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ABSTRACT 
Cyber-physical systems (CPS) refer to the next generation of 
embedded ICT systems that are interconnected, collaborative and 
that provide users and businesses with a wide range of smart 
applications and services. Software in CPS applications ranges 
from small systems to large systems, aka. Systems of Systems 
(SoS), such as smart grids and cities. CPSoS require managing 
massive amounts of data, being aware of their emerging behavior, 
and scaling out to progressively evolve and add new systems. Cloud 
computing supports processing and storing massive amounts of 
data, hosting and delivering services, and configuring self-
provisioned resources. Therefore, cloud computing is the natural 
candidate to solve CPSoS needs. However, the diversity of 
platforms and the low-level cloud programming models make 
difficult to find a common solution for the development and 
deployment of CPSoS. This paper presents the architectural 
foundations of a cloud-centric framework for automating the 
development and deployment of CPSoS service applications to 
converge towards a common open service platform for CPSoS 
applications. This framework relies on the well-known qualities of 
the microservices architecture style, the autonomic computing 
paradigm, and the model-driven software development approach. 
Its implementation and validation is on-going at two European and 
national projects. 
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1. INTRODUCTION 
Society demands more intelligent, more energy-efficient and more 
comfortable homes, hospitals, offices, faetones and cities. Cyber-
Physical Systems (CPS) refer to ICT systems (sensing, actuating, 
computing, communication, etc.) embedded or software integrated 
in physical objeets, interconnected (including through the Internet) 
and providing citizens and businesses with a wide range of smart 
applications and services: healthcare, smart home, smart 
energy/water grids, smart logistics, and smart cities [8][19]. 

Therefore CPS can grow from small systems, such as smart home 
or vehicles, to the above-mentioned large systems. These systems 
are known as Systems of Systems (SoS), since they are composed 
by other heterogeneous systems geographically extended that 
pursue a unified goal and leverage an emergent behavior [16] [21]. 
These large CPS are known as Cyber-Physical Systems of Systems 
(CPSoS). 

CPSoS are composed of devices, most times smart devices, with 
embedded sensors that continuously acquire information from the 
physical environment, which is stored as historical data and/or is 
processed often in real time to make decisions and act on the 
physical world through actuators. CPS intend to be aware of the 
physical environment enabling effective and fast feedback control 
loops between sensing and actuation, possibly with cognitive and 
learning capabilities [19]. CPS are ever more interconnected 
through the Internet of Things (IoT), which encompasses the 
extensión of the Internet into the physical realm, resulting in a 
global network that interconneets thousands or even millions of 
"things" [23]. This fact has generated an important economical and 
societal impact [13] [26] [29], and CPSoS are continually increasing 
the number of resources. Therefore, CPSoS are required to be 
scalable to remain effective when there is a significant increase in 
the number of resources or/and users [5]. 

Cloud computing offers self-provisioning infrastructure as a 
service which makes it the natural candidate for supporting the 
scalability and data processing, storing and analyzing needs of 
CPSoS [2] [3] [7]. In addition, most cloud providers support 
dynamic allocation of the resources required by an application to 
match performance requirements and satisfy service-level 
agreements. In this way, CPSoS can benefit from the almost 
unlimited resources of clouds not only for storing data, but also for 
hosting and delivering their services—e.g. sensing, analysis and 
actuation tasks—as Software as a Service (SaaS) applications. 

