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Abstract 
 

Functional Size Measurement methods –like the IFPUG Function Point Analysis and 

COSMIC methods– are widely used to quantify the size of applications. However, the 

measurement process is often too long or too expensive, or it requires more knowledge 

than available when development effort estimates are due. To overcome these problems, 

simplified measurement methods have been proposed.  

 

This research explores easily usable functional size measurement method, aiming to 

improve efficiency, reduce difficulty and cost, and make functional size measurement  

widely adopted in practice.  

 

The first stage of the research involved the study of functional size measurement 

methods (in particular Function Point Analysis and COSMIC), simplified methods, and 

measurement based on measurement-oriented models. 

 

Then, we modeled a set of applications in a measurement-oriented way, and obtained 

UML models suitable for functional size measurement. From these UML models we 

derived both functional size measures and object-oriented measures. Using these 

measures it was possible to: 

1) Evaluate existing simplified functional size measurement methods and derive our 

own simplified model. 

2) Explore whether simplified method can be used in various stages of modeling and 

evaluate their accuracy. 

3) Analyze the relationship between functional size measures and object oriented 

measures. 

 

In addition, the conversion between FPA and COSMIC was studied as an alternative 

simplified functional size measurement process. 

 

Our research revealed that: 

 

1) In general it is possible to size software via simplified measurement processes with 

acceptable accuracy. In particular, the simplification of the measurement process allows 

the measurer to skip the function weighting phases, which are usually expensive, since 

they require a thorough analysis of the details of both data and operations. The models 

obtained from out dataset yielded results that are similar to those reported in the 

literature.  

 

All simplified measurement methods that use predefined weights for all the transaction 

and data types identified in Function Point Analysis provided similar results, 

characterized by acceptable accuracy.  On the contrary, methods that rely on just one of 

the elements that contribute to functional size tend to be quite inaccurate. In general, 

different methods showed different accuracy for Real-Time and non Real-Time 

applications.   

 

2) It is possible to write progressively more detailed and complete UML models of user 

requirements that provide the data required by the simplified COSMIC methods. These 

models yield progressively more accurate measures of the modeled software. Initial 

measures are based on simple models and are obtained quickly and with little effort. As 
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models grow in completeness and detail, the measures increase their accuracy. 

Developers that use UML for requirements modeling can obtain early estimates of the 

applications‘ sizes at the beginning of the development process, when only very simple 

UML models have been built for the applications, and can obtain increasingly more 

accurate size estimates while the knowledge of the products increases and UML models 

are refined accordingly.  

 

3) Both Function Point Analysis and COSMIC functional size measures appear 

correlated to object-oriented measures. In particular, associations with basic object-

oriented measures were found: Function Points appear associated with the number of 

classes, the number of attributes and the number of methods; CFP appear associated 

with the number of attributes. This result suggests that even a very basic UML model, 

like a class diagram, can support size measures that appear equivalent to functional size 

measures (which are much harder to obtain). Actually, object-oriented measures can be 

obtained automatically from models, thus dramatically decreasing the measurement 

effort, in comparison with functional size measurement. 

 

In addition, we proposed conversion method between Function Points and COSMIC 

based on analytical criteria.  

 

Our research has expanded the knowledge on how to simplify the methods for 

measuring the functional size of the software, i.e., the measure of functional user 

requirements. Basides providing information immediately usable by developers, the 

researchalso presents examples of analysis that can be replicated by other researchers, to 

increase the reliability and generality of the results. 

 

 

Keywords: 

Functional Size Measurement; FPA; COSMIC; Measurement-Oriented Model-based 

Methods; Simplified measurement processes; FSM conversion; UML models; Object 

oriented measurement. 
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Chapter 1  Introduction 
 

Measurement is a basic activity in everyday life, since it is necessary for understanding 

the objects and the activities of interest. In every scientific and technical discipline, 

especially in the engineering filed, measurement is essential, sometimes it is at the very 

core of development activities. In software engineering, software measurement has 

become a key aspect of good software management and engineering practices. 

1.1 Functional Size Measurement 

Software metrics can be classified into three categories: product metrics, process 

metrics, and project (resource) metrics. Function Size Measurement (FSM) is a product 

metrics, which characterizes the size of a software application. Functional size measures 

are often used in conjunction with metrics addressing complexity, design features, 

quality, etc. For instance, the number of faults found in a software product is hardly 

meaningful in itself, while the number of faults divided by the size provides a fault 

density indication, which is a clear indicator o software quality. 

 

However, the main role of FSM in software development consists in providing the input  

data required by effort estimate models and tools. In general, FSM helps improving the 

software development process, predicting faults and fault-prone software units, 

allocating resources during the development, and checking requirements completeness. 

In conclusion, function size measurement is an essential component of software 

development. 

1.1.1 Software Size Measurement in the old days: Lines of Code 

 

The oldest and most commonly used measure of software products is Lines of Code 

(LoC), sometimes named Source Lines of Code (SLoC) or Delivered Source Instruction 

(DSI). There are two major types of LoC measures: physical LoC and logical LoC (also 

known as ―effective LoC‖). The former is defined to count lines in the text of the 

program's source code including comment lines; the latter attempts to measure the 

number of executable statements (thus excluding comments, blank lines and often also 

lines containing only syntactic elements). This measurement was first introduced in the 

60s and was used for economic, productivity, and quality studies.[22]  

 

A measure in LoC has the problem that the same function generally requires a different 

number of LoC when coded with different language. For example in Figure 1, the same 

function programmed with a basic assembly language needs 3 lines of code, while it 

needs only one line when programmed with COBOL. 

 

 
Figure 1 Comparison of two programming languages coding same function 
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Even when the same programming language is used, different developers can produce 

implementations of the same function having different sizes in LoC. In general, the size 

in LoC depends on the technology, programming language, and programmers‘ attitudes. 

Given the above observations, it is easy to conclude that the LoC measure focuses only 

on the ―physical‖ dimension of software, and does not represent the net functionality 

provided by software. 

1.1.2 Functional Size Measurement 

 

The Function Point method was originally introduced by Albrecht [8] to overcome the 

limits of LoC measurement.  The basic idea is that measuring software size is not 

carried out in the term of its physical component (LoC), but in terms of its 

‗functionality‘. The viewpoint of measuring software size was changed from the internal 

attribute to the external functional viewpoint of the end-user. The user functions 

requested and recognised by the user are defined in Function User Requirements (FURs) 

that describe what the software should do to fulfil user‘s needs.  

 

This idea makes software size measurement independent from technology, 

programming language and programmer‘s attitudes. Functional Software size 

measurement can also be started earlier in the software development lifecycle. 

1.1.3 Functional Size Measurement methods 

 

In the field of functional size measurement, many methods have been proposed, 

including IFPUG FPA [10], NESMA FPA [17], Mark II FPA [36], FiSMA [113] and 

COSMIC [33]. Among them, we focus only on IFPUG FPA and COSMIC. 

 

IFPUG FPA 

 

The Functional Point method was originally introduced by Albrecht to measure data-

processing systems by quantifying the functionality the software provides to the user, 

from the information view, by quantifying the volume of data flow and the storage[8][9].   

 

The basic idea of FPA is that the ‗‗amount of functionality‘‘ released to the user can be 

evaluated by taking into account the data used by the application to provide the required 

functions, and the transactions (i.e., operations that involve data crossing the boundaries 

of the application) through which the functionality is delivered to the user. Data are user 

identifiable groups of logically related data, and are classified as Internal Logical Files 

(ILF) or External Interface Files (EIF). A transaction is a set of actions seen as one 

cohesive unit of work. FPA differentiates three types of transactions: External Input (EI), 

External Output (EO), and External Inquiry (EQ). 

 

The size of each data function depends on the function type and contents; the size of 

each transaction depends on the number of data files used and the amount of data 

exchanged with the external.  

 

The sum of the sizes of data and transactions is the size of the application in Unadjusted 

Function Points (UFP). Based on 14 general system characteristics the value adjustment 

factor (VAF) is computed; the ―adjusted‖ size of the application is obtained by 

multiplying the size in UFP by the VAF. The adjusted size was introduced to improve 
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the correlation of the size in FP to the development effort. However, adjustment is 

generally not considered a sound practice. Accordingly, UFP have been recognized as 

an ISO standard, while adjusted FP did not. Accordingly, in this Thesis, only UFP are 

considered.   

  

COMSIC Function Points 

 

The COSMIC method measures the functional size of a piece of software based on its 

functional user requirements, which are broken down into a number of functional 

processes, which are independently executable sets of elementary actions that the 

software should perform in response to a triggering event. The elementary actions that 

software can perform are either data movements or data manipulations. As a reasonable 

approximation, COSMIC assumes that each data movement has an associated constant 

average amount of data manipulation. Accordingly, in the COSMIC model of software 

FUR are broken down into a number of functional processes, which in turn involve only 

of data movements.  

 

Data movements are the basic functional components that are used for establishing the 

size of the software. A data movement moves a unique data group, i.e., a set of data 

attributes (each attribute describes a complementary aspect of an object of interest a 

thing or concept about which the software is required to store and/or process data).  

 

The COSMIC method distinguishes four different types of data movements, namely 

Entry, Write, Read, and Exit. Writes and Reads move a data group to and from 

persistent storage, respectively. An Entry moves a data group into the software from a 

functional user and an Exit moves a data group out. The size of a piece of software is 

then defined as the total number of data movements (Entries, Exits, Reads, and Writes) 

summed over all functional processes of the piece of software. 

1.1.4 Benefits and limits of Functional Size Measurement 

 

Functional size measurement has a long history and its effectiveness make it very 

popular, so many measurement procedures have arisen to support it. [23] 

 

Functional size measurement is used for two main purposes: to help estimating the 

effort of a development or maintenance projects or measuring the actual productivity of 

a finished development endeavour. Several studies have highlighted pros and cons of 

FSM, as described below. 

 

Estimate 

It has been shown that the functional size of a software application is highly correlated 

with the amount of work needed to develop the application. So, functional size is the 

input of several software development estimation models and tools. 

 

Requirements understanding and Completeness Checks 

Understanding user functional requirements and evaluating whether requirements are 

sufficiently complete before beginning design and coding is most relevant and tough 

problem. The functional size measurement is helpful to deal with this 

problem.[24][25][26]  
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Excellent way to excellent software product 

Function size measurement is an excellent instrument to identify potential problems and 

to improve the development process; it is also a powerful tool for managing the 

software development process, since function points can be used as an indicator of 

requirements creep and quality.[27][28][29][30]  

 

Early measurement 

Functional size measurement can be applied early in the software development life 

cycle, namely as soon as FUR are available, while the size in LoC can be measured only 

after the conclusion of development. In addition, FSM can also be used in the phases of 

the software development lifecycle following requirement specification (e.g., design, 

coding, etc.)  

 

Failure to capture the Non-functional requirements  

In the literature three types of software requirements are mentioned: functional user 

requirements, non functional user requirements, and technical requirements [23]. FSM 

only aims at measuring the functional user requirements: non-functional properties and 

technical requirements are not taken into account. 

Complementary software metrics can be defined and used along with function points to 

measure also other aspects of the software that FPA does not consider.[31]  

 

Failure to capture the “amount of elaboration”  

Most FSM methods proposed until now (including FPA and COSMIC) fail to capture 

the ―amount of elaboration‖ required. The consequence is that two applications that 

differ only in the amount of elaboration required are considered of the same size, even 

though in general the more elaboration intensive application is bound to require more 

effort to be developed. An example of this problem is mentioned in [21], where the 

incapacity of FP to capture the amount of elaboration leads to underestimating both the 

physical size (in LoC) and the development effort of the considered software application 

[22]. An exception is represented by Mark II FP, which to some extent take into account 

the amount of elaboration performed by software.[36] 

1.1.5 Simplified FSM methods 

 

The measurement of Function Points can be expensive and time consuming. The 

measurement process involves (among others) the following activities: 

− Identifying logic data; 

− Identifying elementary processes; 

− Classifying logic data as internal logic files (ILF) or external interface files (EIF); 

− Classifying elementary processes as external inputs (EI), outputs (EO), or queries 

(EQ); 

− Weighting data functions; 

− Weighting transaction functions. 

 

Simplified measurement processes allow measurers to skip –possibly in part– one or 

more of the aforementioned activities, thus making the measurement process faster and 

cheaper. 

 

Early & Quick Function Point 
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The best-known approach to simplifying the process of FP counting is probably the 

Early & Quick Function Points (E&QFP) method [16]. E&QFP descends from the 

consideration that estimates are sometimes needed before the analysis of requirements is 

complete, when the information on the software to be measured is partial or not 

sufficiently detailed.  

 

Since several details for performing a correct measurement following the rules of the FP 

manual [10] are not used in E&QFP, the result is a less accurate measure. The trade-off 

between reduced measurement time and costs is a reason for adopting the E&QFP 

method even when full specifications are available, but there is the need for completing 

the measurement in a short time, or at a lower cost. An advantage of the method is that 

different parts of the system can be measured at different detail levels: for instance, a 

part of the system can be measured following the IFPUG manual rules [10] [11], while 

other parts can be measured on the basis of coarser-grained information. In fact, the 

E&QFP method is based on the classification of the processes and data of an application 

according to a hierarchy (see Figure 2. (from [16] )). 

Application to 

be measured

Macro

process

General

data group

General

process

General

process

Transactional

BFC

Transactional

BFC

Transactional

BFC

Transactional

BFC

Data

BFC

Data

BFC

Data

BFC

……

 
Figure 2 Functional hierarchy in the Early & Quick FP technique (from [16]) 

 

Transactional Base Functional Components (BFC) and Data BFC correspond to 

IFPUG‘s elementary processes and LogicData, while the other elements are 

aggregations of processes or data groups. The idea is that if you have enough 

information at the most detailed level, you count FP according to IFPUG rules; 

otherwise, you can estimate the size of larger elements (e.g., General or Macro 

processes) either on the basis of analogy (e.g., a given General process is ―similar‖ to a 

known one) or according to structured aggregation (e.g., a General process is composed 

of 3 Transactional BFC). By considering elements that are coarser-grained than the BFC 

of Functional Point Analysis, the E&QFP measurement process leads to an approximate 

measure of size in IFPUG FP. 

 

In the E&QFP manual[16], some tables taking into account the previous experiences 

with the usage of E&QFP are provided to facilitate the task of assigning a minimum, 

maximum and most likely quantitative size to each component. For instance, Table 1 

provides minimum, maximum and most likely weight values for generic (i.e., not 

weighted) functions as given in [16]. The time and effort required by the weighting 

phases are thus saved. Such saving can be relevant, since weighting requires analyzing 

every data or transaction function in detail. 
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Table 1 E&QFP: Function type weights for generic functions 

Function type 
Weight 

Low Likely High 

Generic ILF 7.4 7.7 8.1 

Generic EIF 5.2 5.4 5.7 

Generic EI 4.0 4.2 4.4 

Generic EO 4.9 5.2 5.4 

Generic EQ 3.7 3.9 4.1 

 

The size of unspecified generic processes (i.e., transactions that have not been yet 

classified as inputs, outputs or queries) and unspecified generic data groups (i.e., logical 

files that have not been yet classified as ILF or EIF) as given in [16] are illustrated in 

Table 2. When using this method, only the identification of logical data and elementary 

processes needs to be done: both the classification of data and transaction functions and 

their weighting are skipped. Consequently, sizing based on unspecified generic 

processes and data groups is even more convenient –in terms of time and effort spent– 

than sizing based on generic (i.e., non weighted) functions. 

 
Table 2 E&QFP: Function type weights for unspecified generic processes and data group 

Function type 
Weight 

Low Likely High 

Unspecified Generic Data Function 6.4 7.0 7.8 

Unspecified Generic Processes Function 4.3 4.6 4.8 

 

 

NESMA indicative and estimated methods 

 

The Indicative NESMA method [17] simplifies the process by only requiring the 

identification of LogicData from a conceptual data model. The Function Point size is 

then computed by applying the following formulae, whose parameters depend on 

whether the data model is normalized in 3
rd

 normal form: 

 

Non normalized model: 

Function Points = #
1
 ILF × 35 + #EIF × 15  (1) 

 

Normalized model:  

Function Points = #ILF × 25 + #EIF × 10  (2) 

 

The process of applying the NESMA indicative method involves only identifying logic 

data and classifying them as ILF or EIF. Accordingly, it requires less time and effort 

than the E&QFP methods described above, in general. However, the Indicative NESMA 

method is quite rough in its computation: the official NESMA counting manual 

specifies that errors in functional size with this approach can be up to 50%. 

 

The Estimated NESMA method requires the identification and classification of all data 

and transaction functions, but does not require the assessment of the complexity of each 

                                                 
1 Here and hereafter  # represents ―Number of…‖ 
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function: Data Functions (ILF and EIF) are all assumed to be of low complexity, while 

Transactions Functions (EI, EQ and EO) are all assumed to be of average complexity. 

 

Tichenor method 

The Tichenor ILF Model [15] bases the estimation of the size on the number of ILF via 

the following formula for transactional system (for batch systems, Tichenor proposes a 

smaller multiplier): 

UFP = #ILF × 14.93  (3) 

 

This model assumes a distribution of BFC with respect to ILF as follows: EI/ILF = 0.33, 

EO/ILF = 0.39, EQ/ILF = 0.01, EIF/ILF = 0.1. If the considered application features a 

different distribution, the estimation can be inaccurate. 

 

The fact that a method based only on ILF requires a given distribution for the other BFC 

is not surprising. In fact, the size of the application depends on how many transactions 

are needed to elaborate those data, and the number of transaction cannot be guessed 

only on the basis of the number of ILF, as it depends on the number of ILF just very 

loosely. Instead of allowing the user to specify the number of transactions that are 

needed, the Tichenor method practically imposes that the number of transactions 

complies with the distribution given above. 

 

ISBSG distribution model 

The analysis of the ISBSG dataset yielded the following distribution of BFC 

contributions to the size in FP:  

 

ILF 22.3%, EIF 3.8%, EI 37.2%, EO 23.5%, EQ 13.2% 

 

The analysis of the ISBSG dataset also shows that the average size of ILF is 7.4 UFP. It 

is thus possible to compute the estimated size on the basis of the number of ILF as 

follows: 

 

UFP = (#ILF × 7.4) × 100 / 22.3  (4) 

The same considerations reported above for the Tichenor model apply. If the application 

to be measured does not fit the distribution assumed by the ISBSG distribution model, it 

is likely that the estimation will be inaccurate. 

 

Simplified FP 

The simplified FP (sFP) approach assumes that all BFC are of average complexity [18], 

thus: 

 

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 10 + #EIF × 7  (5) 

 

ISBSG average weights 

This model is based on the average weights for each BFC, as resulting from the analysis 

of the ISBSG dataset [19], which contains data from a few thousand projects. 

Accordingly, the 

ISBSG average weights model suggests that the average function complexity is used for 

each BFC, thus 

 

UFP = #EI × 4.3 + #EO × 5.4 + #EQ × 3.8 + #ILF × 7.4 + #EIF × 5.5  (6) 
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Table 3 provides a quick overview of the activities required by FP measurement and 

estimation methods. Of course, the IFPUG method requires all the activities listed in 

Table 3, while simplified methods require a subset of such activities. 
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Table 3 Activities required by different simplified measurement process 

 

Measurement activities FPA 
NESMA 

indic. 

NESMA 

estin. 

E&QFP 

Generic 

func. 

E&QFP 

Unspec. 

Generic 

func. 

Tichenor 

ILF Model 

ISBSG 

distribution 
sFP 

ISBSG 

average 

weights 

Identifying logic data √ √ √ √ √ √ √ √ √ 

Identifying elementary 

processes 
√  √ √ √   √ √ 

Classifying logic data 

as ILF or EIF 
√ √ √ √  √ √ √ √ 

Classifying elementary 

processes as EI, EO, or 

EQ 

√  √ √    √ √ 

Weighting data functions √         

Weighting transaction 

functions 
√         
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1.2 Problems of Functional Size Measurement addressed in this thesis 

 

1.2.1 Problems, limits, and challenges of FSM 

It‘s well known that Function Point Measurement suffers from several problems, such 

as: 

 

1. Both data and transaction functions‘ sizes have upper limits. For instance, no 

External Input has size greater than 5 FP, even if it is ―very very big‖. 

2. Function points are not well formed metrics because their constituent elements are 

correlated.[32] 

3. Function point counts are expected to be obtained early in the development cycle. 

Unfortunately, since the measurement requires too much detailed information, 

measurement is often not achievable a very early phase of development. 

4. The measurement criteria and procedure are not defined in a thoroughly precise way. 

Accordingly, the FPA counting involves judgment on the part of the counter, it 

requires human interpretation. The same product is usually sized differently by 

different counters, even within the same organization. 

5. Function point counts are considered not equally applicable to all kinds of software. 

They have not enjoyed widespread success in embedded systems or heavily 

computational applications. 

6. Counting often requires a relevant effort to analyze several heterogeneous 

requirements documents in order to identify BFCs (Basic Functional Components). 

In fact, the identified BFCs are often not easy to trace back to elements of the 

requirements. Moreover, the effort done to understand the requirements is not 

exploited to build any artefacts that can be useful in the design and implementation 

phases. 

7. Lack of formal language description for measurement process. Usually the analyst 

that defined the requirements and the measurer are two different persons, who 

perform separate tasks. The lack of the formal language description for 

measurement process makes it hard to assure that the right functionalities are 

measured, and that they are measured correctly. [3] 

8. After the COSMIC method has been proposed, the issue of convertibility between 

traditional FP (Function Points) and CFP (COSMIC Function Points) has arisen. 

The organizations that have historical data in FP and wish to adopt the COSMIC 

method face the problem of converting data from FP into CFP. FSM conversion is 

in itself a quite difficult problem. 

9. Although the methods are technology independent, their use in object oriented 

development is quite difficult. Each method uses its own abstraction to represent a 

software system in a convenient way, so as to perform size count.  

10. In COSMIC, the data movements of a software component also contain the data 

manipulation of the software component. This is strength of the method, since you 

can obtain the size measure based on data movements alone. On the other hand, this 

is also one of the limitations with the COSMIC method, and the consequence is that 

the method does not capture complex calculations, or treatment of large amounts of 

data. 
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1.2.2 Problem Analysis 

In subsection 1.2.1, the main problems of FSM were summarized. In this subsection the 

problems addressed in this thesis are highlighted. 

   
Table 4 Analysis of the problems, challenges and the problems addressed in this thesis 

Problems 

ID 
Summarization FPA CFP 

Addressed 

In this 

thesis 

1 
Function point of FPA has 

upper size limit  
√     

2 
Correlation exists among 

actors of BFC 
√ √   

3 
Difficult to use in early 

phase 
√ √ √ 

4 
Criteria not precisely 

described 
√ √   

5 application scope √ √   

6 
difficult to identify and 

obtain BFCs 
√ √ √ 

7 
Measurement process not 

precisely described 
√ √ √ 

8 
Conversion between FPA e 

CFP is not easy  
√ √ √ 

9 

Does not capture complex 

calculation or treatment or 

large amounts of data  

  √   

10 
Difficult to use in OO 

methods 
√ √ √ 

11 
Difficult to use for new 

product and process form 
√ √   

12 
Does not involve quality or 

technical aspect 
√ √ 

  

 

 

The problems addressed in this thesis are 3, 6, 7, 8, and 10. 

