7 research outputs found

    Design & Analysis of Cost Estimation for New Mobile-COCOMO Tool for Mobile Application

    Get PDF
    Software cost estimation is a resource forecasting method, which is required by the software development process. However, estimating the workload, schedule and cost of a software project is a complex task because it involves predicting the future using historical project data and extrapolating to see future values. For cost estimates for software projects, several methods are used. Among the various software cost estimation methods available, the most commonly used technology is the COCOMO method. Similarly, to calculate software costs, there are several cost estimating tools available for software developers to use. But these released cost estimation tools can only provide parameters (i.e. cost, development time, average personnel) for large software with multiple lines of code. However, if a software developer wants to estimate the cost of a small project that is usually a mobile application, the available tools will not give the right results. Therefore, to calculate the cost of the mobile application, the available cost estimation method COCOMO II is improved to a new model called New Mobile COCOMO Tool. The New Mobile COCOMO tool developed specifically for mobile applications is a boon for software developers working in small software applications because it only includes important multipliers that play a vital role in estimating the cost of developing mobile applications. Therefore, the objective of this paper is to propose a cost estimation model with a special case of COCOMO II, especially for mobile applications, which calculates the person-month, the programmed time and the average personnel involved in the development of any mobile app

    Software Effort Estimation Accuracy Prediction of Machine Learning Techniques: A Systematic Performance Evaluation

    Full text link
    Software effort estimation accuracy is a key factor in effective planning, controlling and to deliver a successful software project within budget and schedule. The overestimation and underestimation both are the key challenges for future software development, henceforth there is a continuous need for accuracy in software effort estimation (SEE). The researchers and practitioners are striving to identify which machine learning estimation technique gives more accurate results based on evaluation measures, datasets and the other relevant attributes. The authors of related research are generally not aware of previously published results of machine learning effort estimation techniques. The main aim of this study is to assist the researchers to know which machine learning technique yields the promising effort estimation accuracy prediction in the software development. In this paper, the performance of the machine learning ensemble technique is investigated with the solo technique based on two most commonly used accuracy evaluation metrics. We used the systematic literature review methodology proposed by Kitchenham and Charters. This includes searching for the most relevant papers, applying quality assessment criteria, extracting data and drawing results. We have evaluated a state-of-the-art accuracy performance of 28 selected studies (14 ensemble, 14 solo) using Mean Magnitude of Relative Error (MMRE) and PRED (25) as a set of reliable accuracy metrics for performance evaluation of accuracy among two techniques to report the research questions stated in this study. We found that machine learning techniques are the most frequently implemented in the construction of ensemble effort estimation (EEE) techniques. The results of this study revealed that the EEE techniques usually yield a promising estimation accuracy than the solo techniques.Comment: Pages: 27 Figures: 15 Tables:

    Towards making functional size measurement easily usable in practice

    Get PDF
    Functional Size Measurement methods \u2013like the IFPUG Function Point Analysis and COSMIC methods\u2013 are widely used to quantify the size of applications. However, the measurement process is often too long or too expensive, or it requires more knowledge than available when development effort estimates are due. To overcome these problems, simplified measurement methods have been proposed. This research explores easily usable functional size measurement method, aiming to improve efficiency, reduce difficulty and cost, and make functional size measurement widely adopted in practice. The first stage of the research involved the study of functional size measurement methods (in particular Function Point Analysis and COSMIC), simplified methods, and measurement based on measurement-oriented models. Then, we modeled a set of applications in a measurement-oriented way, and obtained UML models suitable for functional size measurement. From these UML models we derived both functional size measures and object-oriented measures. Using these measures it was possible to: 1) Evaluate existing simplified functional size measurement methods and derive our own simplified model. 2) Explore whether simplified method can be used in various stages of modeling and evaluate their accuracy. 3) Analyze the relationship between functional size measures and object oriented measures. In addition, the conversion between FPA and COSMIC was studied as an alternative simplified functional size measurement process. Our research revealed that: 1) In general it is possible to size software via simplified measurement processes with acceptable accuracy. In particular, the simplification of the measurement process allows the measurer to skip the function weighting phases, which are usually expensive, since they require a thorough analysis of the details of both data and operations. The models obtained from out dataset yielded results that are similar to those reported in the literature. All simplified measurement methods that use predefined weights for all the transaction and data types identified in Function Point Analysis provided similar results, characterized by acceptable accuracy. On the contrary, methods that rely on just one of the elements that contribute to functional size tend to be quite inaccurate. In general, different methods showed different accuracy for Real-Time and non Real-Time applications. 2) It is possible to write progressively more detailed and complete UML models of user requirements that provide the data required by the simplified COSMIC methods. These models yield progressively more accurate measures of the modeled software. Initial measures are based on simple models and are obtained quickly and with little effort. As V models grow in completeness and detail, the measures increase their accuracy. Developers that use UML for requirements modeling can obtain early estimates of the applications\u2018 sizes at the beginning of the development process, when only very simple UML models have been built for the applications, and can obtain increasingly more accurate size estimates while the knowledge of the products increases and UML models are refined accordingly. 3) Both Function Point Analysis and COSMIC functional size measures appear correlated to object-oriented measures. In particular, associations with basic object- oriented measures were found: Function Points appear associated with the number of classes, the number of attributes and the number of methods; CFP appear associated with the number of attributes. This result suggests that even a very basic UML model, like a class diagram, can support size measures that appear equivalent to functional size measures (which are much harder to obtain). Actually, object-oriented measures can be obtained automatically from models, thus dramatically decreasing the measurement effort, in comparison with functional size measurement. In addition, we proposed conversion method between Function Points and COSMIC based on analytical criteria. Our research has expanded the knowledge on how to simplify the methods for measuring the functional size of the software, i.e., the measure of functional user requirements. Basides providing information immediately usable by developers, the researchalso presents examples of analysis that can be replicated by other researchers, to increase the reliability and generality of the results

