

Università degli Studi dell‘Insubria

Dipartimento di Scienze Teoriche e Applicate

Dottorato di Ricerca in Informatica
XXVI Ciclo

Towards Making Functional Size Measurement

Easily Usable in Practice

Ph.D Thesis of

Geng Liu

Advisor

Prof. Luigi Lavazza

Supervisor of the Doctoral program

Prof. Claudio Gentile

This page intentionally left blank.

I

In memory of my mother

To my family, especially to my father, for their love

II

This page intentionally left blank.

III

Acknowledgement

First of all, I owe heartfelt thanks to my supervisor Prof. Luigi Lavazza, not only for

accepting me to research with him, but also for his patient guidance, stimulating

suggestions and insightful comments throughout my research. I have benefited greatly

from his profound knowledge and consistent encouragement. From the beginning to the

end, he has guided my wide interest into a coherent thesis and has always replied my

questions in time no matter when.

I give sincere gratitude to Prof. Sandro Morasca and Prof. Elena Ferrari for their

guidance during my Ph.D. research, especially for helping me select the research field. I

express my appreciation to Prof. Giovanni Denaro from University of Milano-Bicocca

for his valuable and expert suggestions on my PhD thesis. My genuine thanks extend to

Dr. Vieri del Bianco and Dr. Abedallah Zaid Abualkishik who have been working

together with me.

I would also like to acknowledge Prof. Claudio Gentile, supervisor of our doctoral

program, for the support he gave to all of us Ph.D. students, and to Prof. Elisabetta

Binaghi, Prof. Simone Tini, Dr. Vallentina Pedoia for their help of improving my

academic knowledge through lectures.

Moreover, I am deeply grateful to all my colleagues in the Lab, in particular Dr. Pietro

Colombo, Dr. Stefano Braghin, Dr. Paolo Brivio, Lorenzo Bossi, Cuneyt Gurcan

Akcora, Michele Guglielmi, Marco Daddeo, and Tran Hong Ngoc, for their friendship,

help and encouragement. We encouraged each other, and of course, had a lot of fun

while struggling for a brilliant future.

I would like to give very special thanks to my girlfriend Cui Liu for her endless help,

support, and encouragement.

Last but not least, I‘m deeply indebted to my family - my father, my sister, and my

brother – for their love, understanding, patience, and unshakable faith in me.

Geng. Liu

Varese, Italy

December 18, 2013

IV

This page intentionally left blank.

V

Abstract

Functional Size Measurement methods –like the IFPUG Function Point Analysis and

COSMIC methods– are widely used to quantify the size of applications. However, the

measurement process is often too long or too expensive, or it requires more knowledge

than available when development effort estimates are due. To overcome these problems,

simplified measurement methods have been proposed.

This research explores easily usable functional size measurement method, aiming to

improve efficiency, reduce difficulty and cost, and make functional size measurement

widely adopted in practice.

The first stage of the research involved the study of functional size measurement

methods (in particular Function Point Analysis and COSMIC), simplified methods, and

measurement based on measurement-oriented models.

Then, we modeled a set of applications in a measurement-oriented way, and obtained

UML models suitable for functional size measurement. From these UML models we

derived both functional size measures and object-oriented measures. Using these

measures it was possible to:

1) Evaluate existing simplified functional size measurement methods and derive our

own simplified model.

2) Explore whether simplified method can be used in various stages of modeling and

evaluate their accuracy.

3) Analyze the relationship between functional size measures and object oriented

measures.

In addition, the conversion between FPA and COSMIC was studied as an alternative

simplified functional size measurement process.

Our research revealed that:

1) In general it is possible to size software via simplified measurement processes with

acceptable accuracy. In particular, the simplification of the measurement process allows

the measurer to skip the function weighting phases, which are usually expensive, since

they require a thorough analysis of the details of both data and operations. The models

obtained from out dataset yielded results that are similar to those reported in the

literature.

All simplified measurement methods that use predefined weights for all the transaction

and data types identified in Function Point Analysis provided similar results,

characterized by acceptable accuracy. On the contrary, methods that rely on just one of

the elements that contribute to functional size tend to be quite inaccurate. In general,

different methods showed different accuracy for Real-Time and non Real-Time

applications.

2) It is possible to write progressively more detailed and complete UML models of user

requirements that provide the data required by the simplified COSMIC methods. These

models yield progressively more accurate measures of the modeled software. Initial

measures are based on simple models and are obtained quickly and with little effort. As

VI

models grow in completeness and detail, the measures increase their accuracy.

Developers that use UML for requirements modeling can obtain early estimates of the

applications‘ sizes at the beginning of the development process, when only very simple

UML models have been built for the applications, and can obtain increasingly more

accurate size estimates while the knowledge of the products increases and UML models

are refined accordingly.

3) Both Function Point Analysis and COSMIC functional size measures appear

correlated to object-oriented measures. In particular, associations with basic object-

oriented measures were found: Function Points appear associated with the number of

classes, the number of attributes and the number of methods; CFP appear associated

with the number of attributes. This result suggests that even a very basic UML model,

like a class diagram, can support size measures that appear equivalent to functional size

measures (which are much harder to obtain). Actually, object-oriented measures can be

obtained automatically from models, thus dramatically decreasing the measurement

effort, in comparison with functional size measurement.

In addition, we proposed conversion method between Function Points and COSMIC

based on analytical criteria.

Our research has expanded the knowledge on how to simplify the methods for

measuring the functional size of the software, i.e., the measure of functional user

requirements. Basides providing information immediately usable by developers, the

researchalso presents examples of analysis that can be replicated by other researchers, to

increase the reliability and generality of the results.

Keywords:

Functional Size Measurement; FPA; COSMIC; Measurement-Oriented Model-based

Methods; Simplified measurement processes; FSM conversion; UML models; Object

oriented measurement.

VII

Contents

Chapter 1 Introduction 1

1.1 Functional Size Measurement 1

1.1.1 Software Size Measurement in the old days: Lines of Code 1

1.1.2 Functional Size Measurement 2

1.1.3 Functional Size Measurement methods 2

1.1.4 Benefits and limits of Functional Size Measurement 3

1.1.5 Simplified FSM methods 4

1.2 Problems of Functional Size Measurement addressed in this thesis 11

1.2.1 Problems, limits, and challenges of FSM 11

1.2.2 Problem Analysis 12

1.3 Research objectives 12

1.3.1 Research objectives 12

1.3.2 Research methods 13

1.4 Thesis structure 13

Chapter 2 Functional Size Measurement Methods 15

2.1 Methodology 15

2.2 IFPUG FPA 16

2.2.1 The brief history about IFPUG FPA 16

2.2.2 The basic principles of FPA 17

2.2.3 Basic functional components 17

2.2.4 Measurement procedure 19

2.3 COSMIC 23

2.3.1 Brief story about COSMIC 24

2.3.2 COSMIC basic principles 24

2.3.3 Functional process 25

2.3.4 Measurement process 28

2.4 Comparison between FPA and COSMIC 29

2.4.1 Objectives 30

2.4.2 Software model 31

2.4.3 Characterisation of the concept to be measured 31

2.4.4 Definition of the numerical assignment rules 33

2.4.5 A general comparison of the elements of both methods 33

2.4.6 Comparison about the measurement process 35

Chapter 3 Simplified Functional Size Measurement 37

3.1 E&QFP 37

3.1.1 Theoretical basis and characters 38

3.1.2 Estimation procedure 41

3.1.3 Characteristics of E&QFP 41

3.2 Average complexity (weight) values 42

3.2.1 Estimated NESMA method 42

3.2.2 ISBSG average weights 43

3.2.3 Simplified FP 43

3.2.4 Prognosis of CNV AG 43

3.3 Size estimation based on a single component 43

3.3.1 Indicative NESMA method 43

3.3.2 ILF Model 44

3.3.3 ISBSG Distribution model 44

3.3.4 Prognosis of CNV AG 45

VIII

3.3.5 Early Function Point Method (EFPM) 46

3.4 Approximation technique and estimation technique 46

3.4.1 ―Smart‖ Approximation Technique 46

3.5 Comparison of simplified methods 47

3.5.1 Techniques 51

3.5.2 Factors 51

3.5.3 The aspect of measurement process 52

3.5.4 Brief summary 52

Chapter 4 Model-based measurement 53

4.1 Fundamentals 53

4.1.1 Object Oriented Modeling Technique 53

4.1.2 Object-based measurement-oriented reference model 54

4.2 The Case of Warehouse Software Portfolio 56

4.3 Model-based measurement of Function Points 57

4.3.1 Representing data function 57

4.3.2 Representing elementary process 58

4.3.3 Sequence diagrams 59

4.3.4 The counting procedure 62

4.4 Model-based measurement of COSMIC FP 63

4.4.1 Representing functional process 63

4.4.2 Sequence diagram 64

4.4.3 The counting procedure 67

4.5 Similarities and differences 67

4.5.1 Requirements and procedure 68

4.5.2 Data modeling: Class and Component diagrams 68

4.5.3 Process modeling: Sequence diagram 68

4.5.4 Others differences 69

Chapter 5 Evaluation of Simplified FSM processes 71

5.1 Empirical assessment of Simplified FSM proposals 71

5.1.1 Method of empirical assessment and procedure of the work 71

5.1.2 The case study and the dataset obtained from the standard FPA

measurement 72

5.1.3 Application of simplified methods for getting relative results 74

5.1.4 Summary and lessons learned 77

5.1.5 Model-based simplified FSM models 81

5.1.6 Evaluate our new model 82

5.1.7 Conclusion 84

5.2 Empirical evaluation of Model-based Simplified COSMIC Measurement 85

5.2.1 Simplified measurement processes for COSMIC function point 87

5.2.2 UML model supporting the simplified measurement approaches 89

5.2.3 Empirical analysis 95

5.2.4 Results and observations 101

5.2.5 Threats to validity 104

5.2.6 Conclusions 104

Chapter 6 Conversion between FPA and CFP 107

6.1 The analytical convertibility of FSM 107

6.1.1 The conceptual basis 107

6.1.2 Proposed procedure of our approach 109

6.2 Tool support 110

6.2.1 Initiation 110

6.2.2 Counting FPA 110

IX

6.2.3 Counting COSMIC 114

6.3 Tool validation 116

6.4 Lessons learned and conclusions 117

6.4.1 Lessons learned from the first case study 117

6.4.2 Lessons learned from the second case study 118

6.4.3 Conclusion 119

Chapter 7 Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models 121

7.1 Object-oriented measurement 122

7.2 Organization of the empirical investigation 123

7.3 Datasets 123

7.4 Analysis 125

7.4.1 FP vs. OO measures 125

7.4.2 CFP vs. OO measures 132

7.5 Discussion of results 136

7.6 Threats to validity 137

7.7 Conclusions 137

Chapter 8 Related work 139

8.1 Terms 139

8.1.1 Early measurement and the lifecycle of software development 139

8.1.2 Level of accuracy, estimation, and measurement 140

8.2 Methods adhering to IFPUG FA definition 141

8.2.1 E&Q technique 141

8.2.2 Average value 141

8.2.3 Size estimation based on a single component of FP 142

8.2.4 Measure from models 142

8.2.5 ―Smart‖ technique 142

8.2.6 Measurement in iterative process 142

8.3 Function Points like measures 142

8.4 Evaluated of the proposed methods 143

8.5 Convertibility 143

8.5.1 Theoretical conversion within an empirical range 143

8.5.2 Statistically based conversion 144

8.5.3 Manual conversion 145

8.5.4 Unified Model based conversion 145

8.5.5 Conversion method using analytical criteria 146

Chapter 9 Conclusion 147

9.1 Summary of results 147

9.1.1 Model-based FSM 147

9.1.2 Evaluation of simplified FSM (FPA) 147

9.1.3 Model-based simplified COSMIC measurement 148

9.1.4 FSM vs. OO measures 149

9.1.5 Conversion between FPA and COSMIC 149

9.2 Guidelines for developers 150

9.3 Future research directions 152

Bibliography 153

X

 This page intentionally left blank.

XI

List of Figures

Figure 1 Comparison of two programming languages coding same function 1

Figure 2 Functional hierarchy in the Early & Quick FP technique (from [16]) 5

Figure 3 The structure of the thesis .. 14

Figure 4 High level abstract model of FSM methodology ... 16

Figure 5 Evolution of FPA method .. 16

Figure 6 Schematic view of FPA base functional components 17

Figure 7 FPA software model ... 18

Figure 8 Relative conceptual granularities of FPA data elements.................................. 18

Figure 9 Procedure of the FPA measurement ... 20

Figure 10 Evolution history of COSMIC (from [66]) .. 24

Figure 11 COSMIC generic software model .. 25

Figure 12 Relation between triggering event, functional user and functional process ... 26

Figure 13 COSMIC view of software [38] ... 26

Figure 14 COSMIC software model ... 27

Figure 15 Relative conceptual granularities of COSMIC data elements 27

Figure 16 COSMIC general measurement procedure [33] ... 29

Figure 17 Design of the measurement method ... 30

Figure 18 Comparison of conceptual granularity of FPA and COSMIC data elements 32

Figure 19 Comparison of the elements of FPA and COSMIC 34

Figure 20 Estimation paradox (from [16]) ... 37

Figure 21 Functional hierarchy in the E&QFP technique .. 39

Figure 22 Diagram of the E&QFP estimation procedure (from [16]) 41

Figure 23 Relationships among IFPUG Functional Component Types 45

Figure 24 ANSI‘s conceptual schema .. 54

Figure 25 Process of model-based measurement ... 55

Figure 26 Specification process of OO... 56

Figure 27 Entity/Relationship diagram of the WSP ... 57

Figure 28 Entities of the WSP .. 57

Figure 29 Component of Customer_manag ... 58

Figure 30 Horizontal axis of a sequence diagram .. 60

Figure 31 User interface of the Add customer transaction ... 60

Figure 32 Sequence diagram of the Add customer transaction (FPA method) 61

Figure 33 Horizontal axis of a sequence diagram .. 64

Figure 34 Sequence diagram of the Add customer transaction (COSMIC method) 65

Figure 35 Sequence diagram of CustomerEsistenceCheck .. 66

Figure 36 Research Road map of this work ... 71

Figure 37 COSMIC measurement process ... 86

Figure 38 UML modelling process ... 86

Figure 39 UML modeling process and COSMIC measurement process phases 87

Figure 40 UML use case diagram showing the functional processes 90

Figure 41 UML component diagram showing the functional processes 91

Figure 42 UML class diagram, showing the data groups ... 92

Figure 43 UML component diagram showing the functional processes 92

Figure 44 UML component diagram showing the functional processes and the data

groups .. 93

Figure 45 UML component diagram showing the class (data group) instances

participating in the AddCustomer functional process 94

XII

Figure 46 UML sequence diagram showing the data movements involved in a given

functional process .. 94

Figure 47 UML sequence diagram with the data movements highlighted 95

Figure 48 Boxplot of relative size estimation errors .. 102

Figure 49 Boxplot of absolute relative size estimation errors 103

Figure 50 Roadmap to resolve the problem ... 108

Figure 51 Initial view ... 110

Figure 52 DET input form .. 111

Figure 53 WSP data in the FP-software model specific views 112

Figure 54 FTR choice ... 112

Figure 55 Specifying a function‘s DET .. 113

Figure 56 Function Point count of FP .. 113

Figure 57 Empty COSMIC view .. 114

Figure 58 Specifying a data group after a FP logical data file 114

Figure 59 Data group .. 115

Figure 60 Functional processes in the CFP specific view .. 115

Figure 61 Data movement specification ... 116

Figure 62 CFP count ... 116

Figure 63 FSM Vs. OO measure .. 121

Figure 64 SDMetrics Project files .. 122

Figure 65 UFP vs. Num_Class regression line ... 126

Figure 66 UFP vs. Num_Class residuals‘ distribution ... 126

Figure 67 UFP vs. Num_Attr regression line ... 127

Figure 68 UFP vs. Num_Attr residuals‘ distribution ... 128

Figure 69 UFP vs. Num_Met regression line ... 128

Figure 70 UFP vs. Num_Met residuals‘ distribution ... 129

Figure 71 UFP vs. Num_SentMessage regression line .. 130

Figure 72 UFP vs. Num_SendMessage residuals‘ distribution 130

Figure 73 UFP vs. Num_Class and AvMetperClass residuals‘ distribution 131

Figure 74 UFP vs. Num_ Met and AvAttperClass residuals‘ distribution 132

Figure 75 CFP vs. Num_Attr regression line ... 133

Figure 76 CFP vs. Num_Attr residuals‘ distribution .. 133

Figure 77 CFP vs. Num_SentMessages regression line ... 134

Figure 78 CFP vs. Num_Sent_messages residuals‘ distribution 135

Figure 79 CFP vs. Num_Class and Num_UseCase residuals‘ distribution 136

Figure 80 Approximate estimation and accurate measurement of the project life cycle

 ... 139

XIII

List of Tables

Table 1 E&QFP: Function type weights for generic functions .. 6

Table 2 E&QFP: Function type weights for unspecified generic processes and data

group .. 6

Table 3 Activities required by different simplified measurement process 9

Table 4 Analysis of the problems, challenges and the problems addressed in this thesis

 ... 12

Table 5 FPA reference table (the part of ILF and EIF) .. 21

Table 6 FPA reference table (the part of EI, EO, and EQ) ... 21

Table 7 14 General System Characteristics (GSC) .. 22

Table 8 Degrees of influence of the GSCs ... 23

Table 9 Objectives of measurement of both methods .. 30

Table 10 Entity type of software model ... 31

Table 11 Mapping of FPA and COSMIC Concepts ... 34

Table 12 Analysis of all the elements involved in FPA and COSMIC 35

Table 13 Components and Values of Unspecified data group, generic EI, and

Unspecified Generic Output at the 2
nd

 aggregation level 40

Table 14 Components and Values of Typical Process at the 3
rd

 aggregation level........ 40

Table 15 Components and Values of General Process at the 3
rd

 aggregation level 40

Table 16 Components and Values of General Data Group at the 3
rd

 aggregation level. 41

Table 17 Components and Values of Macro Process at the 4
th

 aggregation level 41

Table 18 Smart FP assessment (Only for FPA) .. 46

Table 19 Comparison of the simplified methods ... 49

Table 20 Mapping of FPA and COSMIC Concepts ... 55

Table 21 FPA-UML element mapping ... 61

Table 22 COSMIC-UML element mapping ... 66

Table 23 Real-Time Projects‘ Size (IFPUG method) ... 72

Table 24 Non Real-Time Projects‘ sizes (IFPUG method) .. 73

Table 25 Sizes of Real-Time projects obtained via the NESMA methods 74

Table 26 Sizes of NON Real-Time projects obtained via the NESMA methods 75

Table 27 Sizes of Real-Time projects obtained via the E&QFP method 75

Table 28 Sizes of NON Real-Time projects obtained via the E&QFP method 75

Table 29 Sizes of Real-Time projects obtained via Tichenor ILF model, ISBSG

distribution sFP and ISBSG average weights methods 76

Table 30 Sizes of NON Real-Time projects obtained via Tichenor ILF model, ISBSG

distribution sFP and ISBSG average weights methods 77

Table 31 Measures of Real-Time Projects obtained via the Various Methods 78

Table 32 Measures of NON Real-Time Projects obtained via the Various Methods 78

Table 33 Relative measurement errors (Real-Time Projects) .. 78

Table 34 Relative measurement errors (NON Real-Time Projects) 78

Table 35 Mean and Standard Deviation of Absolute Relative Errors 79

Table 36 Measurement Process: Required Data VS. Accuracy 80

Table 37 Average Function Type Weighs for Out Dataset .. 81

Table 38 Mean and Median Weights for the Projects in Our Dataset 82

Table 39 Models for NON Real-Time Projects .. 82

Table 40 Models for Real-Time Projects ... 82

Table 41 Estimates of RT Projects based on Models using the our new models 82

Table 42 Estimates of NON RT Projects based on Models using the our new models . 83

Table 43 Mean and Stdev of Absolute Relative Errors .. 83

XIV

Table 44 The dataset ... 96

Table 45 Estimates obtained using equation (31) ... 97

Table 46 Estimates obtained using equation (32) ... 98

Table 47 Estimates obtained using equation (33) ... 99

Table 48 Estimates obtained using equation (34) ... 99

Table 49 Estimates obtained using equation

 (35) ... 100

Table 50 Simplified size estimation models and their accuracy 102

Table 51 FPA to COSMIC element mapping ... 108

Table 52 Results of FPA for the tool in section 6.2 ... 117

Table 53 Results of COSMIC measurement of the tool presented in Section 6.2 117

Table 54 Data gathered from the two cases study .. 117

Table 55 Measures collected according to the FPA method .. 123

Table 56 Measures collected according to the COSMIC method 124

Table 57 OO measures obtained from FPA-oriented UML models 124

Table 58 OO measures obtained from COSMIC-oriented UML models 124

Table 59 Model-based Measurement-oriented OO estimation models and their accuracy

 ... 136

Table 60 Accuracy levels for software sizing and basic attributes of sizing levels 140

Table 61 FSM processes: the modelling phase .. 150

Table 62 FSM processes: the measurement phase ... 151

Table 63 FSM process properties ... 151

Chapter 1 . Introduction

1

Chapter 1 Introduction

Measurement is a basic activity in everyday life, since it is necessary for understanding

the objects and the activities of interest. In every scientific and technical discipline,

especially in the engineering filed, measurement is essential, sometimes it is at the very

core of development activities. In software engineering, software measurement has

become a key aspect of good software management and engineering practices.

1.1 Functional Size Measurement

Software metrics can be classified into three categories: product metrics, process

metrics, and project (resource) metrics. Function Size Measurement (FSM) is a product

metrics, which characterizes the size of a software application. Functional size measures

are often used in conjunction with metrics addressing complexity, design features,

quality, etc. For instance, the number of faults found in a software product is hardly

meaningful in itself, while the number of faults divided by the size provides a fault

density indication, which is a clear indicator o software quality.

However, the main role of FSM in software development consists in providing the input

data required by effort estimate models and tools. In general, FSM helps improving the

software development process, predicting faults and fault-prone software units,

allocating resources during the development, and checking requirements completeness.

In conclusion, function size measurement is an essential component of software

development.

1.1.1 Software Size Measurement in the old days: Lines of Code

The oldest and most commonly used measure of software products is Lines of Code

(LoC), sometimes named Source Lines of Code (SLoC) or Delivered Source Instruction

(DSI). There are two major types of LoC measures: physical LoC and logical LoC (also

known as ―effective LoC‖). The former is defined to count lines in the text of the

program's source code including comment lines; the latter attempts to measure the

number of executable statements (thus excluding comments, blank lines and often also

lines containing only syntactic elements). This measurement was first introduced in the

60s and was used for economic, productivity, and quality studies.[22]

A measure in LoC has the problem that the same function generally requires a different

number of LoC when coded with different language. For example in Figure 1, the same

function programmed with a basic assembly language needs 3 lines of code, while it

needs only one line when programmed with COBOL.

Figure 1 Comparison of two programming languages coding same function

Chapter 1 . Introduction

2

Even when the same programming language is used, different developers can produce

implementations of the same function having different sizes in LoC. In general, the size

in LoC depends on the technology, programming language, and programmers‘ attitudes.

Given the above observations, it is easy to conclude that the LoC measure focuses only

on the ―physical‖ dimension of software, and does not represent the net functionality

provided by software.

1.1.2 Functional Size Measurement

The Function Point method was originally introduced by Albrecht [8] to overcome the

limits of LoC measurement. The basic idea is that measuring software size is not

carried out in the term of its physical component (LoC), but in terms of its

‗functionality‘. The viewpoint of measuring software size was changed from the internal

attribute to the external functional viewpoint of the end-user. The user functions

requested and recognised by the user are defined in Function User Requirements (FURs)

that describe what the software should do to fulfil user‘s needs.

This idea makes software size measurement independent from technology,

programming language and programmer‘s attitudes. Functional Software size

measurement can also be started earlier in the software development lifecycle.

1.1.3 Functional Size Measurement methods

In the field of functional size measurement, many methods have been proposed,

including IFPUG FPA [10], NESMA FPA [17], Mark II FPA [36], FiSMA [113] and

COSMIC [33]. Among them, we focus only on IFPUG FPA and COSMIC.

IFPUG FPA

The Functional Point method was originally introduced by Albrecht to measure data-

processing systems by quantifying the functionality the software provides to the user,

from the information view, by quantifying the volume of data flow and the storage[8][9].

The basic idea of FPA is that the ‗‗amount of functionality‘‘ released to the user can be

evaluated by taking into account the data used by the application to provide the required

functions, and the transactions (i.e., operations that involve data crossing the boundaries

of the application) through which the functionality is delivered to the user. Data are user

identifiable groups of logically related data, and are classified as Internal Logical Files

(ILF) or External Interface Files (EIF). A transaction is a set of actions seen as one

cohesive unit of work. FPA differentiates three types of transactions: External Input (EI),

External Output (EO), and External Inquiry (EQ).

The size of each data function depends on the function type and contents; the size of

each transaction depends on the number of data files used and the amount of data

exchanged with the external.

The sum of the sizes of data and transactions is the size of the application in Unadjusted

Function Points (UFP). Based on 14 general system characteristics the value adjustment

factor (VAF) is computed; the ―adjusted‖ size of the application is obtained by

multiplying the size in UFP by the VAF. The adjusted size was introduced to improve

Chapter 1 . Introduction

3

the correlation of the size in FP to the development effort. However, adjustment is

generally not considered a sound practice. Accordingly, UFP have been recognized as

an ISO standard, while adjusted FP did not. Accordingly, in this Thesis, only UFP are

considered.

COMSIC Function Points

The COSMIC method measures the functional size of a piece of software based on its

functional user requirements, which are broken down into a number of functional

processes, which are independently executable sets of elementary actions that the

software should perform in response to a triggering event. The elementary actions that

software can perform are either data movements or data manipulations. As a reasonable

approximation, COSMIC assumes that each data movement has an associated constant

average amount of data manipulation. Accordingly, in the COSMIC model of software

FUR are broken down into a number of functional processes, which in turn involve only

of data movements.

Data movements are the basic functional components that are used for establishing the

size of the software. A data movement moves a unique data group, i.e., a set of data

attributes (each attribute describes a complementary aspect of an object of interest a

thing or concept about which the software is required to store and/or process data).

The COSMIC method distinguishes four different types of data movements, namely

Entry, Write, Read, and Exit. Writes and Reads move a data group to and from

persistent storage, respectively. An Entry moves a data group into the software from a

functional user and an Exit moves a data group out. The size of a piece of software is

then defined as the total number of data movements (Entries, Exits, Reads, and Writes)

summed over all functional processes of the piece of software.

1.1.4 Benefits and limits of Functional Size Measurement

Functional size measurement has a long history and its effectiveness make it very

popular, so many measurement procedures have arisen to support it. [23]

Functional size measurement is used for two main purposes: to help estimating the

effort of a development or maintenance projects or measuring the actual productivity of

a finished development endeavour. Several studies have highlighted pros and cons of

FSM, as described below.

Estimate

It has been shown that the functional size of a software application is highly correlated

with the amount of work needed to develop the application. So, functional size is the

input of several software development estimation models and tools.

Requirements understanding and Completeness Checks

Understanding user functional requirements and evaluating whether requirements are

sufficiently complete before beginning design and coding is most relevant and tough

problem. The functional size measurement is helpful to deal with this

problem.[24][25][26]

Chapter 1 . Introduction

4

Excellent way to excellent software product

Function size measurement is an excellent instrument to identify potential problems and

to improve the development process; it is also a powerful tool for managing the

software development process, since function points can be used as an indicator of

requirements creep and quality.[27][28][29][30]

Early measurement

Functional size measurement can be applied early in the software development life

cycle, namely as soon as FUR are available, while the size in LoC can be measured only

after the conclusion of development. In addition, FSM can also be used in the phases of

the software development lifecycle following requirement specification (e.g., design,

coding, etc.)

Failure to capture the Non-functional requirements

In the literature three types of software requirements are mentioned: functional user

requirements, non functional user requirements, and technical requirements [23]. FSM

only aims at measuring the functional user requirements: non-functional properties and

technical requirements are not taken into account.

Complementary software metrics can be defined and used along with function points to

measure also other aspects of the software that FPA does not consider.[31]

Failure to capture the “amount of elaboration”

Most FSM methods proposed until now (including FPA and COSMIC) fail to capture

the ―amount of elaboration‖ required. The consequence is that two applications that

differ only in the amount of elaboration required are considered of the same size, even

though in general the more elaboration intensive application is bound to require more

effort to be developed. An example of this problem is mentioned in [21], where the

incapacity of FP to capture the amount of elaboration leads to underestimating both the

physical size (in LoC) and the development effort of the considered software application

[22]. An exception is represented by Mark II FP, which to some extent take into account

the amount of elaboration performed by software.[36]

1.1.5 Simplified FSM methods

The measurement of Function Points can be expensive and time consuming. The

measurement process involves (among others) the following activities:

− Identifying logic data;

− Identifying elementary processes;

− Classifying logic data as internal logic files (ILF) or external interface files (EIF);

− Classifying elementary processes as external inputs (EI), outputs (EO), or queries

(EQ);

− Weighting data functions;

− Weighting transaction functions.

Simplified measurement processes allow measurers to skip –possibly in part– one or

more of the aforementioned activities, thus making the measurement process faster and

cheaper.

Early & Quick Function Point

Chapter 1 . Introduction

5

The best-known approach to simplifying the process of FP counting is probably the

Early & Quick Function Points (E&QFP) method [16]. E&QFP descends from the

consideration that estimates are sometimes needed before the analysis of requirements is

complete, when the information on the software to be measured is partial or not

sufficiently detailed.

Since several details for performing a correct measurement following the rules of the FP

manual [10] are not used in E&QFP, the result is a less accurate measure. The trade-off

between reduced measurement time and costs is a reason for adopting the E&QFP

method even when full specifications are available, but there is the need for completing

the measurement in a short time, or at a lower cost. An advantage of the method is that

different parts of the system can be measured at different detail levels: for instance, a

part of the system can be measured following the IFPUG manual rules [10] [11], while

other parts can be measured on the basis of coarser-grained information. In fact, the

E&QFP method is based on the classification of the processes and data of an application

according to a hierarchy (see Figure 2. (from [16])).

Application to

be measured

Macro

process

General

data group

General

process

General

process

Transactional

BFC

Transactional

BFC

Transactional

BFC

Transactional

BFC

Data

BFC

Data

BFC

Data

BFC

……

Figure 2 Functional hierarchy in the Early & Quick FP technique (from [16])

Transactional Base Functional Components (BFC) and Data BFC correspond to

IFPUG‘s elementary processes and LogicData, while the other elements are

aggregations of processes or data groups. The idea is that if you have enough

information at the most detailed level, you count FP according to IFPUG rules;

otherwise, you can estimate the size of larger elements (e.g., General or Macro

processes) either on the basis of analogy (e.g., a given General process is ―similar‖ to a

known one) or according to structured aggregation (e.g., a General process is composed

of 3 Transactional BFC). By considering elements that are coarser-grained than the BFC

of Functional Point Analysis, the E&QFP measurement process leads to an approximate

measure of size in IFPUG FP.

In the E&QFP manual[16], some tables taking into account the previous experiences

with the usage of E&QFP are provided to facilitate the task of assigning a minimum,

maximum and most likely quantitative size to each component. For instance, Table 1

provides minimum, maximum and most likely weight values for generic (i.e., not

weighted) functions as given in [16]. The time and effort required by the weighting

phases are thus saved. Such saving can be relevant, since weighting requires analyzing

every data or transaction function in detail.

Chapter 1 . Introduction

6

Table 1 E&QFP: Function type weights for generic functions

Function type
Weight

Low Likely High

Generic ILF 7.4 7.7 8.1

Generic EIF 5.2 5.4 5.7

Generic EI 4.0 4.2 4.4

Generic EO 4.9 5.2 5.4

Generic EQ 3.7 3.9 4.1

The size of unspecified generic processes (i.e., transactions that have not been yet

classified as inputs, outputs or queries) and unspecified generic data groups (i.e., logical

files that have not been yet classified as ILF or EIF) as given in [16] are illustrated in

Table 2. When using this method, only the identification of logical data and elementary

processes needs to be done: both the classification of data and transaction functions and

their weighting are skipped. Consequently, sizing based on unspecified generic

processes and data groups is even more convenient –in terms of time and effort spent–

than sizing based on generic (i.e., non weighted) functions.

Table 2 E&QFP: Function type weights for unspecified generic processes and data group

Function type
Weight

Low Likely High

Unspecified Generic Data Function 6.4 7.0 7.8

Unspecified Generic Processes Function 4.3 4.6 4.8

NESMA indicative and estimated methods

The Indicative NESMA method [17] simplifies the process by only requiring the

identification of LogicData from a conceptual data model. The Function Point size is

then computed by applying the following formulae, whose parameters depend on

whether the data model is normalized in 3
rd

 normal form:

Non normalized model:

Function Points = #
1
 ILF × 35 + #EIF × 15 (1)

Normalized model:

Function Points = #ILF × 25 + #EIF × 10 (2)

The process of applying the NESMA indicative method involves only identifying logic

data and classifying them as ILF or EIF. Accordingly, it requires less time and effort

than the E&QFP methods described above, in general. However, the Indicative NESMA

method is quite rough in its computation: the official NESMA counting manual

specifies that errors in functional size with this approach can be up to 50%.

The Estimated NESMA method requires the identification and classification of all data

and transaction functions, but does not require the assessment of the complexity of each

1 Here and hereafter # represents ―Number of…‖

Chapter 1 . Introduction

7

function: Data Functions (ILF and EIF) are all assumed to be of low complexity, while

Transactions Functions (EI, EQ and EO) are all assumed to be of average complexity.

Tichenor method

The Tichenor ILF Model [15] bases the estimation of the size on the number of ILF via

the following formula for transactional system (for batch systems, Tichenor proposes a

smaller multiplier):

UFP = #ILF × 14.93 (3)

This model assumes a distribution of BFC with respect to ILF as follows: EI/ILF = 0.33,

EO/ILF = 0.39, EQ/ILF = 0.01, EIF/ILF = 0.1. If the considered application features a

different distribution, the estimation can be inaccurate.

The fact that a method based only on ILF requires a given distribution for the other BFC

is not surprising. In fact, the size of the application depends on how many transactions

are needed to elaborate those data, and the number of transaction cannot be guessed

only on the basis of the number of ILF, as it depends on the number of ILF just very

loosely. Instead of allowing the user to specify the number of transactions that are

needed, the Tichenor method practically imposes that the number of transactions

complies with the distribution given above.