However, the diversity of platforms and the low-level cloud 
programming models and interfaces make the development and 
deployment of CPSoS applications difficult. Research in 
constructing specific frameworks—integrated set of software 
artefaets (e.g. components) that collaborate to provide a reusable 
architecture for a family of related applications [28]—for rapid 
creation of these applications and their deployment on cloud 
infrastructures could become a driver for mass market users [13]. 
In fact, the survey conducted by Botta et al. [2] identifies the need 
to converge towards a common open service platform for providing 
end-users with APIs to develop intelligent sensing and actuating 
applications deployed in the cloud, rather than having to deploy 
these infrastructures by themselves "—-which proved to be a time-
consuming and tedious task that dramatically slows innovation ". 
Current research is focused on cloud-centric frameworks which 
provide support for device monitoring, storage resources, analytics 
tools, visualization platforms and client delivery [13] and their 



integration with new architectural styles, paradigms and 
approaches. In this paper, we focus on microservices [20], 
autonomic computing [14], and model-driven development (MDD) 
[1], which have been individually applied to CPS/IoT (see 
respectively [9], [4] and [7]) and demonstrated qualities, such as, 
scalability and modifiability, self-managing, and automation, 
among others. This work takes a step forward by integrating these 
approaches on a cloud-centric framework for CPSoS. 

This paper presents the architectural foundations of a framework 
for automating the development of CPSoS SaaS applications and 
their deployment on cloud infrastructures based on the 
microservice architectural style, autonomic computing, and MDD. 
The CPSoS Framework defines the services that allow to build 
CPSoS-based applications. Implicitly, the framework defines the 
architecture of a global CPSoS solution that mainly consists of a set 
of services that allow to implement typical autonomic loops [14]: 
data services to read information and store it; analysis services of 
data; and planning and execution services to react in the physic 
environment. In addition, most of the involved stakeholders in CPS 
development are taken into account, such as data suppliers, analysis 
tool developers, and utilities/retailers. The SaaS applications can be 
deployed to the cloud to be accessible by other developers and final 
users. As a result, the CPSoS Framework converges towards the 
construction of a common open service platform to develop third-
party CloudCPS-based applications. 

Some of the foundations of the CPSoS Framework are the partial 
result of previous work on two ITEA2 projects called IMPONET1 

and NEMO&CODED2, the research initiated in a national project 
called MESC3, and currently starting to be developed in a large 
Horizon2020 project called CPSELabs4. The novelty compared to 
our previous work is the conceptualization of a framework itself as 
platform to develop CPSoS applications as well as the evolution of 
previous work in MDD and autonomic computing [31] to support 
microservices and cloud-based applications. 

This paper is structured as follows: Section II describes the 
background and Section III related work. Section IV presents the 
conceptualization of the CPSoS Framework. Finally, conclusions 
and further work are described in Section V. 

2. BACKGROUND 
2.1 Cyber-Physical Systems 

Cyber-physical systems (CPS) are systems where real-time or 
cuasi real-time computing elements and physical systems interact 
tightly. “The most challenging class of cyber-physical systems are 
cyber-physical systems of systems which are characterized by being 
spatially distributed, having distributed control, supervision and 
management with partial autonomy of the subsystems, are 
dynamically reconfigured on different time-scales and can show 
emerging behaviors”5. 

Future CPSoS applications are expected to be more transformative 
than the IT revolution of the past three decades [28]. In the last few 
years there has been an active research and industrial community 
on defining and facing with the CPS’s challenges to ensure 

1 Intelligent Monitoring of Power NETworks 
http://innovationenergy.org/imponet/ 
2 NEtworked MOnitoring & COntrol, Diagnostic for Electrical Distribution 
http://innovationenergy.org/nemocoded/ 
3 Platform for Monitoring and assessing the Efficiency of distribution 