1.3 Research objectives 

 

1.3.1 Research objectives 

 

The goal of this thesis is to identify and test an easily usable method for functional size 

measurement in practice.  

 

Numerous experts conducted research on this topic. For example, the already mentioned 

E&QFP [16] and NESMA [17] methods addressed the simplification FSM through 
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analogy-based classification and structured aggregation; the Tichenor, ISBSG, and 

ISBSG average weights methods exploited statistical analysis to avoid the most 

expensive phases of FSM.[4] 

 

1.3.2 Research methods 

A few strategies are possible to tackle the complexity of FSM. Among them: 

1. Supporting and easing the standard measuring processes. The FSM processes 

described in official manuals are not changed. Instead, the activities required by the 

process are made easier. Ideally, one could think of totally automating the FSM 

process; however, the partial subjectivity of all FSM methods makes automation 

extremely hard. An interesting alternative consists in moving the complexity of the 

process from the actual measurement phase to the requirements modelling phase, 

and making measurement a sort of ―by product‖ of requirements specification. This 

is reasonable, because requirements have to be specified anyway, even if one does 

not intend to measure their functional size. However, to pursue this approach, i.e., 

measurement based on requirements models, it is necessary to build models so that 

they actually contain the information required by the FSM method of choice: 

requirement model building must be done in a measurement oriented way [2][3]. 

2. Simplify the FSM process, while preserving the definition of the measure. This 

strategy consists in simplifying the measurement process by skipping or 

downgrading some of the more expensive and lengthy activities involved in the 

measurement process (see section 1.1.5). The result is an approximation of the real 

measure in FP or CFP. 

3. Simplify the definition of the measure, which results in simplifying the 

measurement process, while preserving a clear compatibility between the full-

fledged and the simplified measures. So, the latter a) are substantially equivalent to 

standard FP or CFP, and b) are easier to measure, e.g., because they are based on a 

smaller amount of information [4]. 

 

This thesis concentrates on the above point 2. In fact points 1 and 3 had already been 

partly explored when the PhD work reported here started. 

 

As to point 2, the work reported here addresses the following main points: 

 Evaluating current proposals.[1][5][6] 

 Exploring the possibility of establishing statistical correlations between functional 

size measures and measures of object-oriented (UML) models. 

 Exploring the analytical convertibility of functional size measures [7]. This activity 

is loosely correlated with the main topic, but is justified in that obtaining a measure 

as a conversion of another measure is much easier than performing the measurement. 

1.4 Thesis structure  

 

The remainder of this thesis is organized into the following chapters: 

 

 Chapter 2. Functional Size Measurement Methods. In this chapter the methods of 

FSM, FPUG FPA and COMSIC FP are introduced and compared. 

 Chapter 3. Simplified Functional Size Measurement. This chapter presents the 

Simplified Functional Size Measurement methods, namely E&QFP, NESMA and 

the other existing methods. 
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 Chapter 4. Model-based measurement. This chapter is about the Model-based 

measurement-oriented method proposed by Lavazza et al. We first talk about the 

fundamentals of the method; then the modeling method and the procedure of 

modeling are separately presented according to IFPUG FPA and COSMIC; at the 

end of this chapter, we also compare both methods, IFPUG FPA and COSMIC FFP, 

from the view point of the measurement-oriented model-based method. 

 Chapter 5. Evaluation of Simplified FSM processes. This chapter empirically 

assesses and justifies the Simplified FSM proposals. The Model-based Simplified 

Functional Size Measurement methods are also empirically evaluated. 

 Chapter 6. Conversion between FPA and CFP. In this chapter the analytical 

conversion between FPA and CFP is discussed and evaluated.  

 Chapter 7. Investigation of statistical correlations between FSM and Object-

Oriented Measures of Requirements models.  In this chapter we discuss and 

investigate the statistical correlation between FSM and Object-Oriented Measures of 

UML Requirements models.  

 Chapter 8. Related work. This chapter contains a review of the state-of-the-art about 

the simplified FSM. 

 Chapter 9. Conclusion and future work. This chapter presents the main contributions 

of this thesis and the plan for future work. 

 Appendix. Glossary 

 

The structure of this thesis is illustrated in Figure 3 

 

 
Figure 3 The structure of the thesis 



Chapter 2 . Functional Size Measurement Methods 

 

 

15 

 

 

Chapter 2  Functional Size Measurement Methods 
 

In this chapter two main FSM methods, FPA and COMSIC, are introduced and 

compared. Before that, we also explored the methodology abut the FSM.  

2.1 Methodology 

 

The exploration starts by quoting a sentence by Albrecht [8], which describes the 

beginning of the first generation of FSM. 

 

The basis for this method was developed over the last 5 years from the Data Processing 

Service projects estimating experience. As part of that estimating we validated each 

estimate with a series of weighted questions about the application function and the 

development environment. We found that the basic value of the application function 

was consistently proportional to a weighted count of the number of external use 

inputs, outputs, inquires and master files.‖  

 

Another sentence provides a clear insight into FSM [9]: "The thesis of this work is that 

the amount of function to be provided by the application can be estimated from the 

itemisation (itemization) of major components of data to be used or provided by 

it. …" 

 

From these two quotations, the following observation can be easily derived: First, the 

FSM method is based on engineering practical experience. ―… in the last 5 years from 

the DP Service projects estimating experience…”; second, based on the datasets 

accumulated in these engineering practices, a consistent correlation exists. ―…a 

consistently proportional to…”; Third, since a consistent correlation exists, naturally, 

the objects involved in this correlation  should be clearly and firstly identified. “....the 

basic value of the application function… a weighted count of the number of external 

use inputs, outputs, inquires and master files.” 

 

Figure 4 is used to explain the core part of the FSM methods (FPA and COSMIC) and 

the other simplified methods in this chapter and the next chapter. Through the 

comparison of their factors, the key difference between the traditional methods and the 

simplified methods is discovered. 
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Figure 4 High level abstract model of FSM methodology 

 

Here, the 3 ―things‖, namely, factors, counting, and weighting are defined. The Factors 

represent the basic elements of a software application taken into account by a FSM 

method. For example, in the FPA method, factors are the elementary process, the DETs, 

RETs, FTRs, the types of transaction functions and data functions. In a word, factors 

represent the elements that characterize each function of an application to be measured 

and the rules to identify them; Counting represents how to count the above basic factors; 

Weighting represents the relation between the final function point and the above basic 

elements.   

 

While the Factors and Counting are always present, some methods do not include 

Weighting: for instance the COSMIC method does not involve any weighting of 

elements, just counting. 

2.2 IFPUG FPA 

 

2.2.1 The brief history about IFPUG FPA 

Function Point Analysis was developed first by Allan J. Albrecht in the mid 70s. It was 

an attempt to overcome difficulties associated with LoC as a measure of software size, 

and to measure the size of a data-processing system from the end-user‘s point of view, 

in order to estimate the development effort, i.e. to assist in developing a mechanism to 

predict effort associated with software development. The method was first published in 

1979 [8], then Albrecht refined the method in 1983-84 [9] [37]. Since 1986, when the 

International Function Point User Group (IFPUG) was set up, several versions of the 

Function Point Counting Practices Manual have been published by IFPUG.  

 

 
Figure 5 Evolution of FPA method 
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The current version of the IFPUG Manual is version 4.1.1. The IFPUG counting manual 

is now an ISO standard in its ―unadjusted‖ version. 

2.2.2 The basic principles of FPA 

 

The basic idea of FPA is that the ―amount of functionality‖ released to the user can be 

evaluated by taking into account the data used by the application to provide the required 

functions, and the transactions (or processes) through which the functionality is 

delivered to the user. Figure 6 illustrates the schematic view of FPA, where the 

―Factors‖ that characterize the software application (as defined in section 2.1) are 

highlighted. In FPA jargon, these factors are named ―Based Functional Components‖ 

(BFC). 

 

 
Figure 6 Schematic view of FPA base functional components 

 

2.2.3 Basic functional components 

 

 

Data functions: ILF and FIF 

 

Data functions represent data that are relevant to the user and are required to perform 

some function, and are classified into internal logical files (ILF), and external interface 

files (EIF).  

 

An ILF is a user identifiable group of logically related information managed within the 

boundary of the application. Its primary intent is to hold data maintained through one or 

more elementary processes of the application being counted.  

 

An EIF is similar to an ILF, but is maintained within the boundary of another 

application, i.e., it is outside the application being measured, for which an EIF is read-

only. 

 

The term ―file‖ in the FPA does not indicate a file in the traditional. In FPA, it refers to 

a logically related group of data and not the physical implementation of those groups of 

data. 
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ILF and EIF are characterized on the basis of their Record Element Types (RET) and 

Data Element Types (DET). A RET is a user recognizable subgroup of data elements 

within an ILF or EIF. A DET is a unique user recognizable, non-repeated field (non-

repeated means that if the same filed appears multiple times in a RET, it counted only 

once).  

 

In Figure 7, we present the FPA meta-model, which illustrates the information we need 

to identify and capture for representing a software system to be measured.   

 

 

 

Functional User 

Requirements

Data

Functions

Transaction

Functions

RET

DET

FTR
I/O

DET

 
Figure 7 FPA software model 

 

From the definitions of the data elements, we can draw Figure 8 to display the relative 

conceptual granularity among them. 

 

 
Figure 8 Relative conceptual granularities of FPA data elements 

 

 

Transaction Functions 

 

Transaction functions represent operations that are relevant to the user and cause input 

and/or output data to cross the application boundary. Transaction functions represent 

elementary processes. An elementary process is the smallest unit of activity that is 
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meaningful to the user(s). An elementary process must be self-contained and leave the 

state of the application being counted in a consistent state. 

 

Transactional functions are classified into external inputs (EI), external outputs (EO), 

and external inquiries (EQ) according to the main intent of the process: updating ILF for 

EI, computing and outputting results for EO, retrieving and outputting data for EQ.  

 

 External Inputs: An external input (EI) is an elementary process that processes data 

or control information that comes from outside the application boundary. The 

primary intent of an EI is to maintain one or more ILFs and/or to alter the behavior 

of the system. 

 External Outputs: An external output (EO) is an elementary process that sends data 

or control information outside the application boundary. The primary intent of an 

external output is to present information to a user through processing logic other 

than, or in addition to, the retrieval of data or control information. The processing 

logic must contain at least one mathematical formula or calculation, create derived 

data, maintain one or more ILFs or alter the behavior of the system. 

 External Inquiry: An external inquiry (EQ) is an elementary process that sends data 

or control information outside the application boundary. The primary intent of an 

external inquiry is to present information to a user through the retrieval of data or 

control information from an ILF of EIF. The processing logic contains no 

mathematical formulas or calculations, and creates no derived data. No ILF is 

maintained during the processing, nor is the behavior of the system altered. 

 

The main difference between the transactional function types is their primary intent. 

They are characterized on the basis of their file type referenced (FTRs) and data element 

type (I/O DET). A FTR is an internal logical file read or maintained by a transactional 

function or an external interface file read by a transactional function. An I/O DET is a 

unique user recognizable, non-repeated field which flows through the boundaries of the 

application being measured. 

2.2.4 Measurement procedure 

Although the measurement is essential for cost estimation, it is very important to the 

management of software development as mentioned in the subsection 1.2.1. But it is too 

difficult in practice, too boring during the measurement, and too costly to carry out. The 

strict, integrated and official measurement procedure of FPA is illustrated in the Figure 

9.  

 



Chapter 2 . Functional Size Measurement Methods 

 

 

20 

 

 
Figure 9 Procedure of the FPA measurement 

 

 

Type of function point count 

 

The function point method is suitable to be used in three types of projects, namely 

development project, enhancement project, and application. So, the first step in the 

function point count procedure is to determine the type of function point count. In this 

thesis, only development project measurement is taken into account (although it is 

expected that the presented results can be extended to other types of measurements 

rather easily) 

 

Identify the Counting Scope and Application Boundary 

 

The application boundary indicates the border between the software being measured and 

the user. The boundary is identified according to the counting scope, which defines the 

functionality that will be included in a particular function point count.  

 

Determine the Unadjusted Function Point Count (step 3, 4, 5) 

 

The application's specific user functionality is evaluated in terms of what is delivered by 

the application, not how it is delivered. Since the basic idea of FPA is that the ‗‗amount 

of functionality‘‘ released to the user and the unadjusted function point count (UFPC) 

reflect the specific countable functionality provided to the user by the project or 

application, only user-requested and defined components are counted. In this thesis, 

only unadjusted FP is considered. This is coherent with the usage of function points 

purely as a size measure. 

 

Count Data Functions (step 3) 

 

For counting data function, in practice, we must first identify the ILFs and EIFs from 

the software artefacts. For each ILF and EIF, the RETs and DETs must be further 
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identified and the numbers of RETs and DETs must be counted. This is the process of 

counting data function of an application to be measured.  

 

How to identify and count them? Certainly the FPA manual defines the counting 

process and the related concepts. But the FPA counting process does not make reference 

to a rigorous representation or model of the application to be measured.   

 

Count Transactional Functions (step 4) 

 

For counting transactional functions, the first thing is to define and identify all the 

elementary processes that represent the functionality provided to the user to process data. 

The type of each transaction function is needed to be classified into External Input, 

External Output, or External Inquiry. Although classifying is not always easy to carry 

out, there is a table to be referenced. An FTR can be an ILF referenced or maintained by 

the transaction or an EIF read by the transaction. The DETs are considered to be those 

that cross the application boundary when the transaction is performed. 

 

The size of a software application is given by the sum of the sizes of its data and 

transaction functions. 

 

Weight data and transaction functions (step 5) 

 

Each data function is sized according to its ―complexity‖. 

 

The complexity of a data functions depends on its type (ILF or EIF), and the number of 

DETs and RETs it includes, as specified in Table 5. 

 

The complexity of the data function and its type determine the size in UFP of the 

function; for instance, an ILF having 3 RETs and 25 DETs is classified into average 

complexity and contributes 10 UFP. 

                 
Table 5 FPA reference table (the part of ILF and EIF) 

Function 
Type 

Weight 

Low Average Hight 

ILF 7 10 15 

EIF 5 7 10 

  

[0, 1] [1,50] [0,1] [51,∞)     

[2,5] [1,19] [2,5] [20,50] [2,5] [51, ∞) 

    [6, ∞) [1,19] [6, ∞) [20, ∞) 

NRETs NDETs NRETs NDETs NRETs NDETs 

 

Transaction functions are sized in a similar way. Their complexity (as specified in Table 

6) depends on the File Type Referenced (i.e., the number of ILF and EIF potentially 

accessed during the execution of the transaction), the number of DETs that cross the 

boundary of the application, and the type (input, output or inquiry) of the transaction. 

 
Table 6 FPA reference table (the part of EI, EO, and EQ) 

Function 
Type 

Weight 

Low Average Hight 

EI 3 4 6 
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[0, 1] [1,15] [0, 1] [15,∞)     

2 [1,4] 2 [5,15] 2 [16, ∞) 

    [3, ∞) [1,4 ] [3, ∞) [5, ∞) 

EO 

4 5 7 

[0, 1] [1,19] [0, 1] [29, ∞)     

 [2, 3] [1,5] [2, 3] [6, 19] [2, 3] [20, ∞) 

    [4, ∞) [1,5] [4, ∞) (6, ∞) 

EQ 

3 4 6 

[0, 1] [1,19] [0, 1] [20, ∞)   

[2, 3] [1,5] [2, 3] [6, 19] [2, 3] [20, ∞) 

    [4, ∞) [1,5] [4, ∞) [6, ∞) 

  NFTRs NDETs NFTRs NDETs NFTRs NDETs 

 

 

The UFP value of an application 

 

The weighted sum of transaction functions and data functions is the size of the 

application in unadjusted function points.  

 

a) Albrecht found that the development effort depends not only on the functional size of 

an application, but also on several other factors. Accordingly he devises to ―adjust‖ the 

size measurement so that it takes into account all the factors that affect effort; 

b) It is a better predictor of development effort via equations of type Effort = K × Size. 

 

Determining Value Adjustment Factor and calculating the FP 

The size in FP is calculated using a specific adjustment formula.  

 

FP = UFP × VAF   (7) 

 

The value adjustment factor (VAF) takes into account 14 characteristics of the 

application to be measured and is calculated as follows: 

 

 
(8) 

 

Where: Ci is the degree of influence of the i
th

 General System Characteristic 

 

In (8), each Ci represents the degree of influence of one General System Characteristic 

(GSC). GSC is evaluated at six scales (from zero to five) according to its degree of 

influence in the given application. The GSCs are listed in the following table. 

 
Table 7 14 General System Characteristics (GSC) 

Ord. 
General System 
Characteristic Brief Description 

1 Data communications 
How many communication facilities are there to aid in 
the transfer or exchange of information with the 
application or system? 

2 Distributed data processing 
How are distributed data and processing functions 
handled? 

3 Performance Did the user require response time or throughput? 

4 Heavily used configuration How heavily used is the current hardware platform 
where the application will be executed? 
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5 Transaction rate 
How much frequently are transactions executed daily, 
weekly, monthly, etc.? 

6  On-Line data entry 
What percentage of the information is entered On-
Line? 

7 End-user efficiency Was the application designed for end-user efficiency? 

8  On-Line update  How many ILF’s are updated by On-Line transaction? 

9 Complex processing Does the application have extensive logical or 
mathematical processing? 

10 Reusability 
Was the application developed to meet one or many 
user’s needs? 

11 Installation ease How difficult is conversion and installation? 

12 Operational ease How effective and/or automated are start-up, back up, 
and recovery procedures? 

13 Multiple sites 
Was the application specifically designed, developed, 
and supported to be installed at multiple sites for 
multiple organizations? 

14 Facilitate change Was the application specifically designed, developed, 
and supported to facilitate change? 

 

 
Table 8 Degrees of influence of the GSCs 

Or. Degrees of influence Scale Value 

0 Not present, or no influence 0 

1 Incidental influence 1 

3 Moderate influence 2 

4 Average influence 3 

5 Significant influence 4 

6 Strong influence throughout 5 

 

Brief summary 

 

The FPA measures functional user requirements, but a requirement specification is a 

structured document, which is often written in natural languages.  It is very difficult to 

identify the BFCs and to count them. The standard method for counting function points 

is to count the BFCs, adjustments, and weighting factors for several kinds of complexity. 

The process is long and expensive. In principle the FPA is ideal to measure the software 

size, and then to estimate the effort of development. But the drawback is that although it 

can be used for effort estimation, FPA itself needs more effort to be done. According to 

literature [65], a certified counter can only count 400 -600 function points using the 

normal function point analysis per day. The cost of counting every point runs $6.00.  

 

It is obvious that, concerning the use in practice, if a measurement method would be 

more complex and expensive than the customer can accept and afford, let us say, such a 

method would have relatively low value for the project management and control during 

the cycle-life of development. We surely need the simplified method in practice. 

 

2.3 COSMIC 
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2.3.1 Brief story about COSMIC 

The COSMIC method developed by the Common Software Measurement International 

Consortium (COSMIC) has emerged as the second generation of the FSM methods. It is 

a recognized international standard (ISO 19761 [35]). It aimed at addressing some of the 

major weaknesses of earlier methods, like FPA.  

 

In 1996, the industry sponsored the development of an IFPUG extension for real-time 

and embedded software, which was put into the public domain under the name of FFP 

(Full Function Points). Then, the COSMIC -formed in 1998- after reviewing existing 

methods (IFPUG, Mark II, NESMA and Full Function Point 1.0), published version 2.0 

of COSMIC-FFP in 1999. Extensive field trials were carried out in 2000 and 2001. 

COSMIC published the latest definition of the method (Version 3.0.1) [33], in May 

2009. 

 

 

 
Figure 10 Evolution history of COSMIC (from [66]) 

2.3.2 COSMIC basic principles 

 

The COSMIC method is used to measure the functional size of a piece of software from 

the viewpoint of end users. This method is based on the COSMIC Generic Software 

Model (see Figure 11), which assumes that the functional user requirements of a piece 

of software can be decomposed  into unique functional processes, which are further 

classified into either data movements or data manipulations. 
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Figure 11 COSMIC generic software model 

 

The COSMIC method assumes that each data movement has an associated constant 

average amount of data manipulation; therefore only the data movements are measured. 

The assumption that the amount of data manipulations is proportional to the number of 

data movements is often violated. For instance, applications belonging to different 

domains can easily be characterized by different data manipulation/movements ratios. 

In this respect, COSMIC is not better than FPA: both tend to overlook the amount of 

elaboration involved in processes. 

 

Each movement is considered as one COSMIC function point; the size of a functional 

process is the number of its data movements; the COSMIC functional size of this piece 

of software is the sum of the sizes of its processes. 

2.3.3 Functional process 

 

Functional user requirements are known early in the development process; therefore 

they are a good starting point for estimation. They can be broken down into a number of 

functional processes; independently executable sets of elementary actions that the 

software should perform in response to a triggering event.  

 

The COSMIC method defines a functional process as ―an elementary component of a 

set of Functional User Requirements comprising a unique, cohesive and independently 

executable set of data movements‖. [33] 

 

Each functional process is triggered by an ―Entry‖ data movement, which comes from a 

functional user and aims to activate a functional process identified by the end-user and 

carried out by the piece of software to be measured. Figure 12 (from [33]) illustrates 

clearly the relation between triggering event, functional user and functional process.  
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Figure 12 Relation between triggering event, functional user and functional process 

 

The data movements are the base functional components that are used for establishing 

the size of the software. The COSMIC recognizes four types of data movement, namely 

Entry, Exit, Write, and Read (see Figure 13).  

 

 
Figure 13 COSMIC view of software [38] 

 

As illustrated in Figure 13 (from [38]), an Entry moves a data group from a user across 

the software boundary into the functional process where it is required. An exit is a data 

movement that moves a data group from a functional process across the software 

boundary to the user that requires it. A Write movement updates (possibly creates or 

deletes) data group that is stored within the boundary of the application being measured. 

Similarly, a Read movement involves reading a data group. Obviously the Entry and 

Exit movements do not involve in updating the data they move, but every Entry or an 

Exit is considered to include certain associated data manipulations (for example 

validation of the entered data or formatting and routing associated with the data to be 

exited).  

 

In COSMIC, the functional processes are characterized on data group. The movement of 

a data group can be of type Entry, Exit, Read, or Write.  In Figure 14, we present the 

COSMIC meta-model, which illustrates the information we need to identify and capture 

for representing a software system to be measured.   
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Figure 14 COSMIC software model 

 

Each data movement, no matter the movement type, is counted as one COSMIC 

Function Point (CFP). 

 

To identify data movements, data groups have to be identified first. A data group is 

defined ―a distinct, non empty, non ordered and non redundant set of data attributes 

where each included data attribute describes a complementary aspect of the same 

object of interest.‖[33] From the characters of the data group and attribute, we can draw 

Figure 15 to display the relative conceptual granularity among them. 

 

 
 

Figure 15 Relative conceptual granularities of COSMIC data elements 

 

An object of interest is defined as any ‗thing‘ that is identified from the point of view of 

the Functional User Requirements. It can be any physical thing, any (part of) conceptual 

object about which the software is required to process and/or store data. 