ISBSG distribution model

The analysis of the ISBSG dataset yielded the following distribution of BFC

contributions to the size in FP:

ILF 22.3%, EIF 3.8%, EI 37.2%, EO 23.5%, EQ 13.2%

The analysis of the ISBSG dataset also shows that the average size of ILF is 7.4 UFP. It

is thus possible to compute the estimated size on the basis of the number of ILF as

follows:

UFP = (#ILF × 7.4) × 100 / 22.3 (4)

The same considerations reported above for the Tichenor model apply. If the application

to be measured does not fit the distribution assumed by the ISBSG distribution model, it

is likely that the estimation will be inaccurate.

Simplified FP

The simplified FP (sFP) approach assumes that all BFC are of average complexity [18],

thus:

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 10 + #EIF × 7 (5)

ISBSG average weights

This model is based on the average weights for each BFC, as resulting from the analysis

of the ISBSG dataset [19], which contains data from a few thousand projects.

Accordingly, the

ISBSG average weights model suggests that the average function complexity is used for

each BFC, thus

UFP = #EI × 4.3 + #EO × 5.4 + #EQ × 3.8 + #ILF × 7.4 + #EIF × 5.5 (6)

Chapter 1 . Introduction

8

Table 3 provides a quick overview of the activities required by FP measurement and

estimation methods. Of course, the IFPUG method requires all the activities listed in

Table 3, while simplified methods require a subset of such activities.

Chapter 1 . Introduction

9

Table 3 Activities required by different simplified measurement process

Measurement activities FPA
NESMA

indic.

NESMA

estin.

E&QFP

Generic

func.

E&QFP

Unspec.

Generic

func.

Tichenor

ILF Model

ISBSG

distribution
sFP

ISBSG

average

weights

Identifying logic data √ √ √ √ √ √ √ √ √

Identifying elementary

processes
√ √ √ √ √ √

Classifying logic data

as ILF or EIF
√ √ √ √ √ √ √ √

Classifying elementary

processes as EI, EO, or

EQ

√ √ √ √ √

Weighting data functions √

Weighting transaction

functions
√

Chapter 1 . Introduction

10

This page intentionally left blank.

Chapter 1 . Introduction

11

1.2 Problems of Functional Size Measurement addressed in this thesis

1.2.1 Problems, limits, and challenges of FSM

It‘s well known that Function Point Measurement suffers from several problems, such

as:

1. Both data and transaction functions‘ sizes have upper limits. For instance, no

External Input has size greater than 5 FP, even if it is ―very very big‖.

2. Function points are not well formed metrics because their constituent elements are

correlated.[32]

3. Function point counts are expected to be obtained early in the development cycle.

Unfortunately, since the measurement requires too much detailed information,

measurement is often not achievable a very early phase of development.

4. The measurement criteria and procedure are not defined in a thoroughly precise way.

Accordingly, the FPA counting involves judgment on the part of the counter, it

requires human interpretation. The same product is usually sized differently by

different counters, even within the same organization.

5. Function point counts are considered not equally applicable to all kinds of software.

They have not enjoyed widespread success in embedded systems or heavily

computational applications.

6. Counting often requires a relevant effort to analyze several heterogeneous

requirements documents in order to identify BFCs (Basic Functional Components).

In fact, the identified BFCs are often not easy to trace back to elements of the

requirements. Moreover, the effort done to understand the requirements is not

exploited to build any artefacts that can be useful in the design and implementation

phases.

7. Lack of formal language description for measurement process. Usually the analyst

that defined the requirements and the measurer are two different persons, who

perform separate tasks. The lack of the formal language description for

measurement process makes it hard to assure that the right functionalities are

measured, and that they are measured correctly. [3]

8. After the COSMIC method has been proposed, the issue of convertibility between

traditional FP (Function Points) and CFP (COSMIC Function Points) has arisen.

The organizations that have historical data in FP and wish to adopt the COSMIC

method face the problem of converting data from FP into CFP. FSM conversion is

in itself a quite difficult problem.

9. Although the methods are technology independent, their use in object oriented

development is quite difficult. Each method uses its own abstraction to represent a

software system in a convenient way, so as to perform size count.

10. In COSMIC, the data movements of a software component also contain the data

manipulation of the software component. This is strength of the method, since you

can obtain the size measure based on data movements alone. On the other hand, this

is also one of the limitations with the COSMIC method, and the consequence is that

the method does not capture complex calculations, or treatment of large amounts of

data.

Chapter 1 . Introduction

12

1.2.2 Problem Analysis

In subsection 1.2.1, the main problems of FSM were summarized. In this subsection the

problems addressed in this thesis are highlighted.

Table 4 Analysis of the problems, challenges and the problems addressed in this thesis

Problems

ID
Summarization FPA CFP

Addressed

In this

thesis

1
Function point of FPA has

upper size limit
√

2
Correlation exists among

actors of BFC
√ √

3
Difficult to use in early

phase
√ √ √

4
Criteria not precisely

described
√ √

5 application scope √ √

6
difficult to identify and

obtain BFCs
√ √ √

7
Measurement process not

precisely described
√ √ √

8
Conversion between FPA e

CFP is not easy
√ √ √

9

Does not capture complex

calculation or treatment or

large amounts of data

 √

10
Difficult to use in OO

methods
√ √ √

11
Difficult to use for new

product and process form
√ √

12
Does not involve quality or

technical aspect
√ √

The problems addressed in this thesis are 3, 6, 7, 8, and 10.

1.3 Research objectives

1.3.1 Research objectives

The goal of this thesis is to identify and test an easily usable method for functional size

measurement in practice.

Numerous experts conducted research on this topic. For example, the already mentioned

E&QFP [16] and NESMA [17] methods addressed the simplification FSM through

Chapter 1 . Introduction

13

analogy-based classification and structured aggregation; the Tichenor, ISBSG, and

ISBSG average weights methods exploited statistical analysis to avoid the most

expensive phases of FSM.[4]

1.3.2 Research methods

A few strategies are possible to tackle the complexity of FSM. Among them:

1. Supporting and easing the standard measuring processes. The FSM processes

described in official manuals are not changed. Instead, the activities required by the

process are made easier. Ideally, one could think of totally automating the FSM

process; however, the partial subjectivity of all FSM methods makes automation

extremely hard. An interesting alternative consists in moving the complexity of the

process from the actual measurement phase to the requirements modelling phase,

and making measurement a sort of ―by product‖ of requirements specification. This

is reasonable, because requirements have to be specified anyway, even if one does

not intend to measure their functional size. However, to pursue this approach, i.e.,

measurement based on requirements models, it is necessary to build models so that

they actually contain the information required by the FSM method of choice:

requirement model building must be done in a measurement oriented way [2][3].

2. Simplify the FSM process, while preserving the definition of the measure. This

strategy consists in simplifying the measurement process by skipping or

downgrading some of the more expensive and lengthy activities involved in the

measurement process (see section 1.1.5). The result is an approximation of the real

measure in FP or CFP.

3. Simplify the definition of the measure, which results in simplifying the

measurement process, while preserving a clear compatibility between the full-

fledged and the simplified measures. So, the latter a) are substantially equivalent to

standard FP or CFP, and b) are easier to measure, e.g., because they are based on a

smaller amount of information [4].

This thesis concentrates on the above point 2. In fact points 1 and 3 had already been

partly explored when the PhD work reported here started.

As to point 2, the work reported here addresses the following main points:

 Evaluating current proposals.[1][5][6]

 Exploring the possibility of establishing statistical correlations between functional

size measures and measures of object-oriented (UML) models.

 Exploring the analytical convertibility of functional size measures [7]. This activity

is loosely correlated with the main topic, but is justified in that obtaining a measure

as a conversion of another measure is much easier than performing the measurement.

1.4 Thesis structure

The remainder of this thesis is organized into the following chapters:

 Chapter 2. Functional Size Measurement Methods. In this chapter the methods of

FSM, FPUG FPA and COMSIC FP are introduced and compared.

 Chapter 3. Simplified Functional Size Measurement. This chapter presents the

Simplified Functional Size Measurement methods, namely E&QFP, NESMA and

the other existing methods.

Chapter 1 . Introduction

14

 Chapter 4. Model-based measurement. This chapter is about the Model-based

measurement-oriented method proposed by Lavazza et al. We first talk about the

fundamentals of the method; then the modeling method and the procedure of

modeling are separately presented according to IFPUG FPA and COSMIC; at the

end of this chapter, we also compare both methods, IFPUG FPA and COSMIC FFP,

from the view point of the measurement-oriented model-based method.

 Chapter 5. Evaluation of Simplified FSM processes. This chapter empirically

assesses and justifies the Simplified FSM proposals. The Model-based Simplified

Functional Size Measurement methods are also empirically evaluated.

 Chapter 6. Conversion between FPA and CFP. In this chapter the analytical

conversion between FPA and CFP is discussed and evaluated.

 Chapter 7. Investigation of statistical correlations between FSM and Object-

Oriented Measures of Requirements models. In this chapter we discuss and

investigate the statistical correlation between FSM and Object-Oriented Measures of

UML Requirements models.

 Chapter 8. Related work. This chapter contains a review of the state-of-the-art about

the simplified FSM.

 Chapter 9. Conclusion and future work. This chapter presents the main contributions

of this thesis and the plan for future work.

 Appendix. Glossary

The structure of this thesis is illustrated in Figure 3

Figure 3 The structure of the thesis

Chapter 2 . Functional Size Measurement Methods

15

Chapter 2 Functional Size Measurement Methods

In this chapter two main FSM methods, FPA and COMSIC, are introduced and

compared. Before that, we also explored the methodology abut the FSM.

2.1 Methodology

The exploration starts by quoting a sentence by Albrecht [8], which describes the

beginning of the first generation of FSM.

The basis for this method was developed over the last 5 years from the Data Processing

Service projects estimating experience. As part of that estimating we validated each

estimate with a series of weighted questions about the application function and the

development environment. We found that the basic value of the application function

was consistently proportional to a weighted count of the number of external use

inputs, outputs, inquires and master files.‖

Another sentence provides a clear insight into FSM [9]: "The thesis of this work is that

the amount of function to be provided by the application can be estimated from the

itemisation (itemization) of major components of data to be used or provided by

it. …"

From these two quotations, the following observation can be easily derived: First, the

FSM method is based on engineering practical experience. ―… in the last 5 years from

the DP Service projects estimating experience…”; second, based on the datasets

accumulated in these engineering practices, a consistent correlation exists. ―…a

consistently proportional to…”; Third, since a consistent correlation exists, naturally,

the objects involved in this correlation should be clearly and firstly identified. “....the

basic value of the application function… a weighted count of the number of external

use inputs, outputs, inquires and master files.”

Figure 4 is used to explain the core part of the FSM methods (FPA and COSMIC) and

the other simplified methods in this chapter and the next chapter. Through the

comparison of their factors, the key difference between the traditional methods and the

simplified methods is discovered.

Chapter 2 . Functional Size Measurement Methods

16

Figure 4 High level abstract model of FSM methodology

Here, the 3 ―things‖, namely, factors, counting, and weighting are defined. The Factors

represent the basic elements of a software application taken into account by a FSM

method. For example, in the FPA method, factors are the elementary process, the DETs,

RETs, FTRs, the types of transaction functions and data functions. In a word, factors

represent the elements that characterize each function of an application to be measured

and the rules to identify them; Counting represents how to count the above basic factors;

Weighting represents the relation between the final function point and the above basic

elements.

While the Factors and Counting are always present, some methods do not include

Weighting: for instance the COSMIC method does not involve any weighting of

elements, just counting.

2.2 IFPUG FPA

2.2.1 The brief history about IFPUG FPA

Function Point Analysis was developed first by Allan J. Albrecht in the mid 70s. It was

an attempt to overcome difficulties associated with LoC as a measure of software size,

and to measure the size of a data-processing system from the end-user‘s point of view,

in order to estimate the development effort, i.e. to assist in developing a mechanism to

predict effort associated with software development. The method was first published in

1979 [8], then Albrecht refined the method in 1983-84 [9] [37]. Since 1986, when the

International Function Point User Group (IFPUG) was set up, several versions of the

Function Point Counting Practices Manual have been published by IFPUG.

Figure 5 Evolution of FPA method

Chapter 2 . Functional Size Measurement Methods

17

The current version of the IFPUG Manual is version 4.1.1. The IFPUG counting manual

is now an ISO standard in its ―unadjusted‖ version.

2.2.2 The basic principles of FPA

The basic idea of FPA is that the ―amount of functionality‖ released to the user can be

evaluated by taking into account the data used by the application to provide the required

functions, and the transactions (or processes) through which the functionality is

delivered to the user. Figure 6 illustrates the schematic view of FPA, where the

―Factors‖ that characterize the software application (as defined in section 2.1) are

highlighted. In FPA jargon, these factors are named ―Based Functional Components‖

(BFC).

Figure 6 Schematic view of FPA base functional components

2.2.3 Basic functional components

Data functions: ILF and FIF

Data functions represent data that are relevant to the user and are required to perform

some function, and are classified into internal logical files (ILF), and external interface

files (EIF).

An ILF is a user identifiable group of logically related information managed within the

boundary of the application. Its primary intent is to hold data maintained through one or

more elementary processes of the application being counted.

An EIF is similar to an ILF, but is maintained within the boundary of another

application, i.e., it is outside the application being measured, for which an EIF is read-

only.

The term ―file‖ in the FPA does not indicate a file in the traditional. In FPA, it refers to

a logically related group of data and not the physical implementation of those groups of

data.

Chapter 2 . Functional Size Measurement Methods

18

ILF and EIF are characterized on the basis of their Record Element Types (RET) and

Data Element Types (DET). A RET is a user recognizable subgroup of data elements

within an ILF or EIF. A DET is a unique user recognizable, non-repeated field (non-

repeated means that if the same filed appears multiple times in a RET, it counted only

once).

In Figure 7, we present the FPA meta-model, which illustrates the information we need

to identify and capture for representing a software system to be measured.

Functional User

Requirements

Data

Functions

Transaction

Functions

RET

DET

FTR
I/O

DET

Figure 7 FPA software model

From the definitions of the data elements, we can draw Figure 8 to display the relative

conceptual granularity among them.

Figure 8 Relative conceptual granularities of FPA data elements

Transaction Functions

Transaction functions represent operations that are relevant to the user and cause input

and/or output data to cross the application boundary. Transaction functions represent

elementary processes. An elementary process is the smallest unit of activity that is

Chapter 2 . Functional Size Measurement Methods

19

meaningful to the user(s). An elementary process must be self-contained and leave the

state of the application being counted in a consistent state.

Transactional functions are classified into external inputs (EI), external outputs (EO),

and external inquiries (EQ) according to the main intent of the process: updating ILF for

EI, computing and outputting results for EO, retrieving and outputting data for EQ.

 External Inputs: An external input (EI) is an elementary process that processes data

or control information that comes from outside the application boundary. The

primary intent of an EI is to maintain one or more ILFs and/or to alter the behavior

of the system.

 External Outputs: An external output (EO) is an elementary process that sends data

or control information outside the application boundary. The primary intent of an

external output is to present information to a user through processing logic other

than, or in addition to, the retrieval of data or control information. The processing

logic must contain at least one mathematical formula or calculation, create derived

data, maintain one or more ILFs or alter the behavior of the system.

 External Inquiry: An external inquiry (EQ) is an elementary process that sends data

or control information outside the application boundary. The primary intent of an

external inquiry is to present information to a user through the retrieval of data or

control information from an ILF of EIF. The processing logic contains no

mathematical formulas or calculations, and creates no derived data. No ILF is

maintained during the processing, nor is the behavior of the system altered.

The main difference between the transactional function types is their primary intent.

They are characterized on the basis of their file type referenced (FTRs) and data element

type (I/O DET). A FTR is an internal logical file read or maintained by a transactional

function or an external interface file read by a transactional function. An I/O DET is a

unique user recognizable, non-repeated field which flows through the boundaries of the

application being measured.

2.2.4 Measurement procedure

Although the measurement is essential for cost estimation, it is very important to the

management of software development as mentioned in the subsection 1.2.1. But it is too

difficult in practice, too boring during the measurement, and too costly to carry out. The

strict, integrated and official measurement procedure of FPA is illustrated in the Figure

9.

Chapter 2 . Functional Size Measurement Methods

20

Figure 9 Procedure of the FPA measurement

Type of function point count

The function point method is suitable to be used in three types of projects, namely

development project, enhancement project, and application. So, the first step in the

function point count procedure is to determine the type of function point count. In this

thesis, only development project measurement is taken into account (although it is

expected that the presented results can be extended to other types of measurements

rather easily)

Identify the Counting Scope and Application Boundary

The application boundary indicates the border between the software being measured and

the user. The boundary is identified according to the counting scope, which defines the

functionality that will be included in a particular function point count.

Determine the Unadjusted Function Point Count (step 3, 4, 5)

The application's specific user functionality is evaluated in terms of what is delivered by

the application, not how it is delivered. Since the basic idea of FPA is that the ‗‗amount

of functionality‘‘ released to the user and the unadjusted function point count (UFPC)

reflect the specific countable functionality provided to the user by the project or

application, only user-requested and defined components are counted. In this thesis,

only unadjusted FP is considered. This is coherent with the usage of function points

purely as a size measure.

Count Data Functions (step 3)

For counting data function, in practice, we must first identify the ILFs and EIFs from

the software artefacts. For each ILF and EIF, the RETs and DETs must be further

Chapter 2 . Functional Size Measurement Methods

21

identified and the numbers of RETs and DETs must be counted. This is the process of

counting data function of an application to be measured.

How to identify and count them? Certainly the FPA manual defines the counting

process and the related concepts. But the FPA counting process does not make reference

to a rigorous representation or model of the application to be measured.

Count Transactional Functions (step 4)

For counting transactional functions, the first thing is to define and identify all the

elementary processes that represent the functionality provided to the user to process data.

The type of each transaction function is needed to be classified into External Input,

External Output, or External Inquiry. Although classifying is not always easy to carry

out, there is a table to be referenced. An FTR can be an ILF referenced or maintained by

the transaction or an EIF read by the transaction. The DETs are considered to be those

that cross the application boundary when the transaction is performed.

The size of a software application is given by the sum of the sizes of its data and

transaction functions.

Weight data and transaction functions (step 5)

Each data function is sized according to its ―complexity‖.

The complexity of a data functions depends on its type (ILF or EIF), and the number of

DETs and RETs it includes, as specified in Table 5.

The complexity of the data function and its type determine the size in UFP of the

function; for instance, an ILF having 3 RETs and 25 DETs is classified into average

complexity and contributes 10 UFP.

Table 5 FPA reference table (the part of ILF and EIF)

Function
Type

Weight

Low Average Hight

ILF 7 10 15

EIF 5 7 10

[0, 1] [1,50] [0,1] [51,∞)

[2,5] [1,19] [2,5] [20,50] [2,5] [51, ∞)

 [6, ∞) [1,19] [6, ∞) [20, ∞)

NRETs NDETs NRETs NDETs NRETs NDETs

Transaction functions are sized in a similar way. Their complexity (as specified in Table

6) depends on the File Type Referenced (i.e., the number of ILF and EIF potentially

accessed during the execution of the transaction), the number of DETs that cross the

boundary of the application, and the type (input, output or inquiry) of the transaction.

Table 6 FPA reference table (the part of EI, EO, and EQ)

Function
Type

Weight

Low Average Hight

EI 3 4 6

Chapter 2 . Functional Size Measurement Methods

22

[0, 1] [1,15] [0, 1] [15,∞)

2 [1,4] 2 [5,15] 2 [16, ∞)

 [3, ∞) [1,4] [3, ∞) [5, ∞)

EO

4 5 7

[0, 1] [1,19] [0, 1] [29, ∞)

 [2, 3] [1,5] [2, 3] [6, 19] [2, 3] [20, ∞)

 [4, ∞) [1,5] [4, ∞) (6, ∞)

EQ

3 4 6

[0, 1] [1,19] [0, 1] [20, ∞)

[2, 3] [1,5] [2, 3] [6, 19] [2, 3] [20, ∞)

 [4, ∞) [1,5] [4, ∞) [6, ∞)

 NFTRs NDETs NFTRs NDETs NFTRs NDETs

The UFP value of an application

The weighted sum of transaction functions and data functions is the size of the

application in unadjusted function points.

a) Albrecht found that the development effort depends not only on the functional size of

an application, but also on several other factors. Accordingly he devises to ―adjust‖ the

size measurement so that it takes into account all the factors that affect effort;

b) It is a better predictor of development effort via equations of type Effort = K × Size.

Determining Value Adjustment Factor and calculating the FP

The size in FP is calculated using a specific adjustment formula.

FP = UFP × VAF (7)

The value adjustment factor (VAF) takes into account 14 characteristics of the

application to be measured and is calculated as follows:

(8)

Where: Ci is the degree of influence of the i
th

 General System Characteristic

In (8), each Ci represents the degree of influence of one General System Characteristic

(GSC). GSC is evaluated at six scales (from zero to five) according to its degree of

influence in the given application. The GSCs are listed in the following table.

Table 7 14 General System Characteristics (GSC)

Ord.
General System
Characteristic Brief Description

1 Data communications
How many communication facilities are there to aid in
the transfer or exchange of information with the
application or system?

2 Distributed data processing
How are distributed data and processing functions
handled?

3 Performance Did the user require response time or throughput?

4 Heavily used configuration How heavily used is the current hardware platform
where the application will be executed?

Chapter 2 . Functional Size Measurement Methods

23

5 Transaction rate
How much frequently are transactions executed daily,
weekly, monthly, etc.?

6 On-Line data entry
What percentage of the information is entered On-
Line?

7 End-user efficiency Was the application designed for end-user efficiency?

8 On-Line update How many ILF’s are updated by On-Line transaction?

9 Complex processing Does the application have extensive logical or
mathematical processing?

10 Reusability
Was the application developed to meet one or many
user’s needs?

11 Installation ease How difficult is conversion and installation?

12 Operational ease How effective and/or automated are start-up, back up,
and recovery procedures?

13 Multiple sites
Was the application specifically designed, developed,
and supported to be installed at multiple sites for
multiple organizations?

14 Facilitate change Was the application specifically designed, developed,
and supported to facilitate change?

Table 8 Degrees of influence of the GSCs

Or. Degrees of influence Scale Value

0 Not present, or no influence 0

1 Incidental influence 1

3 Moderate influence 2

4 Average influence 3

5 Significant influence 4

6 Strong influence throughout 5

Brief summary

The FPA measures functional user requirements, but a requirement specification is a

structured document, which is often written in natural languages. It is very difficult to

identify the BFCs and to count them. The standard method for counting function points

is to count the BFCs, adjustments, and weighting factors for several kinds of complexity.

The process is long and expensive. In principle the FPA is ideal to measure the software

size, and then to estimate the effort of development. But the drawback is that although it

can be used for effort estimation, FPA itself needs more effort to be done. According to

literature [65], a certified counter can only count 400 -600 function points using the

normal function point analysis per day. The cost of counting every point runs $6.00.

It is obvious that, concerning the use in practice, if a measurement method would be

more complex and expensive than the customer can accept and afford, let us say, such a

method would have relatively low value for the project management and control during

the cycle-life of development. We surely need the simplified method in practice.

2.3 COSMIC

Chapter 2 . Functional Size Measurement Methods

24

2.3.1 Brief story about COSMIC

The COSMIC method developed by the Common Software Measurement International

Consortium (COSMIC) has emerged as the second generation of the FSM methods. It is

a recognized international standard (ISO 19761 [35]). It aimed at addressing some of the

major weaknesses of earlier methods, like FPA.

In 1996, the industry sponsored the development of an IFPUG extension for real-time

and embedded software, which was put into the public domain under the name of FFP

(Full Function Points). Then, the COSMIC -formed in 1998- after reviewing existing

methods (IFPUG, Mark II, NESMA and Full Function Point 1.0), published version 2.0

of COSMIC-FFP in 1999. Extensive field trials were carried out in 2000 and 2001.

COSMIC published the latest definition of the method (Version 3.0.1) [33], in May

2009.

Figure 10 Evolution history of COSMIC (from [66])

2.3.2 COSMIC basic principles

The COSMIC method is used to measure the functional size of a piece of software from

the viewpoint of end users. This method is based on the COSMIC Generic Software

Model (see Figure 11), which assumes that the functional user requirements of a piece

of software can be decomposed into unique functional processes, which are further

classified into either data movements or data manipulations.

Chapter 2 . Functional Size Measurement Methods

25

Figure 11 COSMIC generic software model

The COSMIC method assumes that each data movement has an associated constant

average amount of data manipulation; therefore only the data movements are measured.

The assumption that the amount of data manipulations is proportional to the number of

data movements is often violated. For instance, applications belonging to different

domains can easily be characterized by different data manipulation/movements ratios.

In this respect, COSMIC is not better than FPA: both tend to overlook the amount of

elaboration involved in processes.

Each movement is considered as one COSMIC function point; the size of a functional

process is the number of its data movements; the COSMIC functional size of this piece

of software is the sum of the sizes of its processes.

2.3.3 Functional process

Functional user requirements are known early in the development process; therefore

they are a good starting point for estimation. They can be broken down into a number of

functional processes; independently executable sets of elementary actions that the

software should perform in response to a triggering event.

The COSMIC method defines a functional process as ―an elementary component of a

set of Functional User Requirements comprising a unique, cohesive and independently

executable set of data movements‖. [33]

Each functional process is triggered by an ―Entry‖ data movement, which comes from a

functional user and aims to activate a functional process identified by the end-user and

carried out by the piece of software to be measured. Figure 12 (from [33]) illustrates

clearly the relation between triggering event, functional user and functional process.

Chapter 2 . Functional Size Measurement Methods

26

Figure 12 Relation between triggering event, functional user and functional process

The data movements are the base functional components that are used for establishing

the size of the software. The COSMIC recognizes four types of data movement, namely

Entry, Exit, Write, and Read (see Figure 13).

Figure 13 COSMIC view of software [38]

As illustrated in Figure 13 (from [38]), an Entry moves a data group from a user across

the software boundary into the functional process where it is required. An exit is a data

movement that moves a data group from a functional process across the software

boundary to the user that requires it. A Write movement updates (possibly creates or

deletes) data group that is stored within the boundary of the application being measured.

Similarly, a Read movement involves reading a data group. Obviously the Entry and

Exit movements do not involve in updating the data they move, but every Entry or an

Exit is considered to include certain associated data manipulations (for example

validation of the entered data or formatting and routing associated with the data to be

exited).

In COSMIC, the functional processes are characterized on data group. The movement of

a data group can be of type Entry, Exit, Read, or Write. In Figure 14, we present the

COSMIC meta-model, which illustrates the information we need to identify and capture

for representing a software system to be measured.

Chapter 2 . Functional Size Measurement Methods

27

Figure 14 COSMIC software model

Each data movement, no matter the movement type, is counted as one COSMIC

Function Point (CFP).

To identify data movements, data groups have to be identified first. A data group is

defined ―a distinct, non empty, non ordered and non redundant set of data attributes

where each included data attribute describes a complementary aspect of the same

object of interest.‖[33] From the characters of the data group and attribute, we can draw

Figure 15 to display the relative conceptual granularity among them.

Figure 15 Relative conceptual granularities of COSMIC data elements

An object of interest is defined as any ‗thing‘ that is identified from the point of view of

the Functional User Requirements. It can be any physical thing, any (part of) conceptual

object about which the software is required to process and/or store data.

The definition and principles of objects of interest and of data groups are intentionally

broad in order to be applicable to the widest possible range of software. This quality

sometimes results in it being difficult to apply the definition and principles when

measuring a specific piece of software.

Chapter 2 . Functional Size Measurement Methods

28

Only movements that involve persistent or transient data groups are considered. A data

group is persistent if its value is preserved between two functional process activations;

so, temporary variables used in a computation within a functional process are not

persistent; a data group that is set by a process and read by another one is persistent,

even if the value is lost when the program terminates.

Transient data groups are typically created for output: when you have an exit that

involves some attributes taken from a data group and some other taken from another

data group, you consider that the exit involves a transient data group.

Similarly, in an ad hoc enquiry, the selection parameters to derive the required data are

considered a transient data group associated with the Entry consisting of the query

execution request. Transient data groups that do not survive the execution of the

functional process; nevertheless, moving them counts as a legal data movement. They

always involve data that cross the boundary between the software and its user(s).

2.3.4 Measurement process

The measurement strategy phase

In this phase, the purpose and scope of the measurement, the identification of functional

users and the level of granularity are considered, before actually starting to measure,

because they define and help us to clarify which size should be measured, how should

we interpret this measurement, what is the artefact to be measured, from which view

point is this measurement carried out, etc.

Applying the COSMIC Generic Software Model

Applying the COSMIC Generic Software Model means identifying the set events issued

by each of the functional user (types) identified in the FUR, and then identifying the

corresponding functional processes triggered in response to those events, together with

the associated objects-of-interest, data groups, and data movements.

The COSMIC Generic Software Model shall be applied to the functional user

requirements of each separate piece of software for which a separate measurement

scope has been defined.

In the literature it has been often noted that ―… FPs are counted according to a set of

informal rules that require human interpretation; moreover, the rules are defined in a

rather fuzzy way, so that it is not always clear how every element of the requirements

should be classified and counted. As a consequence, you need an expert …” [3],

although this sentence refers to FPA, it applies to the COSMIC method as well, even

though the COSMIC provides a measurement guide [33] in addition to the official

manual to help the measures.

The general COSMIC-FFP procedure consists of three phase, namely identifying data

movements, applying the measurement function, and aggregating measurement result.

Chapter 2 . Functional Size Measurement Methods

29

Figure 16 COSMIC general measurement procedure [33]

Identifying data movements

This step consists in identifying the data movement of sub-process types (Entry, Exit,

Read, and Write types) of each functional process type.

To identify data movements, we suggest two steps. First, we identify the persistent data

groups. Data groups are relatively easy to be identified, since data mentioned in the

requirements are always persistent or transient. Second, for each functional process we

check what data groups are subject to input, output, reading or writing (i.e., creation,

update or deletion).

Applying the measurement function

An important rule is that one data movement has to be counted for each data group that

is moved. So, for instance, an input operation that moves attributes from two data

groups involves two data movements: one for each data group involved.

Any data appearing on input or output screens or reports that are not related to an object

of interest to a functional user should not be identified as indicating a data movement,

so should not be measured.

Aggregating measurement function results

In the COSMIC method the aggregation of size measures is straightforward:

 The size of a functional process is given by the number of its data movement types;

 The size of the application is the sum of sizes of its functional processes.

2.4 Comparison between FPA and COSMIC

In literature [48], J. P. Jacquet and A. Abran presented a process model for software

measurement methods. The proposed model details the distinct steps, namely design of

Chapter 2 . Functional Size Measurement Methods

30

the measurement method, measurement method application, measurement result

analysis, and exploitation of the result.

The first one of them consists in 4 sub-steps, as illustrated in Figure 17 (from [48]),

namely definition of the objectives, design or selection of the meta-model,

characterisation of the concept to be measured, and definition of the numerical

assignment rules.

Figure 17 Design of the measurement method

Now, we compare both methods according to the above 4 sub-steps, then we will make

a general comparison of the elements of both methods.

2.4.1 Objectives

To define the objectives of measurement, for example, what we want to measure, which

attribute should we measure, what the measurement method point of view will be,

software user, software designer, etc. Because all of these criteria have a strong

influence on the design and the result of the measurement, it is very important to

compare them. In Table 9 we list all the criteria.

Table 9 Objectives of measurement of both methods

 FPA COSMIC

Software
kind

MIS √ √

Real-time √

Embedded system √

complex mathematics
algorithms

√

Other type applications √ √

Type of
count

development project √ √

enhancement project √ √

application √ √

viewpoint end-user end-user

scope/propose software function size software function size

Result FP CFP

object of interest/attribute DET, RET, FTR Data group

Chapter 2 . Functional Size Measurement Methods

31

2.4.2 Software model

Though software (also the production of each stage of development) is artefact, is not

tangible, however it can be made visible through multiple representations. As described

in Figure 7 and in Figure 14, the set of characteristics (or relationship) that can represent

a software or a software piece is abstracted and illustrated. All the entity types of meta-

model of both methods are listed in Table 10, and they are compared in detail in the

following.

Table 10 Entity type of software model

 FPA COSMIC

Entity type of meta
model

Transaction Process(EI,EO, or EQ) Functional Process

Data Function (ILE, EIF)

Processes

Both FPA and COSMIC consider SW applications as composed by processes, namely

elementary processes in FPA and functional processes in COSMIC.

In the first approximation, they represent the same concept. FPA defines an elementary

process as ―the smallest unit of activity meaningful to the user.‖ It must be self-

contained, and leave the application in a consistent state. The COSMIC defines a

functional process as ―an elementary component of a set of FURs comprising a unique,

cohesive, and independently executable set of data movements‖ [33]. It is triggered by

one or more triggering events and completes when it has executed all that is required to

be done in response to the triggering event type.‖

Elementary processes and functional processes are not ―exactly‖ the same concept since

the rules to be fulfilled by a proper COSMIC functional process are slightly more

restrictive than the rules for IFPUG transactions, since COSMIC is more demanding on

defining what the right granularity of a proper functional process is.

Data function

The elementary process of FPA can be of type EI, EO, or EQ. FPA considers SW

application as composed by processes but not just them, the data functions are also part

of the measurement. To the contrary, CFP focus only on the part of functional process.

2.4.3 Characterisation of the concept to be measured

In order to enable the measurement method to be built, the concept of measurement

must be clearly defined.

In FPA, ILFs and EIFs are characterized on the basis of their Record Element Types

(RETs) and Data Element Types (DETs). EIs, EOs, and EQs are characterized on the

basis of their file type references (FTRs) and data element type (I/O DETs). In

COSMIC, the functional processes are characterized on data group. The movement of a

data group can be of type Entry, Exit, Read, or Write.

Chapter 2 . Functional Size Measurement Methods

32

Now, we arrive at a point where we can compare the data elements of both methods.

Data elements are handled and counted in quite a different way in IFPUG and COSMIC

methods. This is one of the main differences between FPA and COSMIC.

Both methods group data attributes in larger entities, but the data attributes are used

differently in the counting, and the grouping of the attributes into larger entities is done

following two different approaches. The differences are:

 Internal and external data elements. In IFPUG you need to discriminate whether a

data element is within (ILF) or out of (EIF) the system under development. In

COSMIC there is no such explicit distinction (data group).

 Data attributes grouping rules. In IFPUG the data attributes are grouped according

to the rules that define DETs and RETs: a logic file (ILF or EIF) is composed by

one or more RETs, and each of RET is composed by attributes. In COSMIC the data

attributes are grouped according to the rules that define an object of interest (see

Figure 18): a data group is composed by attributes (data attributes).

