dedicated open ecosystem and a methodology that facilitates entry points for novices and an open innovation space for experienced stakeholders. This gap continues due to the lack of an open process and platform for 1) conducting research in the field of modeling method design, 2) developing agile modeling tools and model-driven digital products, and 3) experimenting with and disseminating such methods and related prototypes. OMiLAB incorporates principles, practices, procedures, tools, and services required to address the issues above since it focuses on being the operational deployment for a conceptualization and operationalization process built on several pillars: 1) a granularly defined “modeling method” concept whose building blocks one can customize for the domain of choice, 2) an “agile modeling method engineering” framework that helps one quickly prototype modeling tools, 3) a model-aware “digital product design lab”, and 4) dissemination channels for reaching a global community. In this paper, we demonstrate and evaluate the OMiLAB in research with two selected application cases for domain- and case-specific requirements. Besides these exemplary cases, OMiLAB has proven to effectively satisfy requirements that almost 50 modeling methods raise and, thus, to support researchers in designing novel modeling methods, developing tools, and disseminating outcomes. We also measured OMiLAB’s educational impact

    Conceptualizing Sustainable Smart Country: Understanding Its Dependency on Smart Security Structure.

    Get PDF
    This paper explores the concept of a sustainable smart country and its dependence on smart security structures. It aims to understand the relationship between sustainable development and smart security and how the latter can contribute to the former. The paper defines a sustainable smart country and its key features, examines the role of smart security in achieving sustainable development goals, and analyzes the challenges and opportunities associated with implementing a smart security structure in a sustainable smart country. The research methodology involves a comprehensive literature review of relevant academic and policy sources. The findings will contribute to the ongoing debate on the role of smart security in sustainable development and provide insights for policymakers, researchers, and practitioners. It summarizes the study's purpose, basic design, major findings, interpretations, and conclusions. The research methodology is also highlighted, and the study's potential contribution to the ongoing debate on smart security in sustainable development is highlighted

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page
    corecore