systems in Smart Cities, http://exit.udg.edu/mesc/ 

competitiveness in this emerging field. In Europe, an example of 
this is the FP7’s CyPhERS6 that aimed to define the strategic 
research and innovation agenda about CPS. In its last report, this 
project stated, among others, the following challenges: Ch. 
‘Service vs. Product’: While cyber-physical systems require 
substantial investments in equipment and infrastructure, at the 
same time they facilitate the establishment of business models 
focusing on the provision of a service rather than manufacturing of 
a product. Ch. ‘Multi-Domain Modeling’: there is no established 
body of knowledge on how to adequately model all the relevant 
aspects of cyber-physical systems – especially with respect to useful 
combinations of those aspects and the required level of abstraction. 
Ch. ‘Autonomy’: Cyber-physical systems are self-controlling or 
even self-adapting and self-optimizing systems, leading to 
increasing levels of highly automated or even autonomous behavior 
in the components of those systems, as well as in their collaboration 
[6]. CyPhERS also makes some recommendations based on the 
need of building reference architecture for CPS and Open Cyber-
Physical Systems Platforms (OCPSP) [12], i.e. common cross-
domain engineering platforms to develop CPS which support 
reusability of components, repositories, and tools (“open platforms 
for every body and open interfaces for everything”) [12]. Later, 
European R&I programme Horizon 2020 included topics for 
reducing development time and maintenance costs of such systems. 
Specifically, the proposal of a European research and innovation 
agenda on cyber-physical systems of systems 2016-2025 
emphasizes the following challenges: engineering support for the 
design-operation continuum of cyber-physical systems of systems; 
and cognitive cyber-physical systems of systems. 

2.2 Autonomic Computing 
To satisfy the self-management requirements of CPSoS to being 
more autonomous (context-aware) applications, we rely on the 
fundaments of Autonomic Computing (AC) [14][17]. Horn [14] 
defines autonomic systems as software systems that mostly operate 
without human or external involvement according to a set of rules 
or policies; in other words, the systems are self-managed. IBM 
proposed the MAPE-K control loop for supporting autonomic 
computing. According to the MAPE-K loop, resources to be 
managed are composed of a set of sensors that provide information 
about the current state of the resources. The model implements the 
following: the monitoring of the information (Monitor); the 
analysis to detect symptoms that need corrective action (Analyze); 
the planning of the action required to change the current state of the 
resource according to a set of goals or policies (Plan); and the 
execution of the plan through a set of effectors (Execute). These 
actions are operated over a knowledge base. The MAPE-K loop 
model offers the advantage of isolating the main concerns that any 
autonomic process has to provide, and thus, also offers the main 
concerns that CPSoS applications’ architecture should include. 

2.3 Cloud Computing 
Cloud computing emerges as the natural candidate to support the 
scalability required by CPSoS [2][3][7]. The European technology 
platform dedicated to software, services, and data, NESSI 
(NEtworked Software and Services Initiative), also identifies cloud 

4 European Union-funded initiative supporting European businesses 
http://www.cpse-labs.eu/ 

5 IoT/CPS Expert Group. H2020 PICASSO Project http://www.picasso-
project.eu/iotcps-expert-group/ 
6 Cyber-Physical European Roadmap and Strategy. Available on 
http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&CAT 
=PROJ&RCN=109303 
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as an opportunity for CPS [24].Cloud Computing is a new model 
for enabling convenient, on-demand network access to a shared 
pool of configurable computing resources (e.g., networks, servers, 
storage, applications, platforms, and services) that can be rapidly 
provisioned and released with minimal management effort or 
service provider interaction. Cloud computing providers, such as 
Microsoft, Amazon, and Google, offer a variety of computing 
services built on top of their own infrastructure, which are managed 
in dedicated globally distributed data centers that offer high 
availability, resilience, and scalability. Cloud perceives of all tasks 
accomplished as a “service” rendered to users: Infrastructure as a 
Service (IaaS); Platform as a Service (PaaS); and Software as a 
Service (SaaS). 

2.4 Microservices 
Many companies are finding that making their applications highly 
available, scalable, modifiable, and agile is still challenging. 
Microservices is an emerging architectural style (aka. paradigm) 
for the development of distributed systems that intends to deal with 
these issues. “A microservices application is decomposed into 
independent components called microservices, that work in concert 
to deliver the application’s overall functionality” [27]. This is 
known as componentization via services [20]. The principle of the 
microservices architecture is akin to the Unix principle: Do one 
thing and do it well [20]. Each microservice has well-defined 
contracts (typically RESTful) for other microservices to 
communicate and share data with it. As microservices can be 
deployed independently of one another and are loosely coupled, 
they can scale independently and are easily replaceable and 
upgradeable which supports the rapid/agile and reliable evolution 
of an application. 