Figure 18 Comparison of conceptual granularity of FPA and COSMIC data elements

 Mandatory elements. In FPA all the mentioned elements need to be modeled:

ILF/EIF, RETs and DETs. In COSMIC the data attributes are not considered at all

in the counting, the data attributes are used only to be able to properly characterize a

data group, thus precisely identifying them is facultative.

 Parameters granularity. The data flows considered by FPA and COSMIC are at

different granularity: in FPA DETs are counted, while in COSMIC data groups are

counted. The nice direct relationship between RETs and data groups is made

fruitless by the different data flow granularity. FPA needs much more detailed

software models than COSMIC. From RETs it is possible to determine the

corresponding RETs, thus the corresponding data groups. The other way around is

unfeasible: it is impossible to automatically extract the information concerning DET

flows from COSMIC models.

Are there any commonalities?

 Data attributes are conceptually the same in both methods.

 A RET in IFPUG can be mapped to a data group in COSMIC.

Chapter 2 . Functional Size Measurement Methods

33

Identifying FPA logic files is as difficult as identifying COSMIC data groups. Although

these difficulties can seem to be of different nature, they are actually about the same

problem, namely how to deal with the data in the information processing.

Summarizing these facts, it is easy to understand that the level of details of data

representation in FPA and COSMIC methods differ, but it is still possible to establish

quite clear correspondences.

We can conclude that, even if the two methods are different in treating data elements,

FPA models can be used directly to obtain the COSMIC data models, while the

COSMIC models need to be augmented of all the missing details (i.e., which data

groups belong to the same ILF or EIF, and which attributes of a data group participate

in each data flow crossing the boundaries of the system) to be usable as FPA models.

2.4.4 Definition of the numerical assignment rules

For FPA, the numerical assignment is carried on via the relative FPA reference table in

the circumstance of knowing the type of the function and the numbers of the relative

factors that can characterize the functions (such as DET and RET for data function).

The aggregation of all the functions‘ UFP is the UFP of the application. The final FP of

the application is assignment according to the VFA and the formula (8).

For the CFP, one data movement is assigned as 1 CFP. The COSMIC aggregate the

numbers of each functional process. It is very simplex.

The units of both methods are not the same, and the ratio between both units is not 1.

2.4.5 A general comparison of the elements of both methods

Chapter 2 . Functional Size Measurement Methods

34

Figure 19 Comparison of the elements of FPA and COSMIC

In Figure 19, the data modeling concepts of FPA and COSMIC are informally

illustrated and compared. The level of detail grows from top to bottom: DETs and data

attributes are the elements at the fine level of granularity. In the central part of the figure,

operations involved in transaction functions or functional processes are also illustrated.

In Figure 19, blue lines connect elements that have essentially the same meaning. On

the contrary, pink lines connect elements that represent the same concept, but at

different granularities.

In Table 11, we summarize the mapping between the elements of FPA and COSMIC.

Table 11 Mapping of FPA and COSMIC Concepts

FPA COSMIC

Elementary process Functional process

DET Data attribute

RET N/A

Logical data file (ILF or EIF)
Data group (or set of strictly related
data groups)

FTR (Logic data file involved in an
elementary process)

Data groups involved in a functional
process

Set of DET that cross the boundary of
the application

Persistent or Transient Data Groups
that cross the boundary of the
application

Chapter 2 . Functional Size Measurement Methods

35

EI
Functional process, necessarily
involving a Write movement

EO
Functional process, necessarily
involving an Exit movement

EQ
Functional process, necessarily
involving Read and Exit movements

Action within an elementary process
that involves DET entering the
application Entry

Action within an elementary process
that involves DET exiting the
application Exit

Action within an elementary process
that involves reading from a FTR Read

Action within an elementary process
that involves modifying a FTR Write

2.4.6 Comparison about the measurement process

The measurement process of both methods involves the same macro phases. The three

phases mentioned in Figure 4 in Section 2.1, Factor identification, Factor counting e

Factor weighting, are the core of the FSM methodology.

All the elements involved in both methods and the detailed activities of the last two

phases are listed in Table 12. From this table, it is clear to see that FPA is relatively

long, expensive, and difficult, while applying the COSMIC method is faster, simpler,

and cheaper.

Table 12 Analysis of all the elements involved in FPA and COSMIC

ID Element
Basic

element
Process
activity FPA COSMIC

1 DET √ √

2 RET √ √

3 Type of Data function(ILF vs. EIF) √ √

4 Complexity of each Data Function √ √

5 UFP of each Data Function √ √

6 I/O DET √ √ √

7 FTR √ √ √

8 Type of transaction function √ √ √

9 Complexity of transaction function √ √

10 UFP of application to be measured √ √

11 VAF √ √

12 Data group √ √

13
Summation of a piece of software to
be measured √ √ √

Since during the measurement process identifying the factors that compose the FUR

model is the core and most difficult part of FSM, and the factors needed to be identified

in the first macro affect the next two phases, so all those who intend to invent new FSM

methods or need to improve or simplify existing methods try to either specify new sets

Chapter 2 . Functional Size Measurement Methods

36

of the factors that define the FUR model or devise new procedures for identifying these

factors. In the next chapter this observation is confirmed through the study of several

simplified FSM methods.

Different FSM methods use different FUR models. These models affect the

measurement principle and the measurement process and activities. In the forth chapter

we will illustrate the model-base measurement-oreinted method proposed by Lavazza et

al. to facilitate the measurement activity, especially facilitate the identification and

counting of the factors.

Chapter 3 . Simplified Functional Size Measurement

37

Chapter 3 Simplified Functional Size Measurement

As we have seen in Chapter 2, performing FSM requires a thorough exploration of FUR,

to identify and possibly weight basic functional components. Therefore, the

measurement process can be quite long and expensive. In fact, FPA performed by a

certified function point consultant proceeds at a relatively slow pace: between 400 and

600 function points (FP) per day, according to Capers Jones [12], between 200 and 300

function points per day according to experts from Total Metrics [13]. Consequently,

measuring the size of a moderately large application can take even long time. Also the

cost of estimation is often considered excessive by software developers.

In addition, cost estimates may be needed when requirements have not yet been

specified in detail and completely. This is a problem, since often at the beginning of a

project FUR are known only in an approximate and incomplete way. Instead, the

accuracy of a measure (i.e. the closeness to its ―thoric‖ value) grows with the

completeness and precision of FUR specifications.

In practice, in the early phases of the software development lifecycle, size estimations

would be necessary for bidding and planning. But the available information is often

incomplete and insufficient. So the customer only wants or is only able to do

approximate measurements. When we can measure with the greatest accuracy, we no

longer need that measure. The situation is described in a paradox illustrated in Figure 20

(from [16]).

Figure 20 Estimation paradox (from [16])

Given the above situation, many simplified function point methods have been proposed.

In the following sections, we will discuss the existing simplified function point methods

according to their principles.

3.1 E&QFP

The most well-known approach for simplifying the process of FP counting is probably

the Early & Quick Function Points (E&QFP) method [16].

Chapter 3 . Simplified Functional Size Measurement

38

3.1.1 Theoretical basis and characters

The definition of E&QFP is based on the consideration that estimates are sometimes

needed before the analysis of requirements is completed, when the information on the

software to be measured is incomplete or not sufficiently detailed.

The method is based on analogy-based classification, structured aggregation, and

statistical data. The method aims at providing an approximate measure of size in FP. In

other words, the process is simplified, but the unit of measure size result is IFPUG FP.

The E&QFP manual provides a description of the ―Functional hierarchy‖ according to

which FUR can be decomposed and measured (see Figure 21, corresponding to Figure 2

in the E&QFP manual, subsection 1.1.5)

The idea is that if you have enough information at the most detailed level (and enough

time to apply the standard process) you count FP according to IFPUG rules (see the

level 1 in Figure 22); otherwise, you can estimate the size of larger elements (e.g.,

General or Macro processes) either on the basis of analogy (e.g., a given General

process is ―similar‖ to a known one) or according to the structured aggregation (e.g., a

General process is composed of a few Transactional BFC). By considering elements

that are coarser-grained than the BFCFPA, the EQFP measurement process leads to an

approximate measure size result in IFPUG FP.

It must be noted that within the same application, some parts can be measured at a fine

granularity level (possibly the IFPUG level), while other parts can be estimated at a

much coarser level.

Chapter 3 . Simplified Functional Size Measurement

39

Figure 21 Functional hierarchy in the E&QFP technique

1
st
 aggregation level

The 1
st
 aggregation level is exactly the same as FPA.

2
nd

 aggregation level

The 2
nd

 aggregation level has been introduced to deal with cases when data and

transaction functions have been identified, but there is no time or not enough detail to

weight them properly. At this aggregation level, there are 3 existing cases:

 In the first case, it is possible to identify exactly the type of IFPUG BFC, but not its

complexity.

 In the second case, it is not possible to identify exactly the type of BFC nor its

complexity, ―doubtful‖ or ―uncertain‖ elementary process for which there are no

details available to differentiate between EO and EQ.

 In the third case, it is not possible to identify exactly the type of BFC nor its

complexity, ―doubtful‖ or ―uncertain‖ elementary process for which there are no

details available to single out the primary goal, namely the presence of an EI, EO or

EQ.

Chapter 3 . Simplified Functional Size Measurement

40

The first and the last case have been introduced in the subsection 1.1.5. So, we only

introduce the second case, namely ―Un specified Output‖, as following. This method

provides weights derived from the statistical analysis of many projects (see Table 13)

Table 13 Components and Values of Unspecified data group, generic EI, and Unspecified Generic

Output at the 2
nd

 aggregation level

Function type
Weight

Low Likely High

Unspecified Generic Data Function 6.4 7.0 7.8

Generic EI 4.0 4.2 4.4

UGO-Unspecified Generic Output(EO/EQ) 4.1 4.6 5.0

3
rd

 aggregation level

When user requirements are insufficient to identify specific BFCs but only groups of

unspecified BFCs, the aggregations of individual BFCs are taken into account (see

Level 3 of Figure 21).

E&QFP method defines ―typical processes‖, which consist of a set of 4 CRUD (create,

read, update, and delete) elementary process, each generally deals with a special logic

data file. There are 3 Typical Processes, as displayed in the Table 14.

Table 14 Components and Values of Typical Process at the 3

rd
 aggregation level

Function Type
Weight

Low Likely High

Typical Process Small(CRUD) 14.1 16.5 19.0

Typical Process Medium (CRUD + List) 17.9 21.1 24.3

Typical Process Large (CRUD + List +

Report)
22.3 26.3 30.2

If a set of functional processes cannot be classified as typical processes because they

involve additional operations, they can be generally classified into 3 general process

types according to the number of involved Unspecified Elementary Processes (UEP).

Table 15 Components and Values of General Process at the 3

rd
 aggregation level

Function Type
Weight

Low Likely High

General Process Small(6-10 UEP'S) 26.4 35.2 44.0

General Process Medium (11-15 UEP'S) 42.9 57.2 71.5

General Process Large(16-20 UEP'S) 59.4 79.2 98.9

Concerning data, 3 general data group (GDG) typologies are recognized as different

aggregation levels, which depend on the amount of Unspecified Logic File (ULF)

belonging to the GDG. An ULF is a file whose size and type (i.e., ILF or EIF) is not

known.

Chapter 3 . Simplified Functional Size Measurement

41

Table 16 Components and Values of General Data Group at the 3
rd

 aggregation level

Function Type
Weight

Low Likely High

General Data Group Small(2-4 ULFs) 15.0 21.4 27.8

General Data Group Medium(5-8 ULFs) 32.4 46.3 60.2

General Data Group Large(9-13 ULFs) 54.8 78.3 101.8

4
th

 aggregation level

If the levels of 1, 2, or 3 can not be used, the 4
th

 aggregation level is suitable. The type

of macro process level is defined according to the number of general processes that are

expected to be included in the macro process.

Table 17 Components and Values of Macro Process at the 4

th
 aggregation level

Function Type
Weight

Low Likely High

Macro Process Small(2-4 Generic GPS's) 111.5 171.5 231.5

Macro Process Medium(5-7 Generic GPS's) 185.8 285.9 385.9

Macro Process Large(8-10 Generic GPS's) 297.3 457.4 617.4

3.1.2 Estimation procedure

The official procedure for estimating with E&QFP is illustrated in Figure 22 (from [16]).

Most steps are similar to the FPA counting procedure.

Figure 22 Diagram of the E&QFP estimation procedure (from [16])

However - unlike in IFPUG counting- the values of each component of the above

E&QFP tables are made up of a tern of values labelled with Low, Likely and High.

Therefore the estimated size s not a single vales; rather it is made of a likely value and

an expected variability range.

3.1.3 Characteristics of E&QFP

Chapter 3 . Simplified Functional Size Measurement

42

Multi level approach

An advantage of the method is that different parts of the system can be measured at

different detail levels: for instance, a part of the system can be measured following the

IFPUG manual rules [10][11], while other parts can be measured on the basis of

coarser-grained information. In fact, the E&QFP method is based on the classification

of the processes and data of an application according to a hierarchy (see Figure 21).

Time and cost savings

The trade-off between reduced measurement time and costs is also a reason for adopting

the EQFP method even when full specifications are available, but there is the need for

completing the measurement in a short time, or at a lower cost.

Limits

We have to remember that in general, applying E&QFP involves ignoring some details

of the FUR specifications that should be considered according to the standard IFPUG

manual. As a result, the obtained size estimate is generally less accurate than the

measure performed according to the manual. According to the authors of the E&QFP,

the error is no greater than 10%, on average.

3.2 Average complexity (weight) values

In this section we describe methods that adopt average weights. These methods do not

require the weighting of functions; instead each function is weighted with average

values.

3.2.1 Estimated NESMA method

The NESMA (Netherlands Software Metrics Association) recognizes three types of

function point counts: detailed function point count, estimated function point count, and

indicative function point count. The latter 2 methods have been developed to enable

function point counting early in the system life cycle.

The Estimated NESMA method requires the identification and classification of all data

and transaction functions, but does not require the assessment of the complexity of each

function: Data Functions (ILF and EIF) are assumed to be of low complexity, EI, EQ

and EO are assumed to be of average complexity. So the weights of the functions - ILF,

EIF, EI, EO, and EQ - are respectively valued as 7, 5, 4, 5 and 4 [41].

UFP = #ILF × 7 + #EIF × 5 + #EI × 4 + #EO × 5 + #EQ × 4 (9)

The procedure of counting the Estimated NESMA function points is as following:

• Determine the numbers of ILF and EIF (# ILF and #EIF, respectively);

• Determine the numbers of EI, EO and EQ (# EI, #EO, #EQ, respectively);

• Compute the function points by Equation (9):

The Estimated NESMA method is expected to be more approximated than the E&QFP

method based on generic functions, as the latter uses likely values for transactions of

unknown complexity, derived from statistic analysis.

Chapter 3 . Simplified Functional Size Measurement

43

3.2.2 ISBSG average weights

This model is based on the average weights for each BFC, as resulting from the analysis

of the ISBSG dataset [15], which contains data from a few thousand projects.

The mean weight of the transaction and data functions in the ISBSG dataset is reported

in the following table.

Function ILF EIF EI EO EQ

Mean weight 7.4 5.5 4.3 5.4 3.8

The estimated size in UFP is then computed assuming that each function has mean

weight:

UFP = #EI × 4.3 + #EO × 5.4 + #EQ × 3.8 + #ILF × 7.4 + #EIF × 5.5 (10)

3.2.3 Simplified FP

The simplified FP (sFP) approach simply assumes that all BFC are of average

complexity [18], thus:

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 10 + #EIF × 7 (11)

3.2.4 Prognosis of CNV AG

The Prognosis of CNY AG method [42] was defined by the CNV AG (the outsourced

non-insurance part of AXA Colonia Insurance) based on the average complexities

resulting from a historical dataset. The version defined in 1998 is the following:

UFP = #EI × 4.6 + #EO × 5.5 + #EQ × 4.3 + #ILF × 8.0 + #EIF × 5.9 (12)

In 1999, considering new historical data, the simplified model was updated as following:

UFP = #EI × 4.6 + #EO × 5.7 + #EQ × 4.3 + #ILF × 8.2 + #EIF × 6.1 (13)

3.3 Size estimation based on a single component

With this technique an estimation model is built using one type of components (usually

ILFs).According to this model, the FP of the whole system can be calculated by

the component and the given model.

This technique is based on the statistically significant correlation between the number of

 ILFs (for example) in an application and the application‘s unadjusted function point co

unt.

This technique is very simple and is very easy to be developed locally. To build an ILF-

based

model, it is only necessary to collect UFPs and ILFs of all your applications, and derive

the model (e.g., using regression).

In the following subsections, a few methods - Indicative NESMA FP, Tichenor ILF

Model, Prognosis by CNV AG, and ISBSG distribution model – are given.

3.3.1 Indicative NESMA method

Chapter 3 . Simplified Functional Size Measurement

44

The Indicative NESMA method [17] is well known and is often referred to as "the

Dutch method". It simplifies the process by only requiring the identification of Logic

Data from a data model. The Function Point size is then computed by applying

predefined weights, whose values depend on whether the data model is normalized in

3rd normal form:

Non normalized model: Function Points = #ILF × 35 + #EIF × 15 (14)

Normalized model: Function Points = #ILF × 25 + #EIF × 10 (15)

The process of applying the NESMA indicative method involves only identifying logic

data and classifying them as ILF or EIF. Accordingly, it requires less time and effort

than several of the methods described above, in general. However, it is quite clear that

the Indicative NESMA method is quite rough in its computation. The official NESMA

counting manual specifies that errors in functional size with this approach can be up to

50%.

3.3.2 ILF Model

The Internal Logical File Model (sometimes named ―ILF Model,‖ or ―One File Model‖)

was developed in 1994 by the IRS function point team and was presented at the fall

1997 IFPUG Conference [15]. It bases the estimation of the size on the number of ILF

via the following formula for transactional system (for batch systems, Tichenor

proposes a smaller multiplier):

UFP = #ILF × 14.93 (16)

This model assumes a distribution of BFC with respect to ILF as follows: EI/ILF = 0.33,

EO/ILF = 0.39, EQ/ILF = 0.01, EIF/ILF = 0.1. If the considered software application

features a different distribution, the estimation can be inaccurate.

The fact that a method based only on ILF requires a given distribution for the other BFC

is not surprising. In fact, the size of the application depends on how many transactions

are needed to elaborate those data, and the number of transaction cannot be guessed

only on the basis of the number of ILF, as it depend on the number of ILF just very

loosely. Instead of allowing the user to specify the number of transactions that are

needed, the Tichenor ILF model practically imposes that the number of transactions

complies with the distribution given above.

3.3.3 ISBSG Distribution model

In the very early phases of a software development project it is not practical or even

possible to know in detail all of the items that make up all of the function point

components. However, it is often possible to detail one of the components - such as the

Internal Logical Files or External Inputs - with a fair degree of certainty.

However, to estimate the size of an application on the basis of a single component, it is

necessary to know the average contribution of that component, at least on average.

Chapter 3 . Simplified Functional Size Measurement

45

Figure 23 Relationships among IFPUG Functional Component Types

Figure 23 shows the relationships among the five components of the IFPUG functional

size method from the project data in the ISBSG repository. These relationships can be

used to estimate the functional size of a project.

The analysis of the ISBSG dataset yielded the following distribution of BFC

contributions to the size in FP:

ILF 22.3%, EIF 3.8%, EI 37.2%, EO 23.5%, EQ 13.2%

The analysis of the ISBSG dataset also shows that the average size of ILF is 7.4 UFP. It

is thus possible to compute the estimated size on the basis of the number of ILF as

follows:

UFP = (#ILF × 7.4) × 100 / 22.3 (17)

The same considerations reported above for the Tichenor model apply. If the application

to be measured does not fit the distribution assumed by the ISBSG distribution model, it

is likely that the estimation will be inaccurate.

Note: The techniques discussed above are only valid only if your application or

development project is loosely coupled from other applications and fits the profile of

projects currently in the ISBSG Repository. Early research indicates that the above

relationships may not hold for the domains of real-time, control, scientific or embedded

software.

3.3.4 Prognosis of CNV AG

The CNV Prognosis [42] method, defined in 1998 by CNV AG (the outsourced non-

insurance part of AXA Colonia Insurance) uses the following model:

FP = 56 + #IO × 7.3; (R
2
=0.9525) (18)

Where #IO = number of (EI + EO).

In 1999, this model was revised as

FP = 39 + #IO × 7.6; (R
2
=0.9509) (19)

Chapter 3 . Simplified Functional Size Measurement

46

3.3.5 Early Function Point Method (EFPM)

Asensio et al. [44] proposed a method called Early Function Point Method (EFPM) for

the need of estimates at the early stage of software development when the required

documentation is not available yet. Based on a set of 30 projects in his work, the

following regression equation were found and proposed to calculate the FP by ILE, ILE

+ EIF, or EI + EO + EQ.

FP = 130.327 + #ILE × 15.90 (20)

FP = 66.905 + (#ILE + #EIF) ×13.035 (21)

FP = 50.784 + (#EI + #EO + #EQ) ×6.28 (22)

3.4 Approximation technique and estimation technique

3.4.1 “Smart” Approximation Technique

In [14], Santillo suggested probabilistic approaches, where the measurer can indicate the

minimum, medium and maximum weight of each BFC, together with the expected

probability that the weight is actually minimum, medium or maximum. This leads to

estimate not only the size, but also the probability that the actual size is equal to the

estimate.

The measurement procedure consists of the following steps:

 Preparing the requirements to an acceptable level of description (e.g. ―lists‖ rather

than ―grouped statements‖);

 Further specifying the requirements at the level of ―single functions‖, which

typically resembles the concept of elementary/functional process in FSM);

 Based on the measure‘s expertise, assessing functions with the minimum, medium,

and maximum weights and their related probabilities.

Table 18 (from [14]) shows a form to collect the data required by the method.

Table 18 Smart FP assessment (Only for FPA)

Function Weights&Probability

Low

Min

Avg

Mid

High

Max

Weighted

Value

Weight value

Related Probability

Total FP

Estim/prob

Estim. Range

− For each function, the weighted value is calculated by the functions (23) and (24).

The size of the i
th

 function is computed as follows:

WeightedSizei = LowMin_valuei × LowMin_ probabilityi +

Chapter 3 . Simplified Functional Size Measurement

47

AvgMid_valuei × AvgMid_ probabilityi +

HighMax_valuei × HighMax_ probabilityi (23)

The size of the whole application is computed –as usual– as the sum of functions‘ sizes.

TotalSize = WeightedSize1 + … + WeightedSizen (24)

This method also supports the computation of the confidence probability for the total

size.

With this method, the measurer can choose to spend more time in the analysis of each

function to get more probable values, or speed up the process, indicating a smaller

confidence in the provided values. In any case, the probability associated with the result

reflects this trade-off.

3.5 Comparison of simplified methods

In this section, we compare all the simplified methods mentioned in the sections 3.1, 3.2,

3.3, and 3.4. The comparison is summarized in Table 19. We compare methods mainly

with respect to the techniques used, the factors measured, and the measurement

processes.

Chapter 3 . Simplified Functional Size Measurement

48

This page intentionally left blank.

Chapter 3 . Simplified Functional Size Measurement

49

Table 19 Comparison of the simplified methods

Simplified Function

point method
Technique used

Factors

Process Basic Functional

Components BFC

Granularity

BFC

identification

Difficulty

Weight

ILF EIF EI EO EQ Fixed Probability changed Difficulty

E&QFP(Level 1)

Analogy-based

classification,

structured

aggregation

√ √ √ √ √ * **** *****

E&QFP(Level 2)

General
Idem √ √ √ √ √ * **** √ √ ****

E&QFP(Level 2)

Unspecified General

Output

Idem √ √ √
√

(UGO)
* ***/**** √ √ ***/****

E&QFP(Level 2)

Unspecified
Idem

√
(UGDG)

√
(UGEP)

** *** √ √ ***

E&QFP(Level 3) Idem
√

(GDG)
√ (TP) *** ** √ √ **

E&QFP(Level 4) Idem √ (MP) *** * √ √ *

Estimated NESMA

method

Average

complxities/valu

es

√ √ √ √ √ * **** √ √ **/***

ISBSG average weights Idem √ √ √ √ √ * **** √ √ **/***

Simplified FP Idem √ √ √ √ √ * **** √ √ **/***

Prognosis of CNV AG Idem √ √ √ √ √ * **** √ √ **/***

Chapter 3 . Simplified Functional Size Measurement

50

Indicative NESMA

method
Extrapolation √ √ * ** √ √ **

ILF(Tichnor's) Model Idem √ * **** √ √ *

ISBSG Distribution

model
Idem √ * **** √ √ *

Prgnosis of CNY AG Idem √ * **** √ √ *

Early FP method(Model

1)
Idem √ * **** √ √ *

Early FP method(Model

2)
Idem √ ** *** √ √ *

Early FP method(Model

3)
Idem √ ** *** √ √ *

Smart FP
Approximation

technique
√ √ √ √ √ * **** √ √ ****

Chapter 3 . Simplified Functional Size Measurement

51

3.5.1 Techniques

Four techniques are used in these methods:

The E&QFP method uses the techniques of analogy-based classification and structured

aggregation technique.

The Estimated NESMA method, ISBSG average weights, Simplified FP, and Prognosis

of CNV AG method use average complexities or average values.

The Indicative NESMA method, ILF (Tichnor's) Model, ISBSG Distribution model, and

Prognosis of CNV AG, and Early Function Point method use the technique of

extrapolation.

The Smart FP method employs the approximation technique.

3.5.2 Factors

Factors being used

Most of the methods use the basic functional components (BFCs).

The Estimated NESMA method, Prognosis of CNY AG, and Smart FP use all the basic

functional components (ILF, EIF, EI, EO, and EQ);

The Indicative NESMA method, ILF (Tichnor‘s) Model, ISBSG Distribution model,

and Early Function Point method (Models 1, 2, and 3) only use a subset of the BFCs.

About the E&QFP method, the situation is more complex. The level 1 and level 2

(general E&QFP) still use the basic elements components (ILF, EIF, EI, EO, and EQ).

From the level 2 (unspecified general Output), the E&QFP uses the new aggregation

components, for example, EO and EQ are aggregated as Unspecified General

Output(UGO). At level 3, the ILF and EIF are aggregated as General Data Group

(GDG). EI, EO, and EQ are aggregated as Typical Process (TP). At level 4, all the five

factors are aggregated as Macro Process (MP).

The granularity of factors being used

Since identifying the factors that compose the FUR model is the core and most difficult

part of FSM, all those who intend to invent new FSM methods or need to improve or

simplify existing methods try to either specify new sets of the factors that define the

FUR model or devise new procedures for identifying these factors.

Here, we indicate the granularity of factors as follows:

 Granularity level of BFC (*);

 Granularity level of unspecified general type of transaction function or data function

(**);

 Granularity level of unspecified function (***).

The level of difficulty in capturing factors

We also compare the level of difficulty in capturing the factors being used in the

measurement process. Obviously, the finer granularity of the factory, the more difficult

Chapter 3 . Simplified Functional Size Measurement

52

to capture it. In other words, the level of difficulty in capturing a factory is inversely

proportional to the level of granularity of the factor.

Weight values

There are two methods for getting the weight value, namely using the fixed value and

subjective estimating. The Smart FP method uses the latter method, namely subjective

estimation. The other methods use the fixed values supplied by the relative method.

3.5.3 The aspect of measurement process

If the factor(s) of a simplified method are different from those of the standard method,

the measurement process will also be different. So, all the processes of simplified

methods, except the E&QFP (only Level 1) method, are different from the standard.

3.5.4 Brief summary

Although the above comparisons (especially in the aspects of factory granularity,

capturing difficulty, and measurement process difficulty) are quit rough, the results of

the comparison improve our knowledge of simplified methods.

Chapter 4 . Model-based measurement

53

Chapter 4 Model-based measurement

FSM aims at providing a measure of functional user requirements(FURs). The FSM

methods do not specify how to model FURs. From the traditional model written in a

mixture of E/R diagrams, data flow diagrams, tables, text, formulas, etc., it is very

difficult to identify BFC and all those elements that contribute to size measures. So how

to model FURs, in other words, how to deal with FURs and get the ―object‖ of

measurement before starting the measurement becomes a focus of FSM. In this chapter

the model-based measurement methods, especially the measurement-oriented model-

based methods [3] proposed by Lavazza et al, are introduced.

4.1 Fundamentals

The idea of model-based measurement stems from the observation that the most

difficult part of FSM consists in extracting from functional user requirements the

elements that need to be identified according to the method being used (e.g., elementary

processes, logic data files, RET, DET, etc. for FPA; functional processes, data groups,

data movements for COSMIC).

So, model-based measurement requires that models of the functional user requirements

are built, so that the aforementioned elements can be easily identified and measured. To

this end, we cannot just rely on the fact that requirements models are available, since

they could be incomplete with respect to the required information (or they could provide

much more information than needed), and they could provide such information at a too

detailed or too coarse granularity level. Therefore, models must be measurement-

oriented. The fact that model-based measurement is performed on measurement-

oriented models makes this method conceptually very different from other proposals

concerning the measurement of the functional size of UML models. Measuring models

that have been built with measurement in mind is easy and reliable. This is the spirit of

model-based measurement.

Because of the popularity of object-oriented modeling techniques, model-based

measurement is actually Object-Oriented (OO) model-based measurement. Accordingly,

in the following sections, a brief introduction to OO modeling techniques is given.

4.1.1 Object Oriented Modeling Technique

Before we choose or establish the OO model-based measurement method, we must look

back on the technology-based OO model, because the sizing method should go in line

with the approach chosen for development, for the users to adopt it and apply it

consistently. [47]

With regard to OO model-based measurement, we must clearly define two main aspects:

first, which conceptual modeling patterns is adopted for the analysis and modeling;

second, which notation is used for capturing the conceptual modeling patterns.

Chapter 4 . Model-based measurement

54

Among object-oriented analysis and modelling methods, the Object-Modeling

Technique (OMT) model [53] is one that is used more frequently. This conceptual

approach comes from the ANSI‘s 4 frame schema, namely External Schemas,

Conceptual Schema, Logical Data Model, and Physical Data Model (Figure 24). This

pattern uses a set of schemas to describe the system from different views. Each one of

those represents one person's view of the world. These schemas are then consolidated

into a single conceptual schema, which can entirely, accurately, and correctly represent

the application being measured.

Figure 24 ANSI’s conceptual schema

With regard to the notation, there are a number of different notations for representing

OO models, such as the Unified Modeling Language (UML). UML incorporates OMT

principles. Its static diagrams, dynamic diagrams, and functional diagrams have a good

ability of capturing and representing OMT‘s three external conceptual schemas. The

collection of these three types of diagrams can entirely, accurately, and correctly

represent the application being measured. UML was designed with the characteristics of

simplicity and expressiveness, and achieved a good popularity; for these reasons it was

selected as the notation for model-based measurement.

4.1.2 Object-based measurement-oriented reference model

Now, the problem of measuring the application‘s FURs is changed to measure the

conceptual model of the application represented via UML diagrams.

In order to measure the size of UML models in Function Points, three issues must be

tackled. First, the mapping between FSM concepts (mainly, the BFC) and UML

elements must be established; second, UML modeling rules must be defined on the

basis of the rules of FSM, and the UML diagrams to be used must be identified; finally,

the measurement rules must be defined.

On the basis of the considerations reported above [3] and the literature on OO software

functional measurement process [48] [49], we define the model-based measurement

process shown in Figure 25. This model-based measurement-oriented FSM method

consists of two phases. The first phase is to specify the FURs using appropriate UML

diagrams, according to the modeling rules; the second phase is to identify, count and

calculate the function point according to the mapping rules and measure rules.

Chapter 4 . Model-based measurement

55

Figure 25 Process of model-based measurement

In order to carry out the specifying phase for FSM methods, a FUR must have certain

properties [14]. By tracing the measurement process of both methods, we derived 13

elements (see Table 20) of a FUR that must be extracted, identified and mapped to the

FSM elements shown in Table 11.

Table 20 Mapping of FPA and COSMIC Concepts

FUR element FPA COSMIC

Elementary operation (function) Elementary process Functional process

Elementary piece of information DET Data attribute

Data sub-group RET N/A

Cohesive data group
Logical data file (ILF or
EIF)

Data group (or set of strictly
related data groups)

Data involved in an operation
(function)

FTR (Logic data file
involved in an elementary
process)

Data groups involved in a
functional process

Elementary pieces of information
that cross the boundary of the
application during an operation
(function)

Set of DET that cross the
boundary of the
application

Persistent or Transient Data
Groups that cross the
boundary of the application

Operation (function) whose main
purpose is data input EI

Functional process,
necessarily involving a Write
movement

Operation (function) whose main
purpose is outputting computed
results EO

Functional process,
necessarily involving an Exit
movement

Operation (function) whose main
purpose is retrieving data and
outputting them EQ

Functional process,
necessarily involving Read
and Exit movements

Action within an operation (function)
that involves data input

Action within an
elementary process that
involves DET entering the
application Entry

Chapter 4 . Model-based measurement

56

Action within an operation (function)
that involves data output

Action within an
elementary process that
involves DET exiting the
application Exit

Action within an operation (function)
that involves reading stored data

Action within an
elementary process that
involves reading from a
FTR Read

Action within an operation (function)
that involves writing (i.e., storing)
data

Action within an
elementary process that
involves modifying a FTR Write

Developing systems using OO paradigm requires new development approach, it is

common view in academe and practice. Over the many years, although a number of OO

software development approaches are discussed and prescribed, two themes are

common, the first is that ―the distinction between analysis, design, and implementation

often blurs in object-oriented system development.‖ [50]; and the second is that ―The

iterations are, therefore, a key aspect of the development process. [50]‖. Compared with

the traditional development processes these two recurring themes change, in several

ways, the form and shape of development process for object-oriented systems.

According to the COSMIC Measurement Manual [33] and other literature [48] on the

OO software measurement process definition, the proposed OO-model measurement

process is shown in Figure 26.

Figure 26 Specification process of OO

We assume that the functional user requirements for an OO system are descried through

the following steps:

 The first step: construct Use case diagram;

 The second step: construct class diagram;

 The third step: construct component diagram;

 The last step: construct sequence diagrams.