 

The definition and principles of objects of interest and of data groups are intentionally 

broad in order to be applicable to the widest possible range of software. This quality 

sometimes results in it being difficult to apply the definition and principles when 

measuring a specific piece of software.  
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Only movements that involve persistent or transient data groups are considered. A data 

group is persistent if its value is preserved between two functional process activations; 

so, temporary variables used in a computation within a functional process are not 

persistent; a data group that is set by a process and read by another one is persistent, 

even if the value is lost when the program terminates. 

 

Transient data groups are typically created for output: when you have an exit that 

involves some attributes taken from a data group and some other taken from another 

data group, you consider that the exit involves a transient data group. 

 

Similarly, in an ad hoc enquiry, the selection parameters to derive the required data are 

considered a transient data group associated with the Entry consisting of the query 

execution request. Transient data groups that do not survive the execution of the 

functional process; nevertheless, moving them counts as a legal data movement. They 

always involve data that cross the boundary between the software and its user(s). 

2.3.4 Measurement process 

 

The measurement strategy phase 

 

In this phase, the purpose and scope of the measurement, the identification of functional 

users and the level of granularity are considered, before actually starting to measure, 

because they define and help us to clarify which size should be measured, how should 

we interpret this measurement, what is the artefact to be measured, from which view 

point is this measurement carried out, etc.  

 

Applying the COSMIC Generic Software Model  

 

Applying the COSMIC Generic Software Model means identifying the set events issued 

by each of the functional user (types) identified in the FUR, and then identifying the 

corresponding functional processes triggered in response to those events, together with 

the associated objects-of-interest, data groups, and data movements. 

 

The COSMIC Generic Software Model shall be applied to the functional user 

requirements of each separate piece of software for which a separate measurement 

scope has been defined. 

 

In the literature it has been often noted that ―… FPs are counted according to a set of 

informal rules that require human interpretation; moreover, the rules are defined in a 

rather fuzzy way, so that it is not always clear how every element of the requirements 

should be classified and counted. As a consequence, you need an expert …” [3], 

although this sentence refers to FPA, it applies to the COSMIC method as well, even 

though the COSMIC provides a measurement guide [33] in addition to the official 

manual to help the measures.  

 

The general COSMIC-FFP procedure consists of three phase, namely identifying data 

movements, applying the measurement function, and aggregating measurement result. 
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Figure 16 COSMIC general measurement procedure [33] 

 

Identifying data movements 

This step consists in identifying the data movement of sub-process types (Entry, Exit, 

Read, and Write types) of each functional process type. 

 

To identify data movements, we suggest two steps. First, we identify the persistent data 

groups. Data groups are relatively easy to be identified, since data mentioned in the 

requirements are always persistent or transient. Second, for each functional process we 

check what data groups are subject to input, output, reading or writing (i.e., creation, 

update or deletion). 

 

Applying the measurement function 

 

An important rule is that one data movement has to be counted for each data group that 

is moved. So, for instance, an input operation that moves attributes from two data 

groups involves two data movements: one for each data group involved. 

 

Any data appearing on input or output screens or reports that are not related to an object 

of interest to a functional user should not be identified as indicating a data movement, 

so should not be measured. 

 

Aggregating measurement function results 

 

In the COSMIC method the aggregation of size measures is straightforward: 

 The size of a functional process is given by the number of its data movement types; 

 The size of the application is the sum of sizes of its functional processes. 

2.4 Comparison between FPA and COSMIC 

 

In literature [48], J. P. Jacquet and A. Abran presented a process model for software 

measurement methods. The proposed model details the distinct steps, namely design of 
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the measurement method, measurement method application, measurement result 

analysis, and exploitation of the result.  

 

The first one of them consists in 4 sub-steps, as illustrated in Figure 17 (from [48]), 

namely definition of the objectives, design or selection of the meta-model, 

characterisation of the concept to be measured, and definition of the numerical 

assignment rules.   

 

 
Figure 17 Design of the measurement method 

 

 

Now, we compare both methods according to the above 4 sub-steps, then we will make 

a general comparison of the elements of both methods. 

2.4.1 Objectives 

To define the objectives of measurement, for example, what we want to measure, which 

attribute should we measure, what the measurement method point of view will be, 

software user, software designer, etc. Because all of these criteria have a strong 

influence on the design and the result of the measurement, it is very important to 

compare them. In Table 9 we list all the criteria. 

 
Table 9 Objectives of measurement of both methods 

  FPA COSMIC 

Software 
kind 

MIS √ √ 

Real-time  √ 

Embedded system  √ 

complex mathematics 
algorithms 

√  

Other type applications  √ √ 

Type of 
count 

development project √ √ 

enhancement project √ √ 

application  √ √ 

viewpoint end-user end-user 

scope/propose software function size software function size 

Result FP CFP 

object of interest/attribute DET, RET, FTR Data group 
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2.4.2 Software model 

Though software (also the production of each stage of development) is artefact, is not 

tangible, however it can be made visible through multiple representations. As described 

in Figure 7 and in Figure 14, the set of characteristics (or relationship) that can represent 

a software or a software piece is abstracted and illustrated. All the entity types of meta-

model of both methods are listed in Table 10, and they are compared in detail in the 

following.  

 
Table 10 Entity type of software model 

  FPA COSMIC 

Entity type of meta 
model 

Transaction Process(EI,EO, or EQ) Functional Process 

Data Function (ILE, EIF)   

 

 

Processes 

Both FPA and COSMIC consider SW applications as composed by processes, namely 

elementary processes in FPA and functional processes in COSMIC.  

 

In the first approximation, they represent the same concept. FPA defines an elementary 

process as ―the smallest unit of activity meaningful to the user.‖ It must be self-

contained, and leave the application in a consistent state. The COSMIC defines a 

functional process as ―an elementary component of a set of FURs comprising a unique, 

cohesive, and independently executable set of data movements‖ [33]. It is triggered by 

one or more triggering events and completes when it has executed all that is required to 

be done in response to the triggering event type.‖ 

 

Elementary processes and functional processes are not ―exactly‖ the same concept since 

the rules to be fulfilled by a proper COSMIC functional process are slightly more 

restrictive than the rules for IFPUG transactions, since COSMIC is more demanding on 

defining what the right granularity of a proper functional process is. 

 

Data function 

The elementary process of FPA can be of type EI, EO, or EQ. FPA considers SW 

application as composed by processes but not just them, the data functions are also part 

of the measurement. To the contrary, CFP focus only on the part of functional process.  

2.4.3 Characterisation of the concept to be measured 

In order to enable the measurement method to be built, the concept of measurement 

must be clearly defined. 

 

In FPA, ILFs and EIFs are characterized on the basis of their Record Element Types 

(RETs) and Data Element Types (DETs). EIs, EOs, and EQs are characterized on the 

basis of their file type references (FTRs) and data element type (I/O DETs). In 

COSMIC, the functional processes are characterized on data group. The movement of a 

data group can be of type Entry, Exit, Read, or Write. 
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Now, we arrive at a point where we can compare the data elements of both methods. 

Data elements are handled and counted in quite a different way in IFPUG and COSMIC 

methods. This is one of the main differences between FPA and COSMIC. 

 

Both methods group data attributes in larger entities, but the data attributes are used 

differently in the counting, and the grouping of the attributes into larger entities is done 

following two different approaches. The differences are: 

 

 Internal and external data elements. In IFPUG you need to discriminate whether a 

data element is within (ILF) or out of (EIF) the system under development. In 

COSMIC there is no such explicit distinction (data group). 

 Data attributes grouping rules. In IFPUG the data attributes are grouped according 

to the rules that define DETs and RETs: a logic file (ILF or EIF) is composed by 

one or more RETs, and each of RET is composed by attributes. In COSMIC the data 

attributes are grouped according to the rules that define an object of interest (see 

Figure 18): a data group is composed by attributes (data attributes). 

 

 
 

Figure 18 Comparison of conceptual granularity of FPA and COSMIC data elements 

 

 Mandatory elements. In FPA all the mentioned elements need to be modeled: 

ILF/EIF, RETs and DETs. In COSMIC the data attributes are not considered at all 

in the counting, the data attributes are used only to be able to properly characterize a 

data group, thus precisely identifying them is facultative. 

 Parameters granularity. The data flows considered by FPA and COSMIC are at 

different granularity: in FPA DETs are counted, while in COSMIC data groups are 

counted. The nice direct relationship between RETs and data groups is made 

fruitless by the different data flow granularity. FPA needs much more detailed 

software models than COSMIC. From RETs it is possible to determine the 

corresponding RETs, thus the corresponding data groups. The other way around is 

unfeasible: it is impossible to automatically extract the information concerning DET 

flows from COSMIC models. 

 

Are there any commonalities?  

 Data attributes are conceptually the same in both methods. 

 A RET in IFPUG can be mapped to a data group in COSMIC. 
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Identifying FPA logic files is as difficult as identifying COSMIC data groups. Although 

these difficulties can seem to be of different nature, they are actually about the same 

problem, namely how to deal with the data in the information processing. 

 

Summarizing these facts, it is easy to understand that the level of details of data 

representation in FPA and COSMIC methods differ, but it is still possible to establish 

quite clear correspondences.  

 

We can conclude that, even if the two methods are different in treating data elements, 

FPA models can be used directly to obtain the COSMIC data models, while the 

COSMIC models need to be augmented of all the missing details (i.e., which data 

groups belong to the same ILF or EIF, and which attributes of a data group participate 

in each data flow crossing the boundaries of the system) to be usable as FPA models.  

2.4.4 Definition of the numerical assignment rules 

 

For FPA, the numerical assignment is carried on via the relative FPA reference table in 

the circumstance of knowing the type of the function and the numbers of the relative 

factors that can characterize the functions (such as DET and RET for data function). 

The aggregation of all the functions‘ UFP is the UFP of the application. The final FP of 

the application is assignment according to the VFA and the formula (8). 

 

For the CFP, one data movement is assigned as 1 CFP. The COSMIC aggregate the 

numbers of each functional process. It is very simplex. 

 

The units of both methods are not the same, and the ratio between both units is not 1.   

2.4.5 A general comparison of the elements of both methods 
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Figure 19 Comparison of the elements of FPA and COSMIC 

 

In Figure 19, the data modeling concepts of FPA and COSMIC are informally 

illustrated and compared. The level of detail grows from top to bottom: DETs and data 

attributes are the elements at the fine level of granularity. In the central part of the figure, 

operations involved in transaction functions or functional processes are also illustrated.    

 

In Figure 19, blue lines connect elements that have essentially the same meaning. On 

the contrary, pink lines connect elements that represent the same concept, but at 

different granularities. 

 

In Table 11, we summarize the mapping between the elements of FPA and COSMIC. 

 
Table 11 Mapping of FPA and COSMIC Concepts 

FPA COSMIC 

Elementary process Functional process 

DET Data attribute 

RET N/A 

Logical data file (ILF or EIF) 
Data group (or set of strictly related 
data groups) 

FTR (Logic data file involved in an 
elementary process) 

Data groups involved in a functional 
process 

Set of DET that cross the boundary of 
the application 

Persistent or Transient Data Groups 
that cross the boundary of the 
application 
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EI 
Functional process, necessarily 
involving a Write movement 

EO 
Functional process, necessarily 
involving an Exit movement 

EQ 
Functional process, necessarily 
involving Read and Exit movements 

Action within an elementary process 
that involves DET entering the 
application Entry 

Action within an elementary process 
that involves DET exiting the 
application Exit 

Action within an elementary process 
that involves reading from a FTR Read 

Action within an elementary process 
that involves modifying a FTR Write 

 

2.4.6 Comparison about the measurement process 

 

The measurement process of both methods involves the same macro phases. The three 

phases mentioned in Figure 4 in Section 2.1, Factor identification, Factor counting e 

Factor weighting, are the core of the FSM methodology. 

 

All the elements involved in both methods and the detailed activities of the last two 

phases are listed in Table 12. From this table, it is clear to see that FPA is relatively 

long, expensive, and difficult, while applying the COSMIC method is faster, simpler, 

and cheaper. 

 
Table 12 Analysis of all the elements involved in FPA and COSMIC 

ID Element 
Basic 

element 
Process 
activity FPA COSMIC 

1 DET √   √   

2 RET √   √   

3 Type of Data function(ILF vs. EIF) √   √   

4 Complexity of each Data Function   √ √   

5 UFP of each Data Function   √ √   

6 I/O DET √ √ √   

7 FTR √ √ √   

8 Type of transaction function √ √ √   

9 Complexity of transaction function   √ √   

10 UFP of application to be measured   √ √   

11 VAF   √ √   

12 Data group     √ √ 

13 
Summation of a piece of software to 
be measured   √ √ √ 

 

Since during the measurement process identifying the factors that compose the FUR 

model is the core and most difficult part of FSM, and the factors needed to be identified 

in the first macro affect the next two phases, so all those who intend to invent new FSM 

methods or need to improve or simplify existing methods try to either specify new sets 
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of the factors that define the FUR model or devise new procedures for identifying these 

factors. In the next chapter this observation is confirmed through the study of several 

simplified FSM methods. 

 

Different FSM methods use different FUR models. These models affect the 

measurement principle and the measurement process and activities. In the forth chapter 

we will illustrate the model-base measurement-oreinted method proposed by Lavazza et 

al. to facilitate the measurement activity, especially facilitate the identification and 

counting of the factors.   
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Chapter 3  Simplified Functional Size Measurement 
 

As we have seen in Chapter 2, performing FSM requires a thorough exploration of FUR, 

to identify and possibly weight basic functional components. Therefore, the 

measurement process can be quite long and expensive. In fact, FPA performed by a 

certified function point consultant proceeds at a relatively slow pace: between 400 and 

600 function points (FP) per day, according to Capers Jones [12], between 200 and 300 

function points per day according to experts from Total Metrics [13]. Consequently, 

measuring the size of a moderately large application can take even long time. Also the 

cost of estimation is often considered excessive by software developers. 

 

In addition, cost estimates may be needed when requirements have not yet been 

specified in detail and completely. This is a problem, since often at the beginning of a 

project FUR are known only in an approximate and incomplete way. Instead, the 

accuracy of a measure (i.e. the closeness to its ―thoric‖ value) grows with the 

completeness and precision of FUR specifications.  

 

In practice, in the early phases of the software development lifecycle, size estimations 

would be necessary for bidding and planning. But the available information is often 

incomplete and insufficient. So the customer only wants or is only able to do 

approximate measurements. When we can measure with the greatest accuracy, we no 

longer need that measure. The situation is described in a paradox illustrated in Figure 20 

(from [16]). 

 

 
Figure 20 Estimation paradox (from [16]) 

Given the above situation, many simplified function point methods have been proposed. 

In the following sections, we will discuss the existing simplified function point methods 

according to their principles. 

3.1 E&QFP 

 

The most well-known approach for simplifying the process of FP counting is probably 

the Early & Quick Function Points (E&QFP) method [16]. 
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3.1.1 Theoretical basis and characters 

The definition of E&QFP is based on the consideration that estimates are sometimes 

needed before the analysis of requirements is completed, when the information on the 

software to be measured is incomplete or not sufficiently detailed. 

 

The method is based on analogy-based classification, structured aggregation, and 

statistical data. The method aims at providing an approximate measure of size in FP. In 

other words, the process is simplified, but the unit of measure size result is IFPUG FP. 

 

The E&QFP manual provides a description of the ―Functional hierarchy‖ according to 

which FUR can be decomposed and measured (see Figure 21, corresponding to Figure 2 

in the E&QFP manual, subsection 1.1.5)  

 

The idea is that if you have enough information at the most detailed level (and enough 

time to apply the standard process) you count FP according to IFPUG rules (see the 

level 1 in Figure 22); otherwise, you can estimate the size of larger elements (e.g., 

General or Macro processes) either on the basis of analogy (e.g., a given General 

process is ―similar‖ to a known one) or according to the structured aggregation (e.g., a 

General process is composed of a few Transactional BFC). By considering elements 

that are coarser-grained than the BFCFPA, the EQFP measurement process leads to an 

approximate measure size result in IFPUG FP. 

 

It must be noted that within the same application, some parts can be measured at a fine 

granularity level (possibly the IFPUG level), while other parts can be estimated at a 

much coarser level. 
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Figure 21 Functional hierarchy in the E&QFP technique 

 

1
st
 aggregation level 

The 1
st
 aggregation level is exactly the same as FPA. 

 

2
nd

 aggregation level 

 

The 2
nd

 aggregation level has been introduced to deal with cases when data and 

transaction functions have been identified, but there is no time or not enough detail to 

weight them properly. At this aggregation level, there are 3 existing cases: 

 

 In the first case, it is possible to identify exactly the type of IFPUG BFC, but not its 

complexity.  

 In the second case, it is not possible to identify exactly the type of BFC nor its 

complexity, ―doubtful‖ or ―uncertain‖ elementary process for which there are no 

details available to differentiate between EO and EQ. 

 In the third case, it is not possible to identify exactly the type of BFC nor its 

complexity, ―doubtful‖ or ―uncertain‖ elementary process for which there are no 

details available to single out the primary goal, namely the presence of an EI, EO or 

EQ. 
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The first and the last case have been introduced in the subsection 1.1.5. So, we only 

introduce the second case, namely ―Un specified Output‖, as following.  This method 

provides weights derived from the statistical analysis of many projects (see Table 13) 

 
Table 13 Components and Values of Unspecified data group, generic EI, and Unspecified Generic 

Output at the 2
nd

 aggregation level 

Function type 
Weight 

Low Likely High 

Unspecified Generic Data Function 6.4 7.0 7.8 

Generic EI 4.0 4.2 4.4 

UGO-Unspecified Generic Output(EO/EQ) 4.1 4.6 5.0 

 

 

3
rd

 aggregation level 

 

When user requirements are insufficient to identify specific BFCs but only groups of 

unspecified BFCs, the aggregations of individual BFCs are taken into account (see 

Level 3 of Figure 21).  

 

E&QFP method defines ―typical processes‖, which consist of a set of 4 CRUD (create, 

read, update, and delete) elementary process, each generally deals with a special logic 

data file.  There are 3 Typical Processes, as displayed in the Table 14. 

 
Table 14 Components and Values of Typical Process at the 3

rd
 aggregation level 

Function Type 
Weight 

Low Likely High 

Typical Process Small(CRUD) 14.1 16.5 19.0 

Typical Process Medium (CRUD + List) 17.9 21.1 24.3 

Typical Process Large (CRUD + List + 

Report) 
22.3 26.3 30.2 

 

If a set of functional processes cannot be classified as typical processes because they 

involve additional operations, they can be generally classified into 3 general process 

types according to the number of involved Unspecified Elementary Processes (UEP).   

 
Table 15 Components and Values of General Process at the 3

rd
 aggregation level 

Function Type 
Weight 

Low Likely High 

General Process Small(6-10 UEP'S) 26.4 35.2 44.0 

General Process Medium (11-15 UEP'S) 42.9 57.2 71.5 

General Process Large(16-20 UEP'S) 59.4 79.2 98.9 

 

Concerning data, 3 general data group (GDG) typologies are recognized as different 

aggregation levels, which depend on the amount of Unspecified Logic File (ULF) 

belonging to the GDG. An ULF is a file whose size and type (i.e., ILF or EIF) is not 

known. 
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Table 16 Components and Values of General Data Group at the 3
rd

 aggregation level 

Function Type 
Weight 

Low Likely High 

General Data Group Small(2-4 ULFs) 15.0 21.4 27.8 

General Data Group Medium(5-8 ULFs) 32.4 46.3 60.2 

General Data Group Large(9-13 ULFs) 54.8 78.3 101.8 

 

 

4
th

 aggregation level 

 

If the levels of 1, 2, or 3 can not be used, the 4
th

 aggregation level is suitable. The type 

of macro process level is defined according to the number of general processes that are 

expected to be included in the macro process. 

 
Table 17 Components and Values of Macro Process at the 4

th
 aggregation level 

Function Type 
Weight 

Low Likely High 

Macro Process Small(2-4 Generic GPS's) 111.5 171.5 231.5 

Macro Process Medium(5-7 Generic GPS's) 185.8 285.9 385.9 

Macro Process Large(8-10 Generic GPS's) 297.3 457.4 617.4 

 

3.1.2 Estimation procedure 

 

The official procedure for estimating with E&QFP is illustrated in Figure 22 (from [16]). 

Most steps are similar to the FPA counting procedure.  

 

 
Figure 22 Diagram of the E&QFP estimation procedure (from [16]) 

 

However - unlike in IFPUG counting- the values of each component of the above 

E&QFP tables are made up of a tern of values labelled with Low, Likely and High. 

Therefore the estimated size s not a single vales; rather it is made of a likely value and 

an expected variability range. 

3.1.3 Characteristics of E&QFP 
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Multi level approach 

An advantage of the method is that different parts of the system can be measured at 

different detail levels: for instance, a part of the system can be measured following the 

IFPUG manual rules [10][11], while other parts can be measured on the basis of 

coarser-grained information. In fact, the E&QFP method is based on the classification 

of the processes and data of an application according to a hierarchy (see Figure 21). 

 

Time and cost savings 

The trade-off between reduced measurement time and costs is also a reason for adopting 

the EQFP method even when full specifications are available, but there is the need for 

completing the measurement in a short time, or at a lower cost.  

 

Limits 

We have to remember that in general, applying E&QFP involves ignoring some details 

of the FUR specifications that should be considered according to the standard IFPUG 

manual. As a result, the obtained size estimate is generally less accurate than the 

measure performed according to the manual. According to the authors of the E&QFP, 

the error is no greater than 10%, on average. 

3.2 Average complexity (weight) values 

 

In this section we describe methods that adopt average weights. These methods do not 

require the weighting of functions; instead each function is weighted with average 

values. 

3.2.1 Estimated NESMA method 

 

The NESMA (Netherlands Software Metrics Association) recognizes three types of 

function point counts: detailed function point count, estimated function point count, and 

indicative function point count. The latter 2 methods have been developed to enable 

function point counting early in the system life cycle. 

 

The Estimated NESMA method requires the identification and classification of all data 

and transaction functions, but does not require the assessment of the complexity of each 

function: Data Functions (ILF and EIF) are assumed to be of low complexity, EI, EQ 

and EO are assumed to be of average complexity. So the weights of the functions - ILF, 

EIF, EI, EO, and EQ - are respectively valued as 7, 5, 4, 5 and 4 [41]. 

 

UFP = #ILF × 7 + #EIF × 5 + #EI × 4 + #EO × 5 + #EQ × 4  (9) 

 

The procedure of counting the Estimated NESMA function points is as following: 

• Determine the numbers of ILF and EIF (# ILF and #EIF, respectively); 

• Determine the numbers of EI, EO and EQ (# EI, #EO, #EQ, respectively); 

• Compute the function points by Equation   (9): 

 

The Estimated NESMA method is expected to be more approximated than the E&QFP 

method based on generic functions, as the latter uses likely values for transactions of 

unknown complexity, derived from statistic analysis. 
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3.2.2 ISBSG average weights 

 

This model is based on the average weights for each BFC, as resulting from the analysis 

of the ISBSG dataset [15], which contains data from a few thousand projects.  

The mean weight of the transaction and data functions in the ISBSG dataset is reported 

in the following table. 