2.5 Model-driven Development 
MDD is a software development approach in which models can be 
managed and transformed to facilitate and automate tasks involved 
in the development and evolution of software systems by 
employing high-level abstractions. The primary technical 
advantages claimed by MDD proponents are improvements in 
productivity, portability, maintainability, and interoperability [1]. 
Increasingly, MDD has been widely adopted in the industry as 
reported in [15][30]. Current quantitative analysis shows that the 
main advantage of MDD is code generation [25] and documenting 
a good software architecture [32]. This work takes advantage from 
both of them. 

In MDD, models must be described by a well-defined modeling 
language. Languages that are specific to a domain are referred to as 
domain-specific languages (DSL) [18]. In last few years, there is 
an increasing interest in applying MDD and DSLs to IoT and, in 
general, CPS. 

3. RELATED WORK 
Nowadays, the research community is working on integrating cloud 
and autonomic computing, MDD, and microservices with CPS/IoT. 
A good example are the works of Cavalcante et al. [3] and Botta et 
al. [2] that perform a study mapping and a survey, respectively, 
about integrating Cloud and IoT. These authors review some 
projects which deserve to be highlighted: IoTCloud7 and OpenIoT8. 
These projects focus on managing sensors and their messages, 
filtering these messages, and processing events for interested 
applications, to providing utility-based IoT services. In the same 

https://sites.google.com/site/opensourceiotoloud/ (2014) 
http://www.openiot.eu/ (2014) 

way, but in specific context of smart cities, the work [11] proposes 
new cloud service models. Specifically, this work proposes a City 
Platform as a Service, which expands the traditional PaaS layer to 
foster the development of applications by providing a set of 
specialized middleware services—e.g. data storing, processing, and 
analysis. Finally, the work of Gubbi et al. [13] also presents a cloud-
centric framework which is near to integrate a MAPE-K loop by 
providing support for “(1) reading data streams either from 
sensors directly or fetch the data from databases, (2) easy 
expression of data analysis logic as functions/operators that 
process data streams, and (3) if any events of interest are detected, 
outcomes should be passed to output streams, which are connected 
to a visualization program”. 

In the integration of MDD into the development of IoT 
applications, it is possible to highlight the work by de Farias et al. 
[7]. This work presents a cloud-based IDE (Integrated 
Development Environment) which relies on MDD, particularly 
MDA [22] for developing IoT applications which are compiled 
and/or simulated in the cloud to be deployed then into the devices. 
A cloud-based IDE allows developers to have the same 
environment to generate sensor code images, thus avoiding 
incompatibility regarding compiler versions or differences in the 
IDEs. Although it is not directly related to CPS/IoT, it deserves to 
be mentioned the MODAClouds EU project and related key results 
(e.g. MODACloudML [10]) to model and automate the 
provisioning and deployment of cloud-provider independent 
applications. 

Finally, the work of Familiar [9] postulates microservices as a 
solution to develop IoT applications in the cloud Microsoft 
provider called Azure. However, none of these works have 
researched the advantages of integrating cloud and autonomic 
computing, MDD, and microservices with CPS. 

4. CPSoS FRAMEWORK 
In view of the promising qualities of cloud, microservices, 
autonomic computing, and MDD, this paper presents the 
conceptualization of a framework that integrates all of them. The 
framework, named CPSSos Framework, aims to improve the 
development and deployment of CPSoS-based applications thorugh 
the incorporation of the abstraction and automation of MDD, the 
self-management of autonomic computing, the self-provisioning 
and scalability of cloud computing, and the scalability, 
modifiability and agility of microservices, among others qualities. 
But the question is, how to do it? This work presents the conceptual 
overview of this framework from an architectural view perspective. 
The framework has been defined based on previous work and the 
current experience results obtained from the projects CPSELabs 
and MESC. This conceptualization can be used as a guidance for 
the construction of cloud-centric frameworks that pursue to 
automate the development of CPSoS SaaS applications and their 
deployment on Cloud infrastructures. By extension, this could be a 
seed of a future common open service platform to develop third-
party Cloud CPSoS-based applications. 