This model-based measurement-oriented FSM method consists of two steps. The first

step is to specify the FURs using appropriate UML diagrams, according to the modeling

rules; the second step is to identify, count and calculate the function point according to

the mapping rules and measure rules. [21] [22]

4.2 The Case of Warehouse Software Portfolio

Chapter 4 . Model-based measurement

57

We use as an example the Warehouse Software Portfolio (WSP) by Fetcke [55]. The

version of the WSP used here includes a few marginal changes with respect to Fetcke‘s

version.

The WSP is a collection of overlapping applications for warehouse management. The

Entity/Relationship diagram representing the entities involved in the WSP is given in

Figure 27. The entities and their attributes are described in Figure 28. Both figures are

from [55]. Attributes Owner and Storage place are references to entities Customer and

Place, respectively.

Figure 27 Entity/Relationship diagram of the WSP

Figure 28 Entities of the WSP

The transactions supported by the WSP are:

Because of limited space we cannot give the detailed requirements for these transactions.

The complete FUR of the WSP can be found in [55].

4.3 Model-based measurement of Function Points

As already described in 2.2, Function Point Analysis assumes that user requirements are

composed of Data and Transaction functions (see Figure 6), and the latter are

characterized in terms of RET, DET and FTR (see Figure 7).

4.3.1 Representing data function

In the IFPUG manual [11] there are a few relevant indications concerning data functions:

 Logical data files are “logically related groups of data”.

 The RET is defined as ―a record element type (RET) is a user recognizable

subgroup of data elements within an ILF or EIF.‖

Chapter 4 . Model-based measurement

58

 The DET is defined as follows ―a data element type (DET) is a unique user

recognizable, non-repeated field.‖

There are similarities between FPA and object-oriented concepts. For instance, a logical

file in the function point approach is a collection of related data (which are user-

identifiable, if the class is defined in a model of user requirements).

Therefore, the class is the natural candidate for representing logical files using the

object-oriented paradigm, but a class tends to represent information at a lower level of

granularity than a FPA logic file. In some cases, it is possible to identify a class as a

logical file, in some cases a set of classes should be identified as a logical file, i.e.,

objects that are instances of a class correspond to records (RETs) of a logical file in data

processing applications. Lavazza et al. found a good way of presenting logical file using

UML component [3].

So, FPA concepts are mapped onto object-oriented concepts as follows:

 Logical data files (either ILF or EIF) are represented as (conceptual) components

that include data (and the methods that are needed to manipulate those data).

 RETs can be represented by classes within components. Since each RET belongs to

a data file, each class representing a RET belongs to the component representing the

corresponding data file.

 DETs can be represented as class attributes.

Within the system component (i.e., the component representing the application to be

measured), a subcomponent has to be introduced for every logically related group of

data that are managed (i.e., created, updated, deleted, etc.) by the application and that

are user identifiable (i.e., that have a precise meaning for the user, according to the

user requirements) [3].

Figure 29 Component of Customer_manag

4.3.2 Representing elementary process

According to the IFPUG manual [11], ―An elementary process is the smallest unit of

activity that is meaningful to the user(s). The elementary process must be self-contained

and leave the business of the application being counted in a consistent state.”

In the specification of UML [52] use cases are described as follows: ―Each use case

specifies some behavior, possibly including variants, that the subject can perform in

Chapter 4 . Model-based measurement

59

collaboration with one or more actors. […] These behaviours, involving interactions

between the actor and the subject, may result in changes to the state of the subject and

communications with its environment. […] Each use case specifies a unit of useful

functionality that the subject provides to its users […]. This functionality, which is

initiated by an actor, must always be completed for the use case to complete. It is

deemed complete if, after its execution, the subject will be in a state in which no further

inputs or actions are expected and the use case can be initiated again or in an error

state.

So, it seems that use cases are compatible with the concept of elementary processes.

Actually, a use case could be used to represent a set of related elementary processes. We

impose a modeling discipline in order to make sure that there is a one-to-one

relationship between use cases and elementary processes.

However, it is easy to observe that the amount of information reported in UML use case

diagrams is not sufficient to measure them, since the FTR involved in a process and the

DET that cross the boundaries of the application are not explicitly mentioned in use

case diagrams.

In UML, sequence diagrams represent interactions taking the form of sequences of

messages exchanged among objects within collaborations to effect a desired operation

or achieve a result. These collaborations match quite closely the definition of

elementary processes. In any case, it is possible to model an elementary process by

means of a sequence diagram.

Sequence diagrams are suitable for modeling the information required to measure

elementary processes, because:

 FTR can be represented as instances of components that take part in the

collaboration.

 DET crossing the boundaries of the application are represented by the parameters of

messages that cross the boundaries of the application.

 A sequence diagram shows the meaning of the process at a quite detailed level,

therefore it is possible to evaluate the main purpose of the process and classify it as

EI, EO or EQ.

In conclusion, we represent transaction functions by means of sequence diagrams.

4.3.3 Sequence diagrams

The sequence diagram has two axes. The horizontal axis identifies the participants and

the corresponding lifelines. According to our definition, users, the system (i.e., the

application to be measured), logic data (both internal and external ones) and external

systems are the participants of sequence diagrams. An example is given in Figure

30: :operator is the user of the application, :System is the application itself (more

precisely, the component that represents the application), :Customer_manag is a FTR,

that is, a data file used within the application.

Chapter 4 . Model-based measurement

60

Figure 30 Horizontal axis of a sequence diagram

The other axis of sequence diagrams, the vertical axis, represents time, which increases

from top to bottom. A sequence of messages represents a scenario of a use case. A

message may have one, multiple, or no parameter. A Message that crosses the

boundaries of the system (e.g., a message from the User to the System) carries

parameters that represent DETs.

For each sequence diagram, the main intent must be labeled for identifying that the

corresponding elementary process is of type of EI, EO, or EQ.

The Add customer transaction adds a record of Customer data to the database. The

attributes Name and Address have to be entered. The Amount due is initialized to zero.

When the user presses the Add button, the customer record is added into the database.

If, however, a customer with the Name entered already exists, the data is not added and

an error message is displayed. The user may abort this transaction with the Cancel

button. The user interface of the Add customer transaction is illustrated in Figure 31 on

the facing page.

Figure 31 User interface of the Add customer transaction

Chapter 4 . Model-based measurement

61

Figure 32 Sequence diagram of the Add customer transaction (FPA method)

The mapping between IFPUG-FPA concepts and UML constructs and elements is

summarized in Table 21.
Table 21 FPA-UML element mapping

FPA UML

diagram element

Application boundary Use case diagram Boundary of the subject that owns

the use cases

Elementary process Use case diagram Use case

Users Use case diagram Actors

EIF Use case diagram Actors

External systems Use case diagram Actors

Application being

measured

Component

diagram

<<system>> component

Logical data file Component

diagram

<<logic data>> component

RET Component

diagram

Class belonging to <<logic data>>

component

DET Component

diagram

Class attribute

ILF Component

diagram

<<logic data>> component within

system component

EIF Component

diagram

<<logic data>> component outside

system component

Elementary process

(transaction function)

Component

diagram

Operation provided by the system

component interface

Elementary process

(transaction function)

Sequence diagram (whole diagram)

Chapter 4 . Model-based measurement

62

FTR Sequence diagram Instance of <<logic data>>

component

DET crossing

boundary in

transaction

Sequence diagram Argument (of attributes granularity)

of messages crossing the boundaries

4.3.4 The counting procedure

Here the FPA counting procedure is redefined, in order to be applicable to a UML

model which is built according to the rules reported in above subsections.

Counting EIFs and ILFs

Identifying ILFs and EIFs is immediate: both are components stereotyped

<<LogicData>>; while ILFs are within the boundaries of the application, i.e., in the

application component, EIFs are outside. In order to weight ILFs and EIFs, we need to

count their RETs and DETs.

In general we count a RET for every class in the data component.

For data components that contain just a single class we count 1 RET, since there are no

data subgroups from the user perspective, but just the main group represented by the

class.

For data components including more classes, the number of RETs depends on the

relations between classes:

 Classes connected by associations are counted as RETs.

 Composition and aggregation relations are treated like plain associations.

 In a generalization/specialization hierarchy, we count the classes that can be

instantiated. I.e., a abstract classes are not counted, since they cannot be instantiated.

Thus, for the ILF Customer_manag (Figure 29) we count 1 RET.

Counting the DETs is relatively simple: we count a DET for each attribute of the

class(es) belonging to the data component (remember that attributes are nonrepeated by

construction).

 For data functions containing just one class, the number of DETs is equal to the

number of the class‘s attributes;

 For classes connected by an association relation, the number of DETs is again equal

to the sum of the number of attributes of the classes;

 For classes connected by composition relations, the number of DETs is equal to the

sum of the number of attributes of the classes;

 When generalization is involved, according to the FPA counting rules we must take

into consideration ―nonrepeated‖ attributes. Therefore the attributes of a super-class

are counted just once, regardless how many sub-classes inherit them. We also count

an additional DET for each subclass, in order to take into account the specialization

criterion.

Thus, for the ILF Customer_manag (Figure 29) we count 6 DETs.

Chapter 4 . Model-based measurement

63

Counting transaction functions

Transactions are identified in a straightforward way. The indication of the main intent of

the transaction is evaluated by the analyst and made directly available to the measurer,

who can take into account this piece of information to classify the given transaction as

an EI or as an EO. For this purpose we have to identify the FTR and the DET.

Counting FTR is immediate: we just have to count how many ILF and EIF are

referenced, i.e., how many ILF and EIF appear in the sequence diagram that describes

the considered transaction. For instance, in the transaction that Add customer transaction

(Figure 32), only the Customer_manag ILF is referenced, thus FTR=1.

DET to be considered are the ones that cross the boundary: in the transaction Add

customer the 6 parameters of the invoked function and the return message are counted

as DET. In addition, the counting rules require that a DET is added for the ability to

specify an action to be taken [3]. In conclusion, the Add customer transaction is an EI,

having 1 FTR and 7 DETs therefore, according to [10], it is a Low complexity EI,

which contributes 3 FP.

4.4 Model-based measurement of COSMIC FP

As already described in Section 2.3, the COSMIC method assumes that user

requirements are composed of functional processes (see Figure 11), which are

characterized in terms of data movements (Write, Read, Entry, and Exit) (see Figure 12).

4.4.1 Representing functional process

According to the COSMIC manual [33], ―A functional process is an elementary

component of a set of Functional User Requirements comprising a unique, cohesive and

independently executable set of data movements. It is triggered by a data movement (an

Entry) from a functional user that informs the piece of software that the functional user

has identified a triggering event. It is complete when it has executed all that is required

to be done in response to the triggering event.”

The COSMIC method recognizes four types of data movement and defines a data group

as the data element that is subject to movements: a data group consists of a non

redundant set of data attributes. The concept of data group in the COSMIC method

matches very closely the class construct in OO (and UML) model.

It seems that use cases are compatible with the concept of functional process, as they are

compatible with the concept of elementary process in FPA. However, it is easy to

observe that the amount of information reported in UML use case diagrams is not

sufficient to measure them, since the indication of data groups that cross the boundaries

of the application are not explicitly mentioned in use case diagrams.

Sequence diagrams match quite closely the definition of functional process. In general,

it is possible to model a functional process by means of a sequence diagram.

Chapter 4 . Model-based measurement

64

Sequence diagrams are suitable for modeling the information required to measure

functional process, because:

 Data group can be represented as instances of classes that take part in the

collaboration.

 Data group crossing the boundaries of the application are represented by the

parameters of messages that cross the boundaries of the application, hence

indicating entries and exits. Since data movements involve data groups, message

parameter must be instances of classes, not single attributes.

 Messages directed to instances of classes within the application represent read or

write operations (hence data movements).

 A sequence diagram shows the meaning of the process at a quite detailed level;

therefore it is possible to classify data movement as Read, Write, Entry or Exit.

In conclusion, we represent functional process by means of sequence diagrams.

4.4.2 Sequence diagram

The sequence diagrams used to specify functional processes are very much like those

used to represent FPA‘s transactions.

An important difference is that in COSMIC sequence diagrams, the instances of classes

are used, instead of the instances of components. An example is given in Figure

33: :Operator is the user of the application, :System is the application itself (more

precisely, the component that represents the application), :CustomerClass is an instance

of the class CostomerClass (a data group used within the application). (In this example,

no external system exists).

Figure 33 Horizontal axis of a sequence diagram

In COSMIC sequence diagrams, a problem is that if a message has two arguments, it is

unknown to which class(es) they belong. If the both arguments belong to the same class,

we have one data movement, and one CFP should be counted. If the arguments belong

to two different classes, we have two data movements, and two CFPs should be counted.

In view of the above reasons, we describe the argument with the prefix of the class

involved, for instance, argument = class_ name. attribute_ name. (see the example in

Figure 34)

Chapter 4 . Model-based measurement

65

Figure 34 Sequence diagram of the Add customer transaction (COSMIC method)

In Figure 34, the sequence references the "CustomerExistenceCheck" sequence diagram.

The "CustomerExistenceCheck" sequence diagram is shown in Figure 35.

Chapter 4 . Model-based measurement

66

Figure 35 Sequence diagram of CustomerEsistenceCheck

The mapping between COSMIC concepts and UML constructs and elements is

summarized in Table 22.

Table 22 COSMIC-UML element mapping

COSMIC

UML

Diagram element

Application border
Use case Boundary of the subject

component Boundary of the system component

Functional User
Use case Agent directly connected with a use case

component External component directly connected with the system

Triggering event component Operation in interface realized by the system and invoked
spontaneously by an active external component

Persistent data
group

component Class

Class Class

Sequence Class instance

Transient data group component
Data cross the boundaries of the system: operations of
the interfaces, or the parameters of these operation to the
interface

Process
Use case Use case

Sequence Sequence diagram

Entry data
movement

Sequence
Message from external component to the system

Exit data movement Sequence Message from the system to external component

Read data
movement

Sequence Message involving persistent data from system to
instance of class within the system

Chapter 4 . Model-based measurement

67

4.4.3 The counting procedure

According to the COSMIC measurement manual [33], the size of an application is given

by the sum of the sizes of its functional processes; the size of each functional process is

given by the number of its data movements (excluding repetitions). According to our

method, a functional process is represented by a Sequence Diagram, thus we must be

able to measure the size of a sequence diagram.

Sequence Diagrams include messages, some of which represent data movements. A

single message can account for several data movements: in fact, every message

argument that is an instance of a Data Group counts as a distinct data movement (except

for repetitions, as discussed below). In UML diagrams, Data Groups are represented as

classes.

In practice, our method requires that, given a sequence diagram:

 All messages representing data movements are identified. Messages that represent

data movements are: the ones that enter or exit the system and the ones that involve

reading or writing data stored within the system.

 For each message, the arguments and return values that are instances of data group

class are identified (in general all the arguments and returned values should be

instances of data group classes). These are the potential data movements.

 The potential data movements are classified as entries, exits, writes or reads, using

the indications reported in Table 22.

 Duplicates are eliminated.

 The number of remaining data movements is the size of the sequence diagram

representing a functional process.

The procedure described above is quite straightforward. A bit of attention is required in

eliminating the duplicate movements: in this phase we are supported by the COSMIC

rule ―Data movement uniqueness and possible exceptions‖ (see [33] pp. 49-51).

Transient data groups require a precision: in some cases it may happen that the output of

functional process groups attributes from different classes. The latter are treated as a

transient data group.

The size of the Add_customer functional process (Figure 34) is 4 CFP:

 Entry of Customer.class;

 Write of Customer.class;

 Read of CustomerData

 Exit of user message

4.5 Similarities and differences

The similarities and fundamental differences between the model-based FPA

measurement and the model-based COSMIC measurement are described in this section.

Chapter 4 . Model-based measurement

68

In order to properly understand the relation between COSMIC and IFPUG FP a

comparative evaluation has to be performed. The evaluation has to be performed not

only from a quantitative point of view, but also taking into consideration the differences

in the underlying concepts. To this end, the availability of two UML measurement

oriented models (UML based), built to ease the IFPUG and COSMIC FP measurement

respectively, of the same software system, is clearly beneficial.

In this section, we not only compare the definition and the purpose of these FSM

methods, but also compare both methods mainly from the view point of model-based

measurement proposed by L. Lavazza et al. [2][3].

4.5.1 Requirements and procedure

Both FPA and COSMIC measure user functional requirements. Use cases are coincident,

because their functional processes and elementary processes are essentially the same

concept.

4.5.2 Data modeling: Class and Component diagrams

Classes are used in both method models; however, there are big differences in how they

are used. In the COSMIC method, each class is directly mapped to a data group;

therefore a class diagram is perfectly suited to represent all the data groups.

In the FPA method, one or more classes are possibly grouped into a single logic file.

Grouping related classes in a class diagram is difficult (and not ―natural‖), so

components are used to model logic files.

The topmost level component diagram is equal for FPA and COSMIC. A difference is

that the system component contains

 The whole class diagram in the COSMIC models.

 Several <<logic data>> components in the FPA models. On their turn, these

components include classes.

4.5.3 Process modeling: Sequence diagram

In FPA sequence diagrams, the participants that represent internal parts of the system

are instance of <<logic data>> component.

In COSMIC sequence diagrams, the participants that represent internal parts of the

system (data groups) are instances of classes.

The format of message arguments is different. In FPA models, method arguments are

class attributes, corresponding to DETs, since we are interested in DETs crossing the

boundaries of the application. In COSMIC, a data movement involves a data group, i.e.,

a class. This means that a message having multiple attributes as arguments is potentially

ambiguous: if the attributes belong to the same class it is one data movement; if they

belong to two distinct classes we have two data movements, etc. To solve this issue,

arguments must be prefixed with their class name.

In FPA sequence diagrams, the main intent of transaction function must be indicated via

a comment to identify the type of transaction. This is not necessary for COSMIC-

oriented sequence diagrams.

Chapter 4 . Model-based measurement

69

4.5.4 Others differences

There are another couple of differences in the definition of FPA and COSMIC that

affects the way models are built.

COSMIC counts data movements that ―read from‖ and ―write to‖ the permanent storage.

Having methods that both read and write would make the identification of data

movements difficult (e.g., a given method could be a read, a write or both). Therefore,

when building Measurement-Oriented (namely COSMIC measurement-oriented models)

one should be careful to introduce only methods that either read from or write to classes

that represent data groups. To easy the counting, methods could be stereotyped as

<<read>> or <<write>>. This problem does not occur in FPA-oriented models.

Both COSMIC and FPA do not consider duplicate operations. Accordingly, a

measurement-oriented model can safely skip the representation of duplicate operations.

Unfortunately, COSMIC has exceptions to this simple rule: the exceptions rarely take

place; nevertheless they have to be considered. Hence the duplicated movements have

to be annotated to be correctly recognizable. This issue does not apply to FPA-oriented

models.

Chapter 4 . Model-based measurement

70

This page intentionally left blank.

Chapter 5 . Evaluation of Simplified FSM processes

71

Chapter 5 Evaluation of Simplified FSM processes

As we discussed in Chapter 3, there are many simplified measurement methods. In

order to explore our own model-based simplified method, first of all we evaluate the

existing simplified methods by exploring the accuracy of sizing with respect to full-

fledged Function Point Analysis and their suitable applicable field. This work not only

helps us to better understand and use the existing simplified methods, to assess the

feasibility of our model-based simplified method, but also provides us a reference to

evaluate other (more or less simplified) measurement methods.

5.1 Empirical assessment of Simplified FSM proposals

This section is dedicated to the evaluation of simplified methods aiming at providing

size measure (or estimates) in Function Points. That is, the considered methods simplify

the IFPUG measurement process.

5.1.1 Method of empirical assessment and procedure of the work

In order to perfom the evalution, we collected 18 projects‘ FURs which were modeled

using UML as described in [11]. These 18 projects are divided into two groups

according to the application type. One group consists of 9 ―traditional‖ applications and

the other group consists of 9 Real-Time applications.

Figure 36 Research Road map of this work

Figure 36 shows how the work was carried out. The process was organized in 7 steps.

 First, a model of each application was built. The models were written in UML and

represented the requirements, including all the information needed for the

measurement of FPs and excluding the unnecessary details [11].

 Second, on the basis of the above models, we measured the applications according

to IFPUG measurement rules [4], thus obtaining the "correct" measures.

 In the third step the 18 projects, which had already been measured by means of

Function Point Analysis, have been measured using a few simplified processes,

Chapter 5 . Evaluation of Simplified FSM processes

72

including those proposed by NESMA, the Early&Quick Function Points, the ISBSG

average weights, and a few others.

 In the fourth step, the resulting size measures were compared with those obtained at

step 2, for evaluating the accuracy of sizing with respect to full-fledged FPA.

 We also derived a simplified size model on the basis of the measures from the

dataset used for experimentations. We also derived simplified size models by

analyzing the dataset used for experimentations.

 We used such model to estimate the size of the projects in our dataset.

 Finally, we compared the measurements obtained at step 6 with those obtained at set

2.

5.1.2 The case study and the dataset obtained from the standard FPA

measurement

A. Real-Time projects

Most of the Real-Time projects measured are from a European organization that

develops avionic applications, and other types of embedded and Real-Time applications.

All the measured projects concerned typical Real-Time applications for avionics or

electro-optical projects, and involved algorithms, interface management, process control

and graphical visualization.

The projects‘ FURs were modeled using UML as described in Chapter 4 , and then were

measured according to IFPUG measurement rules as described in Section 2.2. When the

Real-Time nature of the software made IFPUG guidelines inapplicable, we adopted ad-

hoc counting criteria, using common sense and striving to preserve the principles of

FPA, as described in [56]. The same projects were then sized using the simplified

functional size measurement processes mentioned in Section II, using the data that were

already available as a result of the IFPUG measurement.

For each project, the measurement of the functional size was carried out in two steps.

First, a model of the product was built. The models were written in UML and

represented the requirements, including all the information needed for the measurement

of FPs and excluding the unnecessary details [57]. Then, the function points were

counted, on the basis of the model, according to IFPUG rules.

Table 23 Real-Time Projects’ Size (IFPUG method)

Project
ID.

ILF EIF EI EO EQ FP TF DF

1
164 5 90 8 22

289
120 169

(18) (1) (21) (2) (5) (28) (19)

2
56 0 21 18 6

101
45 56

(8) (0) (6) (3) (1) (10) (8)

3
73 0 12 47 4

136
63 73

(7) (0) (2) (8) (1) (11) (7)

4
130 15 44 0 6

195
50 145

(15) (3) (11) (0) (1) (12) (18)

5
39 0 28 39 0

106
67 39

(4) (0) (8) (8) (0) (16) (4)

6 71 5 8 139 0 223 147 76

Chapter 5 . Evaluation of Simplified FSM processes

73

(9) (1) (2) (28) (0) (30) (10)

7
7 0 3 5 0

15
8 7

(1) (0) (1) (1) (0) (2) (1)

8
21 0 4 8 0

33
12 21

(3) (0) (1) (2) (0) (3) (3)

9
21 0 7 16 0

44
23 21

(3) (0) (2) (4) (0) (6) (3)

Table 23 reports the size in UFP of the measured projects, together with the BFC and –

in parentheses– the number of unweighted BFC. For instance, project 1 involved 18

Internal Logic Files, having a size of 164 FP. TF (Transaction Function) and DT (Data

Functions) are the sizes of transaction (i.e., EI, EO, and EQ) and data (i.e., ILF and EIF),

respectively.

B. Non Real-Time projects

The considered non Real-Time projects are mostly programs that allow users to play

board or card games vs. remote players via the internet; a few ones are typical business

information systems.

The projects were measured –as the Real-Time ones– in two steps: the UML model of

each product was built along the guidelines described in [3]; then, the function points

were counted, on the basis of the model, according to IFPUG rules.

Table 24 reports the size in UFP of the measured projects, together with the BFC and –

in parentheses– the number of unweighted BFC.

Table 24 Non Real-Time Projects’ sizes (IFPUG method)

Project
ID.

ILF EIF EI EO EQ FP TF DF

1
45 7 34 6 0

92
40 52

(6) (1) (10) (1) (0) (11) (7)

2
28 20 37 5 4

94
46 48

(4) (4) (9) (1) (1) (11) (8)

3
21 5 27 8 18

79
53 26

(3) (1) (7) (2) (6) (15) (4)

4
31 0 49 13 3

96
65 31

(16) (0) (22) (5) (2) (20) (4)

5
24 0 45 21 0

90
66 24

(3) (0) (14) (5) (0) (19) (3)

6
49 0 36 0 6

91
42 49

(7) (0) (9) (0) (2) (11) (7)

7
21 0 31 14 14

80
59 21

(3) (0) (9) (3) (4) (16) (3)

8
42 5 35 17 10

109
62 47

(6) (1) (9) (3) (2) (14) (7)

9
21 0 38 15 8

82
61 21

(3) (0) (11) (5) (2) (18) (3)

Chapter 5 . Evaluation of Simplified FSM processes

74

5.1.3 Application of simplified methods for getting relative results

Simplified measurement processes were applied following their definitions, which

require data that can be easily derived from the tables above. So, for instance, the data

required for Real-Time project 1 are as following:

 The NESMA indicative method requires the numbers of ILF and EIF. Table 23

shows that the number of ILF is 18, and the number of EIF is 1.

 Similarly, the Tichenor ILF model and the ISBSG distribution models just require

the ILF number, i.e., 18.

 The NESMA estimated method, the E&QFP generic functions method, the sFP

method and the ISBSG average weights method require the numbers of ILF, EIF, EI,

EO, and EQ. Table 23 shows that the numbers of ILF, EIF, EI, EO, and EQ are,

respectively, 18, 1, 21, 2, and 5.

 The E&QFP unspecified generic functions method requires the numbers of data

groups (that is, the number of ILF plus the number of EIF) and the number of

transactions (that is, the sum of the numbers of EI, EO, and EQ). Table 23 shows

that the number of data groups is 18+1 = 19, and the number of transactions is

21+2+5 = 28.

A, Applying NESMA indicative

The applications to be measured were modeled according to the guidelines described in

[57]. The logic data files – modeled as UML classes– provide a data model that cannot

be easily recognized as normalized or not normalized. Therefore, we applied both the

formulae for the normalized and non normalized models.

The formulae of the NESMA indicative method were applied to the number of ILF and

EIF that had been identified during the IFPUG function point counting process. The

results are given in Table 25 for Real-Time projects and in Table 26 for non Real-Time

projects.

Table 25 Sizes of Real-Time projects obtained via the NESMA methods

Project
ID

IFPUG
NESMA
ind. non

norm.

NESMA
ind.

norm.

NESMA
estim.

1 289 645 460 245

2 101 280 200 99

3 136 245 175 101

4 195 570 405 168

5 106 140 100 100

6 223 330 235 216

7 15 35 25 16

8 33 105 75 35

9 44 105 75 49

B, Applying NESMA estimated

Chapter 5 . Evaluation of Simplified FSM processes

75

The formulae of the NESMA indicative method were applied to the number of ILF, EIF,

EI, EO, and EQ that had been identified during the IFPUG function point counting

process. The results are given in Table 25 for Real-Time projects and in Table 26 for

non Real-Time projects.

Table 26 Sizes of NON Real-Time projects obtained via the NESMA methods

Project
ID

IFPUG
NESMA
ind. non

norm.

NESMA
ind.

norm.

NESMA
estim.

1 92 225 160 92

2 94 200 140 93

3 79 120 85 88

4 96 140 100 111

5 90 105 75 102

6 91 245 175 93

7 80 105 75 88

8 109 225 160 106

9 82 105 75 98

C, Applying E&QFP

As described in Figure 21, the E&QFP method can be applied at different levels. Since

we had the necessary data, we used the BFC aggregation level. At this level it is

possible to use the data functions and transaction functions without weighting them or

even without classifying transactions into EI, EO, and EQ and logic data into ILF and

EIF. In the former case (generic functions) the weights given in Table 1 are used, while

in the latter case (unspecified generic functions) the weights given in Table 2 are used.

The results of the application of E&QFP are given in Table 27 for Real-Time projects

and in Table 28 for non Real-Time projects.

Table 27 Sizes of Real-Time projects obtained via the E&QFP method

Project
ID

IFPUG
EQFP

unspec.
EQFP

generic

1 289 262 262

2 101 102 106

3 136 100 108

4 195 181 182

5 106 102 106

6 223 208 229

7 15 16 17

8 33 35 38

9 44 49 52

Table 28 Sizes of NON Real-Time projects obtained via the E&QFP method

Proj ID IFPUG
EQFP

unspec.
EQFP

generic

1 92 100 99

2 94 107 99

3 79 97 92

4 96 120 118

Chapter 5 . Evaluation of Simplified FSM processes

76

5 90 108 108

6 91 100 100

7 80 95 92

8 109 113 113

9 82 104 103

D, Applying Tichenor ILF Model

In order to apply the model we just had to multiply the number of ILF of each of our

projects for the constant 14.93 suggested by Tichenor. The obtained results are

illustrated in Table 29 and Table 30 for Real-Time and non Real-Time projects,

respectively.

When applying this method, it should be remembered that the results are likely to be

incorrect if the distribution of BFC in the estimated application does not match the

distribution observed by Tichenor. Accordingly, when applying the method, one should

also check the distribution of BFC. Unfortunately, this implies making more work,

namely, one should count the number of EIF, EI, EO, and EQ in addition to ILF. Even

worse, one could discover that the distribution of his/her application is different from

the distribution assumed by Tichenor, so that the estimated size is not reliable.

In our case, the projects do not appear to fit well in the distribution assumed by

Tichenor: the differences between the measured ratios and the ratios expected by

Tichenor are the following:

 For Real-Time projects: 14.3% for EI/ILF, 43.7% for EO/ILF, 3.9% for EQ/ILF,

7.9% for EIF/ILF.

 For non Real-Time projects: 96.7% for EI/ILF, 22.2% for EO/ILF, 27.3% for

EQ/ILF, 14.7% for EIF/ILF.

In practice, our projects have a very different distribution of BFC sizes with respect to

Tichenor expectations (for instance, in Real-Time projects EI had often a larger size

than ILF, while it is expected that the size of EI is about one third of the size of ILF). So,

we must expect a quite poor accuracy from Tichenor estimates.

Table 29 Sizes of Real-Time projects obtained via Tichenor ILF model, ISBSG distribution sFP and

ISBSG average weights methods

Proj ID IFPUG
Tichenor

ILF
model

ISBSG
distrib.

sFP
ISBSG

average
weights

1 289 269 597 301 259

2 101 119 265 123 105

3 136 105 232 122 107

4 195 224 498 219 179

5 106 60 133 112 107

6 223 134 299 245 232

7 15 15 33 19 17

8 33 45 100 44 37

9 44 45 100 58 52

Chapter 5 . Evaluation of Simplified FSM processes

77

Table 30 Sizes of NON Real-Time projects obtained via Tichenor ILF model, ISBSG distribution

sFP and ISBSG average weights methods

Project
ID

IFPUG
Tichenor

ILF
model

ISBSG
distrib.

sFP
ISBSG

average
weights

1 92 90 199 112 98

2 94 60 133 113 100

3 79 45 100 99 91

4 96 60 133 123 118

5 90 45 100 111 109

6 91 105 232 114 98

7 80 45 100 97 92

8 109 90 199 126 112

9 82 45 100 107 104

E, Applying the ISBSG distribution model

We applied the formula UFP = (#ILF × 7.4) × 100 / 22.3 prescribed by the method.

Then, we evaluated the differences between the measured percentage contribution of

BFC and the ISBSG averages. The differences we found were relatively small:

 For Real-Time projects: 28.7% for ILF, 3.4% for EIF, 19.3% for EI, 21.3% for EO,

13.2% for EQ.

 For non Real-Time projects: 12% for ILF, 4.8% for EIF, 5.6% for EI, 15.4% for EO,

13.2% for EQ.

Accordingly, we expect that the ISBSG distribution model applies well to our dataset,

especially as non Real-Time projects are involved.

The obtained results are illustrated in Table 29 and Table 30 for Real-Time and non

Real-Time projects, respectively.

F, Applying the sFP and ISBSG average weights

The application of the sFP and ISBSG average weights methods was extremely similar

to the application of the NESMA estimated and E&QFP generic methods, only the

values of weights being different.

The obtained results are illustrated in Table 29 and Table 30 for Real-Time and non

Real-Time projects, respectively.

5.1.4 Summary and lessons learned

In this section, the results of our empirical analysis are reported. First we discuss the

quantitative results, and then we analyze the results from a more theoretical point of

view.

A. Quantitative analysis

To ease comparisons, all the size measures of RT projects are reported in Table 31 and

those of non RT projects are reported in Table 32.

Chapter 5 . Evaluation of Simplified FSM processes

78

Table 31 Measures of Real-Time Projects obtained via the Various Methods

Proj
ID

IFPUG

NESMA
ind.
non

norm.

NESMA
ind.

norm.

NESMA
estim.

E&QFP
unspec.

E&QFP
generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG

average
weights

1 289 645 460 245 262 262 269 597 301 259

2 101 280 200 99 102 106 119 265 123 105

3 136 245 175 101 100 108 105 232 122 107

4 195 570 405 168 181 182 224 498 219 179

5 106 140 100 100 102 106 60 133 112 107

6 223 330 235 216 208 229 134 299 245 232

7 15 35 25 16 16 17 15 33 19 17

8 33 105 75 35 35 38 45 100 44 37

9 44 105 75 49 49 52 45 100 58 52

Table 32 Measures of NON Real-Time Projects obtained via the Various Methods

Proj
ID

IFPUG

NESMA
ind.
non

norm.

NESMA
ind.

norm.

NESMA
estim.

E&QFP
unspec.

E&QFP
generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG

average
weights

1 92 225 160 92 100 99 90 199 112 98

2 94 200 140 93 107 99 60 133 113 100

3 79 120 85 88 97 92 45 100 99 91

4 96 140 100 111 120 118 60 133 123 118

5 90 105 75 102 108 108 45 100 111 109

6 91 245 175 93 100 100 105 232 114 98

7 80 105 75 88 95 92 45 100 97 92

8 109 225 160 106 113 113 90 199 126 112

9 82 105 75 98 104 103 45 100 107 104

The relative measurement errors are given in Table 33 and Table 34.

Table 33 Relative measurement errors (Real-Time Projects)

Proj
ID

NESMA
ind. non
norm.

NESMA
ind.

norm.

NESMA
estim.

E&QFP
unspec.

E&QFP
generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG

average
weights

1 123% 59% -15% -9% -9% -7% 107% 4% -10%

2 177% 98% -2% 1% 5% 18% 162% 22% 4%

3 80% 29% -26% -26% -21% -23% 71% -10% -21%

4 192% 108% -14% -7% -7% 15% 155% 12% -8%

5 32% -6% -6% -4% 0% -43% 25% 6% 1%

6 48% 5% -3% -7% 3% -40% 34% 10% 4%

7 133% 67% 7% 7% 13% 0% 120% 27% 13%

8 218% 127% 6% 6% 15% 36% 203% 33% 12%

9 139% 70% 11% 11% 18% 2% 127% 32% 18%

Table 34 Relative measurement errors (NON Real-Time Projects)

Proj
ID

NESMA
ind.
non

norm.