 

Function ILF EIF EI EO EQ 

Mean weight 7.4 5.5 4.3 5.4 3.8 

 

The estimated size in UFP is then computed assuming that each function has mean 

weight: 

 

UFP = #EI × 4.3 + #EO × 5.4 + #EQ × 3.8 + #ILF × 7.4 + #EIF × 5.5  (10) 

3.2.3 Simplified FP 

The simplified FP (sFP) approach simply assumes that all BFC are of average 

complexity [18], thus: 

UFP = #EI × 4 + #EO × 5 + #EQ × 4 + #ILF × 10 + #EIF × 7  (11) 

3.2.4 Prognosis of CNV AG  

The Prognosis of CNY AG method [42] was defined by the CNV AG (the outsourced 

non-insurance part of AXA Colonia Insurance) based on the average complexities 

resulting from a historical dataset. The version defined in 1998 is the following:   

 

UFP = #EI × 4.6 + #EO × 5.5 + #EQ × 4.3 + #ILF × 8.0 + #EIF × 5.9  (12) 

 

In 1999, considering new historical data, the simplified model was updated as following: 

 

UFP = #EI × 4.6 + #EO × 5.7 + #EQ × 4.3 + #ILF × 8.2 + #EIF × 6.1  (13) 

3.3 Size estimation based on a single component  

 

With this technique an estimation model is built using one type of components (usually 

ILFs).According to this model, the FP of the whole system can be calculated by 

the component and the given model. 

 

This technique is based on the statistically significant correlation between the number of

 ILFs (for example) in an application and the application‘s unadjusted function point co

unt.  

This technique is very simple and is very easy to be developed locally. To build an ILF-

based 

model, it is only necessary to collect UFPs and ILFs of all your applications, and derive 

the model (e.g., using regression).  

 

In the following subsections, a few methods - Indicative NESMA FP, Tichenor ILF 

Model, Prognosis by CNV AG, and ISBSG distribution model – are given. 

3.3.1 Indicative NESMA method 
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The Indicative NESMA method [17] is well known and is often referred to as "the 

Dutch method". It simplifies the process by only requiring the identification of Logic 

Data from a data model. The Function Point size is then computed by applying 

predefined weights, whose values depend on whether the data model is normalized in 

3rd normal form: 

 

Non normalized model: Function Points = #ILF × 35 + #EIF × 15  (14) 

Normalized model: Function Points = #ILF × 25 + #EIF × 10   (15) 

 

The process of applying the NESMA indicative method involves only identifying logic 

data and classifying them as ILF or EIF. Accordingly, it requires less time and effort 

than several of the methods described above, in general. However, it is quite clear that 

the Indicative NESMA method is quite rough in its computation. The official NESMA 

counting manual specifies that errors in functional size with this approach can be up to 

50%. 

3.3.2 ILF Model 

 

The Internal Logical File Model (sometimes named ―ILF Model,‖ or ―One File Model‖) 

was developed in 1994 by the IRS function point team and was presented at the fall 

1997 IFPUG Conference [15]. It bases the estimation of the size on the number of ILF 

via the following formula for transactional system (for batch systems, Tichenor 

proposes a smaller multiplier): 

 

UFP = #ILF × 14.93  (16) 

 

This model assumes a distribution of BFC with respect to ILF as follows: EI/ILF = 0.33, 

EO/ILF = 0.39, EQ/ILF = 0.01, EIF/ILF = 0.1. If the considered software application 

features a different distribution, the estimation can be inaccurate. 

 

The fact that a method based only on ILF requires a given distribution for the other BFC 

is not surprising. In fact, the size of the application depends on how many transactions 

are needed to elaborate those data, and the number of transaction cannot be guessed 

only on the basis of the number of ILF, as it depend on the number of ILF just very 

loosely. Instead of allowing the user to specify the number of transactions that are 

needed, the Tichenor ILF model practically imposes that the number of transactions 

complies with the distribution given above. 

3.3.3 ISBSG Distribution model 

 

In the very early phases of a software development project it is not practical or even 

possible to know in detail all of the items that make up all of the function point 

components. However, it is often possible to detail one of the components - such as the 

Internal Logical Files or External Inputs - with a fair degree of certainty. 

 

However, to estimate the size of an application on the basis of a single component, it is 

necessary to know the average contribution of that component, at least on average. 
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Figure 23 Relationships among IFPUG Functional Component Types 

 

Figure 23 shows the relationships among the five components of the IFPUG functional 

size method from the project data in the ISBSG repository. These relationships can be 

used to estimate the functional size of a project. 

 

The analysis of the ISBSG dataset yielded the following distribution of BFC 

contributions to the size in FP:  

 

ILF 22.3%, EIF 3.8%, EI 37.2%, EO 23.5%, EQ 13.2% 

 

The analysis of the ISBSG dataset also shows that the average size of ILF is 7.4 UFP. It 

is thus possible to compute the estimated size on the basis of the number of ILF as 

follows: 

 

UFP = (#ILF × 7.4) × 100 / 22.3  (17) 

 

The same considerations reported above for the Tichenor model apply. If the application 

to be measured does not fit the distribution assumed by the ISBSG distribution model, it 

is likely that the estimation will be inaccurate. 

 

Note: The techniques discussed above are only valid only if your application or 

development project is loosely coupled from other applications and fits the profile of 

projects currently in the ISBSG Repository. Early research indicates that the above 

relationships may not hold for the domains of real-time, control, scientific or embedded 

software. 

3.3.4 Prognosis of CNV AG  

The CNV Prognosis [42] method, defined in 1998 by CNV AG (the outsourced non-

insurance part of AXA Colonia Insurance) uses the following model: 

 

FP = 56 + #IO × 7.3; (R
2
=0.9525)  (18) 

Where #IO = number of (EI + EO). 

 

In 1999, this model was revised as  

 

FP = 39 + #IO × 7.6; (R
2
=0.9509)  (19) 
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3.3.5 Early Function Point Method (EFPM) 

Asensio et al. [44] proposed a method called Early Function Point Method (EFPM) for 

the need of estimates at the early stage of software development when the required 

documentation is not available yet. Based on a set of 30 projects in his work, the 

following regression equation were found and proposed to calculate the FP by ILE, ILE 

+ EIF, or EI + EO + EQ.  

FP = 130.327 + #ILE × 15.90  (20) 

FP = 66.905 +  (#ILE + #EIF) ×13.035  (21) 

FP = 50.784 + (#EI + #EO + #EQ) ×6.28  (22) 

 

3.4 Approximation technique and estimation technique 

 

 

3.4.1 “Smart” Approximation Technique 

 

In [14], Santillo suggested probabilistic approaches, where the measurer can indicate the 

minimum, medium and maximum weight of each BFC, together with the expected 

probability that the weight is actually minimum, medium or maximum. This leads to 

estimate not only the size, but also the probability that the actual size is equal to the 

estimate. 

 

The measurement procedure consists of the following steps:   

 Preparing the requirements to an acceptable level of description (e.g. ―lists‖ rather 

than ―grouped statements‖);  

 Further specifying the requirements at the level of ―single functions‖, which 

typically resembles the concept of elementary/functional process in FSM); 

 Based on the measure‘s expertise, assessing functions with the minimum, medium, 

and maximum weights and their related probabilities. 

 

Table 18 (from [14]) shows a form to collect the data required by the method. 

 
Table 18 Smart FP assessment (Only for FPA) 

Function Weights&Probability 

Low 

Min 

Avg 

Mid 

High 

Max 

Weighted 

Value 

 
Weight value    

 
Related Probability    

 
    

 
    

Total FP  

Estim/prob  

Estim. Range  

 

 

− For each function, the weighted value is calculated by the functions   (23) and   (24). 

The size of the i
th

 function is computed as follows: 

WeightedSizei = LowMin_valuei × LowMin_ probabilityi + 
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AvgMid_valuei × AvgMid_ probabilityi + 

HighMax_valuei ×  HighMax_ probabilityi  (23) 

 

The size of the whole application is computed –as usual– as the sum of functions‘ sizes. 

TotalSize = WeightedSize1  + … + WeightedSizen  (24) 

 

This method also supports the computation of the confidence probability for the total 

size. 

With this method, the measurer can choose to spend more time in the analysis of each 

function to get more probable values, or speed up the process, indicating a smaller 

confidence in the provided values. In any case, the probability associated with the result 

reflects this trade-off. 

3.5 Comparison of simplified methods 

 

In this section, we compare all the simplified methods mentioned in the sections 3.1, 3.2, 

3.3, and 3.4. The comparison is summarized in Table 19. We compare methods mainly 

with respect to the techniques used, the factors measured, and the measurement 

processes.  
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Table 19 Comparison of the simplified methods 

Simplified Function 

point method 
Technique used 

Factors 

Process  Basic Functional 

Components BFC 

Granularity 

BFC 

identification 

Difficulty 

Weight 

ILF EIF EI EO EQ Fixed Probability changed Difficulty 

E&QFP(Level 1) 

Analogy-based 

classification, 

structured 

aggregation 

√ √ √ √ √ * ****       ***** 

E&QFP(Level 2) 

General 
Idem √ √ √ √ √ * **** √   √ **** 

E&QFP(Level 2) 

Unspecified General 

Output 

Idem √ √ √ 
√ 

(UGO) 
* ***/**** √   √ ***/**** 

E&QFP(Level 2) 

Unspecified 
Idem 

√ 
(UGDG) 

√ 
(UGEP) 

** *** √   √ *** 

E&QFP(Level 3) Idem 
√ 

(GDG) 
√ (TP) *** ** √   √ ** 

E&QFP(Level 4) Idem √ (MP) *** * √   √ * 

Estimated NESMA 

method 

Average 

complxities/valu

es 

√ √ √ √ √ * **** √   √ **/*** 

ISBSG average weights Idem √ √ √ √ √ * **** √   √ **/*** 

Simplified FP Idem √ √ √ √ √ * **** √   √ **/*** 

Prognosis of CNV AG  Idem √ √ √ √ √ * **** √   √ **/*** 
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Indicative NESMA 

method 
Extrapolation √ √       * ** √   √ ** 

ILF(Tichnor's) Model Idem √         * **** √   √ * 

ISBSG Distribution 

model 
Idem √         * **** √   √ * 

Prgnosis of CNY AG Idem     √     * **** √   √ * 

Early FP method(Model 

1) 
Idem √         * **** √   √ * 

Early FP method(Model 

2) 
Idem √       ** *** √   √ * 

Early FP method(Model 

3) 
Idem     √ ** *** √   √ * 

Smart FP 
Approximation 

technique 
√ √ √ √ √ * ****   √ √ **** 
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3.5.1 Techniques 

 

Four techniques are used in these methods: 

 

The E&QFP method uses the techniques of analogy-based classification and structured 

aggregation technique.  

The Estimated NESMA method, ISBSG average weights, Simplified FP, and Prognosis 

of CNV AG method use average complexities or average values.  

The Indicative NESMA method, ILF (Tichnor's) Model, ISBSG Distribution model, and 

Prognosis of CNV AG, and Early Function Point method use the technique of 

extrapolation. 

The Smart FP method employs the approximation technique. 

3.5.2 Factors 

 

Factors being used 

Most of the methods use the basic functional components (BFCs).  

 

The Estimated NESMA method, Prognosis of CNY AG, and Smart FP use all the basic 

functional components (ILF, EIF, EI, EO, and EQ); 

 

The Indicative NESMA method, ILF (Tichnor‘s) Model, ISBSG Distribution model, 

and Early Function Point method (Models 1, 2, and 3) only use a subset of the BFCs.  

 

About the E&QFP method, the situation is more complex. The level 1 and level 2 

(general E&QFP) still use the basic elements components (ILF, EIF, EI, EO, and EQ). 

From the level 2 (unspecified general Output), the E&QFP uses the new aggregation 

components, for example, EO and EQ are aggregated as Unspecified General 

Output(UGO). At level 3, the ILF and EIF are aggregated as General Data Group 

(GDG). EI, EO, and EQ are aggregated as Typical Process (TP). At level 4, all the five 

factors are aggregated as Macro Process (MP). 

 

The granularity of factors being used 

 

Since identifying the factors that compose the FUR model is the core and most difficult 

part of FSM, all those who intend to invent new FSM methods or need to improve or 

simplify existing methods try to either specify new sets of the factors that define the 

FUR model or devise new procedures for identifying these factors. 

 

Here, we indicate the granularity of factors as follows: 

 Granularity level of BFC (*);  

 Granularity level of unspecified general type of transaction function or data function  

(**); 

 Granularity level of unspecified function (***). 

 

The level of difficulty in capturing factors 

We also compare the level of difficulty in capturing the factors being used in the 

measurement process. Obviously, the finer granularity of the factory, the more difficult 
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to capture it. In other words, the level of difficulty in capturing a factory is inversely 

proportional to the level of granularity of the factor. 

 

Weight values 

There are two methods for getting the weight value, namely using the fixed value and 

subjective estimating. The Smart FP method uses the latter method, namely subjective 

estimation. The other methods use the fixed values supplied by the relative method. 

3.5.3 The aspect of measurement process 

 

If the factor(s) of a simplified method are different from those of the standard method, 

the measurement process will also be different. So, all the processes of simplified 

methods, except the E&QFP (only Level 1) method, are different from the standard.  

 

3.5.4 Brief summary 

Although the above comparisons (especially in the aspects of factory granularity, 

capturing difficulty, and measurement process difficulty) are quit rough, the results of 

the comparison improve our knowledge of simplified methods. 
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Chapter 4  Model-based measurement 
 

FSM aims at providing a measure of functional user requirements(FURs). The FSM 

methods do not specify how to model FURs. From the traditional model written in a 

mixture of E/R diagrams, data flow diagrams, tables, text, formulas, etc., it is very 

difficult to identify BFC and all those elements that contribute to size measures. So how 

to model FURs, in other words, how to deal with FURs and get the ―object‖ of 

measurement before starting the measurement becomes a focus of FSM. In this chapter 

the model-based measurement methods, especially the measurement-oriented model-

based methods [3] proposed by Lavazza et al, are introduced. 

 

4.1 Fundamentals 

 

The idea of model-based measurement stems from the observation that the most 

difficult part of FSM consists in extracting from functional user requirements the 

elements that need to be identified according to the method being used (e.g., elementary 

processes, logic data files, RET, DET, etc. for FPA; functional processes, data groups, 

data movements for COSMIC). 

 

So, model-based measurement requires that models of the functional user requirements 

are built, so that the aforementioned elements can be easily identified and measured. To 

this end, we cannot just rely on the fact that requirements models are available, since 

they could be incomplete with respect to the required information (or they could provide 

much more information than needed), and they could provide such information at a too 

detailed or too coarse granularity level. Therefore, models must be measurement-

oriented. The fact that model-based measurement is performed on measurement-

oriented models makes this method conceptually very different from other proposals 

concerning the measurement of the functional size of UML models. Measuring models 

that have been built with measurement in mind is easy and reliable. This is the spirit of 

model-based measurement. 

 

Because of the popularity of object-oriented modeling techniques, model-based 

measurement is actually Object-Oriented (OO) model-based measurement. Accordingly, 

in the following sections, a brief introduction to OO modeling techniques is given. 

4.1.1 Object Oriented Modeling Technique 

Before we choose or establish the OO model-based measurement method, we must look 

back on the technology-based OO model, because the sizing method should go in line 

with the approach chosen for development, for the users to adopt it and apply it 

consistently. [47] 

 

With regard to OO model-based measurement, we must clearly define two main aspects: 

first, which conceptual modeling patterns is adopted for the analysis and modeling; 

second, which notation is used for capturing the conceptual modeling patterns. 
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Among object-oriented analysis and modelling methods, the Object-Modeling 

Technique (OMT) model [53] is one that is used more frequently. This conceptual 

approach comes from the ANSI‘s 4 frame schema, namely External Schemas, 

Conceptual Schema, Logical Data Model, and Physical Data Model (Figure 24). This 

pattern uses a set of schemas to describe the system from different views. Each one of 

those represents one person's view of the world. These schemas are then consolidated 

into a single conceptual schema, which can entirely, accurately, and correctly represent 

the application being measured. 

 

 
Figure 24 ANSI’s conceptual schema 

 

With regard to the notation, there are a number of different notations for representing 

OO models, such as the Unified Modeling Language (UML). UML incorporates OMT 

principles. Its static diagrams, dynamic diagrams, and functional diagrams have a good 

ability of capturing and representing OMT‘s three external conceptual schemas. The 

collection of these three types of diagrams can entirely, accurately, and correctly 

represent the application being measured. UML was designed with the characteristics of 

simplicity and expressiveness, and achieved a good popularity; for these reasons it was 

selected as the notation for model-based measurement.   

4.1.2 Object-based measurement-oriented reference model 

 

Now, the problem of measuring the application‘s FURs is changed to measure the 

conceptual model of the application represented via UML diagrams. 

 

In order to measure the size of UML models in Function Points, three issues must be 

tackled. First, the mapping between FSM concepts (mainly, the BFC) and UML 

elements must be established; second, UML modeling rules must be defined on the 

basis of the rules of FSM, and the UML diagrams to be used must be identified; finally, 

the measurement rules must be defined. 

 

On the basis of the considerations reported above [3] and the literature on OO software 

functional measurement process [48] [49], we define the model-based measurement 

process shown in Figure 25. This model-based measurement-oriented FSM method 

consists of two phases. The first phase is to specify the FURs using appropriate UML 

diagrams, according to the modeling rules; the second phase is to identify, count and 

calculate the function point according to the mapping rules and measure rules. 
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Figure 25 Process of model-based measurement 

 

In order to carry out the specifying phase for FSM methods, a FUR must have certain 

properties [14]. By tracing the measurement process of both methods, we derived 13 

elements (see Table 20) of a FUR that must be extracted, identified and mapped to the 

FSM elements shown in Table 11. 

 
Table 20 Mapping of FPA and COSMIC Concepts 

FUR element FPA COSMIC 

Elementary operation (function) Elementary process Functional process 

Elementary piece of information DET Data attribute 

Data sub-group RET N/A 

Cohesive data group 
Logical data file (ILF or 
EIF) 

Data group (or set of strictly 
related data groups) 

Data involved in an operation 
(function) 

FTR (Logic data file 
involved in an elementary 
process) 

Data groups involved in a 
functional process 

Elementary pieces of information 
that cross the boundary of the 
application during an operation 
(function) 

Set of DET that cross the 
boundary of the 
application 

Persistent or Transient Data 
Groups that cross the 
boundary of the application 

Operation (function) whose main 
purpose is data input EI 

Functional process, 
necessarily involving a Write 
movement 

Operation (function) whose main 
purpose is outputting computed 
results EO 

Functional process, 
necessarily involving an Exit 
movement 

Operation (function) whose main 
purpose is retrieving data and 
outputting them EQ 

Functional process, 
necessarily involving Read 
and Exit movements 

Action within an operation (function) 
that involves data input 

Action within an 
elementary process that 
involves DET entering the 
application Entry 
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Action within an operation (function) 
that involves data output 

Action within an 
elementary process that 
involves DET exiting the 
application Exit 

Action within an operation (function) 
that involves reading stored data  

Action within an 
elementary process that 
involves reading from a 
FTR Read 

Action within an operation (function) 
that involves writing (i.e., storing) 
data 

Action within an 
elementary process that 
involves modifying a FTR Write 

 

 

Developing systems using OO paradigm requires new development approach, it is 

common view in academe and practice. Over the many years, although a number of OO 

software development approaches are discussed and prescribed, two themes are 

common, the first is that ―the distinction between analysis, design, and implementation 

often blurs in object-oriented system development.‖ [50]; and the second is that ―The 

iterations are, therefore, a key aspect of the development process. [50]‖. Compared with 

the traditional development processes these two recurring themes change, in several 

ways, the form and shape of development process for object-oriented systems.  

 

According to the COSMIC Measurement Manual [33] and other literature [48] on the 

OO software measurement process definition, the proposed OO-model measurement 

process is shown in Figure 26. 

 
Figure 26 Specification process of OO 

 

We assume that the functional user requirements for an OO system are descried through 

the following steps: 

 The first step: construct Use case diagram; 

 The second step: construct class diagram; 

 The third step: construct component diagram; 

 The last step: construct sequence diagrams. 

 

This model-based measurement-oriented FSM method consists of two steps. The first 

step is to specify the FURs using appropriate UML diagrams, according to the modeling 

rules; the second step is to identify, count and calculate the function point according to 

the mapping rules and measure rules. [21] [22] 

4.2 The Case of Warehouse Software Portfolio 
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We use as an example the Warehouse Software Portfolio (WSP) by Fetcke [55]. The 

version of the WSP used here includes a few marginal changes with respect to Fetcke‘s 

version. 

 

The WSP is a collection of overlapping applications for warehouse management. The 

Entity/Relationship diagram representing the entities involved in the WSP is given in 

Figure 27. The entities and their attributes are described in Figure 28.  Both figures are 

from [55]. Attributes Owner and Storage place are references to entities Customer and 

Place, respectively. 

 
Figure 27 Entity/Relationship diagram of the WSP 

 

 

 
Figure 28 Entities of the WSP 

 

The transactions supported by the WSP are: 

 

 
 

Because of limited space we cannot give the detailed requirements for these transactions. 

The complete FUR of the WSP can be found in [55]. 

4.3 Model-based measurement of Function Points 

 

As already described in 2.2, Function Point Analysis assumes that user requirements are 

composed of Data and Transaction functions (see Figure 6), and the latter are 

characterized in terms of RET, DET and FTR (see Figure 7).  

4.3.1 Representing data function 

In the IFPUG manual [11] there are a few relevant indications concerning data functions: 

 Logical data files are “logically related groups of data”. 

 The RET is defined as ―a record element type (RET) is a user recognizable 

subgroup of data elements within an ILF or EIF.‖  
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 The DET is defined as follows ―a data element type (DET) is a unique user 

recognizable, non-repeated field.‖ 

 

There are similarities between FPA and object-oriented concepts. For instance, a logical 

file in the function point approach is a collection of related data (which are user-

identifiable, if the class is defined in a model of user requirements). 

 

Therefore, the class is the natural candidate for representing logical files using the 

object-oriented paradigm, but a class tends to represent information at a lower level of 

granularity than a FPA logic file. In some cases, it is possible to identify a class as a 

logical file, in some cases a set of classes should be identified as a logical file, i.e., 

objects that are instances of a class correspond to records (RETs) of a logical file in data 

processing applications. Lavazza et al. found a good way of presenting logical file using 

UML component [3]. 

 

So, FPA concepts are mapped onto object-oriented concepts as follows: 

 Logical data files (either ILF or EIF) are represented as (conceptual) components 

that include data (and the methods that are needed to manipulate those data). 

 RETs can be represented by classes within components. Since each RET belongs to 

a data file, each class representing a RET belongs to the component representing the 

corresponding data file. 

 DETs can be represented as class attributes. 

 

Within the system component (i.e., the component representing the application to be 

measured), a subcomponent has to be introduced for every logically related group of 

data that are managed (i.e., created, updated, deleted, etc.) by the application and that 

are user identifiable (i.e., that have a precise meaning for the user, according to the 

user requirements) [3]. 

 

 
Figure 29 Component of Customer_manag 

4.3.2 Representing elementary process 

According to the IFPUG manual [11], ―An elementary process is the smallest unit of 

activity that is meaningful to the user(s). The elementary process must be self-contained 

and leave the business of the application being counted in a consistent state.” 