    Towards making functional size measurement easily usable in practice

    Get PDF
    Functional Size Measurement methods –like the IFPUG Function Point Analysis and COSMIC methods– are widely used to quantify the size of applications. However, the measurement process is often too long or too expensive, or it requires more knowledge than available when development effort estimates are due. To overcome these problems, simplified measurement methods have been proposed. This research explores easily usable functional size measurement method, aiming to improve efficiency, reduce difficulty and cost, and make functional size measurement widely adopted in practice. The first stage of the research involved the study of functional size measurement methods (in particular Function Point Analysis and COSMIC), simplified methods, and measurement based on measurement-oriented models. Then, we modeled a set of applications in a measurement-oriented way, and obtained UML models suitable for functional size measurement. From these UML models we derived both functional size measures and object-oriented measures. Using these measures it was possible to: 1) Evaluate existing simplified functional size measurement methods and derive our own simplified model. 2) Explore whether simplified method can be used in various stages of modeling and evaluate their accuracy. 3) Analyze the relationship between functional size measures and object oriented measures. In addition, the conversion between FPA and COSMIC was studied as an alternative simplified functional size measurement process. Our research revealed that: 1) In general it is possible to size software via simplified measurement processes with acceptable accuracy. In particular, the simplification of the measurement process allows the measurer to skip the function weighting phases, which are usually expensive, since they require a thorough analysis of the details of both data and operations. The models obtained from out dataset yielded results that are similar to those reported in the literature. All simplified measurement methods that use predefined weights for all the transaction and data types identified in Function Point Analysis provided similar results, characterized by acceptable accuracy. On the contrary, methods that rely on just one of the elements that contribute to functional size tend to be quite inaccurate. In general, different methods showed different accuracy for Real-Time and non Real-Time applications. 2) It is possible to write progressively more detailed and complete UML models of user requirements that provide the data required by the simplified COSMIC methods. These models yield progressively more accurate measures of the modeled software. Initial measures are based on simple models and are obtained quickly and with little effort. As V models grow in completeness and detail, the measures increase their accuracy. Developers that use UML for requirements modeling can obtain early estimates of the applications‘ sizes at the beginning of the development process, when only very simple UML models have been built for the applications, and can obtain increasingly more accurate size estimates while the knowledge of the products increases and UML models are refined accordingly. 3) Both Function Point Analysis and COSMIC functional size measures appear correlated to object-oriented measures. In particular, associations with basic object- oriented measures were found: Function Points appear associated with the number of classes, the number of attributes and the number of methods; CFP appear associated with the number of attributes. This result suggests that even a very basic UML model, like a class diagram, can support size measures that appear equivalent to functional size measures (which are much harder to obtain). Actually, object-oriented measures can be obtained automatically from models, thus dramatically decreasing the measurement effort, in comparison with functional size measurement. In addition, we proposed conversion method between Function Points and COSMIC based on analytical criteria. Our research has expanded the knowledge on how to simplify the methods for measuring the functional size of the software, i.e., the measure of functional user requirements. Basides providing information immediately usable by developers, the researchalso presents examples of analysis that can be replicated by other researchers, to increase the reliability and generality of the results

    Analyse der Wirkung von Nutzer-Feedback auf die Entwicklungszeit komplexer Softwareprodukte

    Get PDF
    In der Softwareentwicklung verursacht der Entwicklungsaufwand, und die damit zusammenhängende Entwicklungsdauer, i. A. einen Großteil der Produktionskosten. In einem unsicheren, dynamischen Umfeld hat die Überarbeitungsdauer einen großen Anteil an der Entwicklungszeit. Ziel dieser Arbeit ist es die Struktur inkrementeller Softwareentwicklungsprozesse, die wiederholtes (zyklisches) Feedback erlauben, zu untersuchen. Darauf basierend werden Modelle entwickelt, anhand derer die Wirkungszusammenhänge der Einflussfaktoren der Entwicklungsdauer dieser Prozesse, wie Unsicherheit und Komplexität, analysiert und Empfehlungen zur Reduzierung der Entwicklungsdauer gegeben werden können

    Conceptual Association of Functional Size Measurement Methods

    No full text
    Functional size determines how much functionality software provides by measuring the aggregate amount of its cohesive execution sequences. Alan Albrecht first introduced the concept in 1979. Since he originally described the function point analysis (FPA) method, researchers and practitioners have developed variations of functional size metrics and methods. The authors discuss the conceptual similarities and differences between functional size measurement methods and introduce a model for unification
    corecore