NESMA
ind.

norm.

NESMA
estim.

E&QFP
unspec.

E&QFP
generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG

average
weights

1 145% 74% 0% 9% 8% -2% 116% 22% 7%

2 113% 49% -1% 14% 5% -36% 41% 20% 6%

Chapter 5 . Evaluation of Simplified FSM processes

79

3 52% 8% 11% 23% 16% -43% 27% 25% 15%

4 46% 4% 16% 25% 23% -38% 39% 28% 23%

5 17% -17% 13% 20% 20% -50% 11% 23% 21%

6 169% 92% 2% 10% 10% 15% 155% 25% 8%

7 31% -6% 10% 19% 15% -44% 25% 21% 15%

8 106% 47% -3% 4% 4% -17% 83% 16% 3%

9 28% -9% 20% 27% 26% -45% 22% 30% 27%

The obtained results show that we can divide the simplified FSM methods in two

categories: those which base the size estimation exclusively on some measure of the

data (like the NESMA indicative, the Tichenor and ISBSG distribution methods) and

those which propose fixed weights for all the BFC of FPA. The former methods yield

the largest errors. Although it was expected that estimates based on less information are

generally less accurate than estimates based on more information, the really important

finding of our experimental evaluation is that the size estimates based exclusily on the

measures of data measures feature quite often intolerably large errors, i.e., errors that

are likely to cause troubles, if development plans were based on such estimates. For

instance, let us consider the Tichenor method (which appears the best of those based on

data measures) and assume that only size estimation errors not larger than 20% are

acceptable: 10 estimates out of 18 would be unacceptable.

On the contrary, the methods that take into consideration all BFC and provide fixed

weights for them yield size estimates that are close to the actual size. Among these

methods sFP is an exception, since it regularly overestimates the size of projects, often

by over 20%. This seems to indicate that ―average‖ projects are characterized by data

and/or transactions whose actual complexity is smaller than the complexity expected by

the sFP method.

The accuracy of the used methods is summarized in Table 35, where the mean and

standard deviation of the absolute relative errors are given for Real-Time projects, for

non Real-Time projects, and for the entire set of projects. The mean value of absolute

relative errors is a quite popular statistic, often termed MMRE (Mean Magnitude of

Relative Errors).

Table 35 Mean and Standard Deviation of Absolute Relative Errors

NESMA
ind.
non

norm.

NESMA
ind.

norm.

NESMA
estim.

E&QFP
unspec.

E&QFP
generic

Tichenor
ILF

model

ISBSG
distrib.

sFP
ISBSG

average
weights

Mean (RT
only) 127% 63% 10% 9% 10% 20% 112% 17% 10%

Stdev (RT
only) 64% 44% 7% 7% 7% 16% 59% 11% 7%

Mean (non
RT) 79% 34% 8% 17% 14% 32% 58% 23% 14%

Stdev (non
RT) 56% 33% 7% 8% 8% 17% 50% 4% 8%

Mean (all) 103% 49% 9% 13% 12% 26% 85% 20% 12%

Stdev (all) 63% 40% 7% 8% 8% 17% 60% 9% 8%

Table 35 shows that the NEMSA estimated, the two E&QFP methods and the ISBSG

average weights methods provide essentially equivalent accuracy. This is not surprising,

Chapter 5 . Evaluation of Simplified FSM processes

80

given that these methods propose very similar weight values. The NESMA estimated

method appears the best, but for Real-Time projects the E&QFP methods perform

similarly, often even better.

For Real-Time projects, E&QFP (either in the unspecified or generic flavor) tends to

provide the most accurate results, while the NESMA estimated method provides quite

reasonable estimates.

It is worthwhile noticing that E&QFP is more accurate than NESMA for Real-Time

applications because it uses bigger weights, which suite better Real-Time application,

which are more complex than non Real-Time applications.

B. Analysis of results

As mentioned in Chapter 3 , simplified FSM methods are based on skipping one or

more phases of the standards Function Point measurement process (see Table 3). It is

reasonable to assume that the accuracy of the measure is inversely proportional to the

number of measurement phases not performed, hence to the amount of data not

retrieved from the functional user requirements of the software to be measured.

To confirm such hypothesis, we have enhanced the information reported in Table 3 with

the data concerning mean errors and error standard deviations: the result is given in

Table 36. The direct comparison of accuracy data with the information used for

measurement makes the following observations possible.

Any simplified method that does not involve the weighting appears to be bound to a 10-

15% mean absolute error.

It does not appear true that the more you measure, the best accuracy you get. For

instance, E&QFP considering unspecified generic functions appear more accurate than

sFP, even though the former method does not involve classifying function types.

Among methods that use the same type and amount of data, there are relatively large

differences in accuracy: for instance, the Tichenor ILF model appears more precise than

both the NESMA indicative (with normalized data) and the ISBSG distribution.

Table 36 Measurement Process: Required Data VS. Accuracy

 IFPUG
NESMA
indic.
Norm.

NESMA
estim.

E&QFP
Generic
func.

E&QFP
Unspec.
generic
func.

Tichenor
ILF
Model

ISBSG
distrib.

sFP
ISBSG
average
weights

Identifying
logic data

√ √ √ √ √ √ √ √ √

Identifying
elementary
processes

√ √ √ √ (*)
2
 (*) √ √

2 required to verify applicability.

Chapter 5 . Evaluation of Simplified FSM processes

81

Classifying
logic data
as ILF or
EIF

√ √ √ v √ √ √ √

Classifying
elementary
processes
as EI, EO,
or EQ

√ √ √ (*) (*) √ √

Weighting
data
functions

√

Weighting
transaction
functions

√

Mean error - 49% 9% 13% 12% 26% 85% 20% 12%

Error stdev - 40% 7% 8% 8% 17% 60% 9% 8%

The last two observations suggest that exploiting the knowledge provided by statistical

analysis can be decisive for achieving accurate measures via simplified processes. For

instance, the E&QFP method considering unspecified generic functions is quite accurate

because the likely complexity of data and transactions assumed by the method (see

Table 2) were derived via accurate statistical analysis. On the contrary, the complexity

values assumed by the sFP method were chosen on the basis of expectations, not on

rigorous statistical analysis.

The exploitation of statistical data is the base for the new methods described in the next

section.

5.1.5 Model-based simplified FSM models

In this section, we derive a simplified FSM model in a way similar to those described in

Chapter 3 , but based on the measures of our own applications (as reported in Table 23

and Table 24).

Table 37 Average Function Type Weighs for Out Dataset

Function
type

EQFP
generic

NESMA
Estim.

ISBSG
average sFP

Our dataset
(all proj.)

ILF 7.7 7 7.4 7 7.4

EIF 5.4 5 5.5 5 5.3

EI 4.2 4 4.3 3 3.7

EO 5.2 5 5.4 4 4.6

EQ 3.9 4 3.8 3 4

In the rightmost column of Table 37 we give the average weights of the BFC computed

over all the measured applications. Note that the given averages are computed as the

mean –at the dataset level– of the mean values computed for each application. In the

table, the mean weights derived from our dataset are shown together with the weights

proposed by other simplified FSM methods, for comparison. The fact that our EI and

EO means are smaller than the values proposed by other methods, while the ILF and

EIF means are very close to those proposed by other methods, probably means that our

applications were simpler than those considered in the definition of other methods.

Chapter 5 . Evaluation of Simplified FSM processes

82

Table 38 Mean and Median Weights for the Projects in Our Dataset

Dataset
Mean (median) weight

ILF EIF EI EO EQ TF DF UFP/#ILF

All non RT projects 6.5 5.5 3.5 4.4 3.4 7.0 3.7 22.7

All RT projects 8.2 5.0 4.0 4.8 5.1 8.1 4.4 17.0

All projects 7.4 5.3 3.7 4.6 4.0 7.6 4.1 19.9

In Table 38 we give the average values of weights derived from our dataset,

distinguishing Real-Time and non Real-Time applications. We also give the average

value of the ratio between the number of ILF and the size in UFP. It is possible to note

that the average number of UFP per ILF we found is quite larger than that found by

Tichenor. This suggests that models based just on ILF can be hardly generalized.

Note that we computed also the weights for transaction functions (TF) and data

functions (DF). These weights can be used in simplified measurement processes like the

E&QFP unspecified generic method.

The values in Table 38 suggest that transactions were generally more complex in Real-

Time applications than in non Real-Time applications. The latter are probably

responsible for relatively smaller weights of transaction (EI, EO, and EQ) in Table 1.

Using the values in Table 38 it was possible to derive models that are similar to those

described in Subsection 5.1.3: they are described in Table 39 and Table 40.

Table 39 Models for NON Real-Time Projects

Average weights (all BFC)
UFP = 6.6 #ILF+ 5.5 #EIF + 3.5 #EI + 4.4 #EO + 3.4 #EQ

Average weights (DF and TF)
UFP = 7.0 #DF + 3.7 #TF

ILF based model UFP = 22.7 #ILF

Table 40 Models for Real-Time Projects

Average weights (all BFC) UFP = 8.2 #ILF+ 5 #EIF + 4 #EI + 4.8 #EO + 5.1 #EQ

Average weights (DF and TF) UFP = 8.1 #DF + 4.4 #TF

ILF based model UFP = 17 #ILF

5.1.6 Evaluate our new model

We used such models to estimate the size of the projects in our dataset. The results of

the estimations are reported in Table 41 and Table 42 for Real-Time and non Real-Time

projects, respectively.

Table 41 Estimates of RT Projects based on Models using the our new models

Proj. ID
Actual
size

Average weights
(all BFC)

Average weights
(DF and TF)

ILF based model

Est. size % err Est. size % err Est. size % err

1 289 273 -6% 277 -4% 306 6%

2 101 110 9% 109 8% 136 35%

Chapter 5 . Evaluation of Simplified FSM processes

83

3 136 109 -20% 105 -23% 119 -13%

4 195 187 -4% 198 2% 255 31%

5 106 104 -2% 103 -3% 68 -36%

6 223 223 0% 213 -4% 153 -31%

7 15 17 13% 17 13% 17 13%

8 33 39 18% 37 12% 51 55%

9 44 52 18% 51 16% 51 16%

Table 42 Estimates of NON RT Projects based on Models using the our new models

Proj. ID
Actual
size

Average
weights (all

BFC)

Average
weights (DF

and TF)
ILF based model

Est. size % err Est. size
%
err

Est. size % err

1 92 85 -8% 90 -2% 136 48%

2 94 87 -7% 97 3% 91 -3%

3 79 81 3% 84 6% 68 -14%

4 96 98 2% 102 6% 91 -5%

5 90 91 1% 92 2% 68 -24%

6 91 85 -7% 90 -1% 159 75%

7 80 79 -1% 79 -1% 68 -15%

8 109 98 -10% 101 -7% 136 25%

9 82 88 7% 88 7% 68 -17%

Table 41 and Table 42 show a rather poor accuracy of the estimation based on ILF, with

error greater than 20% for several projects.

On the contrary, the estimations based on average weights are reasonably accurate; the

obtained results are particularly good for non Real-Time projects, with all the estimates

featuring errors not greater than 10%.

Table 43 Mean and Stdev of Absolute Relative Errors

Average
weights,
all BFC

Average
weights,
DF & TF

Average
UFP /
#ILF

NESMA
estim.

E&QFP
unspec.

E&QFP
generic

ISBSG
average
weights

Mean (RT only) 10% 9% 26% 10% 9% 10% 10%

Stdev (RT only) 8% 10% 29% 7% 7% 7% 7%

Mean (non RT) 5% 4% 25% 8% 17% 14% 14%

Stdev (non RT) 3% 4% 22% 7% 8% 8% 8%

Mean (all) 8% 10% 31% 9% 13% 12% 12%

Stdev (all) 6% 6% 19% 7% 8% 8% 8%

The average values of the absolute relative errors are reported in Table 43 together with

the average values of the absolute relative errors obtained with the best among the other

methods, for comparison.

It is easy to see that the estimates obtained using the average weights of the projects

being estimated feature practically the same accuracy as the other methods.

It is a bit surprising that in the literature a few models of type UFP = k × #ILF were

proposed, while model of type UFP = k × #EP (where #EP is the number of elementary

Chapter 5 . Evaluation of Simplified FSM processes

84

processes) received hardly any attention. We computed the ratio UFP/#EP for each

application, and used the average value k in models UFP = k × #EP, to estimate the size

of the applications in our dataset. The obtained estimates were characterized by

estimation errors quite similar to those of ILF-based models (the average absolute error

was 25% for Real-Time projects and 27% for non Real-Time projects). Accordingly, it

seems that models of type UFP = k × #EP are not likely to provide good estimates.

5.1.7 Conclusion

In this work, we applied simplified functional size measurement processes to both

traditional software applications and Real-Time applications. The obtained results make

it possible to draw a few relevant conclusions:

 Some of the simplified FSM methods we experimented with seem to provide fairly

good accuracy. In particular, NESMA estimated, E&QFP, and ISBSG average

weights yielded average absolute relative errors close to 10%. This level of error is a

very good trade-off, if you consider that it can be achieved without going through

the expensive phase of weighting data and transactions.

 Organizations that have historical data concerning previous projects can build their

own models. We showed that with a relatively small number of projects it is

possible to build models that provide a level of accuracy very close to that of

methods like NESMA estimated and E&QFP.

 The simplified FSM methods are generally based on average values of ratios among

the elements of FP measurement. Accordingly, projects that have unusual

characteristics tend to be ill suited for simplified size estimation. For instance,

project 3 in our set of Real-Time projects is more complex than the other projects in

the set, having most EI and EO characterized by high complexity. This causes most

method to underestimate the size of the project by over 20%. Therefore, before

applying a simplified FSM method to a given application, it is a good idea to verify

that this application is not too much (or too less) complex with respect to ―average‖

applications. Our Real-Time project 3 was characterized by the need to store or

communicate many data at a time: this situation could have suggested that using

average values for an early measurement leads to a rather large underestimation.

E&QFP methods proved more accurate in estimating the size of Real-Time applications,

while the NESMA estimated method proved fairly good in estimating both Real-Time

and non Real-Time applications. However, the relatively small number of projects

involved in the analysis does not allow generalizing these results.

Even considering the relatively small dataset, it is however probably not casual that the

NESMA estimated method happened to underestimate all projects. Probably NESMA

should consider reviewing the weights used in the estimated method, in the sense of

increasing them.

When considering the results of our analysis from a practical viewpoint, a very

interesting question is ―What simplified method is the best one for my application(s)?‖.

Table 33 and Table 34 show that the methods that are better on average are not

necessarily the best ones for a given project. To answer the question above it would be

useful to characterize the projects according to properties not considered in FSM and

look for correlations with the measures provided by different simplified methods. This

Chapter 5 . Evaluation of Simplified FSM processes

85

would allow selecting the simplified measurement method that provided the best

accuracy for applications of the same type as the one to be sized. Unfortunately, it was

not possible to analyze the possibly relevant features of the dataset described in sub-

section 5.1.2 (we had no access to the code of Real-Time projects), thus this analysis is

among our future objectives.

As already mentioned, the results presented here are based on datasets in which the

largest project has size of 289 FP: further work for verifying the accuracy of simplified

measurement methods when dealing with larger project is needed.

Among the future work is also the experimentation of simplified measurement

processes in conjunction with measurement-oriented UML modelling [57], as described

in [58].

The models used in Subsection 5.1.3 are generally derived in a rather naive way, i.e.,

simply computing averages of some elements that are involved in the measurement: e.g.,

the average ration between the measure of BFC and their number. Simplified

measurement models should be better derived via regression analysis. Unfortunately,

the relatively little number of applications in our datasets does not support this type of

analysis, especially if multiple independent variables are involved, as in models of type

UFP = f(EI, EO, EQ, ILF, EIF) or UFP = f(TF, DF). Performing this type of analysis is

among our goal for future activities, provided that we can get enough data points.

5.2 Empirical evaluation of Model-based Simplified COSMIC

Measurement

Most simplified FSM methods address the simplification of FPA, since its process of

measuring function points involves activities –such as the classification of transactions

and data and the evaluation of the complexity of every transaction and logic data file–

that require a relevant measurement effort, and can be carried out only when the

specification of user requirements is fairly complete and detailed. However, also the

process of measuring CFP (which is generally faster and less expensive than FP

measuring) may need to be carried out faster and at a smaller cost than required by the

official counting manual [6]. This may happen because the size estimates are needed

within a given deadline (e.g., for cost estimation and bidding) or because detailed

requirements specifications are not available (and will not be available for a while). So

the simplified measurement processes for CFP have been proposed: see for instance the

section on ―early or rapid approximate sizing‖ in [59].

The process of applying the COSMIC FSM method is relatively long and effort-

consuming. In particular, the need to describe every functional process in terms of data

movements – which implies identifying the possible data movement types for every

data group type – can easily require a relevant amount of work. Therefore, the COSMIC

measurement process involves:

 The identification of functional processes (FPr).

 The identification of data groups.

 For each functional process, the identification of unique data movements involving

the identified data group types.

Chapter 5 . Evaluation of Simplified FSM processes

86

The COSMIC measurement process is schematically represented in Figure 37. When

looking at the graphical representation in Figure 37, it must be remembered that the first

two phases are carried out once each, at the application level, while the third is carried

out for each functional process.

Figure 37 COSMIC measurement process

Model-based method process

As we described in Figure 26 in Section 4.1, the model-based object-oriented

measurement process consists of the following activities: building Use case diagram,

building class diagram, building component diagram, and building sequence diagrams.

At the end of each above steps, as described in Figure 38, respectively the following

artefacts can be obtained:

 In the first step, Use case diagram or component diagram with user interface;

 In the second step, class diagram component diagram with classes;

 In the third step, component diagram with operation-class dependencies;

 In the last step, sequence diagrams.

Figure 38 UML modelling process

It is easy to see that while progressing in the development, namely construct Use case

diagram, construct class diagram, construct component diagram, and construct sequence

diagrams, UML models become more and more complete and detailed and in general

include an increasing number of diagrams. This means that UML models convey an

increasing amount of information, which can be used for FSM [61].

Comparing the UML modeling and COSMIC measurement processes, it is easy to see

that while progressing in the development, UML models become more and more

complete and detailed and in general include an increasing number of diagrams; while

proceeding in the execution of the process we get more and more information, which

allows for the application of increasingly sophisticated measure estimation processes.

Chapter 5 . Evaluation of Simplified FSM processes

87

When we examine these two processes at every stage, we will interestingly find,

according to the definition of element mapping between UML and COSMIC in Table

22 , that the information provided by the various UML models matches the information

required by the various stages of the COSMIC process, as schematically described in

Figure 39.

Identification of

Functional

Processes

Identification of

Data Groups

time

Identif. of

each FPr

Data Mov.

Identification

of DG used in

each FPr

Use case

diagram or

component

diagram with

user interface

Class diagram,

component

diagram with

classes

Sequence

diagrams

Component

diagram with

operation-class

dependencies

Figure 39 UML modeling process and COSMIC measurement process phases

In view of the above observations, for the entire process, we propose the following

questions:

 Q1. During the requirements elicitation and specification phase, is it possible to

write progressively more complete and detailed UML models that support

progressively more accurate simplified CFP measurement methods?

 Q2. What is the accuracy of the estimates provided by different simplified CFP

measurement methods?

 Q3. Do simplified CFP measurement methods provide a level of accuracy that is

proportional to the amount of information required?

Here the term ―accuracy‖ is used to indicate how close the estimated size and the actual

size are.

5.2.1 Simplified measurement processes for COSMIC function point

Different simplified processes are possible, depending on the stage of requirements

collection (as described in Figure 39). In what follows, we describe the type of

processes that can be applied at the various stages.

A. Size estimation based on the number of functional processes and the number of

data groups

A first very rough simplification of the measurement process was proposed in the

COSMIC manual itself [59]. This simplification is perfectly coherent with the COSMIC

model of software requirements: user requirements are composed of a set of functional

processes, each involving a set of data movements. If data movements cannot be

counted, the measurer has to count the elements at the abstraction level immediately

above: i.e., functional processes must be sized directly.

Chapter 5 . Evaluation of Simplified FSM processes

88

So, the simplified process requires that only the first one of the activities required for

CFP measurement be performed. Of course, in this way we get the number of functional

processes involved in the software application being measured, but not their size. To

transform the number of functional process into the application size, the simplified

process requires that the mean number of data movements per functional process is used.

 Let AvDMperFPr be the mean number of data movements per functional process,

computed on the basis of historical data. If we assume that the software application to

be measured is similar to those previously measured, then it is reasonable to assume that

the mean number of data movements per functional process of the new application will

be close to MDM. Thus,

CFP = AvDMperFPr × #FPr (25)

where #FPr is the number of Functional processes.

If the historical data required to compute AvDMperFPr are available, it is also possible

to use Ordinary Least Squares (OLS) regression to derive a model of type

CFP = a × #FPr + b (26)

This type of model is not mentioned in [59]; however in this paper we test the ability of

UML models to support also this type of models and the corresponding simplified

measurement process.

As in common practice, log-log transformation can be applied to data, thus yielding a

model of type:

 CFP = b × (#FPr)
a

 (27)

B. Size estimation based on the number of data movements.

The method described in the previous part (Part A) assumes that the size in CFP is

proportional to the number of functional processes. It is also reasonable to assume that

the size in CFP is proportional to the number of data groups: the more data groups, the

more opportunities for data movements.

A simplified computation of CFP can thus be achieved via a model that computes the

estimated size by means of some formula to be defined applied to #FPr and #DG (the

number of data groups in the application). This procedure is more complex than the one

described in the previous part (Part A), as it requires the identification of data groups,

but it is still simpler than the ―full‖ COSMIC counting process, as data movements do

not need to be identified and classified. Besides, a conceptual model of the data

involved in the application is usually built very early in the requirements modeling

process. Thus, its availability is generally an easily satisfied assumption.

Data groups do not contribute directly to the measure of size in CFP: as we mentioned

above, the size of an application in CFP is the sum of the sizes of its functional

processes. Therefore, the COSMIC method does not suggest how to use #DG in the

estimation of size. However, the model can be derived via regression analysis, provided

that historical data reporting both #FPr and #DG are available. The resulting equations

can be of the form

CFP = #FPr × a + #DG × b + c (28)

Chapter 5 . Evaluation of Simplified FSM processes

89

 or

CFP = c × #FPr
a
 × #DG

b
 (29)

C. Size estimation based on the number of data groups involved in each functional

process

The two methods described above are based on the total number of functional processes

and data groups. Accordingly, such measures characterize the whole application. It is

reasonable to expect that a more accurate estimate can be derived if information that

characterizes each functional process individually is available. The number of data

groups involved in each functional process provides such information, thus allowing for

potentially more precise measures of size.

If the historical dataset includes the suitable information, statistical analysis can yield

models of the following type:

CFP = f(#FPr, AvDGperFPr) (30)

where AvDGperFPr is the mean number of data groups involved in functional processes

in the application to be measured.

5.2.2 UML model supporting the simplified measurement approaches

In this subsection, we describe the UML models that are needed to support the

simplified approaches to CFP measurement described in previous subsection 5.2.1. The

corresponding FUR of these models comes from the case study quoted in Section 4.2.

We also present the model supporting the measure of CFP performed as described in the

manual [33].

A. UML model supporting the size estimation based on the number of data

movements

Figure 40 illustrates a UML diagram that can effectively support the first simplified

measurement method, described in sub-section 5.2.1. It is a use case diagram. The

information that is needed to use equation (25), i.e., #FPr, can be obtained by counting

the use cases.

Chapter 5 . Evaluation of Simplified FSM processes

90

System

User

AddCustomer

ChangeCustomerData

DeleteCustomer

ChangePlaceData
PrintStoredItemsList

QueryCustomers

QueryPlaces

QueryStoredItems

ReceivePayment

AddPlace

DeletePlace

PrintCustomerItemList

DepositItem

RetrieveItem

PrintBill

QueryCustomer’sItems

Figure 40 UML use case diagram showing the functional processes

Using a use case diagram can be interesting mainly for the organizations that employ

this type of diagram for specifying requirements and do not use other UML diagrams.

However, it should be paid attention to the fact that use cases have a meaning (or can be

given a meaning) that does not always match with the concept of functional process; it

is therefore recommended that each use case is evaluated against the properties required

for functional processes.

Chapter 5 . Evaluation of Simplified FSM processes

91

Figure 41 UML component diagram showing the functional processes

In place of a use case diagram like the one depicted in Figure 40, it is also possible to

write a component diagram, like the one depicted in Figure 41, where the relevant

information is provided by the interface realized by the system. The interface lists the

functional processes that can be triggered by the user. So, the information that is needed

to use equation, i.e., #FPr, can be obtained by counting the operations listed in the

User_interface.

Note that while components corresponded to software artifacts in previous versions of

UML, in more recent versions of the language, components can be also used to describe

the specifications of software artifacts. Therefore, our usage of component diagrams

complies with the definition of UML [52].

B. UML model supporting Size estimation based on the number of functional

processes and the number of data groups

To get the number of data groups #DG, required for using equation (28), we can

exploit the closeness of UML classes to the concept of data group. So, the class diagram

described in Figure 42 describes the data groups involved in the Warehouse Software

Portfolio.

Chapter 5 . Evaluation of Simplified FSM processes

92

Customer

+Name
+Address
+AmountDue

Place

+Location
+Space

Item

+Description
+Pallets
+Value
+StorageDate
+OwnerName
+StoragePlace

Message

+Text

* *

Figure 42 UML class diagram, showing the data groups

It can be noted that the entities described in Figure 27 and Figure 28 appear in Figure 42

as well. However, Figure 42 includes also a class that describes the Message transient

data group. In the COSMIC method, transient data groups are data groups that are not

persistent, but are needed to capture user requirements. In our case, the Message data

group is needed to represent the data that –according to the FUR– have to be

communicated to the user.

Figure 43 UML component diagram showing the functional processes

Figure 43 illustrates the same diagram as Figure 41, where the system component has

been refined with the description of the classes that represent the data managed by the

system. In practice, the information from the class diagram is reported in the system

component. It is easy to see that the diagram in Figure 44 provides all the data needed to

use equations (26) and (27), i.e. #FPr and #DG.

C: UML model supporting Size estimation based on the number of data groups

involved in each functional process

Figure 44 illustrates a diagram providing the information needed to use equation (30).

In the diagram, UML ports are used to precisely indicate which classes (i.e., data groups)

Chapter 5 . Evaluation of Simplified FSM processes

93

are used in each functional process. To this end, sets of functional processes that use the

same set of classes are grouped into a single interface: both ChangeCustomerData and

DeleteCustomer use Customer, Item and Message.

Figure 44 UML component diagram showing the functional processes and the data groups

In Figure 44 only the interfaces needed to add, change, and delete clients are shown. It

can be noticed that grouping functional processes according to the used classes may

lead to a rather large number of interfaces, which could decrease the readability of the

diagram. However, interfaces that are homogeneous with respect to the used classes not

only allow for a quite precise estimation of size (as shown in next Subsection 5.2.3), but

explicitly represent the logical relationship between interface elements and system data:

this poses the basis for the identification of important traceability information when the

design model is built.

An alternative to the model shown in Figure 44 is a sequence diagram that shows only

the classes involved in the functional process, as in Figure 45. In fact, the diagram

represents a specific functional process (AddCustomer) and the involved class instances.

Excluding the User and the System, which represent the functional user and the

application being measured, respectively we have that AddCustomer uses two data

groups: Customer and Message. This type of diagram is convenient because it can be

refined into the diagram described in Figure 46, which provides a detailed specification

of the AddCustomer operation and supports full fledged COSMIC measurement.

Chapter 5 . Evaluation of Simplified FSM processes

94

Figure 45 UML component diagram showing the class (data group) instances participating in the

AddCustomer functional process

Figure 46 UML sequence diagram showing the data movements involved in a given functional

process

Figure 46 illustrates a sequence diagram that contains all the information needed to

measure the size of the functional process according to the official manual [33].

Messages that cross the application boundary (in our case, messages from or to the user)

are entries and exits, while messages directed to class instances representing data groups

are reads or writes.

Chapter 5 . Evaluation of Simplified FSM processes

95

Entry

Read

Write

Exit

Figure 47 UML sequence diagram with the data movements highlighted

Figure 47 shows the same sequence diagram as Figure 46, with data movements

highlighted. Note that message 8 is not a data movement, since it is –like message 6– an

exit involving a Message, thus it is not unique. Figure 47 shows that –once the model is

available– performing the measurement is quite straightforward; so, the main effort

required by the COSMIC method is in modeling, rather than in measuring.

Brief summary

The UML models presented in this section provide an increasingly larger amount of

information: the use case diagram in Figure 40, the diagram in Figure 44 provides more

information than the diagram Figure 43, finally, the diagram in Figure 46, together with

the other sequence diagram representing the functional processes, provides the most

detailed representation of user functional requirements.

5.2.3 Empirical analysis

To answer the research questions defined above, we modeled a set of software

applications and measured them, with the goal of obtaining the measures needed to

support the simplified methods described in 5.2.1. Then, we applied the simplified

measurement methods in two ways:

 a) By computing the means of the relevant measures and using the means as

parameters in equations (25) and (28).

 b) Deriving size models via regression analysis and applying them.

Chapter 5 . Evaluation of Simplified FSM processes

96

In both cases, the obtained estimates were compared with the measures obtained via the

standard COSMIC method [33], without any simplification.

A. The dataset

The projects considered belonged to different types: sample projects provided by

COSMIC to illustrate the counting process (5 projects); academic examples used in

teaching (7 projects); Web based Management Information Systems (MIS) (10 projects),

project management tools (1 project).

Part of the dataset containing the measures of the models of the applications described

above is given in Table 44. The only missing part is the number of involved data groups

for each functional process, which is not reported because of space reasons (the dataset

includes over 700 functional processes).

Table 44 The dataset

Pid CFP #FPr #DG
AvDG
perFPr

AvDM
perDG

AvSize
ofFPr_others

AvDG
perFpr_others

AvCFP
perDG_others

1 86 16 6 2.88 1.90 7.58 2.88 1.80

2 56 11 11 3.55 1.60 7.57 3.55 1.80

3 91 15 10 4.00 1.57 7.57 4.00 1.80

4 69 19 12 2.32 1.72 7.64 2.32 1.80

5 103 19 16 3.06 1.93 7.58 3.06 1.80

6 64 14 7 2.64 1.71 7.59 2.64 1.80

7 116 20 14 3.60 1.65 7.60 3.60 1.80

8 124 20 10 2.80 2.38 7.57 2.80 1.78

9 66 14 7 3.79 1.28 7.59 3.79 1.81

10 117 19 9 3.47 1.78 7.57 3.47 1.80

11 90 13 14 3.92 1.99 7.55 3.92 1.80

12 31 7 16 4.71 1.18 7.56 4.71 1.81

13 252 60 24 2.07 2.40 7.83 2.07 1.75

14 360 23 18 8.17 1.76 7.27 8.17 1.80

15 514 74 29 4.50 1.74 7.60 4.50 1.81

16 186 27 13 4.56 1.61 7.56 4.56 1.81

17 948 152 22 4.76 1.37 7.87 4.76 1.91

18 189 30 13 4.20 1.50 7.59 4.20 1.81

19 107 9 20 5.60 2.12 7.48 5.60 1.80

20 273 22 63 5.95 2.00 7.38 5.95 1.79

21 502 45 15 6.98 1.60 7.30 6.98 1.81

22 260 34 7 2.85 3.36 7.53 2.85 1.72

23 895 68 24 7.28 1.84 6.96 7.28 1.80

The meaning of the columns in Table 44 is as follows.

• CFP is the size in COSMIC Function Points, measured according to the manual;

• #FPr is the number of Functional Processes;

• #DG is the number of data groups;

• AvDGperFPr is the mean number of data groups involved in the project‘s Functional

Processes;

• AvDMperDG is the mean number of data movements per Functional Process, i.e., the

mean size of the applications‘ functional processes;

Chapter 5 . Evaluation of Simplified FSM processes

97

• AvSizeofFPr_others is the mean number of data movements per FP, computed on all

the other applications;

• AvDGperFpr_others is the mean number of data groups per FP, computed on all the

other applications;

• AvCFPperDG_others is the mean number of data movements (i.e., size) per data

group, computed on all other applications.

B. Models based on the number of data movements

AvDMperFPr (the mean size of functional processes, i.e., the mean of CFP/#FPr) is 7.3.

We can use this value in equation (25), thus obtaining the model

CFP = #FPr × 7.3 (31)

Of course, model (Equation (31)) is as good as the CFP/#FPr ratio of the considered

applications is close to the mean. Actually, the standard deviation of CFP/#FPr for the

applications in Table 44 is 3.25, i.e., 44.8% of the mean; therefore we do not expect a

very good accuracy.

To evaluate the accuracy of this model we estimated the size of each application using

the data of the others as a historical dataset. So, for instance, to estimate the size of

project 23 we computed the mean CFP/#FPr of projects 1 to 22, and multiplied that

value (6.99) for the number of #FPr of project 23 (68), which results in an estimated

size of 475 CFP.

Through this process we got the estimates reported in Table 45. As expected, the

accuracy of the model is far from good: the estimates are characterized by MMRE =

36.6%, Pred(25) = 39.1%, error range = [-56%,104%].

Table 45 Estimates obtained using equation (31)

P.Id Estimated Size [CFP] Error % Error

1 117 31 36.0%

2 81 25 44.6%

3 110 19 20.9%

4 141 72 104.3%

5 139 36 35.0%

6 103 39 60.9%

7 146 30 25.9%

8 146 22 17.7%

9 103 37 56.1%

10 139 22 18.8%

11 95 5 5.6%

12 52 21 67.7%

13 444 192 76.2%

14 158 -202 -56.1%

15 538 24 4.7%

16 196 10 5.4%

17 1110 162 17.1%

18 219 30 15.9%

19 63 -44 -41.1%

20 154 -119 -43.6%

21 319 -183 -36.5%

Chapter 5 . Evaluation of Simplified FSM processes

98

22 246 -14 -5.4%

23 475 -420 -46.9%

Via OLS regression we obtained a first statistically significant model:

 CFP = -16.5 + #FPr × 6.698 (32)

The adjusted R
2
 is 0.882, the p-value is < 0.001

By using this model, we obtained the estimates reported in Table 46 and characterized

by MMRE = 22.7%, Pred(25) = 69.6%, Error range is [-62%, 61%].