 

In the specification of UML [52] use cases are described as follows: ―Each use case 

specifies some behavior, possibly including variants, that the subject can perform in 
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collaboration with one or more actors. […] These behaviours, involving interactions 

between the actor and the subject, may result in changes to the state of the subject and 

communications with its environment. […] Each use case specifies a unit of useful 

functionality that the subject provides to its users […]. This functionality, which is 

initiated by an actor, must always be completed for the use case to complete. It is 

deemed complete if, after its execution, the subject will be in a state in which no further 

inputs or actions are expected and the use case can be initiated again or in an error 

state. 

 

So, it seems that use cases are compatible with the concept of elementary processes. 

Actually, a use case could be used to represent a set of related elementary processes. We 

impose a modeling discipline in order to make sure that there is a one-to-one 

relationship between use cases and elementary processes. 

 

However, it is easy to observe that the amount of information reported in UML use case 

diagrams is not sufficient to measure them, since the FTR involved in a process and the 

DET that cross the boundaries of the application are not explicitly mentioned in use 

case diagrams. 

 

In UML, sequence diagrams represent interactions taking the form of sequences of 

messages exchanged among objects within collaborations to effect a desired operation 

or achieve a result. These collaborations match quite closely the definition of 

elementary processes. In any case, it is possible to model an elementary process by 

means of a sequence diagram. 

Sequence diagrams are suitable for modeling the information required to measure 

elementary processes, because: 

 FTR can be represented as instances of components that take part in the 

collaboration. 

 DET crossing the boundaries of the application are represented by the parameters of 

messages that cross the boundaries of the application. 

 A sequence diagram shows the meaning of the process at a quite detailed level, 

therefore it is possible to evaluate the main purpose of the process and classify it as 

EI, EO or EQ. 

 

In conclusion, we represent transaction functions by means of sequence diagrams. 

4.3.3 Sequence diagrams 

 

The sequence diagram has two axes. The horizontal axis identifies the participants and 

the corresponding lifelines. According to our definition, users, the system (i.e., the 

application to be measured), logic data (both internal and external ones) and external 

systems are the participants of sequence diagrams. An example is given in Figure 

30: :operator is the user of the application, :System is the application itself (more 

precisely, the component that represents the application), :Customer_manag is a FTR, 

that is, a data file used within the application. 
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Figure 30 Horizontal axis of a sequence diagram 

 

The other axis of sequence diagrams, the vertical axis, represents time, which increases 

from top to bottom. A sequence of messages represents a scenario of a use case. A 

message may have one, multiple, or no parameter. A Message that crosses the 

boundaries of the system (e.g., a message from the User to the System) carries 

parameters that represent DETs. 

 

For each sequence diagram, the main intent must be labeled for identifying that the 

corresponding elementary process is of type of EI, EO, or EQ. 

 

The Add customer transaction adds a record of Customer data to the database. The 

attributes Name and Address have to be entered. The Amount due is initialized to zero. 

When the user presses the Add button, the customer record is added into the database. 

If, however, a customer with the Name entered already exists, the data is not added and 

an error message is displayed. The user may abort this transaction with the Cancel 

button. The user interface of the Add customer transaction is illustrated in Figure 31 on 

the facing page. 

 

 
Figure 31 User interface of the Add customer transaction 
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Figure 32 Sequence diagram of the Add customer transaction (FPA method) 

 

The mapping between IFPUG-FPA concepts and UML constructs and elements is 

summarized in Table 21. 
Table 21 FPA-UML element mapping 

 

FPA UML 

diagram element 

Application boundary Use case diagram Boundary of the subject that owns 

the use cases 

Elementary process Use case diagram Use case 

Users Use case diagram Actors 

EIF Use case diagram Actors 

External systems Use case diagram Actors 

Application being 

measured 

Component 

diagram 

<<system>> component 

Logical data file Component 

diagram 

<<logic data>> component 

RET Component 

diagram 

Class belonging to <<logic data>> 

component 

DET Component 

diagram 

Class attribute 

ILF Component 

diagram 

<<logic data>> component within 

system component 

EIF Component 

diagram 

<<logic data>> component outside 

system component 

Elementary process 

(transaction function) 

Component 

diagram 

Operation provided by the system 

component interface 

Elementary process 

(transaction function) 

Sequence diagram (whole diagram) 
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FTR Sequence diagram Instance of <<logic data>> 

component 

DET crossing 

boundary in 

transaction 

Sequence diagram Argument (of attributes granularity) 

of messages crossing the boundaries 

 

4.3.4 The counting procedure 

 

Here the FPA counting procedure is redefined, in order to be applicable to a UML 

model which is built according to the rules reported in above subsections. 

 

Counting EIFs and ILFs  

 

Identifying ILFs and EIFs is immediate: both are components stereotyped 

<<LogicData>>; while ILFs are within the boundaries of the application, i.e., in the 

application component, EIFs are outside. In order to weight ILFs and EIFs, we need to 

count their RETs and DETs. 

 

In general we count a RET for every class in the data component. 

 

For data components that contain just a single class we count 1 RET, since there are no 

data subgroups from the user perspective, but just the main group represented by the 

class.  

 

For data components including more classes, the number of RETs depends on the 

relations between classes:  

 Classes connected by associations are counted as RETs.  

 Composition and aggregation relations are treated like plain associations. 

 In a generalization/specialization hierarchy, we count the classes that can be 

instantiated. I.e., a abstract classes are not counted, since they cannot be instantiated. 

 

Thus, for the ILF Customer_manag (Figure 29) we count 1 RET. 

 

Counting the DETs is relatively simple: we count a DET for each attribute of the 

class(es) belonging to the data component (remember that attributes are nonrepeated by 

construction). 

 For data functions containing just one class, the number of DETs is equal to the 

number of the class‘s attributes; 

 For classes connected by an association relation, the number of DETs is again equal 

to the sum of the number of attributes of the classes; 

 For classes connected by composition relations, the number of DETs is equal to the 

sum of the number of attributes of the classes; 

 When generalization is involved, according to the FPA counting rules we must take 

into consideration ―nonrepeated‖ attributes. Therefore the attributes of a super-class 

are counted just once, regardless how many sub-classes inherit them. We also count 

an additional DET for each subclass, in order to take into account the specialization 

criterion.  

 

Thus, for the ILF Customer_manag (Figure 29) we count 6 DETs. 
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Counting transaction functions 

 

Transactions are identified in a straightforward way. The indication of the main intent of 

the transaction is evaluated by the analyst and made directly available to the measurer, 

who can take into account this piece of information to classify the given transaction as 

an EI or as an EO. For this purpose we have to identify the FTR and the DET. 

 

Counting FTR is immediate: we just have to count how many ILF and EIF are 

referenced, i.e., how many ILF and EIF appear in the sequence diagram that describes 

the considered transaction. For instance, in the transaction that Add customer transaction 

(Figure 32), only the Customer_manag ILF is referenced, thus FTR=1. 

 

DET to be considered are the ones that cross the boundary: in the transaction Add 

customer the 6 parameters of the invoked function and the return message are counted 

as DET. In addition, the counting rules require that a DET is added for the ability to 

specify an action to be taken [3]. In conclusion, the Add customer transaction is an EI, 

having 1 FTR and 7 DETs therefore, according to [10], it is a Low complexity EI, 

which contributes 3 FP. 

4.4 Model-based measurement of COSMIC FP 

 

As already described in Section 2.3, the COSMIC method assumes that user 

requirements are composed of functional processes (see Figure 11), which are 

characterized in terms of data movements (Write, Read, Entry, and Exit) (see Figure 12). 

4.4.1 Representing functional process 

 

According to the COSMIC manual [33], ―A functional process is an elementary 

component of a set of Functional User Requirements comprising a unique, cohesive and 

independently executable set of data movements. It is triggered by a data movement (an 

Entry) from a functional user that informs the piece of software that the functional user 

has identified a triggering event. It is complete when it has executed all that is required 

to be done in response to the triggering event.” 

 

The COSMIC method recognizes four types of data movement and defines a data group 

as the data element that is subject to movements: a data group consists of a non 

redundant set of data attributes. The concept of data group in the COSMIC method 

matches very closely the class construct in OO (and UML) model. 

 

It seems that use cases are compatible with the concept of functional process, as they are 

compatible with the concept of elementary process in FPA. However, it is easy to 

observe that the amount of information reported in UML use case diagrams is not 

sufficient to measure them, since the indication of data groups that cross the boundaries 

of the application are not explicitly mentioned in use case diagrams. 

 

Sequence diagrams match quite closely the definition of functional process. In general, 

it is possible to model a functional process by means of a sequence diagram. 
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Sequence diagrams are suitable for modeling the information required to measure 

functional process, because: 

 Data group can be represented as instances of classes that take part in the 

collaboration. 

 Data group crossing the boundaries of the application are represented by the 

parameters of messages that cross the boundaries of the application, hence 

indicating entries and exits. Since data movements involve data groups, message 

parameter must be instances of classes, not single attributes. 

 Messages directed to instances of classes within the application represent read or 

write operations (hence data movements). 

 A sequence diagram shows the meaning of the process at a quite detailed level; 

therefore it is possible to classify data movement as Read, Write, Entry or Exit. 

 

In conclusion, we represent functional process by means of sequence diagrams. 

4.4.2 Sequence diagram 

  

The sequence diagrams used to specify functional processes are very much like those 

used to represent FPA‘s transactions.  

 

An important difference is that in COSMIC sequence diagrams, the instances of classes 

are used, instead of the instances of components. An example is given in Figure 

33: :Operator is the user of the application, :System is the application itself (more 

precisely, the component that represents the application), :CustomerClass is an instance 

of the class CostomerClass (a data group used within the application). (In this example, 

no external system exists). 

 

 
 

Figure 33 Horizontal axis of a sequence diagram 

 

In COSMIC sequence diagrams, a problem is that if a message has two arguments, it is 

unknown to which class(es) they belong. If the both arguments belong to the same class, 

we have one data movement, and one CFP should be counted. If the arguments belong 

to two different classes, we have two data movements, and two CFPs should be counted.  

In view of the above reasons, we describe the argument with the prefix of the class 

involved, for instance, argument = class_ name. attribute_ name. (see the example in 

Figure 34) 
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Figure 34 Sequence diagram of the Add customer transaction (COSMIC method) 

 

 

In Figure 34, the sequence references the "CustomerExistenceCheck" sequence diagram. 

The "CustomerExistenceCheck" sequence diagram is shown in Figure 35. 



Chapter 4 . Model-based measurement 

 

 

66 

 

 
Figure 35 Sequence diagram of CustomerEsistenceCheck 

 

The mapping between COSMIC concepts and UML constructs and elements is 

summarized in Table 22.  

 
Table 22 COSMIC-UML element mapping 

COSMIC 

UML  

Diagram element 

Application border 
Use case Boundary of the subject 

component Boundary of the system component 

Functional User 
Use case Agent directly connected with a use case 

component External component directly connected with the system 

Triggering event component Operation in interface realized by the system and invoked 
spontaneously by an active external component 

Persistent data 
group 

component Class 

Class Class 

Sequence Class instance 

Transient data group component 
Data cross the boundaries of the system: operations of 
the interfaces, or the parameters of these operation to the 
interface 

Process 
Use case Use case 

Sequence Sequence diagram 

Entry data 
movement 

Sequence 
Message from external component to the system 

Exit data movement Sequence Message from the system to external component 

Read data 
movement 

Sequence Message involving persistent data from system to 
instance of class within the system 
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4.4.3 The counting procedure 

 

According to the COSMIC measurement manual [33], the size of an application is given 

by the sum of the sizes of its functional processes; the size of each functional process is 

given by the number of its data movements (excluding repetitions). According to our 

method, a functional process is represented by a Sequence Diagram, thus we must be 

able to measure the size of a sequence diagram.  

 

Sequence Diagrams include messages, some of which represent data movements. A 

single message can account for several data movements: in fact, every message 

argument that is an instance of a Data Group counts as a distinct data movement (except 

for repetitions, as discussed below). In UML diagrams, Data Groups are represented as 

classes. 

 

In practice, our method requires that, given a sequence diagram: 

 All messages representing data movements are identified. Messages that represent 

data movements are: the ones that enter or exit the system and the ones that involve 

reading or writing data stored within the system. 

 For each message, the arguments and return values that are instances of data group 

class are identified (in general all the arguments and returned values should be 

instances of data group classes). These are the potential data movements. 

 The potential data movements are classified as entries, exits, writes or reads, using 

the indications reported in Table 22. 

 Duplicates are eliminated. 

 The number of remaining data movements is the size of the sequence diagram 

representing a functional process. 

 

The procedure described above is quite straightforward. A bit of attention is required in 

eliminating the duplicate movements: in this phase we are supported by the COSMIC 

rule ―Data movement uniqueness and possible exceptions‖ (see [33] pp. 49-51).  

 

Transient data groups require a precision: in some cases it may happen that the output of 

functional process groups attributes from different classes. The latter are treated as a 

transient data group. 

 

The size of the Add_customer functional process (Figure 34) is 4 CFP: 

 Entry of Customer.class; 

 Write of Customer.class; 

 Read of CustomerData 

 Exit of user message 

4.5 Similarities and differences 

 

The similarities and fundamental differences between the model-based FPA 

measurement and the model-based COSMIC measurement are described in this section. 
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In order to properly understand the relation between COSMIC and IFPUG FP a 

comparative evaluation has to be performed. The evaluation has to be performed not 

only from a quantitative point of view, but also taking into consideration the differences 

in the underlying concepts. To this end, the availability of two UML measurement 

oriented models (UML based), built to ease the IFPUG and COSMIC FP measurement 

respectively, of the same software system, is clearly beneficial. 

 

In this section, we not only compare the definition and the purpose of these FSM 

methods, but also compare both methods mainly from the view point of model-based 

measurement proposed by L. Lavazza et al. [2][3]. 

4.5.1 Requirements and procedure 

Both FPA and COSMIC measure user functional requirements. Use cases are coincident, 

because their functional processes and elementary processes are essentially the same 

concept. 

4.5.2 Data modeling: Class and Component diagrams 

Classes are used in both method models; however, there are big differences in how they 

are used. In the COSMIC method, each class is directly mapped to a data group; 

therefore a class diagram is perfectly suited to represent all the data groups. 

 

In the FPA method, one or more classes are possibly grouped into a single logic file. 

Grouping related classes in a class diagram is difficult (and not ―natural‖), so 

components are used to model logic files. 

 

The topmost level component diagram is equal for FPA and COSMIC. A difference is 

that the system component contains 

 The whole class diagram in the COSMIC models. 

 Several <<logic data>> components in the FPA models. On their turn, these 

components include classes. 

4.5.3 Process modeling: Sequence diagram 

In FPA sequence diagrams, the participants that represent internal parts of the system 

are instance of <<logic data>> component.  

 

In COSMIC sequence diagrams, the participants that represent internal parts of the 

system (data groups) are instances of classes. 

 

The format of message arguments is different. In FPA models, method arguments are 

class attributes, corresponding to DETs, since we are interested in DETs crossing the 

boundaries of the application. In COSMIC, a data movement involves a data group, i.e., 

a class. This means that a message having multiple attributes as arguments is potentially 

ambiguous: if the attributes belong to the same class it is one data movement; if they 

belong to two distinct classes we have two data movements, etc. To solve this issue, 

arguments must be prefixed with their class name. 

 

In FPA sequence diagrams, the main intent of transaction function must be indicated via 

a comment to identify the type of transaction. This is not necessary for COSMIC-

oriented sequence diagrams. 
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4.5.4 Others differences 

There are another couple of differences in the definition of FPA and COSMIC that 

affects the way models are built. 

 

COSMIC counts data movements that ―read from‖ and ―write to‖ the permanent storage. 

Having methods that both read and write would make the identification of data 

movements difficult (e.g., a given method could be a read, a write or both). Therefore, 

when building Measurement-Oriented (namely COSMIC measurement-oriented models) 

one should be careful to introduce only methods that either read from or write to classes 

that represent data groups. To easy the counting, methods could be stereotyped as 

<<read>> or <<write>>. This problem does not occur in FPA-oriented models. 

 

Both COSMIC and FPA do not consider duplicate operations. Accordingly, a 

measurement-oriented model can safely skip the representation of duplicate operations. 

 

Unfortunately, COSMIC has exceptions to this simple rule: the exceptions rarely take 

place; nevertheless they have to be considered. Hence the duplicated movements have 

to be annotated to be correctly recognizable. This issue does not apply to FPA-oriented 

models. 
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Chapter 5  Evaluation of Simplified FSM processes 
 

As we discussed in Chapter 3, there are many simplified measurement methods. In 

order to explore our own model-based simplified method, first of all we evaluate the 

existing simplified methods by exploring the accuracy of sizing with respect to full-

fledged Function Point Analysis and their suitable applicable field. This work not only 

helps us to better understand and use the existing simplified methods, to assess the 

feasibility of our model-based simplified method, but also provides us a reference to 

evaluate other (more or less simplified) measurement methods.  

5.1 Empirical assessment of Simplified FSM proposals 

 

This section is dedicated to the evaluation of simplified methods aiming at providing 

size measure (or estimates) in Function Points. That is, the considered methods simplify 

the IFPUG measurement process. 

5.1.1 Method of empirical assessment and procedure of the work  

 

In order to perfom the evalution, we collected 18 projects‘ FURs which were modeled 

using UML as described in [11]. These 18 projects are divided into two groups 

according to the application type. One group consists of 9 ―traditional‖ applications and 

the other group consists of 9 Real-Time applications.  

 

 
Figure 36 Research Road map of this work 

 

Figure 36 shows how the work was carried out. The process was organized in 7 steps.  

 First, a model of each application was built. The models were written in UML and 

represented the requirements, including all the information needed for the 

measurement of FPs and excluding the unnecessary details [11].  

 Second, on the basis of the above models, we measured the applications according 

to IFPUG measurement rules [4], thus obtaining the "correct" measures. 

 In the third step the 18 projects, which had already been measured by means of 

Function Point Analysis, have been measured using a few simplified processes, 
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including those proposed by NESMA, the Early&Quick Function Points, the ISBSG 

average weights, and a few others.  

 In the fourth step, the resulting size measures were compared with those obtained at 

step 2, for evaluating the accuracy of sizing with respect to full-fledged FPA. 

 We also derived a simplified size model on the basis of the measures from the 

dataset used for experimentations. We also derived simplified size models by 

analyzing the dataset used for experimentations. 

 We used such model to estimate the size of the projects in our dataset. 

 Finally, we compared the measurements obtained at step 6 with those obtained at set 

2. 

 

5.1.2 The case study and the dataset obtained from the standard FPA 

measurement 

 

A. Real-Time projects 

 

Most of the Real-Time projects measured are from a European organization that 

develops avionic applications, and other types of embedded and Real-Time applications. 

All the measured projects concerned typical Real-Time applications for avionics or 

electro-optical projects, and involved algorithms, interface management, process control 

and graphical visualization. 

 

The projects‘ FURs were modeled using UML as described in Chapter 4 , and then were 

measured according to IFPUG measurement rules as described in Section 2.2. When the 

Real-Time nature of the software made IFPUG guidelines inapplicable, we adopted ad-

hoc counting criteria, using common sense and striving to preserve the principles of 

FPA, as described in [56]. The same projects were then sized using the simplified 

functional size measurement processes mentioned in Section II, using the data that were 

already available as a result of the IFPUG measurement. 

 

For each project, the measurement of the functional size was carried out in two steps. 

First, a model of the product was built. The models were written in UML and 

represented the requirements, including all the information needed for the measurement 

of FPs and excluding the unnecessary details [57]. Then, the function points were 

counted, on the basis of the model, according to IFPUG rules. 

 
Table 23 Real-Time Projects’ Size (IFPUG method) 

Project 
ID. 

ILF EIF EI EO EQ FP TF DF 

1 
164 5 90 8 22 

289 
120 169 

(18) (1) (21) (2) (5) (28) (19) 

2 
56 0 21 18 6 

101 
45 56 

(8) (0) (6) (3) (1) (10) (8) 

3 
73 0 12 47 4 

136 
63 73 

(7) (0) (2) (8) (1) (11) (7) 

4 
130 15 44 0 6 

195 
50 145 

(15) (3) (11) (0) (1) (12) (18) 

5 
39 0 28 39 0 

106 
67 39 

(4) (0) (8) (8) (0) (16) (4) 

6 71 5 8 139 0 223 147 76 
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(9) (1) (2) (28) (0) (30) (10) 

7 
7 0 3 5 0 

15 
8 7 

(1) (0) (1) (1) (0) (2) (1) 

8 
21 0 4 8 0 

33 
12 21 

(3) (0) (1) (2) (0) (3) (3) 

9 
21 0 7 16 0 

44 
23 21 

(3) (0) (2) (4) (0) (6) (3) 

 

  

Table 23 reports the size in UFP of the measured projects, together with the BFC and –

in parentheses– the number of unweighted BFC. For instance, project 1 involved 18 

Internal Logic Files, having a size of 164 FP. TF (Transaction Function) and DT (Data 

Functions) are the sizes of transaction (i.e., EI, EO, and EQ) and data (i.e., ILF and EIF), 

respectively. 

 

B. Non Real-Time projects 

 

The considered non Real-Time projects are mostly programs that allow users to play 

board or card games vs. remote players via the internet; a few ones are typical business 

information systems. 

 

The projects were measured –as the Real-Time ones– in two steps: the UML model of 

each product was built along the guidelines described in [3]; then, the function points 

were counted, on the basis of the model, according to IFPUG rules. 

 

Table 24 reports the size in UFP of the measured projects, together with the BFC and –

in parentheses– the number of unweighted BFC. 

 
Table 24 Non Real-Time Projects’ sizes (IFPUG method) 

Project 
ID. 

ILF EIF EI EO EQ FP TF DF 

1 
45 7 34 6 0 

92 
40 52 

(6) (1) (10) (1) (0) (11) (7) 

2 
28 20 37 5 4 

94 
46 48 

(4) (4) (9) (1) (1) (11) (8) 

3 
21 5 27 8 18 

79 
53 26 

(3) (1) (7) (2) (6) (15) (4) 

4 
31 0 49 13 3 

96 
65 31 

(16) (0) (22) (5) (2) (20) (4) 

5 
24 0 45 21 0 

90 
66 24 

(3) (0) (14) (5) (0) (19) (3) 

6 
49 0 36 0 6 

91 
42 49 

(7) (0) (9) (0) (2) (11) (7) 

7 
21 0 31 14 14 

80 
59 21 

(3) (0) (9) (3) (4) (16) (3) 

8 
42 5 35 17 10 

109 
62 47 

(6) (1) (9) (3) (2) (14) (7) 

9 
21 0 38 15 8 

82 
61 21 

(3) (0) (11) (5) (2) (18) (3) 
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5.1.3 Application of simplified methods for getting relative results 

 

Simplified measurement processes were applied following their definitions, which 

require data that can be easily derived from the tables above. So, for instance, the data 

required for Real-Time project 1 are as following: 

 

 The NESMA indicative method requires the numbers of ILF and EIF. Table 23 

shows that the number of ILF is 18, and the number of EIF is 1. 

 Similarly, the Tichenor ILF model and the ISBSG distribution models just require 

the ILF number, i.e., 18. 