4.1 Conceptual overview 
The CPSoS Framework is designed over a cloud platform to take 
advantage from the almost unlimited resources of clouds for 
hosting and delivering services. The framework defines: (i) the 
services and their coordination for achieving system-level 
objectives, i.e. the SaaS that it should provide, (ii) the stakeholders 

https://sites.google.com/site/opensourceiotcloud/
http://www.openiot.eu/


that are involved in the framework, and (iii) the software 
architecture that a global CPSoS solution implements (see Figure 
1). The CPSoS Framework defines the main services that CPSoS 
applications should include. These services are provided through a 
set of SaaS, since the framework is deployed on the cloud. These 
SaaS are the following (see Figure 1): data services to read 
measurements coming from sensors and store them in databases of 
public and/or private clouds; analysis services to identify 
symptoms, problems or anomalies in the measurements stored by 
the previous service; planning services to schedule a plan to react 
to the symptoms, problems or anomalies identified by the previous 
service; and finally execution services to run plans. It is necessary 
to emphasize that this service conceptualization is compliant with 
the MAPE-K Loop. 

Through the specification of these services, the framework 
provides a unified management of most stakeholders who 
<<develop>> or <<use>> CPSoS services in the cloud (see Figure 
1). The stakeholders are the following: data providers that develop 
data services based on their knowledge on IoT and wireless sensor 
networks as well as cloud storage; analysis tool developers that 
analyze data to extract new knowledge mainly based on their 
expertise on technologies such as complex event processing (CEP), 
big data, and machine learning, among others; finally, operators, 
utilities and retailers that use their knowledge in a particular 
domain to define the goals that a CPSoS has to reach and proceed 
with actuation plans to react to the symptoms, problems or 
anomalies that occur in the system, and thereby to obtain the 
required information to implement a successful MAPE-K Loop 
(see Section 2.2). As a result, the framework incorporates the notion 
of MAPE-K loops in such a way that the goals defined by the 
CPSoS are to be constantly maintained through these control loops. 

The stakeholders model these services, according to their expertise, 
through a MDD process (see Figure 1). This MDD process uses 
CPSoS domain-specific models that facilitate the specification of 
the MAPE-K that the CPSoS SaaS applications must follow 
according to this framework. The MDD process also alleviates the 
uncertainty of SoS, which undergoes the common situation of 
adding changes in the plans and goals of such systems, or extending 
them. This improvement is due to the automation of the code 
generation and deployment from these CPSoS domain-specific 

models. In order to support the modelling and automatic code 
generation of CPSoS domain-specific models, it is required the 
specification of a metamodel (see Label 1 in Figure 1) to define the 
abstract syntax of the modeling language, in such a way that the 
stakeholders can use these language to define models (see Task A 
in Figure 1). To take advantage of model-to-code transformations, 
the specification of code generation patterns are necessary (see 
Label 2 in Figure 1), in such a way that the stakeholders can apply 
these transformations (see Task B in Figure 1) to the previously 
defined models to generate code. Finally, this code could be ready 
for deployment and execution (see Task C in Figure 1). 