Table 46 Estimates obtained using equation (32)

P.Id Estimated Size [CFP] Error % Error

1 91 5 5.8%

2 57 1 1.8%

3 84 -7 -7.7%

4 111 42 60.9%

5 111 8 7.8%

6 77 13 20.3%

7 117 1 0.9%

8 117 -7 -5.6%

9 77 11 16.7%

10 111 -6 -5.1%

11 71 -19 -21.1%

12 30 -1 -3.2%

13 385 133 52.8%

14 138 -222 -61.7%

15 479 -35 -6.8%

16 164 -22 -11.8%

17 1002 54 5.7%

18 184 -5 -2.6%

19 44 -63 -58.9%

20 131 -142 -52.0%

21 285 -217 -43.2%

22 211 -49 -18.8%

23 439 -456 -50.9%

C. Models based on the number of functional processes and the number of data

groups.

Via OLS regression, no significant model of type CFP = k × #FPr + m × #DG was

found. Also the log-log transformation of data did not help.

We have not found any relationships existing between classes and sizes of CFP. This

means that (at least with respect to the data available) there is no relationship between

the number of classes and CFP.

D. Models based on the number of data groups involved in each functional process

When trying to use the knowledge of the number of data groups involved in each

functional process, we discovered that the number of data movement per data group

Chapter 5 . Evaluation of Simplified FSM processes

99

involved in a functional process, computed for each application, was fairly constant

throughout the applications of our dataset: the mean is 1.8 and the standard deviation

0.03 (i.e., 1.7% of the mean). We exploit this fact to define the following model:

 CFP = AvDGperFPr × #FPr × 1.8 (33)

Term (1.8 × AvDGperFPr) is an estimate of the number of data movements per

functional process: multiplied by the number of functional processes it yields an

estimate of the number of data movements, i.e., the size of the application.

By using this model, and computing the AvDGperFPr of each application on the basis

of the other applications‘ data, we obtained the estimates reported in Table 47 and

characterized by MMRE=19.3%, Pred(25)= 82.6%, error range [-36%,93%].

Table 47 Estimates obtained using equation (33)

P.Id Estimated Size [CFP] Error % Error

1 83 -3 -3.5%

2 70 14 25.0%

3 108 17 18.7%

4 79 10 14.5%

5 104 1 1.0%

6 67 3 4.7%

7 130 14 12.1%

8 100 -24 -19.4%

9 96 30 45.5%

10 119 2 1.7%

11 92 2 2.2%

12 60 29 93.5%

13 216 -36 -14.3%

14 339 -21 -5.8%

15 601 87 16.9%

16 222 36 19.4%

17 1384 436 46.0%

18 228 39 20.6%

19 90 -17 -15.9%

20 235 -38 -13.9%

21 569 67 13.3%

22 167 -93 -35.8%

23 889 -6 -0.7%

Via OLS regression we found a statistically significant model involving the number of

Functional Processes and the mean number of data groups involved in each functional

process:

CFP = -64.6 + #FPr × 7.63 + AvDGperFPr × 9.71 (34)

Pr(>|t|) < 0.05 for each independent variable; the adjusted R
2
 = 0.952.

By using this model, we obtained the estimates reported in Table 48 and characterized

by MMRE = 19.8%, Pred(25) = 69.6%, error range = [-47, 64%].

Table 48 Estimates obtained using equation (34)

P.Id Estimated Size [CFP] Error % Error

Chapter 5 . Evaluation of Simplified FSM processes

100

1 85 -1 -1.2%

2 54 -2 -3.6%

3 89 -2 -2.2%

4 103 34 49.3%

5 110 7 6.8%

6 68 4 6.3%

7 123 7 6.0%

8 115 -9 -7.3%

9 79 13 19.7%

10 114 -3 -2.6%

11 73 -17 -18.9%

12 35 4 12.9%

13 413 161 63.9%

14 190 -170 -47.2%

15 544 30 5.8%

16 186 0 0.0%

17 1141 193 20.4%

18 205 16 8.5%

19 58 -49 -45.8%

20 161 -112 -41.0%

21 347 -155 -30.9%

22 223 -37 -14.2%

23 525 -370 -41.3%

By applying a log-log transformation on data, it was possible to get another statistically

significant model:

 CFP = #FPr
1.00357

 × 1.588 × AvDGperFPr
1.0312

 (35)

Pr(>|t|) < 0.001 for each independent variable; the adjusted R
2
 = 0.968.

This model is characterized by MMRE = 16.8%, Pred(25) = 78.3%, error range = [-38,

79%]. Estimates and errors are reported in Table 49.

Table 49 Estimates obtained using equation

 (35)

P.Id Estimated Size [CFP] Error % Error

1 -10 -11.6% 11.6%

2 9 16.1% 16.1%

3 9 9.9% 9.9%

4 3 4.3% 4.3%

5 -7 -6.8% 6.8%

6 -3 -4.7% 4.7%

7 4 3.4% 3.4%

8 -31 -25.0% 25.0%

9 23 34.8% 34.8%

10 -7 -6.0% 6.0%

11 -5 -5.6% 5.6%

12 24 77.4% 77.4%

13 -48 -19.0% 19.0%

14 -38 -10.6% 10.6%

15 49 9.5% 9.5%

16 21 11.3% 11.3%

17 281 29.6% 29.6%

Chapter 5 . Evaluation of Simplified FSM processes

101

18 23 12.2% 12.2%

19 -22 -20.6% 20.6%

20 -51 -18.7% 18.7%

21 35 7.0% 7.0%

22 -99 -38.1% 38.1%

23 -46 -5.1% 5.1%

5.2.4 Results and observations

Answer to Q1

The first relevant result of the work described in this paper is that we can answer

positively to the first research question Q1 (During the requirements elicitation and

specification phase, is it possible to write progressively more complete and detailed

UML models that support progressively more accurate simplified CFP measurement

methods?).

In subsection 5.2.2 we described how to write UML models of user requirements that

support simplified methods for measuring CFP. In particular, we described UML

models that correspond to four completeness and detail levels (as depicted also in

Figure 39):

 a) At the most abstract level, the model represents just the list of functional

processes that are provided by the application being measured to functional users.

 b) At a slightly more detailed level, the model represents the data groups managed

by the application.

 c) At a further detailed level, the model specifies the data groups involved in each

functional process.

 d) At the most detailed level, the model includes all the details required to identify

the data movements involved in each functional process, i.e., the information

required to compute the size in CFP.

Answer to Q2

To answer question Q2 (What is the accuracy of the estimates provided by different

simplified CFP measurement methods?) we first built the models, then we evaluated

their accuracy.

Using the dataset described in Subsection 5.2.3 we checked the possibility of deriving

simplified measurement methods corresponding to each of the abstraction level listed

above. The most detailed models (level d) were used to measure the size in CFP

according to [33]. No methods corresponding to level b) could be found (more precisely,

no statistically significant model could be derived via OLS linear regression). For levels

a) and c) two types of methods were defined: those based on mean values of the

elements of the COSMIC method (like the mean size of functional processes or the

mean number of data groups per functional process) and those derived from linear

regression analysis. These estimation models and the accuracy of the obtained estimates

are given in Table 50.

Chapter 5 . Evaluation of Simplified FSM processes

102

Table 50 Simplified size estimation models and their accuracy

Model
MMRE Pred(25)

name formula

avg1 CFP = 7.3 × #FPr 36.6% 39.1%

reg1 CFP = -16.5 + 6.698 #FPr 22.7% 69.6%

avg2 CFP = AvDGperFPr × 1.8 × #FPr 19.3% 82.6%

reg2 CFP = -64.6 + 7.63 #FPr + 9.71 AvDGperFPr 19.8% 69.6%

log2 CFP = 1.588 × #FPr
1.00357

 × AvDGperFPr
1.0312

 16.8% 78.3%

The data reported in Table 50 were computed under the hypothesis that the measures

obtained via the official COSMIC method [33] are correct. COSMIC measures were

obtained by analyzing UML models that describe user requirements and are

measurement-oriented, i.e., they are built so as to contain all the information required by

FSM methods, as described in [3] and [2]. So, a measurer that bases his/her counting on

a well written UML model has very little chances of making mistakes.

It can be seen that the first method (the one suggested in [59], and named ―avg1‖ in

Table 50) does not yield very accurate estimates. This clearly appears also by looking at

the boxplots that represent the relative errors (Figure 48) and the absolute relative errors

(Figure 49). Since it could be argued that the heterogeneity of the dataset affected the

accuracy of this method, we computed the mean size of functional processes on a

homogeneous subset of ten applications, including all the real-life applications from the

same company: the accuracy obtained was only marginally better than the accuracy

reported in Table 50.

Figure 48 Boxplot of relative size estimation errors

Chapter 5 . Evaluation of Simplified FSM processes

103

Figure 49 Boxplot of absolute relative size estimation errors

By means of linear regression we obtained a definitely more accurate estimation model

that uses only the number of functional processes as independent variable (named

―reg1‖ in Table 50).

When looking for models that take into account both the number of functional processes

and the number of data groups involved in each functional process, we are able to define:

 A model (named avg2 in Table 50) that exploits the quasi-constancy of the number

of data movement per data group involved in a functional process.

 A model (named reg2 in Table 50) obtained via OLS linear regression.

 A model (named log2 in Table 50) obtained via OLS linear regression after log-log

transformation.

While model avg2 is clearly more accurate than model avg1, model reg2 appears

preferable to model reg1 in that both its mean and median magnitudes of errors are

closer to zero, and because it is less prone to give negative errors. According to the

latter observation, using reg2 it is less likely that an application size (hence, its

development effort) is grossly underestimated, with consequent potentially disastrous

consequences. Model log2 is –like reg2– less prone to give negative errors; moreover, it

features a quite little variance of absolute relative errors (see Figure 49).

Answer to Q3

Finally, concerning question Q3 (Do simplified CFP measurement methods provide a

level of accuracy that is proportional to the amount of information required?) we have to

address it on a qualitative basis, since we are not really interested in quantifying the

amount of information needed by each simplified measurement process. In fact, aims at

assessing if the effort needed to produce UML models that provide more and more

information is worth the improvement in accuracy of the size estimations that can be

obtained.

A first answer to Q3 is that progressing from a model like the one represented in Figure

40 to a model like the one in Figure 45 requires some effort, but allows to get better

Chapter 5 . Evaluation of Simplified FSM processes

104

distributions of estimation errors (as discussed above), if not a great increase in mean

accuracy. In practice, the risks connected with wrong estimates are decreased.

However, additional considerations depend on the development process being adopted.

If an organization uses UML for requirements modeling and the COSMIC method as

described in the manual [33] for size measurement, then models like those illustrated in

Figure 40 and Figure 45 will be produced anyway, during the modeling process. Thus,

using them to get early estimates of the application‘s size is just an opportunity that

comes for free. It is also interesting to note that in order to be able to compute the

parameter required by equation (25) and (28), or to be able to perform regression

analysis, full-fledged COSMIC measures (including #FPr, #DG, etc.) have to be

collected and stored in a historical data repository.

On the contrary, organizations that do not perform full-fledged COSMIC measurement

will not be able to collect historical data, including those data (#FPr, #DG, etc.) that are

needed to compute measure estimates. These organizations can still use UML-based

models for simplified measurement processes, but will have to use parameters derived

from measures from other organizations.

5.2.5 Threats to validity

A possible threat to internal validity is the limited number of projects in our sample.

Despite the relatively small numbers of data points, we still filtered out outliers (using

Cook‘s distance as an indicator), to make sure that the results are not unduly influenced

by a very small number of high-leverage points, even though this further reduced the

cardinality of the samples.

The main threat to the external validity of the study may come from the projects chosen,

which are a limited sample of a much larger population. However, this kind of threat is

typical in most empirical software engineering studies. Also, the sample of projects is a

―convenience‖ sample, i.e., it is made of projects that were selected because the data

that we needed for our study were available. Note that, however, we are not interested

here in specific models (e.g., we are not interested in the coefficients of the models), but,

rather, in the performance of the techniques we propose. At any rate, it is not easy to

assess the extent to which our results may apply in general.

There may be a threat to construct validity due to the use of MMRE, which has been

criticized in the past as an accuracy indicator [60]. To mitigate this risk, we used

MMRE along with other accuracy indicators. Our results show that they provide

concordant results as for the accuracy of the models we built, so the indications

provided by the set of our accuracy indicators can be deemed reliable.

5.2.6 Conclusions

It is not uncommon that a project manager needs an estimate of the functional size of

the software application to be built even before the requirement specification phase is

completed. Alternatively, project managers could simply want to limit the cost or time

needed to measure the functional size of the application to be built. In these cases,

simplified FSM methods are often used.

When UML is used in the early phases of development, it would be very convenient to

apply simplified FSM methods to UML models. In particular, during the requirements

Chapter 5 . Evaluation of Simplified FSM processes

105

specification phase, UML models grow in detail, thus providing the information

required by progressively more accurate size estimation methods. Actually, in this paper

we showed that it is possible to build UML models that support adequately the

application of two simplified measurement methods and the standard COSMIC method.

Based on the UML models, and using a dataset composed in large part of real-life

project data, we were able to define quantitative size estimation models based on only

the number of functional processes, or the number of functional processes and the

number of data groups used in each functional process. We showed that size estimation

methods‘ accuracy grows with the amount of information used. The models and their

accuracy are summarized in Table 50.

It is also important to observe that the information contained in the UML models

illustrated in sub-section 5.2.2 is just the information required to document applications‘

requirements properly. Therefore, size estimates obtained via simplified measurement

processes can be seen as ‗by products‘ of the progressive refinement of UML

requirements models.

Future work includes extending the dataset, to increase the reliability and to guarantee

the general validity of the results presented here.

Chapter 5 . Evaluation of Simplified FSM processes

106

This page intentionally left blank.

Chapter 6 . Conversion between FPA and CFP

107

Chapter 6 Conversion between FPA and CFP

Several software development organizations are considering to change functional size

measurement method from Function Point Analysis (FPA) [67] [10] to COSMIC [33],

mainly because the latter is more easily and generally applicable than FPA. Such

phenomenon is witnessed –for instance– by the growing number of COSMIC measures

in the ISBSG database [68].

However, moving from FPA to COSMIC implies that the experience bases funded on

Function Points (FP) become unusable. Since most organizations are not willing to

make their historical data no longer usable, converting functional size measures –

especially FP into CFP– is necessary and is a growingly interesting problem, in order to

continually use them. This problem (see for instance the discussion in [69]) leads to the

need of a conversion procedure that transforms FP measures into CFP measures. For the

sake of precision, it is correct to remember that the COSMIC method allows measuring

software that is structured in layers and peers, while FPA only addresses the

measurement of an entire software application. Accordingly, the problem of size

measure conversion applies only in the latter case.

The problem of converting functional size measures expressed in Function Points into

measures expressed in CFP has received much attention from researchers. The work

concerning convertibility among Functional size measures can be classified into three

main streams.

 Manual conversion.

 Theoretical conversion within an empirical range

 Statistically based conversion.

6.1 The analytical convertibility of FSM

In [7] we proposed to exploit the knowledge produced by the FPA counting process and

the similarity of FPA and COSMIC concepts in a procedure that guides the measurer in

deriving COSMIC BFC from FPA BFC, thus greatly simplifying the COSMIC sizing.

The procedure can be supported by a tool, which incorporates the knowledge of how

FPA concepts map onto COSMIC concepts, thus easing conversions.

6.1.1 The conceptual basis

Our approach to convertibility between FP and CFP is based on the observation that the

software models used by COSMIC and FPA have several elements in common, as

already recognized in [46]. Figure 50 shows the possible conversion procedures.

Chapter 6 . Conversion between FPA and CFP

108

Figure 50 Roadmap to resolve the problem

FPA and COSMIC are characterized by a first phase, in which BFC and their

characteristics are identified, and a second phase in which the size is computed as

follows:

Size = f (BFC) (36)

When dealing with a conversion from FP to CFP, FP = fFPA(BFCFPA) has already been

computed, thus FP (the size in IFPUG unadjusted function points) is known. The

conversion problem can be expressed as

CFP = fCOSMIC-FPA(FP) (37)

However, defining function fCOSMIC-FPA proved to be quite difficult. Therefore, we try a

different way. We star by observing that the problem of measuring the size in CFP is

articulated in the usual two stes:

 1) Identifying BFCCOSMIC

 2) Computing CFP = fCOSMIC(BFCCOSMIC)

Now, it is clear that computing CFP = fCOSMIC(BFCCOSMIC) would be straightforward, if

BFCCOSMIC were know, since it would simply require applying the COSMIC

counting procedure as described in [3]. The real problem is thus identifying the

BFCCOSMIC, but this could be also quite easy, if we were able to convert BFCFPA into

BFCCOSMIC. The feasible conversion road map is from BFCFPA to BFCCOSMIC, then to

CFP.

To convert BFCFPA to BFCCOSMIC, we can exploit the similarities among the two

methods‘ elements, as described in Table 51.

Table 51 FPA to COSMIC element mapping

FPA COSMIC

DET (in data file) Data attribute

RET Data Group

Transaction Functional process

FTR
Data Group(s) read or written in the

execution of a functional process

Chapter 6 . Conversion between FPA and CFP

109

DET (in transaction)

Attribute of a Data Group that is

subject of an Entry or Exit when

executing the corresponding functional

process

Set of DET crossing the

boundary of the application as

part of a transaction

Data movement of type Entry or Exit

FTR access within a transaction Data movement of type Read or Write

Some of the mappings given in Table 51 are mentioned in the COSMIC literature.

Namely, the fact that DET correspond to data attributes is mentioned in [33]; the fact

that FPA transaction correspond quite closely to COSMIC functional processes is

acknowledged in [33], as well as in [70] and [71]. The fact that FTR correspond to data

groups read or written in a functional process is implicitly acknowledged in [33] and

explicitly stated in [70].

The less obvious correspondence between FPA and COSMIC elements concerns data

groups.

It is clear that the concept of a COSMIC data group matches quite closely the concept of

FPA logic data file (as recognized in [70], for instance). Actually, most logic data files

contain just one RET: in those cases we have that one logic data file corresponds to one

RET and one data group. However, logic data files can contain multiple data subgroups

(the RET), while the concept of data subgroup is absent in the COSMIC method (more

precisely, such concept is mentioned when dealing with data exchanges between

software layers, that are not considered here, since we deal only with the measurement

of the application at the FUR level, as in FPA). According to the indications on data

groups given in [33] and the definitions of logic data files and RET given in [10], it

seems reasonable the COSMIC data group is mapped onto FPA RET.

Note that a consequence of mapping data groups onto RET is that when a FTR

corresponds to a multi-RET logic data file, multiple data groups are involved.

It is important to stress that the correspondences illustrated in Table 51 do not hold

always; however they hold in most cases. This is a very important point in practice. In

fact, we do not need that the mappings are always valid (in that case, a totally automatic

―translation‖ from FP to BFC would be possible, but at the cost of ensuring that each

enforced correspondence is valid, which requires some intelligence). Instead, since we

are looking for an efficient ―manual‖ conversion process, it is sufficient that the

described mappings hold on most occasions. So, the user performing a conversion can

just check for cases when the mappings do not hold and deal with them. As long as the

exceptions to the mappings described in Table 51 occur quite seldom, the conversion is

very fast.

6.1.2 Proposed procedure of our approach

So, the approach we propose is organized as follows:

 1) Convert FP software model elements into COSMIC software model elements. To

this end, make reference to Table 51. In most cases the conversion is straightforward.

In some particular cases, the mapping could be not applicable, and the converter has

to use his/her knowledge and judgment.

Chapter 6 . Conversion between FPA and CFP

110

 2) The derived COSMIC BFC and related information are used to size the software

application.

One could observe that this procedure configures a sort of ―double measurement‖. In

fact, at the end of the process we have both IFPUG and COSMIC measures, and both

are documented by the detailed description of the respective BFC.

This observation suggests that –especially if a suitable tool is available– it is more

efficient to perform the double measurement straight away, when the knowledge of

FUR is fresh in the mind of the measurer, rather than a real conversion a posteriori. That

is, when one measures an application, he/she can measure it according to both FP and

CFP. The effort required for this double measurement is expected to be just a little bit

greater than the effort required for applying one FSM method, thanks to the mapping

defined in Table 51.

A suitable tool could also contribute to make the additional effort required to perform

the second measure as little as possible. Ideally, we would like to get two measures at

one measure's cost.

6.2 Tool support

In this section, we describe the tool that was developed to support our conversion

approach. The tool is described via the use case ―Warehouse Software Portfolio (WSP)‖

quoted in Section 4.2.

6.2.1 Initiation

The initial view of the tool is illustrated in Figure 51. The user can provide basic

information concerning the project and the measurer, or switch directly to FPA or

COSMIC specific views.

Figure 51 Initial view

6.2.2 Counting FPA

The tool supports measurement according to FPA. The user is required to provide the

list of both data and transaction functions, and for each function the list of BFC (i.e.,

RET, DET and FTR).

In the FPA view (Tab ―FP‖), the tool provides two sub-views, one (Tab ―Data‖) for

describing the software model and the other (―Analysis‖) for computing the size.

Chapter 6 . Conversion between FPA and CFP

111

FPA view - Software model – Data sub-view

In the software model view (Tab ―Data‖ in Figure 52) it is possible to give the list of

ILF, EIF, EI, EO and EQ, and for each function the relevant characteristics can be

specified.

Consider for instance Figure 52: the user has already entered ILF Place (see Figure 28)

and has specified that such ILF contains a single RET (also named Place) and is

entering a new DET, whose name is Space.

Figure 52 DET input form

At the end of the data description process, the tool will include a complete description

of the data maintained by the WSP process, as shown in Figure 53.

Chapter 6 . Conversion between FPA and CFP

112

Figure 53 WSP data in the FP-software model specific views

FPA view - Software model – Transaction subview

The procedure for describing transactions is similar. The tool eases the identification of

software model elements as far as possible: for instance, when describing a transaction,

the user is presented the list ILF and EIF from which he/she can choose the FTR.

Consider for instance Figure 54: the user is specifying the FTR of the external query

QueryCustomers: the list of ILF and EIF is given, so that he/she can choose one.

Figure 54 FTR choice

Chapter 6 . Conversion between FPA and CFP

113

An interesting feature of the tool is that when specifying the DET of a transaction, it is

possible to tell if they are entering or exiting the application (or both), as illustrated in

Figure 55, where the AmountDue is specified as an outbound DET in the

QueryCustomers. This piece of information is not relevant for FPA, but is useful when

converting to CFP, since an entering DET can suggest the existence of an Entry data

movement, while an exiting DET suggests an Exit data movement.

Figure 55 Specifying a function’s DET

FPA view - Computes the size in FP

Once the BFCs have been properly identified, the tool automatically computes the size

in FP: the results of the computation are shown in Figure 56. The total size of the WSP

application is 77 FP (more precisely, 77 IFPUG Unadjusted FP).

Figure 56 Function Point count of FP

Other function

Of course, the tool supports saving and loading measurement data. It is also able to

export project data in csv (comma separated values), so that data can then be imported

Chapter 6 . Conversion between FPA and CFP

114

into spreadsheets, databases, and other tools for permanent storing or for further

elaboration.

6.2.3 Counting COSMIC

Similarly, the tool supports the counting of COSMIC FP. If the size of the given

software application has not yet been measured in FP, the measurer can proceed with a

―native‖ COSMIC measurement. In such case, the user is required to list the data groups,

to identify the functional processes, and –for each functional processes– to tell which

data movement are required. When describing a data movement, the list of data groups

is made available, so that the user can pick the involved one.

If the size of the given application has already been measured in FP and the measure in

CFP has to be computed, it is possible to exploit the convertibility concepts described in

subsection 6.1.1.

Suppose that we have measured the WSP application in FP and we want to size it in

CFP as well, we switch to the COSMIC view and find it empty, as expected (Figure 57)

Figure 57 Empty COSMIC view

CFP view - Software model

When entering data groups, the tool suggests picking one of the logical data files

identified during the FPA, as shown in Figure 58.

Figure 58 Specifying a data group after a FP logical data file

Chapter 6 . Conversion between FPA and CFP

115

Of course, it is always possible to ignore the suggestions of the tool and insert different

data. This is usually the case for transient data groups, which do not correspond to any

FPA logical data file. The situation for the SWP after data group specification –not

considering transient data groups– is illustrated in Figure 59.

Figure 59 Data group

CFP view - Software model-Functional process

When inserting functional processes, the tool suggests picking them from the list of

FPA transactions. It is thus easy to create the list of functional processes from the list of

FPA transactions. The result is shown in Figure 60.

Figure 60 Functional processes in the CFP specific view

When entering data movements, the tool presents the list of data groups that have

already been defined, since every data movement has to involve a data group. If the

involved data group is not in the list, then the user has to add it. For instance, specifying

data movements of the AddCustomer functional process is illustrated in Figure 61.

Chapter 6 . Conversion between FPA and CFP

116

When considering the exits of the process, it is likely that the user realizes that a

diagnostic is issued when the customer to be added is already in the database: transient

data group CustomerAlreadyPresentErr is thus added to the list of data groups.

Figure 61 Data movement specification

COSMIC view - Computes the size in CFP

When all the data movements have been specified, the tool computes the total size in

CFP, as illustrated in Figure 62. The resulting size is 83 CFP, slightly different from the

size (81 CFP) obtained via a direct application of the COSMIC measurement process as

reported in [33]: this difference is due to the fact that we based our counting on FUR

that are slightly different from those reported in [33]; besides, we followed the

indications of [39], which were not yet available when the WSP was described and

measured in [33].

17
27
27
12
83

Figure 62 CFP count

6.3 Tool validation

In order to further test the proposed approach, we used the tool to size the tool itself.

Although this tool is not a very large piece of software, it is larger than about 40% of

the new development projects measured according to IFPUG Function Points appearing

in the ISBSG dataset [68].

Chapter 6 . Conversion between FPA and CFP

117

Table 52 Results of FPA for the tool in section 6.2

Function
Type

Complexity

Low Average High Size

ILF 14 0 0 98

EIF 0 0 0 0

EI 40 4 0 136

EO 2 0 0 8

EQ 11 1 3 55

Total 297

The first author of [7] used the tool to measure the tool itself according to FPA only.

The results of the measurement are reported in Table 52.

The third author of [7] was given the FPA measures and model produced by the first

author and used the tool to derive the COSMIC measure, using the conversion

capability of the tool. In the meantime, the first author used the tool to measure it

according to the COSMIC methods in ―native‖ mode, that is, without using the

conversion capabilities of the tool. The results of the measures are given in Table 53.

Table 53 Results of COSMIC measurement of the tool presented in Section 6.2

 Author 1 Author 3

Functional processes 60 60

Entries 60 69

Exits 57 82

Reads 76 97

Writes 70 70

COSMIC size 263 318

We gathered the data of the two cases in Table 54 to facilitate the analysis.

Table 54 Data gathered from the two cases study

Type of Values Initial Converted (Results) Standard

Type of results FPA CFP CFP CFP

Case
1^ 77 83 82 81

2^ 297 263 318 /

Measurement
mode

Using the
tool

Using the
tool

Using the
tool

via direct
application
of COSMIC

Performer No.1 author No.1 author No.3 author CASE

Ability of
performer

quite
experienced

quite
experienced

little
experienced

quite
experienced

6.4 Lessons learned and conclusions

6.4.1 Lessons learned from the first case study

In conclusion, the tool effectively supports not only the sizing of the WSP application in

terms of Function Points, but also the conversion of the measure into COSMIC

Function Points.

Chapter 6 . Conversion between FPA and CFP

118

It must be noted that –besides the availability of the BFCFPA and their details– the

conversion process needs that some knowledge about the process is available. Such

knowledge is partly made available by the tool: for instance, the information that in the

PrintCustomerItemList process the Value of each item and the total value of all items

are output can be retrieved from the data associated with FPA transaction function

(there are corresponding outbound DET). However, getting a clear idea of the role of

each FTR and DET can require some effort, if the process details are not known.

Because of this reason, the most efficient way of performing the conversion is to do it

on the fly, while measuring the size in FP. In fact, in this case, the procedure would be

organized as follows:

 Step 1: Processes and data are analyzed and modeled according to FPA rules;

 Step 2: The corresponding COSMIC functional process and data groups are derived;

since correspondences are suggested by the tool according to Table 51, this step is

usually quite straightforward.

 Step 3: Data movements are specified. This step is eased by the fact that the

processes have just been analyzed and data groups have already been defined.

If the conversion is made some time after the FPA measurement, step 3 is less

straightforward, since the knowledge of the processes is no longer fresh, and has to be

―reconstructed‖ with some effort.

6.4.2 Lessons learned from the second case study

The results of the measures are given in Table 53. It is easy to see that in this case the

differences are larger than for the WSP system. We analyzed in details the differences

and found two main types of reasons for differences in the measured sizes:

 Different interpretations of requirements. For instance, the two authors had different

ideas about the feedback that the system has to provide to the user after performing

(or not performing) some operations.

 Different interpretations of COSMIC counting rules in very specific cases. For

instance, when some data is deleted, it is not clear whether the fact that the system

shows nothing in place of the original data should involve an exit (i.e., writing

―nothing‖ is an exit?).

In conclusion, we noted, from Table 54, that the tool‘s performance is only as good as

its user‘s. In fact, during the modeling phase the tool acts as a simple editor, letting the

user create and define FPA and/or COSMIC elements as he/she considers correct. Also

in the ―conversion‖ phase, the tool just highlights possible correspondences among FPA

and COSMIC elements, but the responsibility of accepting the suggestions is ultimately

with the user.

Actually, as described in Section 6.1.1, the ―intelligence‖ of the tool is limited to the

mappings among FPA and COSMIC concepts (see Table 51). Accordingly, our tool is

not comparable with those that aim at automatically measuring the given FUR. In order

to get a smarter support from the tool, it should be necessary to provide the tool with

additional information. For instance, in principle one could think of deriving

information concerning a FSM method form a model specifically built to support FSM,

as described in [26]. However, this procedure is out of the scope of the work presented

here. It could be the objective of future work.

Chapter 6 . Conversion between FPA and CFP

119

6.4.3 Conclusion

In conclusion, the tool effectively supports not only the sizing of the WSP application in

terms of Function Points, but also the conversion of the measure into COSMIC

Function Points.

The case study showed that the approach is effective. However, we found out that even

though the data groups and functional processes can be identified very easily on the

basis of the FPA software model, identifying the type of data movements in which each

data group is involved is not so immediate. To overcome this problem, two strategies

are possible.

A first strategy consists in double measurement. When measuring the given application,

each process is measured according to both FPA and COSMIC methods. This procedure

costs very little more than applying a single measurement method. In fact, once a

transaction has been measured according to FPA, the corresponding COSMIC

functional process and data groups involved are immediately known, and identifying the

data movements is very easy, thanks to the fresh analysis of the process.

A second strategy –which can be applied at any moment after FPA– requires exploiting

all the details of transactions that were recorded. For instance, knowing that in a given

transaction a given DET crosses the application boundary inbound suggests that the data

group corresponding to the logic data file to which the DET belongs is subject to an

Entry data movement, in the functional process corresponding to the given transaction.

This second strategy could also greatly benefit from automated support. The tool could

look for the DET involved in transactions, identify the logical data file they belong to,

identify the corresponding data group, and suggest the proper data movement according

to the direction of the DET movement. We plan to extend the tool to implement this

type of functionality.

Finally, it is worth stressing that the proposed technique is applicable also to convert

COSMIC measures into FP measures, though this is less often required. Experimenting

with this type of conversion is also among future objectives.

Chapter 6 . Conversion between FPA and CFP

120

This page intentionally left blank.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

121

Chapter 7 Investigation of statistical correlations

between FSM and Object-Oriented Measures of

Requirements models

It has been shown that functional size measures can be derived from UML models of

requirements. In particular, if UML models are measurement-oriented, i.e., if they were

written with the goal of clearly representing the elements upon which functional size

emasurment is based, it is easy to identify BFC and all those elements that contribute to

size measures. However, the analysis of UML diagrams to identify BFC and the

elements that have to be taken into consideration to compute functional size measures is

still a manual process. On the contrary, it is very easy to automatically derive object-

oriented measures –like those proposed by Chidamber and Kemerer [111]– from UML

models. So, if we were able to find an association (and the corresponding quantitative

model) between the object-oriented measures of a measurement-oriented UML model

and the functional size measures derived from the same UML model, we could exploit

this knowledge to simplify the measurement.

The situation is depicted in Figure 63. It is noticeable that activity ―Object-oriented

measurement‖ is fully automatic, while activity ―Identification of factors characterizing

the SW application‖ is performed manually. In principle, the automation of the latter

activity would be possible, but it would imply either rather sophisticated expert

reasoning, or a decoration of the input model with information that could help the

counting program in difficult decisions (e.g., what is the main purpose of a process). In

practice, till now no tool implementing fully automated FSM has been recognized

compliant with the standards.

Figure 63 FSM Vs. OO measure

If we were able to find and model the relationship between OO measures and functional

size measures, we could automatically measure the UML models and

 Estimate the functional size based on the OO measures, or

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

122

 Use the OO measures in place of the functional size measures, which would be no

longer needed.

7.1 Object-oriented measurement

Before describing the work done, let‘s have a look at the measures that can be obtained

from UML diagrams. After a brief survey of the available tools, we selected SDMetrics

[54] as the most complete, mature, usable, and easily available tool.

SDMetrics accepts as input XMI and is able to measure nine UML diagrams, including

sequence diagram, activity diagrams and use cases diagram. SDMetrics calculates about

120 measures and is also able to evaluate rules, covering all UML diagram types. After

the initial configuration, measurement is performed automatically.

How to carry out the OO measurement using SDMetrics

In order to correctly carry out the OO measurement using SDMtrics, a set of project

files, such as XML Source File, XMI Transformation File, Metamodel Definition File,

and Metrics Definition File, are needed to be prepared and specified (only the first one

is obligatory). Figure 64 [112] illustrates the role of the project files.

Figure 64 SDMetrics Project files

XMI Source File

SDMetrics works on XMI file generated from a UML case tool for extracting the

needed information (such as attributes of a class, methods and their parameters, etc.).

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

123

This is the input of the SDMtrics and it includes all the information about the elements

in the model being measured. We use the StarUml modelling tool to construct the

models and export relative XMI files.

The SDMetrics metamodel definition file

The SDMetrics metamodel defines which UML model elements (e.g., classes, packages,

associations, and so on) SDMetrics knows about, and what information is stored with

each UML model element. This information is used to define and calculate design

metrics.