 The NESMA estimated method, the E&QFP generic functions method, the sFP 

method and the ISBSG average weights method require the numbers of ILF, EIF, EI, 

EO, and EQ. Table 23 shows that the numbers of ILF, EIF, EI, EO, and EQ are, 

respectively,  18, 1, 21, 2, and 5.  

 The E&QFP unspecified generic functions method requires the numbers of data 

groups (that is, the number of ILF plus the number of EIF) and the number of 

transactions (that is, the sum of the numbers of EI, EO, and EQ). Table 23 shows 

that the number of data groups is 18+1 = 19, and the number of transactions is 

21+2+5 = 28. 

 

A, Applying NESMA indicative 

 

The applications to be measured were modeled according to the guidelines described in 

[57]. The logic data files – modeled as UML classes– provide a data model that cannot 

be easily recognized as normalized or not normalized. Therefore, we applied both the 

formulae for the normalized and non normalized models. 

 

The formulae of the NESMA indicative method were applied to the number of ILF and 

EIF that had been identified during the IFPUG function point counting process. The 

results are given in Table 25 for Real-Time projects and in Table 26 for non Real-Time 

projects. 

 
Table 25 Sizes of Real-Time projects obtained via the NESMA methods 

Project 
ID 

IFPUG 
NESMA 
ind. non 

norm. 

NESMA 
ind. 

norm. 

NESMA 
estim. 

1 289 645 460 245 

2 101 280 200 99 

3 136 245 175 101 

4 195 570 405 168 

5 106 140 100 100 

6 223 330 235 216 

7 15 35 25 16 

8 33 105 75 35 

9 44 105 75 49 

 

 

B, Applying NESMA estimated 
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The formulae of the NESMA indicative method were applied to the number of ILF, EIF, 

EI, EO, and EQ that had been identified during the IFPUG function point counting 

process. The results are given in Table 25 for Real-Time projects and in Table 26 for 

non Real-Time projects. 

 
Table 26 Sizes of NON Real-Time projects obtained via the NESMA methods 

Project 
ID 

IFPUG 
NESMA 
ind. non 

norm. 

NESMA 
ind. 

norm. 

NESMA 
estim. 

1 92 225 160 92 

2 94 200 140 93 

3 79 120 85 88 

4 96 140 100 111 

5 90 105 75 102 

6 91 245 175 93 

7 80 105 75 88 

8 109 225 160 106 

9 82 105 75 98 

 

 

C, Applying E&QFP 

 

As described in Figure 21, the E&QFP method can be applied at different levels. Since 

we had the necessary data, we used the BFC aggregation level. At this level it is 

possible to use the data functions and transaction functions without weighting them or 

even without classifying transactions into EI, EO, and EQ and logic data into ILF and 

EIF. In the former case (generic functions) the weights given in Table 1 are used, while 

in the latter case (unspecified generic functions) the weights given in Table 2 are used.  

 

The results of the application of E&QFP are given in Table 27 for Real-Time projects 

and in Table 28 for non Real-Time projects. 

 
Table 27 Sizes of Real-Time projects obtained via the E&QFP method 

Project 
ID 

IFPUG 
EQFP 

unspec. 
EQFP 

generic 

1 289 262 262 

2 101 102 106 

3 136 100 108 

4 195 181 182 

5 106 102 106 

6 223 208 229 

7 15 16 17 

8 33 35 38 

9 44 49 52 

 
Table 28 Sizes of NON Real-Time projects obtained via the E&QFP method 

Proj ID IFPUG 
EQFP 

unspec. 
EQFP 

generic 

1 92 100 99 

2 94 107 99 

3 79 97 92 

4 96 120 118 



Chapter 5 . Evaluation of Simplified FSM processes 

 

 

76 

 

5 90 108 108 

6 91 100 100 

7 80 95 92 

8 109 113 113 

9 82 104 103 

 

D, Applying Tichenor ILF Model 

 

In order to apply the model we just had to multiply the number of ILF of each of our 

projects for the constant 14.93 suggested by Tichenor. The obtained results are 

illustrated in Table 29 and Table 30 for Real-Time and non Real-Time projects, 

respectively. 

 

When applying this method, it should be remembered that the results are likely to be 

incorrect if the distribution of BFC in the estimated application does not match the 

distribution observed by Tichenor. Accordingly, when applying the method, one should 

also check the distribution of BFC. Unfortunately, this implies making more work, 

namely, one should count the number of EIF, EI, EO, and EQ in addition to ILF. Even 

worse, one could discover that the distribution of his/her application is different from 

the distribution assumed by Tichenor, so that the estimated size is not reliable. 

 

In our case, the projects do not appear to fit well in the distribution assumed by 

Tichenor: the differences between the measured ratios and the ratios expected by 

Tichenor are the following: 

 For Real-Time projects: 14.3% for EI/ILF, 43.7% for EO/ILF, 3.9% for EQ/ILF, 

7.9% for EIF/ILF. 

 For non Real-Time projects: 96.7% for EI/ILF, 22.2% for EO/ILF, 27.3% for 

EQ/ILF, 14.7% for EIF/ILF. 

 

In practice, our projects have a very different distribution of BFC sizes with respect to 

Tichenor expectations (for instance, in Real-Time projects EI had often a larger size 

than ILF, while it is expected that the size of EI is about one third of the size of ILF). So, 

we must expect a quite poor accuracy from Tichenor estimates.  

 
Table 29 Sizes of Real-Time projects obtained via Tichenor ILF model, ISBSG distribution sFP and 

ISBSG average weights methods 

Proj ID IFPUG 
Tichenor 

ILF 
model 

ISBSG 
distrib. 

sFP 
ISBSG 

average 
weights 

1 289 269 597 301 259 

2 101 119 265 123 105 

3 136 105 232 122 107 

4 195 224 498 219 179 

5 106 60 133 112 107 

6 223 134 299 245 232 

7 15 15 33 19 17 

8 33 45 100 44 37 

9 44 45 100 58 52 
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Table 30 Sizes of NON Real-Time projects obtained via Tichenor ILF model, ISBSG distribution 

sFP and ISBSG average weights methods 

Project 
ID 

IFPUG 
Tichenor 

ILF 
model 

ISBSG 
distrib. 

sFP 
ISBSG 

average 
weights 

1 92 90 199 112 98 

2 94 60 133 113 100 

3 79 45 100 99 91 

4 96 60 133 123 118 

5 90 45 100 111 109 

6 91 105 232 114 98 

7 80 45 100 97 92 

8 109 90 199 126 112 

9 82 45 100 107 104 

 

 

E, Applying the ISBSG distribution model 

 

We applied the formula UFP = (#ILF × 7.4) × 100 / 22.3 prescribed by the method. 

Then, we evaluated the differences between the measured percentage contribution of 

BFC and the ISBSG averages. The differences we found were relatively small: 

 For Real-Time projects: 28.7% for ILF, 3.4% for EIF, 19.3% for EI, 21.3% for EO, 

13.2% for EQ. 

 For non Real-Time projects: 12% for ILF, 4.8% for EIF, 5.6% for EI, 15.4% for EO, 

13.2% for EQ. 

 

Accordingly, we expect that the ISBSG distribution model applies well to our dataset, 

especially as non Real-Time projects are involved. 

 

The obtained results are illustrated in Table 29 and Table 30 for Real-Time and non 

Real-Time projects, respectively. 

 

F, Applying the sFP and ISBSG average weights 

 

The application of the sFP and ISBSG average weights methods was extremely similar 

to the application of the NESMA estimated and E&QFP generic methods, only the 

values of weights being different. 

 

The obtained results are illustrated in Table 29 and Table 30 for Real-Time and non 

Real-Time projects, respectively. 

5.1.4 Summary and lessons learned 

In this section, the results of our empirical analysis are reported. First we discuss the 

quantitative results, and then we analyze the results from a more theoretical point of 

view. 

 

A. Quantitative analysis 

 

To ease comparisons, all the size measures of RT projects are reported in Table 31 and 

those of non RT projects are reported in Table 32. 
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Table 31 Measures of Real-Time Projects obtained via the Various Methods 

Proj 
ID 

IFPUG 

NESMA 
ind. 
non 

norm. 

NESMA 
ind. 

norm. 

NESMA 
estim. 

E&QFP 
unspec. 

E&QFP 
generic 

Tichenor 
ILF 

model 

ISBSG 
distrib. 

sFP 
ISBSG 

average 
weights 

1 289 645 460 245 262 262 269 597 301 259 

2 101 280 200 99 102 106 119 265 123 105 

3 136 245 175 101 100 108 105 232 122 107 

4 195 570 405 168 181 182 224 498 219 179 

5 106 140 100 100 102 106 60 133 112 107 

6 223 330 235 216 208 229 134 299 245 232 

7 15 35 25 16 16 17 15 33 19 17 

8 33 105 75 35 35 38 45 100 44 37 

9 44 105 75 49 49 52 45 100 58 52 

 

 
Table 32 Measures of NON Real-Time Projects obtained via the Various Methods 

Proj 
ID 

IFPUG 

NESMA 
ind. 
non 

norm. 

NESMA 
ind. 

norm. 

NESMA 
estim. 

E&QFP 
unspec. 

E&QFP 
generic 

Tichenor 
ILF 

model 

ISBSG 
distrib. 

sFP 
ISBSG 

average 
weights 

1 92 225 160 92 100 99 90 199 112 98 

2 94 200 140 93 107 99 60 133 113 100 

3 79 120 85 88 97 92 45 100 99 91 

4 96 140 100 111 120 118 60 133 123 118 

5 90 105 75 102 108 108 45 100 111 109 

6 91 245 175 93 100 100 105 232 114 98 

7 80 105 75 88 95 92 45 100 97 92 

8 109 225 160 106 113 113 90 199 126 112 

9 82 105 75 98 104 103 45 100 107 104 

 

The relative measurement errors are given in Table 33 and Table 34. 

 
Table 33 Relative measurement errors (Real-Time Projects) 

Proj 
ID 

NESMA 
ind. non 
norm. 

NESMA 
ind. 

norm. 

NESMA 
estim. 

E&QFP 
unspec. 

E&QFP 
generic 

Tichenor 
ILF 

model 

ISBSG 
distrib. 

sFP 
ISBSG 

average 
weights 

1 123% 59% -15% -9% -9% -7% 107% 4% -10% 

2 177% 98% -2% 1% 5% 18% 162% 22% 4% 

3 80% 29% -26% -26% -21% -23% 71% -10% -21% 

4 192% 108% -14% -7% -7% 15% 155% 12% -8% 

5 32% -6% -6% -4% 0% -43% 25% 6% 1% 

6 48% 5% -3% -7% 3% -40% 34% 10% 4% 

7 133% 67% 7% 7% 13% 0% 120% 27% 13% 

8 218% 127% 6% 6% 15% 36% 203% 33% 12% 

9 139% 70% 11% 11% 18% 2% 127% 32% 18% 

 
Table 34 Relative measurement errors (NON Real-Time Projects) 

Proj 
ID 

NESMA 
ind. 
non 

norm. 

NESMA 
ind. 

norm. 

NESMA 
estim. 

E&QFP 
unspec. 

E&QFP 
generic 

Tichenor 
ILF 

model 

ISBSG 
distrib. 

sFP 
ISBSG 

average 
weights 

1 145% 74% 0% 9% 8% -2% 116% 22% 7% 

2 113% 49% -1% 14% 5% -36% 41% 20% 6% 
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3 52% 8% 11% 23% 16% -43% 27% 25% 15% 

4 46% 4% 16% 25% 23% -38% 39% 28% 23% 

5 17% -17% 13% 20% 20% -50% 11% 23% 21% 

6 169% 92% 2% 10% 10% 15% 155% 25% 8% 

7 31% -6% 10% 19% 15% -44% 25% 21% 15% 

8 106% 47% -3% 4% 4% -17% 83% 16% 3% 

9 28% -9% 20% 27% 26% -45% 22% 30% 27% 

 

The obtained results show that we can divide the simplified FSM methods in two 

categories: those which base the size estimation exclusively on some measure of the 

data (like the NESMA indicative, the Tichenor and ISBSG distribution methods) and 

those which propose fixed weights for all the BFC of FPA. The former methods yield 

the largest errors. Although it was expected that estimates based on less information are 

generally less accurate than estimates based on more information, the really important 

finding of our experimental evaluation is that the size estimates based exclusily on the 

measures of data measures feature quite often intolerably large errors, i.e., errors that 

are likely to cause troubles, if development plans were based on such estimates. For 

instance, let us consider the Tichenor method (which appears the best of those based on 

data measures) and assume that only size estimation errors not larger than 20% are 

acceptable: 10 estimates out of 18 would be unacceptable. 

 

On the contrary, the methods that take into consideration all BFC and provide fixed 

weights for them yield size estimates that are close to the actual size. Among these 

methods sFP is an exception, since it regularly overestimates the size of projects, often 

by over 20%. This seems to indicate that ―average‖ projects are characterized by data 

and/or transactions whose actual complexity is smaller than the complexity expected by 

the sFP method. 

 

The accuracy of the used methods is summarized in Table 35, where the mean and 

standard deviation of the absolute relative errors are given for Real-Time projects, for 

non Real-Time projects, and for the entire set of projects. The mean value of absolute 

relative errors is a quite popular statistic, often termed MMRE (Mean Magnitude of 

Relative Errors). 

 
Table 35 Mean and Standard Deviation of Absolute Relative Errors 

  

NESMA 
ind. 
non 

norm. 

NESMA 
ind. 

norm. 

NESMA 
estim. 

E&QFP 
unspec. 

E&QFP 
generic 

Tichenor 
ILF 

model 

ISBSG 
distrib. 

sFP 
ISBSG 

average 
weights 

Mean (RT 
only) 127% 63% 10% 9% 10% 20% 112% 17% 10% 

Stdev (RT 
only) 64% 44% 7% 7% 7% 16% 59% 11% 7% 

Mean (non 
RT) 79% 34% 8% 17% 14% 32% 58% 23% 14% 

Stdev (non 
RT) 56% 33% 7% 8% 8% 17% 50% 4% 8% 

Mean (all) 103% 49% 9% 13% 12% 26% 85% 20% 12% 

Stdev (all) 63% 40% 7% 8% 8% 17% 60% 9% 8% 

 

Table 35 shows that the NEMSA estimated, the two E&QFP methods and the ISBSG 

average weights methods provide essentially equivalent accuracy. This is not surprising, 
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given that these methods propose very similar weight values. The NESMA estimated 

method appears the best, but for Real-Time projects the E&QFP methods perform 

similarly, often even better. 

 

For Real-Time projects, E&QFP (either in the unspecified or generic flavor) tends to 

provide the most accurate results, while the NESMA estimated method provides quite 

reasonable estimates.  

 

It is worthwhile noticing that E&QFP is more accurate than NESMA for Real-Time 

applications because it uses bigger weights, which suite better Real-Time application, 

which are more complex than non Real-Time applications. 

 

B. Analysis of results 

 

As mentioned in Chapter 3 , simplified FSM methods are based on skipping one or 

more phases of the standards Function Point measurement process (see Table 3). It is 

reasonable to assume that the accuracy of the measure is inversely proportional to the 

number of measurement phases not performed, hence to the amount of data not 

retrieved from the functional user requirements of the software to be measured.  

 

To confirm such hypothesis, we have enhanced the information reported in Table 3 with 

the data concerning mean errors and error standard deviations: the result is given in 

Table 36. The direct comparison of accuracy data with the information used for 

measurement makes the following observations possible. 

 

Any simplified method that does not involve the weighting appears to be bound to a 10-

15% mean absolute error. 

 

It does not appear true that the more you measure, the best accuracy you get. For 

instance, E&QFP considering unspecified generic functions appear more accurate than 

sFP, even though the former method does not involve classifying function types. 

 

Among methods that use the same type and amount of data, there are relatively large 

differences in accuracy: for instance, the Tichenor ILF model appears more precise than 

both the NESMA indicative (with normalized data) and the ISBSG distribution. 

 
Table 36 Measurement Process: Required Data VS. Accuracy 

  IFPUG 
NESMA 
indic. 
Norm. 

NESMA 
estim. 

E&QFP 
Generic 
func. 

E&QFP 
Unspec. 
generic 
func. 

Tichenor 
ILF 
Model 

ISBSG 
distrib. 

sFP 
ISBSG 
average 
weights 

Identifying 
logic data 

√ √ √ √ √ √ √ √ √ 

Identifying 
elementary 
processes 

√   √ √ √ (*)
2
 (*) √ √ 

                                                 
2 required to verify applicability. 
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Classifying 
logic data 
as ILF or 
EIF 

√ √ √ v   √ √ √ √ 

Classifying 
elementary 
processes 
as EI, EO, 
or EQ 

√   √ √   (*) (*) √ √ 

Weighting 
data 
functions 

√                 

Weighting 
transaction 
functions 

√                 

Mean error - 49% 9% 13% 12% 26% 85% 20% 12% 

Error stdev - 40% 7% 8% 8% 17% 60% 9% 8% 

 

 

The last two observations suggest that exploiting the knowledge provided by statistical 

analysis can be decisive for achieving accurate measures via simplified processes. For 

instance, the E&QFP method considering unspecified generic functions is quite accurate 

because the likely complexity of data and transactions assumed by the method (see 

Table 2) were derived via accurate statistical analysis. On the contrary, the complexity 

values assumed by the sFP method were chosen on the basis of expectations, not on 

rigorous statistical analysis. 

 

The exploitation of statistical data is the base for the new methods described in the next 

section. 

5.1.5 Model-based simplified FSM models 

In this section, we derive a simplified FSM model in a way similar to those described in 

Chapter 3 , but based on the measures of our own applications (as reported in Table 23 

and Table 24). 

 
Table 37 Average Function Type Weighs for Out Dataset 

Function 
type 

EQFP 
generic 

NESMA 
Estim. 

ISBSG 
average sFP 

Our dataset 
(all proj.) 

ILF 7.7 7 7.4 7 7.4 

EIF 5.4 5 5.5 5 5.3 

EI 4.2 4 4.3 3 3.7 

EO 5.2 5 5.4 4 4.6 

EQ 3.9 4 3.8 3 4 

 

In the rightmost column of Table 37 we give the average weights of the BFC computed 

over all the measured applications. Note that the given averages are computed as the 

mean –at the dataset level– of the mean values computed for each application. In the 

table, the mean weights derived from our dataset are shown together with the weights 

proposed by other simplified FSM methods, for comparison. The fact that our EI and 

EO means are smaller than the values proposed by other methods, while the ILF and 

EIF means are very close to those proposed by other methods, probably means that our 

applications were simpler than those considered in the definition of other methods. 
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Table 38 Mean and Median Weights for the Projects in Our Dataset 

Dataset 
Mean (median) weight 

ILF EIF EI EO EQ TF DF UFP/#ILF 

All non RT projects 6.5 5.5 3.5 4.4 3.4 7.0 3.7 22.7 

All RT projects 8.2 5.0 4.0 4.8 5.1 8.1 4.4 17.0 

All projects 7.4 5.3 3.7 4.6 4.0 7.6 4.1 19.9 

 

In Table 38 we give the average values of weights derived from our dataset, 

distinguishing Real-Time and non Real-Time applications. We also give the average 

value of the ratio between the number of ILF and the size in UFP. It is possible to note 

that the average number of UFP per ILF we found is quite larger than that found by 

Tichenor. This suggests that models based just on ILF can be hardly generalized. 

 

Note that we computed also the weights for transaction functions (TF) and data 

functions (DF). These weights can be used in simplified measurement processes like the 

E&QFP unspecified generic method. 

 

The values in Table 38 suggest that transactions were generally more complex in Real-

Time applications than in non Real-Time applications. The latter are probably 

responsible for relatively smaller weights of transaction (EI, EO, and EQ) in Table 1. 

 

Using the values in Table 38 it was possible to derive models that are similar to those 

described in Subsection 5.1.3: they are described in Table 39 and Table 40. 

 
Table 39 Models for NON Real-Time Projects 

Average weights (all BFC) 
UFP = 6.6 #ILF+ 5.5 #EIF + 3.5 #EI + 4.4 #EO + 3.4 #EQ 

Average weights (DF and TF) 
UFP = 7.0 #DF + 3.7 #TF 

ILF based model UFP = 22.7 #ILF 

 
Table 40 Models for Real-Time Projects 

Average weights (all BFC) UFP = 8.2 #ILF+ 5 #EIF + 4 #EI + 4.8 #EO + 5.1 #EQ 

Average weights (DF and TF) UFP = 8.1 #DF + 4.4 #TF 

ILF based model UFP = 17 #ILF 

 

5.1.6 Evaluate our new model  

We used such models to estimate the size of the projects in our dataset. The results of 

the estimations are reported in Table 41 and Table 42 for Real-Time and non Real-Time 

projects, respectively. 

 
Table 41 Estimates of RT Projects based on Models using the our new models 

Proj. ID 
Actual 
size 

Average weights 
(all BFC) 

Average weights 
(DF and TF) 

ILF based model 

Est. size % err Est. size % err Est. size % err 

1 289 273 -6% 277 -4% 306 6% 

2 101 110 9% 109 8% 136 35% 
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3 136 109 -20% 105 -23% 119 -13% 

4 195 187 -4% 198 2% 255 31% 

5 106 104 -2% 103 -3% 68 -36% 

6 223 223 0% 213 -4% 153 -31% 

7 15 17 13% 17 13% 17 13% 

8 33 39 18% 37 12% 51 55% 

9 44 52 18% 51 16% 51 16% 

 

 
Table 42 Estimates of NON RT Projects based on Models using the our new models 

Proj. ID 
Actual 
size 

Average 
weights (all 

BFC) 

Average 
weights (DF 

and TF) 
ILF based model 

Est. size % err Est. size 
% 
err 

Est. size % err 

1 92 85 -8% 90 -2% 136 48% 

2 94 87 -7% 97 3% 91 -3% 

3 79 81 3% 84 6% 68 -14% 

4 96 98 2% 102 6% 91 -5% 

5 90 91 1% 92 2% 68 -24% 

6 91 85 -7% 90 -1% 159 75% 

7 80 79 -1% 79 -1% 68 -15% 

8 109 98 -10% 101 -7% 136 25% 

9 82 88 7% 88 7% 68 -17% 

 

Table 41 and Table 42 show a rather poor accuracy of the estimation based on ILF, with 

error greater than 20% for several projects. 

 

On the contrary, the estimations based on average weights are reasonably accurate; the 

obtained results are particularly good for non Real-Time projects, with all the estimates 

featuring errors not greater than 10%.  

 
Table 43 Mean and Stdev of Absolute Relative Errors 

  

Average 
weights, 
all BFC 

Average 
weights, 
DF & TF 

Average 
UFP / 
#ILF 

NESMA 
estim. 

E&QFP 
unspec. 

E&QFP 
generic 

ISBSG 
average 
weights 

Mean (RT only) 10% 9% 26% 10% 9% 10% 10% 

Stdev (RT only) 8% 10% 29% 7% 7% 7% 7% 

Mean (non RT) 5% 4% 25% 8% 17% 14% 14% 

Stdev (non RT) 3% 4% 22% 7% 8% 8% 8% 

Mean (all) 8% 10% 31% 9% 13% 12% 12% 

Stdev (all) 6% 6% 19% 7% 8% 8% 8% 

 

The average values of the absolute relative errors are reported in Table 43 together with 

the average values of the absolute relative errors obtained with the best among the other 

methods, for comparison. 