The metamodel and model-to-code transformations (generation 
patterns) are part of the framework for the usage of the stakeholders 
as many times as they need. The CPSoS Framework incorporates 
to the cloud our previous work about using MDD in CPS [31] with 
the corresponding migrations of these transformations. This 
previous work [31] defined a metamodel for CPS and their code 
generation patterns. It is called MindCPS (doMaINmoDel for CPS) 
DSL. The metamodel MindCPS is part of the results of two ITEA2 
projects called IMPONET1 and NEMO&CODED2. The metamodel 
provides the modelling primitives to model data services, analysis 
services, planning services and execution services, and transform 
these models to code. In this way, one is able to specify all of a 
subset of the services of a MAPE-K control loop for a CPSoS and 
generate the backbone code. In this work, we take a step forward 
migrating it to the cloud, in such a way that the generated code 
constitute the SaaS to be deployed in the cloud by following the 
microservice style (see Section 4.2). These SaaS are transversal to 
the variety of CPSoS domains, and thus, can be used by any of 
them. The MindCPS supports the specification and definition of the 
main concepts of a CPSoS and its autonomous behavior—i.e. 
sensors, measurements, events, problems, actions and plans. 
Figure 2 shows a fragment of a MindCPS that models some of the 
services of a CPS called “Arboleda Demonstrator”. It was deployed 
in a building located on the UPM South Campus, Madrid, Spain. 
The Arboleda demonstrator was equipped with various artefacts; 
including sensors, gateways, and actuators. The sensors included 
power, water, humidity and temperature meters and a presence 
detector. The actuators included a HVAC system controller and a 
photovoltaic generator PLC connected to a solar panel. 

Figure 1. Cloud-centric model-driven framework for CPS SaaS overview 



Figure 2. A fragment of the MindCPS model of the CPS deployed at the Arboleda demonstrator. 

A set of SaaS applications modeled in Figure 2 are described as 
follows: ThePowerMeter_Building measures and records power 
consumption and the PowerMeter_SolarPanel measures power 
output and phase angle, among others. The resulting measures are 
filtered to detect symptoms and problems related to unusual 
consumption levels in the building, as well as synchronization 
failures9 (see Unusual Consumption and Power Grid 
Synchronization Failure). For example, the problem of Power Grid 
Synchronization Failure is detected when the limits for 
synchronization are exceeded (e.g. maximum voltage difference 
is 7% (see voltageDiff). This problem is solved through a plan that 
consists of an action that synchronizes—i.e. minimizes the 
difference in voltage between the corresponding phases of the solar 
panel output and grid supply—through a PLC connected to the 
solar panel (see the plan Repair Sync Failure). 

Finally, the CPSoS Framework provides a software architecture 
which CPSoS solutions must be compliant with. This compliance 
leverage the qualities that the integration of cloud, autonomic 
computing and microservices promises. 

4.2 Software Architecture 
The initial conceptual definition of the software architecture was 
based on a previous reference architecture for CPS based on three-
tier monolithic applications [31] (see Figure 3). This architecture 
implements MAPE-K control loops in such a way that one 
component contains all the logic of a control loop that implements 
a self-managing requirement. However, after some pilot projects, 
we identified some problems. 

Monolithic applications puts all its functionality into a single 
process [20]. Thus, monolithic architectures may hamper 
scalability and flexibility of applications as each tier is still its own 
monolith, implementing diverse functions that are combined into a 
single package deployed onto hardware pre-scaled for peak loads 
[27]. On the one hand, it is required to face the scalability need of 
CPSoS. On the other hand, this architecture forced have cross-
functional teams to develop CPS applications that implemented 
services for monitoring, analyzing, planning and executing (see 
Figure 3). Since diverse functions are necessary to develop a 
CPSoS applications, a cross-functional team with inter-disciplinary 
knowledge is required—such as, knowledge about devices for 
monitoring, about big data and machine learning for data analysis, 
etc. To deal with scalability, the migration to cloud of the CPS 
architecture was required. The self-provisioning and dynamic 
allocation of resources, that is offered by most cloud providers, deal 
with the required scalability of CPSoS to support complex and 
high-demanding MAPE-K control loops. 