The SDMtrics XMI Transformation File

XMI transformation file specifies how to retrieve the information pertaining to each

SDMetrics metamodel element and its attributes from the XMI file.

Metrics definition file

Metrics definition file defines the set of metrics to be calculated for your UML model.

The file contains a list of definitions of metrics, as well as sets (sets of UML elements,

sets of values), rules and word lists, relation matrices, literature reference and glossary

terms.

7.2 Organization of the empirical investigation

The research question we addressed is the following:

Is there a quantitative relationship that links functional size measures (namely, Function

Points and COSMIC Function Points) of an application to some object-oriented measure

of the UML model that describes the requirements of the same application?

In order to answer this question, we took the requirement specifications of a set of 11

software applications; then

1. UML measurement-oriented models of requirements were built;

2. Functional size measures were derived from models;

3. OO measures of UML models were obtained using SDmetrics;

4. Possible correlations between the measures obtained at steps 2 and 3 were studied,

using statistical methods.

The process described above was carried out for both Function Point Analysis and the

COSMIC method.

7.3 Datasets

In this section we give the datasets resulting from the measurement activities described

in above.

Table 55 Measures collected according to the FPA method

Proj

ID UFP ILF EIF EI EO EQ

Num_

ILF

Num_

EIF

Num_

EI

Num_

EO

Num_

EQ

AvFTR

perTr

1 160 98 0 49 4 9 14 0 12 1 3 2.00

2 140 56 25 46 4 9 8 5 11 1 3 2.93

3 84 35 5 30 4 10 5 1 9 1 3 1.46

4 163 84 0 66 4 9 12 0 18 1 3 2.18

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

124

5 128 49 0 66 4 9 7 0 19 1 3 2.26

6 130 63 0 54 4 9 9 0 14 1 3 2.06

7 78 21 0 32 12 13 3 0 9 3 4 1.69

8 107 35 10 48 14 0 5 2 12 3 0 2.13

9 102 42 0 31 8 21 6 0 9 2 5 2.13

10 79 42 5 28 4 0 6 1 7 1 0 3.13

11 105 49 0 56 0 0 7 0 17 0 0 1.29

Table 56 Measures collected according to the COSMIC method

ProjID CFP

Num_

FPr

Num_

DG Entry eXit Read Write

AvDM

perFPr

AvDG

perFPr

1 93 15 15 29 25 16 23 6.20 2.47

2 83 14 12 18 18 26 21 5.93 2.86

3 66 13 7 20 19 15 12 5.08 2.00

4 146 22 16 50 29 35 32 6.64 2.41

5 154 24 7 37 42 36 39 6.16 2.21

6 102 18 12 28 27 23 24 5.67 2.28

7 86 16 3 19 30 27 10 5.38 1.69

8 92 15 7 20 28 30 14 6.13 2.40

9 86 16 7 22 24 23 17 5.38 2.31

10 65 8 9 20 16 11 18 8.13 2.88

11 99 17 7 31 30 21 17 5.82 1.29

The measures obtained from our FPA-oriented models are given in Table 57.

Table 57 OO measures obtained from FPA-oriented UML models

Proj

ID

Num_

Class

Num_

Attr

Num_

Met

AvMet

perClass

AvAtt

perClass

Num_

UseCase

Num_

Msgs

Num_

Sent

Msgs

Num_

Rec.

Msgs

AvMsgs

perClass

AvMsgs

perSD

1 17 88 65 2.04 3.67 15 127 44 83 7.47 10.62

2 13 53 38 2.92 4.08 22 104 34 70 8.00 8.00

3 7 36 38 5.43 5.14 12 64 19 45 9.14 5.33

4 17 49 55 3.24 2.88 23 128 44 84 7.53 5.57

5 8 34 27 3.38 4.25 24 114 37 77 14.25 4.75

6 15 39 36 2.40 2.60 19 111 39 72 7.40 5.84

7 3 11 16 5.33 3.67 16 65 26 39 21.67 4.06

8 7 29 20 2.86 4.14 15 65 26 39 9.29 4.33

9 8 30 37 4.63 3.75 17 91 34 57 11.38 5.35

10 9 19 33 3.67 2.11 7 70 24 46 7.78 10.00

11 7 25 28 3.11 3.44 18 75 29 46 10.71 9.61

The measures obtained from our COSMIC-oriented models are given in Table 58.

Table 58 OO measures obtained from COSMIC-oriented UML models

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

125

Proj

ID

Num_

Class

Num_

Attr

Num_

Met

AvMet

perClass

AvAtt

perClass

Num_

UseCase

Num_

Msgs

Num_

Sent

Msgs

Num_

Recv

Msgs

AvMsgs

perClass

AvMsgs

per

UseCase

1 17 86 0 2.17 3.74 15 44 44 83 5.29 10.35

2 13 44 38 2.92 3.38 22 104 34 70 8.00 4.73

3 7 36 34 4.86 5.14 12 64 19 45 9.14 5.33

4 17 47 54 3.18 2.76 23 128 44 84 7.53 5.57

5 8 34 26 3.25 4.25 24 114 37 77 14.25 4.75

6 15 39 38 2.53 2.60 19 110 39 71 7.33 5.79

7 3 11 9 3.00 3.67 16 65 26 39 21.67 4.06

8 7 24 10 1.43 3.43 15 65 26 39 9.29 4.33

9 8 30 11 1.38 3.75 17 77 29 48 9.63 4.53

10 9 19 32 3.56 2.11 7 70 24 46 7.78 10.00

11 7 23 25 2.78 3.22 18 77 29 48 8.56 9.65

7.4 Analysis

Linear regression was applied to the data described in the previous section, to find

statistically significant models.

As is usual in empirical software engineering studies, we considered models having p-

value < 0.05. Other validity conditions –like the normal distribution of residuals– were

taken in due account.

Outliers were identified by means of Cook‘s distance.

The multivariate models described below are characterized by non-correlated

independent variables.

Given the relatively small number of data points, to avoid overfitting, intercepts were

forced to be null; i.e., all regression lines pass through the origin. This is reasonable,

since an application having a null object oriented measure cannot account for non-null

functional size.

7.4.1 FP vs. OO measures

In the following paragraphs the statistically significant models found from our FPA-

oriented models are described.

7.4.1.1 UFP vs. Number of classes

A first model associates the size in UFP to the number of classes (the regression line is

shown in Figure 65):

UFP = #Class ×10.56 (38)

The model is characterized by R
2
 = 0.942. No outliers were found.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

126

Figure 65 UFP vs. Num_Class regression line

The accuracy of the model is characterized by:

 MMRE = 22.7%

 Pred(25) = 63.6%

 Error range = (-59.4%, 21.8%)

The distribution of model‘s relative residuals is described in Figure 66.

Figure 66 UFP vs. Num_Class residuals’ distribution

7.4.1.2 UFP vs. Number of attributers

A second model associates the size in UFP to the number of attributes (the regression

line is shown in Figure 67):

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

127

UFP = #Attr×3.60 (39)

The model is characterized by R
2
 = 0.976. Three outliers were excluded in the

computation of the regression.

Figure 67 UFP vs. Num_Attr regression line

The accuracy of the model is characterized by:

 MMRE = 26.8%

 Pred(25) = 63.6%

 Error range = (-49.2%, 98.2%)

The distribution of model‘s relative residuals is described in Figure 68.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

128

Figure 68 UFP vs. Num_Attr residuals’ distribution

7.4.1.3 UFP vs. Numer of methods

A third model associates the size in UFP to the number of methods (the regression line

is shown in Figure 69):

UFP = #Met×3.28 (40)

The model is characterized by R
2
 = 0.936. One outlier was excluded in the computation

of the regression.

Figure 69 UFP vs. Num_Met regression line

The accuracy of the model is characterized by:

 MMRE = 25.3%

 Pred(25) = 45.5%

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

129

 Error range = (-39.5%, 46.5%)

The distribution of model‘s relative residuals is described in Figure 70.

Figure 70 UFP vs. Num_Met residuals’ distribution

7.4.1.4 UFP vs. Number of SentMessage

A fourth model associates the size in UFP to the number of SentMessage (the

regression line is shown in Figure 71):

UFP = #SentMessage×3.57 (41)

The model is characterized by R
2
 = 0.989. No outliers were found.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

130

Figure 71 UFP vs. Num_SentMessage regression line

The accuracy of the model is characterized by:

 MMRE = 9.9%

 Pred(25) = 100.0%

 Error range = (-19.2%, 19.1%)

The distribution of model‘s relative residuals is described in Figure 72.

Figure 72 UFP vs. Num_SendMessage residuals’ distribution

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

131

7.4.1.5 UFP vs. Number of class, Average number of methods per each
class

A fifth model associates the size in UFP to the number of class and the average number

of methods per each class:

UFP = #Class× 8.13 + #AvMetperClass×9.10 (42)

The model is characterized by R
2
 =0.972. No outliers were found.

The accuracy of the model is characterized by:

 MMRE = 14.6%

 Pred(25) = 72.7%

 Error range = (-25.2%, 34.9%)

The distribution of model‘s relative residuals is described in Figure 73.

Figure 73 UFP vs. Num_Class and AvMetperClass residuals’ distribution

7.4.1.6 UFP vs. Number of methods, Average number of attributes per
class

A sixth model associates the size in UFP to the number of methods and the average

number of attributes per class:

UFP = #Met × 2.07 + #AvAttperClass×14.11 (43)

The model is characterized by R
2
 = 0.981. Two outliers were excluded in the

computation of the regression.

The accuracy of the model is characterized by:

 MMRE = 17.8%

 Pred(25) = 81.8%

 Error range = (-14.6%, 79.9%)

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

132

The distribution of model‘s relative residuals is described in Figure 74.

Figure 74 UFP vs. Num_ Met and AvAttperClass residuals’ distribution

7.4.2 CFP vs. OO measures

In the following paragraphs the statistically significant models found from our

COSMIC-oriented models are described.

7.4.2.1 CFP vs. Number of attributes

A first model associates the size in CFP to the number of attributes (the regression line

is shown in Figure 75):

CFP = #Attr×3.43 (44)

The model is characterized by R
2
 = 0.929. Three outliers were excluded in the

computation of the regression.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

133

Figure 75 CFP vs. Num_Attr regression line

The accuracy of the model is characterized by:

 MMRE = 50.9%

 Pred(25) = 54.5%

 Error range = (-56.1%, 217.6%)

The distribution of model‘s relative residuals is described in Figure 76.

Figure 76 CFP vs. Num_Attr residuals’ distribution

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

134

7.4.2.2 CFP vs. Number of sent messages

A second model associates the size in CFP to the number of SentMeaasges (the

regression line is shown in Figure 77):

CFP = #SentMessages×3.26 (45)

The model is characterized by R
2
 = 0.994. Four outliers were excluded in the

computation of the regression.

Figure 77 CFP vs. Num_SentMessages regression line

The accuracy of the model is characterized by:

 MMRE = 16.9%

 Pred(25) = 81.8%

 Error range = (-21.8%, 54.0%)

The distribution of model‘s relative residuals is described in Figure 78.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

135

Figure 78 CFP vs. Num_Sent_messages residuals’ distribution

7.4.2.3 CFP vs. Number of classes, Number of Use Case

A third model associates the size in CFP to the number of class and the number of Use

Case:

CFP = #Class×1.48 + #UseCase×4.89 (46)

The model is characterized by R
2
 = 0.988. Two outliers were excluded in the

computation of the regression.

The accuracy of the model is characterized by:

 MMRE = 13.5%

 Pred(25) = 81.8%

 Error range = (-27.0%, 53.6%)

The distribution of model‘s relative residuals is described in Figure 79.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

136

Figure 79 CFP vs. Num_Class and Num_UseCase residuals’ distribution

7.5 Discussion of results

In Table 59, we summarized the results obtained in previous section.

Table 59 Model-based Measurement-oriented OO estimation models and their accuracy

FSM ID Factor(s) Model R
2
 MMRE Pred(25)

FPA 1 Class UFP = #Class×10.56 0.942 22.7% 63.6%

2 Attribute UFP = #Attr×3.60 0.976 26.8% 63.6%

3 Method UFP = #Met×3.28 0.936 25.3% 45.5%

4 SentMessage UFP = #SentMessage×3.57 0.989 9.9% 100.0%

5 Class,

AvMetperClass

UFP = #Class×8.13 +

#AvMetperClass×9.10

0.972 14.6% 72.7%

6 Method,

AvAttperClass

UFP = #Met × 2.07 +

#AvAttperClass×14.11

0.981 17.8% 81.8%

CFP 7 Attribute CFP = #Attr×3.43 0.929 50.9% 54.5%

8 SentMessage CFP =

#SentMessages×3.26

0.994 16.9% 81.8%

9 Class, UseCase CFP = #Class × 1.48 +

#UseCase×4.89

0.988 13.5% 81.8%

Statistical analysis showed that both FPA and COSMIC functional size measures appear

correlated to object-oriented measures. In particular, associations with basic OO

measures were found:

 FP appear associated with the number of classes, the number of attributes and the

number of methods

 CFP appear associated with the number of attributes.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

137

This result suggests that even a very basic UML model, like a class diagram, can

support size measures that appear equivalent to functional size measures (which are

much harder to obtain).

Both FPA and COSMIC functional size measures appear associated with the number of

messages sent by a class in sequence diagrams (i.e., in elementary/functional processes).

Moreover, the model that gives functional size as a function of the number of messages

sent by a class is the most accurate for FPA and the second most accurate for COSMIC.

This is noticeable, but not very surprising. In fact, the number of messages sent is

derived from sequence diagrams, which convey quite detailed descriptions of

elementary/functional processes. Noticeably, this result is coherent with the findings

described in Section 5.2.

Therefore, practitioner can use our Model-based Measurement-Oriented object-oriented

(MbMO-OO) method as a simplified method to measure OO applications.

However, analysis on the models listed in Table 59 shows that, although FSM rules are

considered during the modeling process, several models consider only ―plain‖ UML

elements (as the number of classes or the number of attributes) and no elements

contributing to functional size (like FTR or RET). Based on this observation, we could

measure UML models built in the usual way: we do not need to build measurement-

oriented model that incorporate FSM concepts. For example, the numbers of classes and

use cases are the same in customary UML models and in COSMIC-oriented UML

models; therefore the analyst does not have to consider FSM rules when he/she models

the FURs. The model of CFP = #Class × 1.48 + #UseCase×4.89 (see Table 59) can be

applied to the measures (#Class, #UseCase) obtained from a UML model built

according to plain object-oriented analysis criteria. In this way, the modeling &

measurement process can be much simpler and cost less.

7.6 Threats to validity

The dataset used for the empirical study described above is relatively small. Hence, it is

possible that it is not representative of any possible application.

7.7 Conclusions

The results obtained tend to confirm that, having modeled an application‘s functional

user requirements using UML and highlighting the typical elements of software models

used by FSM methods (i.e., elementary/functional processes, data files/groups, etc.), the

measures obtained automatically by means of measurement tools like SDMetrics are

essentially equivalent to those obtained by certified functional size measurers.

The small cost, rapidity, accuracy, and repeatability of UML measurement suggests that

manually performed FSM methods could be abandoned. However, the results reported

here need further experimental evidence, before we can safely suggest practitioners to

drop FSM methods.

Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented

Measures of Requirements models

138

This page intentionally left blank.

Chapter 8 . Related work

139

Chapter 8 Related work

This chapter consists of two parts: one is about simplified function points, the other part

is about the conversion between FPA and COSMIC.

The generic concepts of Function Points Analysis were published in the late 1970s; later,

more detailed measurement rules were developed to improve consistency of

measurement. Due to lack of good software documentation, it is not always possible to

apply all the detailed rules, and measurers must fall back on approximation techniques.

[73]

In [73] M. Lelli and R. Meli pronounced this as a paradox: Size estimation is necessary

when we do not have enough information (thus, early estimation methods must be used

to obtain it). When we can measure with the greatest accuracy, we no longer need that

information any more.

In order to research whether FPA in the early phases is a realistic option, the committee

―FPA in the early phases‖ was established in September 1989. The committee

investigates whether FPA can be used to perform an indicative size estimate before a

complete logical (detailed) design is available.[41]

8.1 Terms

There are a large number of methods for function size measurement, and there are even

more simplified methods. But there is no standard for the naming of simplified methods.

Some key words often used include early, estimated, approximation, quick, fast, easy,

predicting, simplified and so on.

8.1.1 Early measurement and the lifecycle of software development

―Early‖ is a relative concept. Its semantic context is the software development life cycle.

In [73] M. Lelli and R. Meli described the various stages of a project life cycle and the

type of estimation approach - ranging from approximate to accurate approach -

applicable to the various project stages (i.e., requirements definition, analysis, design,

implementation, test and setup), as described in Figure 80.

Figure 80 Approximate estimation and accurate measurement of the project life cycle

In [5] del Bianco et al. explored the relationships between the simplified measurement

and the various FUR specification artefacts (such as use case diagram, class diagram,

component diagram, and sequence diagram).

Chapter 8 . Related work

140

8.1.2 Level of accuracy, estimation, and measurement

In [110] [74] six accuracy levels for software sizing were defined and described (see

Table 60). Each size estimation technique can be classified based on the following:

detailed linked and flagged measure, detailed linked measure, detailed measure, default

complexity measure, rough measure, and size approximation.

Table 60 Accuracy levels for software sizing and basic attributes of sizing levels

Lev. Level Name FSM result

1
Detailed linked and
flagged measure

Most detailed

Easily auditable

Accurate (+/-5%)

Very well documented

Easily maintained

2
Detailed linked

measure

More detailed

Easily auditable

Accurate (+/-5%)

Very well documented

Easily maintained

3 Detailed measure

Detailed

Auditable

Accurate (+/-10%)

Well documented

Easily maintained

4
Default complexity

measure

Less detailed

Auditable

Reasonably accurate (+/-15%)

Documented

Maintained

5 Rough measure

Low detailed

Less accurate (+/-20%)

Documented(issues and assumptions)

Skeleton(base for more refined measurement)

6 Size approximation

Very little detailed

Accurate (+/-30%)

Not documented

 Not maintained

There are a large number of software functional size estimation techniques available for

levels 4 to 6. During a project, it is likely that you will start with an approximate

technique close to Level 6, and move towards Level 1 as the project characteristics

become better defined. In fact, measurement can be conducted to a number of ―accuracy

levels‖, based on the purpose of the measurement and desired accuracy of the result, the

quality of project or application documentation available, and the time in which the

measurement must be completed. It is important to choose an estimation technique

based on the documentation, time available, and the measurement purpose. As the

project progresses, the size estimate should be validated and refined (eventually moving

from low-accuracy to high-accuracy techniques). This observation is suitable not only

to select the measurement method, but also to analyze and establish the measurement

method.

Chapter 8 . Related work

141

8.2 Methods adhering to IFPUG FA definition

In order to evaluate whether FPA in the early phase is a realistic option, the committee

―FPA in the early phases‖ was established in September 1989. From then, many

techniques for early size estimation have been proposed for FP, such as component

sizing technique by Putnam and Myers [94] and the Early and Quick Function Point

size estimation techniques by Conte et al. [95].

8.2.1 E&Q technique

The E&Q technique uses both analogical and analytical classification of functions; it

permits the use of different levels of detail for different branches of the system. It was

originally proposed in the approach of Early Functions Points (EFP) by R. Meli in 1997

for FPA. The EFP method provides a breake-down, hierarchical structure of the

software functional items. In [109] L. Santillo proposed how to use the EFP in practice

and evaluated the EFP through one year of actual use and more than 20 cases. This

technique has proved to be very effective, providing a result within ± 10% of the actual

size in most cases.

The general E&Q technique fully complies with the concepts, definitions and the

structure of any functional size measurement method, as defined by ISO/IEC 14143:

1998. Thus, this technique can be extended to any Functional Size Measurement

method that is found to be compliant with the ISO/IEC standard. Then, the E&Q

technique has evolved and has been generalized, extending its applicability domain to

the COSMIC measurement method [95]. In 2004, E&QCFFP 2.0 was proposed. The

empirical evaluation of simplified estimation methods for FP indicates that some of

these methods actually yield reasonably accurate estimates [6].

8.2.2 Average value

These methods – such as Estimated NESMA method [41], ISBSG average weights,

simplified FP [18], prognosis of CNV AG [42] and so on - do not require the weighting

of functions; instead each function is weighted with average values.

In [75], Vogelezang summarized the approximate technique and the refined

approximate technique given in the COSMIC measurement manual. In the approximate

technique, the average size of a functional process is multiplied with the number of

functional processes the software should provide. The refined approximate technique

uses the average sizes of small, medium, large and very large functional processes. The

accuracy of the COSMIC-FFP approximate technique is good enough with less than

10% deviation on a project portfolio and less than 15% on a project within a specified

environment [75].

Conversion between FP and COSMIC

An approach to simplified CFP measurement was obtained as a side effect of a work on

convertibility between FP and CFP measures. In [72] Lavazza used the dataset

published in [59] to analyze the relationships existing between FP and CFP in general,

and between CFP and the non-weighted Base Functional Components of FP in

particular. By means of linear OLS regression a statistically significant model was

Chapter 8 . Related work

142

found, which can be used to estimate the size in CFP, given the number of transactions

identified via Function Point Analysis. This can be considered a sort of simplified CFP

measurement method, since the identification of transaction functions is an activity

much simpler and shorter than both the full fledged CFP and FP counting processes.

8.2.3 Size estimation based on a single component of FP

Some methods extrapolate the FP counts from the countable components (usually the

Internal Logical Files) using statistical methods (mostly regression analysis). Some

simplified methods – Mark II, NESMA‘s Indicative FP, Tichenor ILF Model, Prognosis

by CNV AG, and ISBSG Benchmark – were constructed according to such technique.

8.2.4 Measure from models

The possibility of basing CFP measurement on UML models of user requirements has

been widely studied [2], [76], [77], [78], [79], [80], [81], [82], [83], [84]. Some of the

mentioned papers also proposed approaches to the automation of the measurement of

UML models, and a few also prototyped such tools. All of the mentioned papers address

the standard COSMIC method as described in [33], thus they consider the models that

are available after the completion of the requirements elicitation and specification phase.

On the contrary, hardly any works explore the relationship between the UML model

process and the simplified FSM methods.

8.2.5 “Smart” technique

In [14], Santillo suggested probabilistic approaches, where the measurer can indicate the

minimum, medium and maximum weight of each BFC, together with the expected

probability that the weight is actually minimum, medium or maximum. This leads to

estimate not only the size, but also the probability that the actual size is equal to the

estimate.

8.2.6 Measurement in iterative process

Hericko and Zivkovic address size estimation in iterative development [61]. Their

approach enables early size estimation using UML. However, they do not consider

simplified measurement processes (hardly any work was devoted to defining simplified

measurement processes for the COSMIC method). In fact, their method deals with the

evolution of the functionality through iterations, rather than the level of detail that can

be achieved in the requirements elicitation and specification phase, as we do.

8.3 Function Points like measures

Since the introduction of Object Oriented technologies and web technologies, a number

metrics were proposed to evaluate the characteristics of object-oriented design, to

estimate the development effortm and for other purposes. Among these are Use Case

Points [62], Class Points (FP-like) [64], UML Points (UCP+Class Point) [85],

Predictive Object Points (POPs) [86], Object-Oriented Function Points (OOFP) [87],

Object Oriented Design Function Points [88], Web Points [89], Pattern Points (PP) [90],

and TP method (―Transactions‖ and ―Paths‖) proposed by Robiolo et al. [91]. The

common characteristic of these proposals is that they, although inspired by FPs, do not

Chapter 8 . Related work

143

strive to adhere to the classical FP approach. So, in general the provided size measure is

not given in FP.

8.4 Evaluated of the proposed methods

Meli and Santillo were among the first to recognize the need for comparing the various

functional size methods proposed in the literature [92]. To this end, they also provided a

benchmarking model. The E&Q technique has proved to be very effective, providing a

result within ± 10% of the actual size in most cases, while the savings in measurement

effort can be between 50% and 90% (depending on the aggregation level used, up to

Macro Processes).[74]

In [21], van Heeringen et al. report the results of measuring 42 projects with the full-

fledged, indicative and estimated NESMA methods. They found a 1.5% mean error of

NESMA estimated method and a 16.5% mean error of NESMA indicative method.

Popović and Bojić compared different functional size measures –including NESMA

indicative and estimated– by evaluating their accuracy in effort estimation in various

phases of the development lifecycle [93]. Not surprisingly, they found that the NESMA

indicative method provided the best accuracy at the beginning of the project.

Using a database of about 100 applications, NESMA did some research on the accuracy

of the estimated and indicative function point counts. They got very good results

(http://www.nesma.nl/section/fpa/earlyfpa.htm), although no statistics (e.g., mean

relative error) are given.

8.5 Convertibility

8.5.1 Theoretical conversion within an empirical range

A first comprehensive discussion of the possible approaches to convertibility between

different functional size measures is reported in [59]. Namely, the convertibility

between unadjusted IFPUG function points [8] [10] and COSMIC function points [33]

is considered. In [59] the impossibility of computing the conversion by means of a

mathematical formula is discussed. However, the discussion in [59] makes reference

exclusively to formulae of type CFP=f(FP). There is little doubt that no such formula

can work, since FP and CFP are defined differently, and each of these size measures

―hides‖ different details.

A very specific approach to convertibility concerns the cases when not only the size in

FP of a given program is known, but also the number of File Type Referenced (FTR).

In the COSMIC method, a file type can be referenced to read it or to update it, and

updates are typically performed with data received from outside the application, while

reads are often performed to deliver some output. The data groups being moved within a

functional process are similar to the concept FTP in FPA. Exploiting the knowledge that

the notion of FTR is close to the notion of COSMIC data group being moved in a

functional process, it is possible to compute a range in which the corresponding

COSMIC size should lie.

Chapter 8 . Related work

144

Based on this observation, Cuadrado et al. have published a method based on a mapping

of the IFPUG and COSMIC BFCs that requires knowledge only of the number of file

type references made in each of the FPA transactions [70] [71]. This method associates

a minimum and maximum number of data movements with each FTR. As a result, the

conversion delivers an upper and lower bound for the COSMIC size corresponding to a

given size in FP. However, no attempt is made to devise the actual number of data

movements associated with a given FTR. This technique [70] [71] is interesting from a

conceptual point of view, but in practice it is of little utility, since the confidence range

is usually quite wide.

8.5.2 Statistically based conversion

The literature [59] also discusses the statistical convertibility of IFPUG FP and

COSMIC FP. Statistical convertibility has been widely investigated, and numerous

papers were published on that topic, e.g., [69][96][97][98][99][101][102]. It is quite

noticeable that the regression models illustrated in these papers are usually of the type

CFP = a + b × FP or CFP = a × FP
b
. Such models should not hold, according to the

discussion on mathematical conversion formulae in [59]. The reason why these

empirical models are statistically significant (and reasonably accurate) is probably that

the considered projects have specific characteristics that make them comparable at the

functional size level.

Most of the mentioned works were not unexceptionable from a statistical point of view.

To improve the situation, a systematic analysis of the known datasets according to well

established statistical techniques was performed and documented in [103].

Following the indications given in COSMIC [33], piecewise linear models and other

types of non-linear models (including parabolic ones) have been investigated in [104].

Also in this case, statistically significant models were found for the available datasets.

The possibility of establishing a relationship between the size of transaction functions

and CFP was illustrated in [97].

4) DF/FP ratio

In [97] Desharnais et al. suggested that applications featuring an anomalous value of the

DF/FP ratio could be the ones that are affected by the largest relative errors of

convertibility based on FP or transaction functions.

However, Desharnais et al. provided an explanation of the convertibility errors only in

terms of both FPA and COSMIC BFC values; since COSMIC BFC values are not

known at conversion time (otherwise there would be no reason for performing a

statistical conversion) the explanations provided in [97] are of little practical utility,

though conceptually interesting. With respect to previous work, Lavazza showed the

increasing role of transactions over data for larger applications, both in single datasets

and in the ISBSG dataset [100].

5) “Cut-off” effect

The cut–off effect is the phenomenon due to the fact that a process has a maximum size

of 7 FP according to IFPUG measurement, while it has no size limit in COSMIC.

Chapter 8 . Related work

145

In [97], it was also observed that models based on transaction functions provide good

results, although the ―cut-off‖ effect can affect convertibility. However, Desharnais et al.

did not investigate the ‗cut-off‘ effect quantitatively. In [100] Lavazza discussed the

convertibility based on the measure of transaction functions and the ―cut-off‖ effect, as

well as the role of data functions.

Lavazza derived a piecewise linear model based on TF which clearly shows the

presence of the ―cut-off‖ effect [101].

By analyzing the non weighted transaction numbers from the dataset by van Heeringen

[89] Lavazza concluded that the ―cut-off‖ effect disappears (i.e., does not affect the

conversion) when unweighted data are used [101].

6) Confidence intervals

In [101], the evaluation of confidence intervals for the parameters of the FP-CFP

convertibility models was introduced. In [100] confidence intervals for model

parameters were evaluated systematically, thus providing an increased level of

confidence on the results. For instance, it was possible to state with high confidence that

the models found for the datasets available in the literature actually involve a change in

slope of the model, i.e., the CFP/FP ratio is bigger for larger software applications.

In [100] it is shown that the sets of projects for which statistical convertibility holds are

characterized by a small variance in the size of managed data with respect to the size of

provided functions. Since we cannot be sure that all projects are characterized by a

given ratio between data size and operation size, we must be very careful with adopting

statistical convertibility. It must also be noted that different datasets yield different

conversion formulae, thus it is quite difficult to generalize the results of such approach.

8.5.3 Manual conversion

A last type of convertibility discussed in [59] is called ―manual‖. In this type of

conversion, only the basic raw data of the Function Point counting are available, the rest

of the required data must be provided by people who have the necessary knowledge of

the software being measured, so that good judgments or intelligent guesses on the

equivalence between the base functional components (BFC) of the two methods can be

made (ISO/IEC 14143-1 defines the BFC as ―an elementary unit of Functional User

Requirement defined by and used by an FSM Method for measurement purpose‖ [106]).

8.5.4 Unified Model based conversion

Demirors and Gencel suggested the creation of a Unified Model (UM) of the

information upon which functional size is measured [46]. The UM should contain all

the information needed by FPA, COSMIC and possibly other FSM methods, like MKII

Function Points [107] [108]. The approach by Demirors and Gencel [46] is made

possible by the fact that different FSM methods are based on a common set of basic

elementary concepts (data group, data item, process, etc.). Therefore, a model that

represents this information at a quite low level is able to support the identification of

method-specific BFC.

Chapter 8 . Related work

146

8.5.5 Conversion method using analytical criteria

In Chapter 6 we proposed a conversion method that uses analytical criteria. Our

proposal has some points in common with [46]. However, there are a few fundamental

differences between the two proposals.

According to Demirors and Gencel, their model ―has certain restrictions. For one thing,

it doesn‟t handle the detailed rules each method suggests (for example, the IFPUG

method specifies, „don‟t count code tables,‟ whereas the other methods don‟t have this

restriction).‖ We do not have this type of problems, because we do not establish precise

mapping rules; instead, we just indicate the most probable correspondence between

FPA BFC and COSMIC BFC, then we leave the user free to exploit the correspondence

to directly create a COSMIC BCF out of a FPA BFC, or not (in the latter case, it is the

user that has the responsibility of defining a different correspondence).

A second relevant difference is that we provide a tool for helping the user perform the

conversions (or the double counting).

Finally, we note that there are several software tools that aim at supporting function

point or COSMIC counting; among these are Scope, NH's Function Point Analyzer,

Function Point Modeler, Function Point Workbench, SFERA and many others.

However –as far as we know– none of the available tools supports conversion.

Chapter 9 . Conclusion

147

Chapter 9 Conclusion

9.1 Summary of results

Functional size measurement plays an important role in the development effort

estimation, project management, and quality control of software development. In fact,

Function Point Analysis is widely used, especially to quantify the size of applications in

the early stages of development, when effort estimates are needed. However, the

measurement process is often too long or too expensive, or it requires more knowledge

than available when development effort estimates are due. To overcome these problems,

simplified methods are proposed to measure Function Points.

In Chapter 3, we presented the main simplified methods and classified them into four

categories, namely, E&QFP, Average complexity (weight) values, single component

based, and Smart approximation techniques. Then we compared the simplified methods

with respect to factor(s) used, factor granularity, factor capture difficulty, factor value

and measurement process difficulty.

Such simplified methods were used for sizing both ―traditional‖ and Real-Time

applications, for the purpose of evaluating the accuracy of the sizing with respect to

full-fledged Function Point Analysis.

9.1.1 Model-based FSM

It has been shown that functional size measures can be derived from UML models of

requirements. The process is easy if UML models are built in a measurement-oriented

way, i.e., highlighting the information required for FSM. Based on this idea, Lavazza et

al. proposed Model-based Measurement-Oriented method [3]. Throughout this work,

we used measurement-oriented models to support FSM.

9.1.2 Evaluation of simplified FSM (FPA)

Functional Size Measurement methods are widely used but have two major

shortcomings: they require a complete and detailed knowledge of user requirements,

and they involve relatively expensive and lengthy processes. So many simplified

methods emerged. We assessed several simplified methods in Section 5.1 to answer

questions like the following: "What is the accuracy of simplified FSM methods?‖ and

―Which simplified method is the best one for my application(s)?‖

We collected 18 applications‘ models and obtained the ―correct‖ values using the

standard method (FPA) at first. Then we measured the applications using simplified

methods, including those proposed by NESMA, the Early&Quick Function Points, the

ISBSG average weights, and others: the resulting size measures were then compared.

It was found that all the methods that use predefined weights for all the transaction and

data types identified in Function Point Analysis yielded similar results, characterized by

acceptable accuracy. On the contrary, methods that rely on just one of the elements that

Chapter 9 . Conclusion

148

contribute to functional size tend to be quite inaccurate. In general, different methods

show different accuracy for Real-Time and non Real-Time applications.

We also derived simplified size models on the basis of the measures from the dataset

used for experimentations, and yielded results that are similar to those obtained via the

methods proposed in the literature.

Therefore, it was clear that model-based simplified method is feasible, and its accuracy

is also reliable.

9.1.3 Model-based simplified COSMIC measurement

Also the COSMIC method requires a complete and detailed knowledge of user

requirements. The COSMIC measurement process involves: Identification of functional

processes; Identification of data groups; Identification of Data Groups used in Each

Functional Process. Identify the data group movements involved in each functional

Process. Therefore, measurement-oriented model building involving the following

diagrams: Use case diagram, class diagram, component diagram, and sequence

diagrams.