 

It is easy to see that the estimates obtained using the average weights of the projects 

being estimated feature practically the same accuracy as the other methods.  

 

It is a bit surprising that in the literature a few models of type UFP = k × #ILF were 

proposed, while model of type UFP = k × #EP (where #EP is the number of elementary 
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processes) received hardly any attention. We computed the ratio UFP/#EP for each 

application, and used the average value k in models UFP = k × #EP, to estimate the size 

of the applications in our dataset. The obtained estimates were characterized by 

estimation errors quite similar to those of ILF-based models (the average absolute error 

was 25% for Real-Time projects and 27% for non Real-Time projects). Accordingly, it 

seems that models of type UFP = k × #EP are not likely to provide good estimates. 

5.1.7 Conclusion 

 

In this work, we applied simplified functional size measurement processes to both 

traditional software applications and Real-Time applications. The obtained results make 

it possible to draw a few relevant conclusions: 

 

 Some of the simplified FSM methods we experimented with seem to provide fairly 

good accuracy. In particular, NESMA estimated, E&QFP, and ISBSG average 

weights yielded average absolute relative errors close to 10%. This level of error is a 

very good trade-off, if you consider that it can be achieved without going through 

the expensive phase of weighting data and transactions. 

 Organizations that have historical data concerning previous projects can build their 

own models. We showed that with a relatively small number of projects it is 

possible to build models that provide a level of accuracy very close to that of 

methods like NESMA estimated and E&QFP. 

 The simplified FSM methods are generally based on average values of ratios among 

the elements of FP measurement. Accordingly, projects that have unusual 

characteristics tend to be ill suited for simplified size estimation. For instance, 

project 3 in our set of Real-Time projects is more complex than the other projects in 

the set, having most EI and EO characterized by high complexity. This causes most 

method to underestimate the size of the project by over 20%. Therefore, before 

applying a simplified FSM method to a given application, it is a good idea to verify 

that this application is not too much (or too less) complex with respect to ―average‖ 

applications. Our Real-Time project 3 was characterized by the need to store or 

communicate many data at a time: this situation could have suggested that using 

average values for an early measurement leads to a rather large underestimation. 

 

E&QFP methods proved more accurate in estimating the size of Real-Time applications, 

while the NESMA estimated method proved fairly good in estimating both Real-Time 

and non Real-Time applications. However, the relatively small number of projects 

involved in the analysis does not allow generalizing these results. 

 

Even considering the relatively small dataset, it is however probably not casual that the 

NESMA estimated method happened to underestimate all projects. Probably NESMA 

should consider reviewing the weights used in the estimated method, in the sense of 

increasing them. 

 

When considering the results of our analysis from a practical viewpoint, a very 

interesting question is ―What simplified method is the best one for my application(s)?‖. 

Table 33 and Table 34 show that the methods that are better on average are not 

necessarily the best ones for a given project. To answer the question above it would be 

useful to characterize the projects according to properties not considered in FSM and 

look for correlations with the measures provided by different simplified methods. This 
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would allow selecting the simplified measurement method that provided the best 

accuracy for applications of the same type as the one to be sized. Unfortunately, it was 

not possible to analyze the possibly relevant features of the dataset described in sub-

section 5.1.2 (we had no access to the code of Real-Time projects), thus this analysis is 

among our future objectives. 

 

As already mentioned, the results presented here are based on datasets in which the 

largest project has size of 289 FP: further work for verifying the accuracy of simplified 

measurement methods when dealing with larger project is needed.  

 

Among the future work is also the experimentation of simplified measurement 

processes in conjunction with measurement-oriented UML modelling [57], as described 

in [58]. 

 

The models used in Subsection 5.1.3 are generally derived in a rather naive way, i.e., 

simply computing averages of some elements that are involved in the measurement: e.g., 

the average ration between the measure of BFC and their number. Simplified 

measurement models should be better derived via regression analysis. Unfortunately, 

the relatively little number of applications in our datasets does not support this type of 

analysis, especially if multiple independent variables are involved, as in models of type 

UFP = f(EI, EO, EQ, ILF, EIF) or UFP = f(TF, DF). Performing this type of analysis is 

among our goal for future activities, provided that we can get enough data points. 

 

5.2 Empirical evaluation of Model-based Simplified COSMIC 

Measurement 

 

Most simplified FSM methods address the simplification of FPA, since its process of 

measuring function points involves activities –such as the classification of transactions 

and data and the evaluation of the complexity of every transaction and logic data file– 

that require a relevant measurement effort, and can be carried out only when the 

specification of user requirements is fairly complete and detailed. However, also the 

process of measuring CFP (which is generally faster and less expensive than FP 

measuring) may need to be carried out faster and at a smaller cost than required by the 

official counting manual [6]. This may happen because the size estimates are needed 

within a given deadline (e.g., for cost estimation and bidding) or because detailed 

requirements specifications are not available (and will not be available for a while). So 

the simplified measurement processes for CFP have been proposed: see for instance the 

section on ―early or rapid approximate sizing‖ in [59]. 

 

The process of applying the COSMIC FSM method is relatively long and effort-

consuming. In particular, the need to describe every functional process in terms of data 

movements – which implies identifying the possible data movement types for every 

data group type – can easily require a relevant amount of work. Therefore, the COSMIC 

measurement process involves: 

 The identification of functional processes (FPr). 

 The identification of data groups. 

 For each functional process, the identification of unique data movements involving 

the identified data group types. 

 



Chapter 5 . Evaluation of Simplified FSM processes 

 

 

86 

 

The COSMIC measurement process is schematically represented in Figure 37. When 

looking at the graphical representation in Figure 37, it must be remembered that the first 

two phases are carried out once each, at the application level, while the third is carried 

out for each functional process. 

 

 
Figure 37 COSMIC measurement process 

 

 

Model-based method process 

 

As we described in Figure 26 in Section 4.1, the model-based object-oriented 

measurement process consists of the following activities: building Use case diagram, 

building class diagram, building component diagram, and building sequence diagrams. 

At the end of each above steps, as described in Figure 38, respectively the following 

artefacts can be obtained:  

 In the first step, Use case diagram or component diagram with user interface; 

 In the second step, class diagram component diagram with classes;  

 In the third step, component diagram with operation-class dependencies; 

 In the last step, sequence diagrams. 

 
Figure 38 UML modelling process 

 

It is easy to see that while progressing in the development, namely construct Use case 

diagram, construct class diagram, construct component diagram, and construct sequence 

diagrams, UML models become more and more complete and detailed and in general 

include an increasing number of diagrams. This means that UML models convey an 

increasing amount of information, which can be used for FSM [61].  

 

Comparing the UML modeling and COSMIC measurement processes, it is easy to see 

that while progressing in the development, UML models become more and more 

complete and detailed and in general include an increasing number of diagrams; while 

proceeding in the execution of the process we get more and more information, which 

allows for the application of increasingly sophisticated measure estimation processes. 
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When we examine these two processes at every stage, we will interestingly find, 

according to the definition of element mapping between UML and COSMIC in Table 

22 , that the information provided by the various UML models matches the information 

required by the various stages of the COSMIC process, as schematically described in 

Figure 39. 
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Figure 39 UML modeling process and COSMIC measurement process phases 

 

In view of the above observations, for the entire process, we propose the following 

questions: 

 Q1. During the requirements elicitation and specification phase, is it possible to 

write progressively more complete and detailed UML models that support 

progressively more accurate simplified CFP measurement methods? 

 Q2. What is the accuracy of the estimates provided by different simplified CFP 

measurement methods? 

 Q3. Do simplified CFP measurement methods provide a level of accuracy that is 

proportional to the amount of information required?  

 

Here the term ―accuracy‖ is used to indicate how close the estimated size and the actual 

size are. 

5.2.1 Simplified measurement processes for COSMIC function point 

 

Different simplified processes are possible, depending on the stage of requirements 

collection (as described in Figure 39). In what follows, we describe the type of 

processes that can be applied at the various stages. 

 

A. Size estimation based on the number of functional processes and the number of 

data groups  

 

A first very rough simplification of the measurement process was proposed in the 

COSMIC manual itself [59]. This simplification is perfectly coherent with the COSMIC 

model of software requirements: user requirements are composed of a set of functional 

processes, each involving a set of data movements. If data movements cannot be 

counted, the measurer has to count the elements at the abstraction level immediately 

above: i.e., functional processes must be sized directly. 
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So, the simplified process requires that only the first one of the activities required for 

CFP measurement be performed. Of course, in this way we get the number of functional 

processes involved in the software application being measured, but not their size. To 

transform the number of functional process into the application size, the simplified 

process requires that the mean number of data movements per functional process is used. 

 

 Let AvDMperFPr be the mean number of data movements per functional process, 

computed on the basis of historical data. If we assume that the software application to 

be measured is similar to those previously measured, then it is reasonable to assume that 

the mean number of data movements per functional process of the new application will 

be close to MDM. Thus, 

 

CFP = AvDMperFPr × #FPr  (25) 

where #FPr is the number of Functional processes. 

 

If the historical data required to compute AvDMperFPr are available, it is also possible 

to use Ordinary Least Squares (OLS) regression to derive a model of type 

 
CFP = a × #FPr + b  (26) 

This type of model is not mentioned in [59]; however in this paper we test the ability of 

UML models to support also this type of models and the corresponding simplified 

measurement process. 

 

As in common practice, log-log transformation can be applied to data, thus yielding a 

model of type: 

 CFP = b × (#FPr)
a  

   (27) 

 

B. Size estimation based on the number of data movements. 

 

The method described in the previous part (Part A) assumes that the size in CFP is 

proportional to the number of functional processes. It is also reasonable to assume that 

the size in CFP is proportional to the number of data groups: the more data groups, the 

more opportunities for data movements. 

 

A simplified computation of CFP can thus be achieved via a model that computes the 

estimated size by means of some formula to be defined applied to #FPr and #DG (the 

number of data groups in the application). This procedure is more complex than the one 

described in the previous part (Part A), as it requires the identification of data groups, 

but it is still simpler than the ―full‖ COSMIC counting process, as data movements do 

not need to be identified and classified. Besides, a conceptual model of the data 

involved in the application is usually built very early in the requirements modeling 

process. Thus, its availability is generally an easily satisfied assumption. 

 

Data groups do not contribute directly to the measure of size in CFP: as we mentioned 

above, the size of an application in CFP is the sum of the sizes of its functional 

processes. Therefore, the COSMIC method does not suggest how to use #DG in the 

estimation of size. However, the model can be derived via regression analysis, provided 

that historical data reporting both #FPr and #DG are available. The resulting equations 

can be of the form 

CFP = #FPr × a + #DG × b + c  (28) 
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 or 

CFP = c × #FPr
a
 × #DG

b   
 (29) 

 

C. Size estimation based on the number of data groups involved in each functional 

process 

 

The two methods described above are based on the total number of functional processes 

and data groups. Accordingly, such measures characterize the whole application. It is 

reasonable to expect that a more accurate estimate can be derived if information that 

characterizes each functional process individually is available. The number of data 

groups involved in each functional process provides such information, thus allowing for 

potentially more precise measures of size. 

 

If the historical dataset includes the suitable information, statistical analysis can yield 

models of the following type: 

 

CFP = f( #FPr, AvDGperFPr)  (30) 

where AvDGperFPr is the mean number of data groups involved in functional processes 

in the application to be measured. 

 

5.2.2 UML model supporting the simplified measurement approaches 

 

In this subsection, we describe the UML models that are needed to support the 

simplified approaches to CFP measurement described in previous subsection 5.2.1. The 

corresponding FUR of these models comes from the case study quoted in Section 4.2. 

We also present the model supporting the measure of CFP performed as described in the 

manual [33]. 

 

A. UML model supporting the size estimation based on the number of data 

movements 

 

Figure 40 illustrates a UML diagram that can effectively support the first simplified 

measurement method, described in sub-section 5.2.1. It is a use case diagram. The 

information that is needed to use equation   (25), i.e., #FPr, can be obtained by counting 

the use cases.  
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Figure 40 UML use case diagram showing the functional processes 

 

Using a use case diagram can be interesting mainly for the organizations that employ 

this type of diagram for specifying requirements and do not use other UML diagrams. 

However, it should be paid attention to the fact that use cases have a meaning (or can be 

given a meaning) that does not always match with the concept of functional process; it 

is therefore recommended that each use case is evaluated against the properties required 

for functional processes.  
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Figure 41 UML component diagram showing the functional processes 

 

In place of a use case diagram like the one depicted in Figure 40, it is also possible to 

write a component diagram, like the one depicted in Figure 41, where the relevant 

information is provided by the interface realized by the system. The interface lists the 

functional processes that can be triggered by the user. So, the information that is needed 

to use equation, i.e., #FPr, can be obtained by counting the operations listed in the 

User_interface. 

 

Note that while components corresponded to software artifacts in previous versions of 

UML, in more recent versions of the language, components can be also used to describe 

the specifications of software artifacts. Therefore, our usage of component diagrams 

complies with the definition of UML [52]. 

 

B. UML model supporting Size estimation based on the number of functional 

processes and the number of data groups 

 

To get the number of data groups #DG, required for using equation   (28), we can 

exploit the closeness of UML classes to the concept of data group. So, the class diagram 

described in Figure 42 describes the data groups involved in the Warehouse Software 

Portfolio. 
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Figure 42 UML class diagram, showing the data groups 

  

It can be noted that the entities described in Figure 27 and Figure 28 appear in Figure 42 

as well. However, Figure 42 includes also a class that describes the Message transient 

data group. In the COSMIC method, transient data groups are data groups that are not 

persistent, but are needed to capture user requirements. In our case, the Message data 

group is needed to represent the data that –according to the FUR– have to be 

communicated to the user. 

 
Figure 43 UML component diagram showing the functional processes 

 

Figure 43 illustrates the same diagram as Figure 41, where the system component has 

been refined with the description of the classes that represent the data managed by the 

system. In practice, the information from the class diagram is reported in the system 

component. It is easy to see that the diagram in Figure 44 provides all the data needed to 

use equations  (26) and   (27), i.e. #FPr and #DG. 

 

C: UML model supporting Size estimation based on the number of data groups 

involved in each functional process 

 

Figure 44 illustrates a diagram providing the information needed to use equation   (30). 

In the diagram, UML ports are used to precisely indicate which classes (i.e., data groups) 
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are used in each functional process. To this end, sets of functional processes that use the 

same set of classes are grouped into a single interface: both ChangeCustomerData and 

DeleteCustomer use Customer, Item and Message. 

 

 
Figure 44 UML component diagram showing the functional processes and the data groups 

 

In Figure 44 only the interfaces needed to add, change, and delete clients are shown. It 

can be noticed that grouping functional processes according to the used classes may 

lead to a rather large number of interfaces, which could decrease the readability of the 

diagram. However, interfaces that are homogeneous with respect to the used classes not 

only allow for a quite precise estimation of size (as shown in next Subsection 5.2.3), but 

explicitly represent the logical relationship between interface elements and system data: 

this poses the basis for the identification of important traceability information when the 

design model is built. 

 

An alternative to the model shown in Figure 44 is a sequence diagram that shows only 

the classes involved in the functional process, as in Figure 45. In fact, the diagram 

represents a specific functional process (AddCustomer) and the involved class instances. 

Excluding the User and the System, which represent the functional user and the 

application being measured, respectively we have that AddCustomer uses two data 

groups: Customer and Message. This type of diagram is convenient because it can be 

refined into the diagram described in Figure 46, which provides a detailed specification 

of the AddCustomer operation and supports full fledged COSMIC measurement. 
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Figure 45 UML component diagram showing the class (data group) instances participating in the 

AddCustomer functional process 

 

 

 
Figure 46 UML sequence diagram showing the data movements involved in a given functional 

process 

 

Figure 46 illustrates a sequence diagram that contains all the information needed to 

measure the size of the functional process according to the official manual [33]. 

Messages that cross the application boundary (in our case, messages from or to the user) 

are entries and exits, while messages directed to class instances representing data groups 

are reads or writes. 
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Figure 47 UML sequence diagram with the data movements highlighted 

 

Figure 47 shows the same sequence diagram as Figure 46, with data movements 

highlighted. Note that message 8 is not a data movement, since it is –like message 6– an 

exit involving a Message, thus it is not unique. Figure 47 shows that –once the model is 

available– performing the measurement is quite straightforward; so, the main effort 

required by the COSMIC method is in modeling, rather than in measuring. 

 

Brief summary 

The UML models presented in this section provide an increasingly larger amount of 

information: the use case diagram in Figure 40, the diagram in Figure 44 provides more 

information than the diagram Figure 43, finally, the diagram in Figure 46, together with 

the other sequence diagram representing the functional processes, provides the most 

detailed representation of user functional requirements. 

5.2.3 Empirical analysis 

 

To answer the research questions defined above, we modeled a set of software 

applications and measured them, with the goal of obtaining the measures needed to 

support the simplified methods described in 5.2.1. Then, we applied the simplified 

measurement methods in two ways: 

 a) By computing the means of the relevant measures and using the means as 

parameters in equations   (25) and   (28). 

 b) Deriving size models via regression analysis and applying them.  
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In both cases, the obtained estimates were compared with the measures obtained via the 

standard COSMIC method [33], without any simplification. 

 

A. The dataset 

 

The projects considered belonged to different types: sample projects provided by 

COSMIC to illustrate the counting process (5 projects); academic examples used in 

teaching (7 projects); Web based Management Information Systems (MIS) (10 projects), 

project management tools (1 project). 

 

Part of the dataset containing the measures of the models of the applications described 

above is given in Table 44. The only missing part is the number of involved data groups 

for each functional process, which is not reported because of space reasons (the dataset 

includes over 700 functional processes). 

 
Table 44 The dataset 

Pid CFP #FPr #DG 
AvDG 
perFPr 

AvDM 
perDG 

AvSize 
ofFPr_others 

AvDG 
perFpr_others 

AvCFP 
perDG_others 

1 86 16 6 2.88 1.90 7.58 2.88 1.80 

2 56 11 11 3.55 1.60 7.57 3.55 1.80 

3 91 15 10 4.00 1.57 7.57 4.00 1.80 

4 69 19 12 2.32 1.72 7.64 2.32 1.80 

5 103 19 16 3.06 1.93 7.58 3.06 1.80 

6 64 14 7 2.64 1.71 7.59 2.64 1.80 

7 116 20 14 3.60 1.65 7.60 3.60 1.80 

8 124 20 10 2.80 2.38 7.57 2.80 1.78 

9 66 14 7 3.79 1.28 7.59 3.79 1.81 

10 117 19 9 3.47 1.78 7.57 3.47 1.80 

11 90 13 14 3.92 1.99 7.55 3.92 1.80 

12 31 7 16 4.71 1.18 7.56 4.71 1.81 

13 252 60 24 2.07 2.40 7.83 2.07 1.75 

14 360 23 18 8.17 1.76 7.27 8.17 1.80 

15 514 74 29 4.50 1.74 7.60 4.50 1.81 

16 186 27 13 4.56 1.61 7.56 4.56 1.81 

17 948 152 22 4.76 1.37 7.87 4.76 1.91 

18 189 30 13 4.20 1.50 7.59 4.20 1.81 

19 107 9 20 5.60 2.12 7.48 5.60 1.80 

20 273 22 63 5.95 2.00 7.38 5.95 1.79 

21 502 45 15 6.98 1.60 7.30 6.98 1.81 

22 260 34 7 2.85 3.36 7.53 2.85 1.72 

23 895 68 24 7.28 1.84 6.96 7.28 1.80 

 

The meaning of the columns in Table 44  is as follows. 

• CFP is the size in COSMIC Function Points, measured according to the manual; 

• #FPr is the number of Functional Processes; 

• #DG is the number of data groups; 

• AvDGperFPr is the mean number of data groups involved in the project‘s Functional 

Processes; 

• AvDMperDG is the mean number of data movements per Functional Process, i.e., the 

mean size of the applications‘ functional processes; 



Chapter 5 . Evaluation of Simplified FSM processes 

 

 

97 

 

• AvSizeofFPr_others is the mean number of data movements per FP, computed on all 

the other applications; 

• AvDGperFpr_others is the mean number of data groups per FP, computed on all the 

other applications; 

• AvCFPperDG_others is the mean number of data movements (i.e., size) per data 

group, computed on all other applications. 

 

B. Models based on the number of data movements  

 

AvDMperFPr (the mean size of functional processes, i.e., the mean of CFP/#FPr) is 7.3. 

We can use this value in equation   (25), thus obtaining the model 

CFP = #FPr × 7.3  (31) 

 

Of course, model (Equation   (31)) is as good as the CFP/#FPr ratio of the considered 

applications is close to the mean. Actually, the standard deviation of CFP/#FPr for the 

applications in Table 44 is 3.25, i.e., 44.8% of the mean; therefore we do not expect a 

very good accuracy. 

 

To evaluate the accuracy of this model we estimated the size of each application using 

the data of the others as a historical dataset. So, for instance, to estimate the size of 

project 23 we computed the mean CFP/#FPr of projects 1 to 22, and multiplied that 

value (6.99) for the number of #FPr of project 23 (68), which results in an estimated 

size of 475 CFP. 

 

Through this process we got the estimates reported in Table 45. As expected, the 

accuracy of the model is far from good: the estimates are characterized by MMRE = 

36.6%, Pred(25) = 39.1%, error range = [-56%,104%]. 

 
Table 45 Estimates obtained using equation   (31) 

P.Id Estimated Size [CFP] Error % Error 

1 117 31 36.0% 

2 81 25 44.6% 

3 110 19 20.9% 

4 141 72 104.3% 

5 139 36 35.0% 

6 103 39 60.9% 

7 146 30 25.9% 

8 146 22 17.7% 

9 103 37 56.1% 

10 139 22 18.8% 

11 95 5 5.6% 

12 52 21 67.7% 

13 444 192 76.2% 

14 158 -202 -56.1% 

15 538 24 4.7% 

16 196 10 5.4% 

17 1110 162 17.1% 

18 219 30 15.9% 

19 63 -44 -41.1% 

20 154 -119 -43.6% 

21 319 -183 -36.5% 
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22 246 -14 -5.4% 

23 475 -420 -46.9% 

 

Via OLS regression we obtained a first statistically significant model: 

 CFP = -16.5 + #FPr × 6.698  (32)  

The adjusted R
2
 is 0.882, the p-value is < 0.001 

 

By using this model, we obtained the estimates reported in Table 46 and characterized 

by MMRE = 22.7%, Pred(25) =  69.6%, Error range is [-62%, 61%]. 

 
Table 46 Estimates obtained using equation   (32) 

P.Id Estimated Size [CFP] Error % Error 

1 91 5 5.8% 

2 57 1 1.8% 

3 84 -7 -7.7% 

4 111 42 60.9% 

5 111 8 7.8% 

6 77 13 20.3% 

7 117 1 0.9% 

8 117 -7 -5.6% 

9 77 11 16.7% 

10 111 -6 -5.1% 

11 71 -19 -21.1% 

12 30 -1 -3.2% 

13 385 133 52.8% 

14 138 -222 -61.7% 

15 479 -35 -6.8% 

16 164 -22 -11.8% 

17 1002 54 5.7% 

18 184 -5 -2.6% 

19 44 -63 -58.9% 

20 131 -142 -52.0% 

21 285 -217 -43.2% 

22 211 -49 -18.8% 

23 439 -456 -50.9% 

 

 

C. Models based on the number of functional processes and the number of data 

groups. 