However, we realized that agility in development and deployment, 
different needs of scalability of certain components, their 
modifiability, or even reliability could be improved by using 
microservices. The software architecture that this framework 
proposes for CPSoS SaaS applications, introduces microservices by 
decomposing the MAPE-K control loop into independent 
components called microservices (see service definition in Section 
4.1). Figure 4 shows the decomposition of MAPE-K control loop 
into microservices for data monitoring, real-time or historical 
analysis, planning, and execution. These microservices work in 
concert to deliver the application’s overall functionality through 
well-defined RESTful API contracts. This makes it easier to scale 

Abnormalities of voltage and frequency between the corresponding phases 
of a solar panel output and grid supply 



the specific services demanding more computing resources, such as 
data analysis, and to version and update independently each service 
of each other. This loose coupling makes it possible that an 
application evolves in a reliable manner, and additionally, makes it 
easier to keep well-defined the team boundaries, (development can 
be separated according to business capabilities, aligned with 
stakeholder’s definition in Section 4.1), and to define a 
multidisciplinary team as shown in Figure 4. In this way, the 
software architecture of the framework is based on autonomic 
computing, cloud and microservices. 

the solid bases of previous experience and work on CPS carried out 
in past European research projects, and whose implementation is 
on-working in current H2020 and Spanish research projects. 

Figure 3. Three-Tier Monolithic Architecture for CPS Apps 

Additionally, microservices enable the separation of the application 
from the underlying infrastructure on which it runs, as they declare 
their resource requirements to a “cluster manager”. This cluster 
manager schedules microservices onto machines assigned to the 
cluster in order to maximize the cluster’s overall resource 
utilization [27]. Microservices of the CPSoS Framework are 
automatic packaged and deployed in a container10. Figure 5 
illustrates this definition in which each microservice container fits 
with a virtual machine (VM1-VM7). Hence, different VMs allocate 
web, business logic, and data, but also, business logic is divided 
according to the different stakeholders who are involved. In this 
way, it is easier to evolve a specific service of the MAPE-K or 
isolate a fault of a particular microservice. Additionally, each 
microservice manage its own database or instance to ensure 
visibility only in those data that are required. Finally, VM5 and 
VM6 are an example of the flexibility and independence that 
microservices provide with regard to monolithic architectures, 
since the variability of each service can be implemented through 
different microservices and scale out independently (see Fig. 5). 

5. CONCLUSIONS AND FURTHER WORK 
This paper presents the architectural foundations that serve as a 
guidance for the development and deployment of CPSoS 
applications dealing with scalability, flexibility, adaptation, agility 
and self-management needs. The CPSoS Framework has been 
conceptualized with the purpose of being one the seeds of a future 
common open service platform to develop third-party Cloud 
CPSoS-based applications. The framework has been founded from 

Data providers 

Figure 4. Microservice Architecture for CPS Apps 

10Containers wrap a piece of software in a complete filesystem that contains 
everything needed to run: code, runtime, system tools, system libraries. 

Figure 5. Monolithic vs. Microservices Architecture 
The framework is defined in terms of stakeholders, SaaS, an MDD 
process and a software architecture. The design of the framework 
makes a step forward in the field by describing how to integrate 
MDD, autonomic computing, cloud and microservices to guarantee 
the required qualities of CPSoS SaaS applications. The MAPE-K 
control loop is implemented through independent microservices 
that can be self-provisioned for scaling out over a cloud platform. 
In this way, it is possible to introduce the adaptability and self-
management of autonomic computing at fine-level granularity, 
gaining in decoupling and independence of changes. This 
independence is also guaranteed since changes are introduced via a 
well-defined MDD process for CPSoS by generating code at the 
microservice level from domain CPS models. These foundations 
are presented in this work as a starting point for future research and 
validation to evaluate (i) each one of the promising qualities of the 
architectural styles and approaches we integrated into the CPSoS 
Framework, and (ii) possible challenges such real-time response 
and security—typical of any distributed system—which could be 

This guarantees that the software will always run the same, regardless of 
its environment. https://www.docker.com/what-docker 

https://www.docker.com/what-docker


addressed through hybrid cloud and fog computing approaches. In 
this regard, we are planning to conduct several case studies with 
different pilots at the university campus. 
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