Since software requirements can be effectively described by means of UML models,

which grow in detail and completeness through the requirements analysis phase, it is

reasonable to expect that progressively more accurate measures can be derived from

these UML models. This is particularly useful when COSMIC measures have to be

obtained earlier than assumed by the official counting manual, because of reasons such

as a tight deadline, or not sufficiently detailed requirements specifications.

Therefore, we formulated the following research questions: (1) During the requirements

elicitation and specification phase, is it possible to write progressively more complete

and detailed UML models that support progressively more accurate simplified CFP

measurement methods? (2) What is the accuracy of the estimates provided by different

simplified CFP measurement methods? (3) Do simplified CFP measurement methods

provide a level of accuracy that is proportional to the amount of information required?

To explore the above mentioned issues, we modeled a set of 23 software applications

and measured them, with the goal of obtaining the measures needed to support

simplified measurement methods.

Our analysis shows that it is possible to write progressively more detailed and complete

UML models of user requirements that provide the data required by the simplified

COSMIC methods, which in turn yield progressively more accurate measures of the

modeled software. Initial measures are based on simple models and are obtained quickly

and with little effort. As models grow in completeness and detail, the measures increase

their accuracy.

Developers that use UML for requirements modeling can obtain an early estimation of

the application size at the beginning of the development process, when only a very

simple UML model has been built for the application, and can obtain increasingly more

accurate size estimates while the knowledge of the product increases and UML models

are refined accordingly.

Chapter 9 . Conclusion

149

9.1.4 FSM vs. OO measures

It has been shown that functional size measure can be derived from UML models of

requirements. In particular, if UML models are measurement-oriented, it is easy to

identify BFC and all those elements that contribute to size measures. However, the

analysis of UML diagrams to identify BFC and the elements that have to be taken into

consideration to compute functional size measures is still a manual process. On the

contrary, it is very easy to automatically derive object-oriented measures from UML

models via tools like SDMetrics. So, an association (and the corresponding quantitative

model) between the object-oriented measures of a measurement-oriented UML model

and the functional size measures derived from the same UML model, would make it

possible to estimate the functional size based on the (automatically obtained) OO

measures, or use the OO measures in place of the functional size measures, which

would be no longer needed.

We took the requirement specifications of a set of 11 software applications, and we built

the UML measurement-oriented models of requirements; then we measured the

functional size of UML models and measured UML models using SDMetrics; finally,

we analyzed the relationship between functional size and OO measures. Statistical

analysis showed that both FPA and COSMIC functional size measures appear correlated

to object-oriented measures. In particular, associations with basic OO measures were

found: FP appear associated with the number of classes, the number of attributes and the

number of methods; CFP appears associated with the number of attributes. This result

suggests that even a very basic UML model, like a class diagram, can support size

measures that appear equivalent to functional size measures (which are much harder to

obtain).

The results obtained tend to confirm that, having modeled an application‘s functional

user requirements using UML and highlighting the typical elements of software models

used by FSM methods (i.e., elementary/functional processes, data files/groups, etc.), the

measures obtained automatically by means of measurement tools like SDmetrics are

essentially equivalent to those obtained by certified functional size measurers. The small

cost, rapidity, accuracy and repeatability of UML measurement suggest that manually

performed FSM methods could be abandoned. However, these results need further

experimental evidence, before we can safely suggest practitioners to drop FSM methods.

9.1.5 Conversion between FPA and COSMIC

The introduction of the COSMIC method as an alternative of Function Point Analysis

originated the problem of converting Function Point measures into other units. To this

end, several methods – ranging from statistical analysis to ―manual‖ conversion– have

been used. However, none of the proposed conversion methods guarantees the

necessary accuracy.

We defined a seamless and cheap procedure that allows measurers to derive functional

size measures expressed in COSMIC Function Points from size measures expressed in

Function Points, and viceversa.

To get accurate conversions, we exploit all the available information provided by the

measurement process, that is, not only the size in Function Points, but also the details of

basic functional components. To make the procedure efficient, a mapping of Function

Point Analysis concepts onto COSMIC concepts was defined.

Chapter 9 . Conclusion

150

A conversion procedure based on the aforementioned mapping was proposed. Such

procedure is supported by a software tool that eases the conversion process. The usage

of both the procedure and tool was tested via an example of realistic complexity.

The proposed procedure and tool can be effectively used to perform the required

measurement with very good accuracy. The tool can also be used to perform a sort of

―double‖ measurement, i.e., both Function Points and COSMIC Function Points are

measured at the same time.

9.2 Guidelines for developers

The work has led to an increase in knowledge on how to simplify the methods for

measuring the functional size of the software, referring to the functional user

requirements. The presented analyses can be replicated by other researchers, to increase

the reliability and generality of the results.

The results of the work done that are most relevant in practice concern the identification

and evaluation of possible FSM processes. In fact, this knowledge is immediately

usable by developers.

The possible FSM processes that have been identified are:

 1) Standard methods. Standard measurement manuals (either IFPUG or COSMIC)

are applied.

 2) Simplified methods. See Chapter 3 .

 3) Model-based measurement using measurement-oriented models. See Chapter 4 .

 4) Simplified methods applied to FUR modeled as measurement-oriented models.

See Section 5.1.

 5) Object-oriented measurement applied to measurement-oriented models. See

Chapter 7 .

 6) Object-oriented measurement applied to object-oriented models. See Chapter 7 .

Table 61 schematically describes the characteristics of the modeling phases involved in

each type of FSM process.

Table 61 FSM processes: the modelling phase

Ord

.

Method Model Type Analyst competence

1 Standard

methods

Traditional N/A

2 Simplified Traditional N/A

3 MbMO Measurement-

Oriented

Analysts understand FSM and the

MbMO

4 Simplified

MbMo

Measurement-

Oriented

Analysts understand FSM and the

MbMO

5 MbMO-OO Measurement-

Oriented

Analysts understand FSM and the

MbMO

6 OO OO model OO Analysis

Chapter 9 . Conclusion

151

Table 62 schematically describes the characteristics of the measurement phases

involved in each type of FSM process.

Table 62 FSM processes: the measurement phase

Ord. Method Measurer Factors Granularity Result

1 Standard

methods

Certified measurer BFC Small FP/CFP

2 Simplified Anybody who

knows basics of

FSM and the

simplified model

Subsets and/or

generalizations of

BFC

Large FP

3 MbMO Anybody who

knows basics of

FSM and UML

BFC Small FP/CFP

4 Simplified

MbMO

Anybody who

knows basics of

FSM, the

simplified model

and UML

Subsets and/or

generalizations of

BFC

Large FP/CFP

5 MbMO-OO SDMetrics(Tool) elements of OO Large (low

accuracy)

FP/CFP

6 OO SDMetrics(Tool) elements of OO idem FP/CFP

Table 63 gives the main properties of the FSM processes, in terms of cost and results.

Here it is important to note that:

 The accuracy of standard processes depends on measurers. The process is manual,

so it is affected by errors and subjective interpretations.

 In Model-based measurement, the measurement phase is much less error-prone and

hardly affected by subjectivity. On the contrary, the model can affect the

measurement.

 The cost of providing measurement-oriented models depends on how FUR is written.

If FUR is already written using UML, making the models measurement-oriented is

easy; if FUR is written using a mix of E/R diagrams, data flow diagrams, tables, text,

formulas, etc., the modeling phase can be quite expensive and long.

 When simplified methods are used, the cost and accuracy depend on how much the

process is simplified. In general, the more information is modeled, the higher the

cost and the higher the accuracy.

Table 63 FSM process properties

Ord. Methods Modeling

cost

Measurement

cost

Standard

measure(FP

/ CFP)

Accuracy

1 Standard

methods

N/A High Yes Depends on

measurer

2 Simplified N/A Low-Medium Yes Error ~ 10%

Chapter 9 . Conclusion

152

3 MbMO Low if FUR

are written

in UML

Low Yes Depends on

model

4 Simplified

MbMO

Low if FUR

are written

in UML

Low Yes 10% or more

(depends on

simplification)

5 MbMO - OO Low/Short if

FUR are

written in

UML

Null Yes N/A

6 OO Null (if FUR

are written

in UML)

Null Yes Error > 10%

By considering the tables reported above, practitioner can choose the FSM process that

most suites their needs.

9.3 Future research directions

The work described in this thesis can be continued in the following directions:

As already mentioned in the work on conversion between FP and CFP (see Chapter 6),

the tool supports the mappings among FPA and COSMIC concepts (described in Table

51, but ultimately it is the user who has to choose if a given FPA element actually

corresponds to a COSMIC element or not). A smarter support from the tool, involving

less work by the user could be achieved by providing the tool with expert reasoning

capabilities.

Simplified measurement models should be better derived via regression analysis,

especially if multiple independent variables are involved. Unfortunately, our evaluation

of simplified FSM methods (Section 5.1) and the analysis of FSM vs. OO measure

(Chapter 7), were based on relatively small datasets. In order to increase the reliability

and to guarantee the general validity of results, the dataset should be extended to

include data points from additional applications.

As already mentioned, most results are based on relatively small applications: further

work for verifying the accuracy of simplified measurement methods when dealing with

larger project is needed.

Bibliography

153

Bibliography

[1] L. Lavazza, and G. Liu, ―An Empirical Evaluation of Simplified Function Point

Measurement Processes‖, Int. Journal on Advances in Software, vol 6, no 1&2,

2013.

[2] L. Lavazza, and V. del Bianco, ―A Case Study in COSMIC Functional Size

Measurement: the Rice Cooker Revisited‖, IWSM/Mensura 2009, 4 - 6 November

2009, Amsterdam.

[3] L. Lavazza, V. del Bianco, and C. Garavaglia, ―Model-based Functional Size

Measurement‖, ESEM 2008, 2
nd

 International Symposium on Empirical Software

Engineering and Measurement, Incorporating ISESE and Metrics, Kaiserslautern,

Germany. October 9-10, 2008.

[4] L. Lavazza, S. Morasca, and G. Robiolo, ―Towards a Simplified Definition of

Function Points‖, Information and Software Technology, Volume 55, Issue 10,

October 2013, Pages 1796–1809.

[5] V. del Bianco, L. Lavazza, G. Liu, S. Morasca, and A.Z. Abualkishik , ―Model-

based Simplified Functional Size Measurement – an Experimental Evaluation with

COSMIC Function Points‖, In Proceedings of the 3
rd

 International Workshop on

Experiences and Empirical Studies in Software Modeling co-located with 16th

International Conference on Model Driven Engineering Languages and Systems

(MoDELS 2013) Miami, USA, October 1, 2013.

[6] L. Lavazza, and G. Liu, ―A Report on Using Simplified Function Point

Measurement Processes‖, The 7th Int. Conf. on Software Engineering Advances -

ICSEA 2012, November 18-23, 2012 - Lisbon, Portugal.

[7] L. Lavazza, V. del Bianco, and G. Liu, ―Analytical Convertibility of Functional

Size Measures: a Tool-based Approach‖, The Joint Conf. of the 22
nd

 Int.

Workshop on Software Measurement (IWSM) and the 7
th

 Int. Conf. on Software

Process and Product Measurement (Mensura) IWSM-MENSURA 2012, October

17-19, 2012, Assisi.

[8] A.J. Albrecht, ―Measuring Application Development Productivity‖, Joint SHARE/

GUIDE/IBM Application Development Symposium, 1979.

[9] A.J. Albrecht, and J.E. Gaffney, ―Software function, lines of code and

development effort prediction: a software science validation‖, IEEE Transactions

on Software Engineering, vol. 9, 1983.

[10] International Function Point Users Group, ―Function Point Counting Practices

Manual - Release 4.3.1‖, 2010.

[11] ISO/IEC 20926: 2003, ―Software engineering – IFPUG 4.1 Unadjusted functional

size measurement method – Counting Practices Manual‖, ISO, Geneva, 2003.

[12] C. Jones, ―A new business model for function point metrics‖,

http://www.itmpi.org/assets/base/images/itmpi/privaterooms/capersjones/FunctPt

BusModel2008.pdf, 2008.

[13] Total Metrics, ―Methods for Software Sizing – How to Decide which Method to

Use‖, www.totalmetrics.com/function-point-resources/downloads/R185_Why-

use-Function-Points.pdf, August 2007.

[14] L. Santillo, ―Easy Function Points – ‗Smart‘ Approximation Technique for the

IFPUG and COSMIC Methods‖, Joint Conf. of the 22
nd

 Int. Workshop on

Software Measurement and the 7
th

 Int. Conf. on Software Process and Product

Measurement, Oct. 2012.

Bibliography

154

[15] J. Geraci, and C. Tichenor, ―The IRS Development and Application of the Internal

Logical File Model to Estimate Function Point Counts‖, IFPUG Fall Conference

of Use (ESCOM-ENCRESS 1998), May 1998.

[16] ―Early & Quick Function Points for IFPUG methods v. 3.1 Reference Manual

1.1‖, April 2012.

[17] ISO/IEC 24570: 2004, ―Software Engineering-NESMA Functional Size

Measurement Method version 2.1 - Definitions and Counting Guidelines for the

Application of Function Point Analysis‖, International Organization for

Standardization, Geneva, 2004.

[18] L. Bernstein, and C. M. Yuhas, ―Trustworthy Systems Through Quantitative

Software Engineering‖, John Wiley & Sons, 2005.

[19] International Software Benchmarking Standards Group, ―Worldwide Software

Development: The Benchmark, release 11‖, 2009.

[20] R. Meli, and L. Santillo, ―Function point estimation methods: a comparative

overview‖, Software Measurement European Forum (FESMA 1999), Oct. 1999.

[21] H. van Heeringen, E. van Gorp, and T. Prins, ―Functional size measurement -

Accuracy versus costs - Is it really worth it?‖, Software Measurement European

Forum (SMEF 2009), May 2009.

[22] C. Jones, ―A Short History of The Lines of Code (LOC) metric‖,

http://namcookanalytics.com/wp-content/uploads/2013/07/LinesofCode2013.pdf,

2013.

[23] G. Grau, and X. Franch, ―Using the PRiM method to Evaluate Requirements

Model with COSMIC-FFP‖, In: Proceedings of the IWSM-MENSURA 2007,

Mallorca, pp. 110–120 (2007)

[24] C. Dekkers, and M. Aguiar, ―Applying Function Point Analysis to Requirements

Completeness‖, Pacific northwest software quality conference, Oregon (Portland),

October 16-17, 2001.

[25] S. Furey, ―Why we should use function points‖, Software, IEEE (Volume: 14,

Issue: 2), Mar./Apr. 1997.

[26] M. Jenner, ―Automation of Counting of Functional Size Using COSMIC-FFP in

UML‖, 12
th

 International Workshop on Software Measurement (IWSM 2002),

Magdeburg (Germany), October 2002.

[27] A. Khelifi, and A. Abran, ―Design Steps for developing Software Measurement

Standard Etalons for ISO 19761 (COSMIC-FFP)‖, Proceedings of the 11
th

WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete

Island, Greece, July 26-28, 2007.

[28] C. Jones, ―Software Measurement Programs and Industry Leadership‖,

http://www.crosstalkonline.org/storage/issue-archives/2001/200102/200102-

Jones.pdf, 2001.

[29] F. Gramantieri, E. Lamma, P. Mello, and F. Riguzzi, ―A system for measuring

function points from specification,‖ Technical Report, Universitra di Bologna,

1997.

[30] E. Lamma, P. Mello, and F. Riguzzi, ―A system for measuring function points

from an ER-DFD specification,‖ The Computer Journal, vol. 47, no.3, pp. 358-372,

2004.

[31] C. Tichenor, ―A New Software Metric to Complement Function Points: The

Software Non-functional Assessment Process (SNAP)‖,

http://m.crosstalkonline.org/issues/8/66/, 2013

http://www.crosstalkonline.org/storage/issue-archives/2001/200102/200102-Jones.pdf
http://www.crosstalkonline.org/storage/issue-archives/2001/200102/200102-Jones.pdf
http://m.crosstalkonline.org/issues/8/66/

Bibliography

155

[32] B. Kitchenham, and K. Kansala, ―Inter-item correlation among function points‖,

Proceedings of First International Software Metrics Symposium, Baltimore, USA,

1993.

[33] COSMIC – Common Software Measurement International Consortium, The

COSMIC Functional Size Measurement Method - Version 3.0.1 Measurement

Manual (The COSMIC Implementation Guide for ISO/IEC 19761: 2003), May

2009.

[34] C. Tichenor, ―The IRS Development and Application of the Internal Logical File

Model to Estimate Function Point Counts‖, IFPUG Fall Conference of Use

(ESCOM-ENCRESS 1998), May 1998.

[35] ISO, ISO/IEC 19761:2011 ―Software engineering -- COSMIC: a functional size

measurement method‖, International Organization for Standardization, Geneva,

April 2011.

[36] ISO, ISO/IEC 20968:2002, ―Software engineering – Mk II Function Point

Analysis – Counting Practices Manual‖, International Organization for

Standardization, Geneva, 2002.

[37] A. J. Albercht, ―AD/M Productivity Measurement and Estimate Validation‖, CIS

& A Guidelines 313, IBM Corporate Information Systems and Administration,

November 1, 1984.

[38] R. Dumke, and A. Abran, ―COSMIC Function Points: Theory and Advanced

Practices‖, Germany: CRC Press, Taylor and Francis Group, Auerbach

Publications, 2011.

[39] COSMIC – Common Software Measurement International Consortium, The

COSMIC Functional Size Measurement Method Version 3.0: Guideline for Sizing

Business Application Software, Version 1.1, May 2008.

[40] F. Vogelezang, ―COSMIC full function points the next generation of functional

sizing‖, In: Software Measurement European Forum—SMEF 2005. 2005.

[41] NESMA, ―The Application Of Function Point Analysis In The Early Phases Of

The Application Life Cycle - A Practical Manual: Theory And Case Study‖, V.

2.0,

http://www.nesma.nl/download/boeken_NESMA/N20_FPA_in_Early_Phases_(v2

.0).pdf

[42] M. Bundschuh, ―Function Point Prognosis Revisited‖, FESMA 99, Amsterdam,

The Netherlands, October 4-8, 1999, pp. 287 – 297.

http://www.academia.edu/1024603/FUNCTION_POINT_PROGNOSIS_REVISI

TED

[43] M. Bundschuh, ―Function Point Approximation with the Five Logical

Components‖,

http://www.academia.edu/1556168/FUNCTION_POINT_APPROXIMATION_W

ITH_THE_FIVE_LOGICAL_COMPONENTS, 2000.

[44] R. Asensio, F. Sanchis, F. Torre, V. Garcia, and G. Uria, ―A preliminary study for

the development of an early method for the measurement in function points of a

software product‖, ACM classes: D.4.8 [On Line], 2004 Available at:

http://arxiv.org/abs/cs?papernum=0402015

[45] O. Demirors, and C. Gencel, ―A Comparison of Size Estimation Techniques

Applied Early in the Life Cycle‖, European Software Process Improvement

Conference (EurSPI 2004), Springer Verlag Springer Lecture Notes in Computer

Science (LNCS), Vol.3281, (2004), 184.

[46] O. Demirors, and C. Gencel, ―Conceptual Association of Functional Size

Measurement Methods‖, IEEE Software vol. 26 no. 3, May/June 2009, pp. 71-78.

http://www.academia.edu/1024603/FUNCTION_POINT_PROGNOSIS_REVISITED
http://www.academia.edu/1024603/FUNCTION_POINT_PROGNOSIS_REVISITED
http://arxiv.org/abs/cs?papernum=0402015

Bibliography

156

[47] K.R. Jayakumar, “Why you must change to COSMIC for sizing and estimation‖,

2010,

http://www.cosmicon.com/portal/public/Why_you_must_change_to_COSMIC_15

Dec2010.pdf

[48] J.P. Jacquet, and A. Abran, ―From software metrics to software measurement

methods: A process model‖, In: Proceedings of the 3
rd

 Int. Standard Symposium

and Forum on Software Engineering Standards (ISESS‘97). Walnut Creek, USA

(1997).

[49] T. Fetcke, A. Abran, and R.A. Dumke, ―Generalized Representation for Selected

Functional Size Measurement Methods,‖ Current Trends in Software

Measurement, R.A. Dumke and A. Abran, eds., Shaker, 2001, pp. 1–25.

[50] S. Purao, and V. Vaishnavi, ―Product metrics for object-oriented systems‖, ACM

Computing Surveys (CSUR), v.35 n.2, p.191-221, June 2003

[doi>10.1145/857076.857090]

[51] S. Abrahao, P. Poels, and O. Pastor, ―A Functional Size Measurement Method for

Object-Oriented Conceptual Schemas: Design and Evaluation Issues‖, Software &

System Modeling 5(1), 48–71 (2006).

[52] OMG – Object Management Group, Unified Modeling Language Superstructure,

Version 2.4.1, August 2011.

[53] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, ―Object-

Oriented Modeling and Design‖, Prentice Hall, 1990.

[54] http://www.sdmetrics.com/

[55] T. Fetcke, ―The warehouse software portfolio: a case study in functional size

measurement‖, Technical report no. 1999-20, Département d‘informatique,

Université du Quebec à Montréal, Canada, 1999.

[56] L. Lavazza, and C. Garavaglia, ―Using Function Points to Measure and Estimate

Real-Time and Embedded Software: Experiences and Guidelines‖, 3
rd

 Int. Symp.

on Empirical Software Engineering and Measurement (ESEM 2009), Oct. 2009.

[57] L. Lavazza, and C. Garavaglia, ―Using Function Point in the Estimation of Real-

Time Software: an Experience‖, Software Measurement European Forum (SMEF

2008), May 2008.

[58] V. del Bianco, L. Lavazza, and S. Morasca, ―A Proposal for Simplified Model-

Based Cost Estimation Models‖, 13
th

 Int. Conf. on Product-Focused Software

Development and Process Improvement (PROFES 2012), June 2012.

[59] COSMIC, ―The COSMIC Functional Size Measurement Method - Version 3.0 -

Advanced and Related Topics‖, December 2007.

[60] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd, ―What accuracy

statistics really measure [software estimation]‖, Software, IEEE Proceedings, Vol.

148, IET, 2001, pp. 81–85.

[61] M. Hericko, and A. Zivkovic, ―The size and effort estimates in iterative

development‖, Information and Software Technology vol. 50 n. 7, 2008, pp. 772-

781.

[62] G. Karner, ―Metrics for Objectory‖, Diploma thesis, University of Linköping,

Sweden. No. LiTH-IDA-Ex-9344:21. December 1993.

[63] B. Anda, D. Dreiem, D.I.K. Sjøberg, and M. Jørgensen, ―Estimating software

development effort based on use cases - Experiences from industry‖, In M.

Gogolla, C. Kobryn (Eds.): UML 2001 - The Unified Modeling Language.

Modeling Languages, Concepts, and Tools, 4
th

 Int'l Conference. Springer-Verlag

LNCS 2185, 487-502.

http://www.sdmetrics.com/

Bibliography

157

[64] G. Costagliola, F. Ferruci, G. Torttora, and G. Vitiello, ―Class Point: An Approach

for the Size Estimation of Object-Oriented Systems‖, IEEE Transactions on

Software Engineering, Vol. 31, No. 1, pp. 52-74, Jan. 2005.

[65] J. Capers, ―A new business model for function point metrics‖, Version 10.0,

August, 2009,

http://www.jfpug.gr.jp/information/Function%20Point%20Business%20Model%2

0CAPERS%20JONE%202009.pdf

[66] P. Morris, ―Cosmic-FFP and IFPUG 4.1: Similarities and Differences‖,

Presentation at 2003 IFPUG Fall Conference, Scottsdale, Arizona.

http://www.totalmetrics.com/function-point-resources/downloads/IFPUG-

COSMIC-and-IFPUG---Similarities-and-Differences_2009-.pdf

[67] A.J. Albrecht, ―Measuring Application Development Productivity‖, Joint SHARE/

GUIDE/IBM Application Development Symposium, 1979.

[68] International Software Benchmarking Standards Group: Worldwide Software

Development: The Benchmark, release 11, 2009.

[69] L. Lavazza, ―Convertibility of Functional Size Measurements: New Insights and

Methodological Issues‖, PROMISE 09 (PRedictOr Models In Software

Engineering), Vancouver, May 18-19, 2009.

[70] J.J. Cuadrado-Gallego, F. Machado-Piriz, and J. Aroba-Páez, ―On the conversion

between IFPUG and COSMIC software functional size units: A theoretical and

empirical study‖, Journal of Systems and Software, vol. 81, n. 5, Elsevier, 2008.

[71] J.J. Cuadrado-Gallego, D. Rodríguez, F. Machado, and A. Abran, ―Convertibility

between IFPUG and COSMIC functional size measurements‖, 8
th

 Int. Conf. on

Product-Focused Software Process Improvement, PROFES 2007, Riga, Latvia,

July 2-4, 2007, Springer LNCS 4589, 2007.

[72] L. Lavazza, ―An Evaluation of the Confidence in the Statistical Convertibility of

Function Points into COSMIC Function Points‖, Empirical Software Engineering,

2013, 1-36.

[73] M. Lelli, and R. Meli, ―From narrative user requirements to Function Point‖, IN:

Proceedings of Software Measurement European Forum-SMEF 2005, Mar. 16-18,

2005, Rome, Italy.

[74] P. Hill, ―Software early lifecycle- Function sizing‖, SoftwareTech, June 2006, Vol.

9, No.2.

[75] F.W. Vogelezang, ―COSMIC Full Function Points, the Next Generation‖, in

Measure! Knowledge! Action! – The NESMA anniversary book, NESMA, 2004.

[76] S. Azzouz, and A. Abran, ―A proposed measurement role in the Rational Unified

Process (RUP) and its implementation with ISO 19761: COSMIC-FFP‖, Presented

in Software Measurement European Forum - SMEF 2004, Rome, Italy (2004).

[77] V. Bévo, G. Lévesque, and A. Abran, ―Application de la méthode FFP à partir

d‘une spécification selon la notation UML: compte rendues premiers essais

d‘application et questions‖, Presented at International Workshop on Software

Measurement (IWSM 1999), Lac Supérieur, Canada, September 8-10 (1999).

[78] M.S. Jenner, ―COSMIC-FFP and UML: Estimation of the Size of a System

Specified in UML – Problems of Granularity‖, Presented in the 4
th

 European

Conference on Software Measurement and ICT Control, Heidelberg, pp. 173–184

(2001).

[79] V. Luckson, G. Lévesque, ―Une méthode efficace pour l‘extraction des instances

de nconcepts dans une spécification UML aux fins de mesure de la taille

fonctionnelle de logiciels‖, In: The Seventeenth International Conference Software

http://www.jfpug.gr.jp/information/Function%20Point%20Business%20Model%20CAPERS%20JONE%202009.pdf
http://www.jfpug.gr.jp/information/Function%20Point%20Business%20Model%20CAPERS%20JONE%202009.pdf

Bibliography

158

& Systems Engineering & their Applications, ICSSEA 2004, Paris, Novembre 30-

Décember 2 (2004).

[80] P. Habela, E. Glowacki, T. Serafinski, and K. Subieta, ―Adapting Use Case Model

for COSMIC-FFP Based Measurement‖, In: 15
th

 International Workshop on

Software Measurement – IWSM 2005, Montréal, pp. 195–207 (2005).

[81] K.G. Van den Berg, T. Dekkers, and R. Oudshoorn, ―Functional Size

Measurement applied to UML-based user requirements‖, In: Proceedings of the

2
nd

 Software Measurement European Forum (SMEF 2005), Rome, Italy, March

16-18, pp. 69–80 (2005).

[82] G. Levesque, V. Bévo, and D.T. Cao, ―Estimating software size with UML

models‖, In: Proceedings of the 2008 C3S2E Conference, Montreal, pp. 81–87

(2008).

[83] A. Sellami, and H. Ben-Abdallah, ―Functional Size of Use Case Diagrams: A

Fine-Grain Measurement‖, In: Fourth International Conference on Software

Engineering Advances, ICSEA 2009, pp. 282–288 (2009).

[84] S. Barkallah, A. Gherbi, and A. Abran, ―COSMIC Functional Size Measurement

Using UML Models‖, In proceeding of: Software Engineering, Business

Continuity, and Education - International Conferences ASEA, DRBC and EL, pp.

137-146, 2011.

[85] S.E. Kim, W. Lively, and D. Simmons, ―An effort estimation by UML points in

the early stage of software development,‖ in Proceedings of the International

Conference on Software Engineering Research and Practice & Conference on

Programming Languages and Compilers, SERP 2006, Las Vegas, Nevada, USA,

Volume 1, June 26-29, 2006.

[86] A. Minkiewicz, ―Measuring object-oriented software with the predictive object

points,‖ in Proceeding of 8
th

 European Software Control and Metrics Conference,

Atlanta, 1997.

[87] G. Caldiera, C. Lokan, G. Antoniol, R. Fiutem, S. Curtis, G. La Commare, and E.

Mambella, ―Estimating size and effort for object oriented systems‖, In Proceeding

of 4
th

 Australian Conference on Software Metrics, 1997.

[88] D.J. Ram, and S.V.G.K. Raju, ―Object oriented design function points‖, In

Proceedings of First Asia-Pacific Conference on Quality Software, October 30-31,

2000, pp121-126.

[89] D. Reifer, ―Web-Development: ―Estimating quick-time-to-market software‖, IEEE

software, vol. 17, no. 8, pp.57-64, November/December 2000.

[90] O. Adekile, D.B. Simmons, and W.M. Lively, ―Object oriented software

development effort prediction using design patterns from object interaction

analysis.‖, In Proceeding of 2010 Fifth International Conference on Systems,

Menuires, April, 2010, pp.47-53.

[91] G. Robiolo, C. Badano, and R. Orosco, ―Transactions and Paths: two use case

based metrics which improve the early effort estimation‖, In Proceedings of the

2009 3
rd

 International Symposium on Empirical Software Engineering and

Measurement (ESEM 09), IEEE Computer Society, Washington, DC, USE,

pp.422-435.

[92] R. Meli, and L. Santillo, ―Function point estimation methods: a comparative

overview‖, Software Measurement European Forum (FESMA 1999), Oct. 1999.

[93] J. Popović, and D. Bojić, ―A Comparative Evaluation of Effort Estimation

Methods in the Software Life Cycle‖, Computer Science and Information Systems,

vol. 9, Jan. 2012.

Bibliography

159

[94] L.H. Putnam, and W. Myers, ―Measures for excellence: reliable software on time

within budget‖, Prentice Hall, UpperSaddle River, 1992.

[95] M. Conte, T. Iorio, R. Meli, and L. Santillo, ―E&Q: An Early&Quick approach to

function size measurement methods‖, In: Proceedings of Software Measurement

European Forum-SMEF 2004, January 28-30, 2004, Rome, Italy.

[96] H. van Heeringen, ―Changing from FPA to COSMIC - A transition framework‖,

Software Measurement European Forum-SMEF 2007 (Rome, May 9-11, 2007).

[97] J.M. Desharnais, A. Abran, and J.J. Cuadrado-Gallego, ―Convertibility of

Function Points to COSMIC: Identification and analysis of functional outliers‖,

Int. Conference on Software Process and Product Measurement – MENSURA

2006, (Madrid 2006).

[98] A. Abran, J.M. Desharnais, and F. Aziz, ―Measurement Convertibility: From

Function Points to COSMIC-FFP‖ 15
th

 International Workshop on Software

Measurement – IWSM 2005, Montréal (Canada), Shaker Verlag, Sept. 12-14,

2005, pp. 227-240.

[99] F. Vogelezang, and A. Lesterhuis, ―Applicability of COSMIC Full Function

Points in an administrative environment - Experiences of an early adopter‖, 13th

International Workshop on Software Measurement – IWSM2003, Shaker

Verlag, Montréal, 2003.

[100] L. Lavazza, "An evaluation of the statistical convertibility of Function Points into

COSMIC Function Points", Empirical Software Engineering Journal, DOI

10.1007/s10664-013-9246-zz, Springer, March 2013.

[101] J.J. Cuadrado-Gallego, L. Buglione, M. Domínguez-Alda, M. Sevilla, Antonio

Gutierrez de Mesa J, O. Demirors, O, ―An experimental study on the conversion

between IFPUG and COSMIC functional size measurement units‖, Information

and Software Technology 52(3):347–357, Elsevier, 2010.

[102] V. Ho, A. Abran, and T. Fetcke, ―A comparative study case of COSMIC-FFP, full

function point and IFPUG methods‖, Department of Informatics, University of

Quebec at Montreal, Canada, 1999.

[103] L. Lavazza, ―Convertibility of functional size measurements: new insights and

methodological issues‖, In Proceedings of the 5
th

 international conference on

predictor models in software engineering, May 18-19, 2009, Vancouver, British

Columbia, Canada [doi>10.1145/1540438.1540451]

[104] L. Lavazza, ―A systematic approach to the analysis of function point-COSMIC

convertibility‖, In: 20
th

 International Workshop on Software Measurement.

ICSM/Mensura, Stuttgart, 2010.

[105] C. Gencel, ―Do we really need to choose one functional size measurement

method?‖, In: UKSMA/COSMIC international conference on software metrics

and estimating, London, 27–28 October, 2011.

[106] ISO/IEC 14143-1: Information Technology—Software Measurement—Functional

Size Measurement, Part 1: Definition of Concepts, Int. Org. for

Standardization/Int Electrotechnical Commission, 1998.

[107] UKSMK-United Kingdom Software Metrics Association, ―Mk II Function Point

Analysis Counting Practices Manual‖, v. 1.3.1, September 1998.

[108] C.R. Symons, ―Function point analysis: difficulties and improvements‖, IEEE

Transactions on Software Engineering, 14(1), 1988.

[109] L. Santillo, and R. Meli, "Early Function Points: some practical experiences of

use", ESCOM-ENCRESS 98, May 27-29, 1998, Rome.

Bibliography

160

[110] Total Metrics, ―Levels of Function Points, Version 1.3‖, January 2004,

http://www.totalmetrics.com/total-metrics-articles/levels-of-function-point-

counting, Total Metrics, 2004.

[111] S.R. Chidamber, and C. F. Kemerer, ―Towards a metrics suite for object-oriented

design‖, in Proc. 6
th

 OOPSLA Conference, ACM 1991, pp. 197-211.

[112] SDMetrics User Manual (V2.32), July 3, 2013,

http://www.sdmetrics.com/down/SDMetricsManual.pdf

[113] ISO&IEC 29881:2010 ―Information technology- Systems and software

engineering- FiSMA 1.1 functional size measurement method‖.

http://www.totalmetrics.com/total-metrics-articles/levels-of-function-point-counting
http://www.totalmetrics.com/total-metrics-articles/levels-of-function-point-counting
http://www.sdmetrics.com/down/SDMetricsManual.pdf