 

Via OLS regression, no significant model of type CFP = k × #FPr + m × #DG was 

found. Also the log-log transformation of data did not help.  

 

We have not found any relationships existing between classes and sizes of CFP. This 

means that (at least with respect to the data available) there is no relationship between 

the number of classes and CFP. 

 

D. Models based on the number of data groups involved in each functional process 

 

When trying to use the knowledge of the number of data groups involved in each 

functional process, we discovered that the number of data movement per data group 
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involved in a functional process, computed for each application, was fairly constant 

throughout the applications of our dataset: the mean is 1.8 and the standard deviation 

0.03 (i.e., 1.7% of the mean). We exploit this fact to define the following model: 

 CFP = AvDGperFPr × #FPr × 1.8  (33) 

 

Term (1.8 × AvDGperFPr) is an estimate of the number of data movements per 

functional process: multiplied by the number of functional processes it yields an 

estimate of the number of data movements, i.e., the size of the application. 

 

By using this model, and computing the AvDGperFPr of each application on the basis 

of the other applications‘ data, we obtained the estimates reported in Table 47 and 

characterized by MMRE=19.3%, Pred(25)= 82.6%, error range [-36%,93%]. 

 
Table 47 Estimates obtained using equation   (33) 

P.Id Estimated Size [CFP] Error % Error 

1 83 -3 -3.5% 

2 70 14 25.0% 

3 108 17 18.7% 

4 79 10 14.5% 

5 104 1 1.0% 

6 67 3 4.7% 

7 130 14 12.1% 

8 100 -24 -19.4% 

9 96 30 45.5% 

10 119 2 1.7% 

11 92 2 2.2% 

12 60 29 93.5% 

13 216 -36 -14.3% 

14 339 -21 -5.8% 

15 601 87 16.9% 

16 222 36 19.4% 

17 1384 436 46.0% 

18 228 39 20.6% 

19 90 -17 -15.9% 

20 235 -38 -13.9% 

21 569 67 13.3% 

22 167 -93 -35.8% 

23 889 -6 -0.7% 

 

Via OLS regression we found a statistically significant model involving the number of 

Functional Processes and the mean number of data groups involved in each functional 

process: 

CFP = -64.6 + #FPr × 7.63 + AvDGperFPr × 9.71  (34) 

 

Pr(>|t|) < 0.05 for each independent variable; the adjusted R
2
 =  0.952. 

 

By using this model, we obtained the estimates reported in Table 48 and characterized 

by MMRE = 19.8%, Pred(25) = 69.6%, error range = [-47, 64%]. 

 
Table 48 Estimates obtained using equation   (34) 

P.Id Estimated Size [CFP] Error % Error 
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1 85 -1 -1.2% 

2 54 -2 -3.6% 

3 89 -2 -2.2% 

4 103 34 49.3% 

5 110 7 6.8% 

6 68 4 6.3% 

7 123 7 6.0% 

8 115 -9 -7.3% 

9 79 13 19.7% 

10 114 -3 -2.6% 

11 73 -17 -18.9% 

12 35 4 12.9% 

13 413 161 63.9% 

14 190 -170 -47.2% 

15 544 30 5.8% 

16 186 0 0.0% 

17 1141 193 20.4% 

18 205 16 8.5% 

19 58 -49 -45.8% 

20 161 -112 -41.0% 

21 347 -155 -30.9% 

22 223 -37 -14.2% 

23 525 -370 -41.3% 

 

By applying a log-log transformation on data, it was possible to get another statistically 

significant model: 

 

 CFP =  #FPr
1.00357

 × 1.588 × AvDGperFPr
1.0312  

 (35)
 

Pr(>|t|) < 0.001 for each independent variable; the adjusted R
2
 =  0.968. 

 

This model is characterized by MMRE = 16.8%, Pred(25) = 78.3%, error range = [-38, 

79%]. Estimates and errors are reported in Table 49.  

 
Table 49 Estimates obtained using equation 

 
 (35) 

P.Id Estimated Size [CFP] Error % Error 

1 -10 -11.6% 11.6% 

2 9 16.1% 16.1% 

3 9 9.9% 9.9% 

4 3 4.3% 4.3% 

5 -7 -6.8% 6.8% 

6 -3 -4.7% 4.7% 

7 4 3.4% 3.4% 

8 -31 -25.0% 25.0% 

9 23 34.8% 34.8% 

10 -7 -6.0% 6.0% 

11 -5 -5.6% 5.6% 

12 24 77.4% 77.4% 

13 -48 -19.0% 19.0% 

14 -38 -10.6% 10.6% 

15 49 9.5% 9.5% 

16 21 11.3% 11.3% 

17 281 29.6% 29.6% 
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18 23 12.2% 12.2% 

19 -22 -20.6% 20.6% 

20 -51 -18.7% 18.7% 

21 35 7.0% 7.0% 

22 -99 -38.1% 38.1% 

23 -46 -5.1% 5.1% 

 

5.2.4 Results and observations 

 

Answer to Q1 

 

The first relevant result of the work described in this paper is that we can answer 

positively to the first research question Q1 (During the requirements elicitation and 

specification phase, is it possible to write progressively more complete and detailed 

UML models that support progressively more accurate simplified CFP measurement 

methods?). 

 

In subsection 5.2.2 we described how to write UML models of user requirements that 

support simplified methods for measuring CFP. In particular, we described UML 

models that correspond to four completeness and detail levels (as depicted also in 

Figure 39): 

 a) At the most abstract level, the model represents just the list of functional 

processes that are provided by the application being measured to functional users. 

 b) At a slightly more detailed level, the model represents the data groups managed 

by the application. 

 c) At a further detailed level, the model specifies the data groups involved in each 

functional process. 

 d) At the most detailed level, the model includes all the details required to identify 

the data movements involved in each functional process, i.e., the information 

required to compute the size in CFP. 

 

Answer to Q2 

 

To answer question Q2 (What is the accuracy of the estimates provided by different 

simplified CFP measurement methods?) we first built the models, then we evaluated 

their accuracy. 

 

Using the dataset described in Subsection 5.2.3 we checked the possibility of deriving 

simplified measurement methods corresponding to each of the abstraction level listed 

above. The most detailed models (level d) were used to measure the size in CFP 

according to [33]. No methods corresponding to level b) could be found (more precisely, 

no statistically significant model could be derived via OLS linear regression). For levels 

a) and c) two types of methods were defined: those based on mean values of the 

elements of the COSMIC method (like the mean size of functional processes or the 

mean number of data groups per functional process) and those derived from linear 

regression analysis. These estimation models and the accuracy of the obtained estimates 

are given in Table 50.  
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Table 50 Simplified size estimation models and their accuracy 

Model 
MMRE Pred(25) 

name formula 

avg1 CFP = 7.3 × #FPr 36.6% 39.1% 

reg1 CFP = -16.5 + 6.698 #FPr 22.7% 69.6% 

avg2 CFP = AvDGperFPr × 1.8 × #FPr 19.3% 82.6% 

reg2  CFP = -64.6 + 7.63 #FPr + 9.71 AvDGperFPr 19.8%  69.6% 

log2 CFP = 1.588 × #FPr
1.00357

  × AvDGperFPr
1.0312

 16.8% 78.3% 

 

The data reported in Table 50 were computed under the hypothesis that the measures 

obtained via the official COSMIC method [33] are correct. COSMIC measures were 

obtained by analyzing UML models that describe user requirements and are 

measurement-oriented, i.e., they are built so as to contain all the information required by 

FSM methods, as described in [3] and [2]. So, a measurer that bases his/her counting on 

a well written UML model has very little chances of making mistakes. 

 

It can be seen that the first method (the one suggested in [59], and named ―avg1‖ in 

Table 50) does not yield very accurate estimates. This clearly appears also by looking at 

the boxplots that represent the relative errors (Figure 48) and the absolute relative errors 

(Figure 49). Since it could be argued that the heterogeneity of the dataset affected the 

accuracy of this method, we computed the mean size of functional processes on a 

homogeneous subset of ten applications, including all the real-life applications from the 

same company: the accuracy obtained was only marginally better than the accuracy 

reported in Table 50.   

 

 
Figure 48 Boxplot of relative size estimation errors 
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Figure 49 Boxplot of absolute relative size estimation errors 

 

By means of linear regression we obtained a definitely more accurate estimation model 

that uses only the number of functional processes as independent variable (named 

―reg1‖ in Table 50). 

 

When looking for models that take into account both the number of functional processes 

and the number of data groups involved in each functional process, we are able to define: 

 A model (named avg2 in Table 50) that exploits the quasi-constancy of the number 

of data movement per data group involved in a functional process. 

 A model (named reg2 in Table 50) obtained via OLS linear regression. 

 A model (named log2 in Table 50) obtained via OLS linear regression after log-log 

transformation. 

 

While model avg2 is clearly more accurate than model avg1, model reg2 appears 

preferable to model reg1 in that both its mean and median magnitudes of errors are 

closer to zero, and because it is less prone to give negative errors. According to the 

latter observation, using reg2 it is less likely that an application size (hence, its 

development effort) is grossly underestimated, with consequent potentially disastrous 

consequences. Model log2 is –like reg2– less prone to give negative errors; moreover, it 

features a quite little variance of absolute relative errors (see Figure 49). 

 

Answer to Q3 

 

Finally, concerning question Q3 (Do simplified CFP measurement methods provide a 

level of accuracy that is proportional to the amount of information required?) we have to 

address it on a qualitative basis, since we are not really interested in quantifying the 

amount of information needed by each simplified measurement process. In fact, aims at 

assessing if the effort needed to produce UML models that provide more and more 

information is worth the improvement in accuracy of the size estimations that can be 

obtained. 

 

A first answer to Q3 is that progressing from a model like the one represented in Figure 

40 to a model like the one in Figure 45 requires some effort, but allows to get better 
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distributions of estimation errors (as discussed above), if not a great increase in mean 

accuracy. In practice, the risks connected with wrong estimates are decreased. 

 

However, additional considerations depend on the development process being adopted. 

If an organization uses UML for requirements modeling and the COSMIC method as 

described in the manual [33] for size measurement, then models like those illustrated in 

Figure 40 and Figure 45 will be produced anyway, during the modeling process. Thus, 

using them to get early estimates of the application‘s size is just an opportunity that 

comes for free. It is also interesting to note that in order to be able to compute the 

parameter required by equation  (25) and  (28), or to be able to perform regression 

analysis, full-fledged COSMIC measures (including #FPr, #DG, etc.) have to be 

collected and stored in a historical data repository. 

 

On the contrary, organizations that do not perform full-fledged COSMIC measurement 

will not be able to collect historical data, including those data (#FPr, #DG, etc.) that are 

needed to compute measure estimates. These organizations can still use UML-based 

models for simplified measurement processes, but will have to use parameters derived 

from measures from other organizations.  

5.2.5 Threats to validity 

A possible threat to internal validity is the limited number of projects in our sample. 

Despite the relatively small numbers of data points, we still filtered out outliers (using 

Cook‘s distance as an indicator), to make sure that the results are not unduly influenced 

by a very small number of high-leverage points, even though this further reduced the 

cardinality of the samples. 

 

The main threat to the external validity of the study may come from the projects chosen, 

which are a limited sample of a much larger population. However, this kind of threat is 

typical in most empirical software engineering studies. Also, the sample of projects is a 

―convenience‖ sample, i.e., it is made of projects that were selected because the data 

that we needed for our study were available. Note that, however, we are not interested 

here in specific models (e.g., we are not interested in the coefficients of the models), but, 

rather, in the performance of the techniques we propose. At any rate, it is not easy to 

assess the extent to which our results may apply in general.  

 

There may be a threat to construct validity due to the use of MMRE, which has been 

criticized in the past as an accuracy indicator [60]. To mitigate this risk, we used 

MMRE along with other accuracy indicators. Our results show that they provide 

concordant results as for the accuracy of the models we built, so the indications 

provided by the set of our accuracy indicators can be deemed reliable. 

5.2.6 Conclusions 

It is not uncommon that a project manager needs an estimate of the functional size of 

the software application to be built even before the requirement specification phase is 

completed. Alternatively, project managers could simply want to limit the cost or time 

needed to measure the functional size of the application to be built. In these cases, 

simplified FSM methods are often used. 

 

When UML is used in the early phases of development, it would be very convenient to 

apply simplified FSM methods to UML models. In particular, during the requirements 
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specification phase, UML models grow in detail, thus providing the information 

required by progressively more accurate size estimation methods. Actually, in this paper 

we showed that it is possible to build UML models that support adequately the 

application of two simplified measurement methods and the standard COSMIC method.  

 

Based on the UML models, and using a dataset composed in large part of real-life 

project data, we were able to define quantitative size estimation models based on only 

the number of functional processes, or the number of functional processes and the 

number of data groups used in each functional process. We showed that size estimation 

methods‘ accuracy grows with the amount of information used. The models and their 

accuracy are summarized in Table 50.  

 

It is also important to observe that the information contained in the UML models 

illustrated in sub-section 5.2.2 is just the information required to document applications‘ 

requirements properly. Therefore, size estimates obtained via simplified measurement 

processes can be seen as ‗by products‘ of the progressive refinement of UML 

requirements models. 

 

Future work includes extending the dataset, to increase the reliability and to guarantee 

the general validity of the results presented here. 
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Chapter 6  Conversion between FPA and CFP 
 

Several software development organizations are considering to change functional size 

measurement method from Function Point Analysis (FPA) [67] [10] to COSMIC [33], 

mainly because the latter is more easily and generally applicable than FPA. Such 

phenomenon is witnessed –for instance– by the growing number of COSMIC measures 

in the ISBSG database [68]. 

 

However, moving from FPA to COSMIC implies that the experience bases funded on 

Function Points (FP) become unusable. Since most organizations are not willing to 

make their historical data no longer usable, converting functional size measures –

especially FP into CFP– is necessary and is a growingly interesting problem, in order to 

continually use them. This problem (see for instance the discussion in [69]) leads to the 

need of a conversion procedure that transforms FP measures into CFP measures. For the 

sake of precision, it is correct to remember that the COSMIC method allows measuring 

software that is structured in layers and peers, while FPA only addresses the 

measurement of an entire software application. Accordingly, the problem of size 

measure conversion applies only in the latter case. 

 

The problem of converting functional size measures expressed in Function Points into 

measures expressed in CFP has received much attention from researchers. The work 

concerning convertibility among Functional size measures can be classified into three 

main streams. 

 Manual conversion. 

 Theoretical conversion within an empirical range 

 Statistically based conversion. 

6.1 The analytical convertibility of FSM 

 

In [7] we proposed to exploit the knowledge produced by the FPA counting process and 

the similarity of FPA and COSMIC concepts in a procedure that guides the measurer in 

deriving COSMIC BFC from FPA BFC, thus greatly simplifying the COSMIC sizing. 

The procedure can be supported by a tool, which incorporates the knowledge of how 

FPA concepts map onto COSMIC concepts, thus easing conversions. 

6.1.1 The conceptual basis 

Our approach to convertibility between FP and CFP is based on the observation that the 

software models used by COSMIC and FPA have several elements in common, as 

already recognized in [46]. Figure 50 shows the possible conversion procedures. 
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Figure 50 Roadmap to resolve the problem 

 

FPA and COSMIC are characterized by a first phase, in which BFC and their 

characteristics are identified, and a second phase in which the size is computed as 

follows: 

 

Size = f (BFC)  (36) 

 

When dealing with a conversion from FP to CFP, FP = fFPA(BFCFPA) has already been 

computed, thus FP (the size in IFPUG unadjusted function points) is known. The 

conversion problem can be expressed as 

CFP = fCOSMIC-FPA(FP)  (37) 

 

However, defining function fCOSMIC-FPA proved to be quite difficult. Therefore, we try a 

different way. We star by observing that the problem of measuring the size in CFP is 

articulated in the usual two stes:  

 1) Identifying BFCCOSMIC 

 2) Computing CFP = fCOSMIC(BFCCOSMIC) 

 

Now, it is clear that computing CFP = fCOSMIC(BFCCOSMIC) would be straightforward, if 

BFCCOSMIC were know, since it would simply require applying the COSMIC 

counting procedure as described in [3]. The real problem is thus identifying the 

BFCCOSMIC, but this could be also quite easy, if we were able to convert BFCFPA into 

BFCCOSMIC.  The feasible conversion road map is from BFCFPA to BFCCOSMIC, then to 

CFP.  

 

To convert BFCFPA to BFCCOSMIC, we can exploit the similarities among the two 

methods‘ elements, as described in Table 51. 

 
Table 51 FPA to COSMIC element mapping 

FPA COSMIC 

DET (in data file) Data attribute 

RET Data Group 

Transaction Functional process 

FTR 
Data Group(s) read or written in the 

execution of a functional process 
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DET (in transaction) 

Attribute of a Data Group that is 

subject of an Entry or Exit when 

executing the corresponding functional 

process 

Set of DET crossing the 

boundary of the application as 

part of a transaction 

Data movement of type Entry or Exit 

FTR access within a transaction Data movement of type Read or Write 

 

Some of the mappings given in Table 51 are mentioned in the COSMIC literature. 

Namely, the fact that DET correspond to data attributes is mentioned in [33]; the fact 

that FPA transaction correspond quite closely to COSMIC functional processes is 

acknowledged in [33], as well as in [70] and [71]. The fact that FTR correspond to data 

groups read or written in a functional process is implicitly acknowledged in [33] and 

explicitly stated in [70].  

 

The less obvious correspondence between FPA and COSMIC elements concerns data 

groups.  

It is clear that the concept of a COSMIC data group matches quite closely the concept of 

FPA logic data file (as recognized in [70], for instance). Actually, most logic data files 

contain just one RET: in those cases we have that one logic data file corresponds to one 

RET and one data group. However, logic data files can contain multiple data subgroups 

(the RET), while the concept of data subgroup is absent in the COSMIC method (more 

precisely, such concept is mentioned when dealing with data exchanges between 

software layers, that are not considered here, since we deal only with the measurement 

of the application at the FUR level, as in FPA). According to the indications on data 

groups given in [33] and the definitions of logic data files and RET given in [10], it 

seems reasonable the COSMIC data group is mapped onto FPA RET. 

 

Note that a consequence of mapping data groups onto RET is that when a FTR 

corresponds to a multi-RET logic data file, multiple data groups are involved. 

 

It is important to stress that the correspondences illustrated in Table 51 do not hold 

always; however they hold in most cases. This is a very important point in practice. In 

fact, we do not need that the mappings are always valid (in that case, a totally automatic 

―translation‖ from FP to BFC would be possible, but at the cost of ensuring that each 

enforced correspondence is valid, which requires some intelligence). Instead, since we 

are looking for an efficient ―manual‖ conversion process, it is sufficient that the 

described mappings hold on most occasions. So, the user performing a conversion can 

just check for cases when the mappings do not hold and deal with them. As long as the 

exceptions to the mappings described in Table 51 occur quite seldom, the conversion is 

very fast. 

6.1.2 Proposed procedure of our approach  

So, the approach we propose is organized as follows: 

 1) Convert FP software model elements into COSMIC software model elements. To 

this end, make reference to Table 51. In most cases the conversion is straightforward. 

In some particular cases, the mapping could be not applicable, and the converter has 

to use his/her knowledge and judgment. 
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 2) The derived COSMIC BFC and related information are used to size the software 

application. 

 

One could observe that this procedure configures a sort of ―double measurement‖. In 

fact, at the end of the process we have both IFPUG and COSMIC measures, and both 

are documented by the detailed description of the respective BFC. 

 

This observation suggests that –especially if a suitable tool is available– it is more 

efficient to perform the double measurement straight away, when the knowledge of 

FUR is fresh in the mind of the measurer, rather than a real conversion a posteriori. That 

is, when one measures an application, he/she can measure it according to both FP and 

CFP. The effort required for this double measurement is expected to be just a little bit 

greater than the effort required for applying one FSM method, thanks to the mapping 

defined in Table 51.  

 

A suitable tool could also contribute to make the additional effort required to perform 

the second measure as little as possible. Ideally, we would like to get two measures at 

one measure's cost. 

6.2 Tool support 

 

In this section, we describe the tool that was developed to support our conversion 

approach. The tool is described via the use case ―Warehouse Software Portfolio (WSP)‖ 

quoted in Section 4.2. 

6.2.1 Initiation 

The initial view of the tool is illustrated in Figure 51. The user can provide basic 

information concerning the project and the measurer, or switch directly to FPA or 

COSMIC specific views. 

 

 
Figure 51 Initial view 

                          

6.2.2 Counting FPA 

The tool supports measurement according to FPA. The user is required to provide the 

list of both data and transaction functions, and for each function the list of BFC (i.e., 

RET, DET and FTR).  

 

In the FPA view (Tab ―FP‖), the tool provides two sub-views, one (Tab ―Data‖) for 

describing the software model and the other (―Analysis‖) for computing the size.  
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FPA view - Software model – Data sub-view 

In the software model view (Tab ―Data‖ in Figure 52) it is possible to give the list of 

ILF, EIF, EI, EO and EQ, and for each function the relevant characteristics can be 

specified.  

 

Consider for instance Figure 52: the user has already entered ILF Place (see Figure 28) 

and has specified that such ILF contains a single RET (also named Place) and is 

entering a new DET, whose name is Space.  

 

 
Figure 52 DET input form 

 

At the end of the data description process, the tool will include a complete description 

of the data maintained by the WSP process, as shown in Figure 53.   
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Figure 53 WSP data in the FP-software model specific views 

 

FPA view - Software model – Transaction subview 

The procedure for describing transactions is similar. The tool eases the identification of 

software model elements as far as possible: for instance, when describing a transaction, 

the user is presented the list ILF and EIF from which he/she can choose the FTR. 

Consider for instance Figure 54: the user is specifying the FTR of the external query 

QueryCustomers: the list of ILF and EIF is given, so that he/she can choose one.  

 

 
Figure 54 FTR choice 
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An interesting feature of the tool is that when specifying the DET of a transaction, it is 

possible to tell if they are entering or exiting the application (or both), as illustrated in 

Figure 55, where the AmountDue is specified as an outbound DET in the 

QueryCustomers. This piece of information is not relevant for FPA, but is useful when 

converting to CFP, since an entering DET can suggest the existence of an Entry data 

movement, while an exiting DET suggests an Exit data movement. 

 

 
Figure 55 Specifying a function’s DET 

 

FPA view - Computes the size in FP 

Once the BFCs have been properly identified, the tool automatically computes the size 

in FP: the results of the computation are shown in Figure 56. The total size of the WSP 

application is 77 FP (more precisely, 77 IFPUG Unadjusted FP). 

 

 
Figure 56 Function Point count of FP 

 

 

Other function 

Of course, the tool supports saving and loading measurement data. It is also able to 

export project data in csv (comma separated values), so that data can then be imported 
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into spreadsheets, databases, and other tools for permanent storing or for further 

elaboration. 

6.2.3 Counting COSMIC 

Similarly, the tool supports the counting of COSMIC FP.  If the size of the given 

software application has not yet been measured in FP, the measurer can proceed with a 

―native‖ COSMIC measurement. In such case, the user is required to list the data groups, 

to identify the functional processes, and –for each functional processes– to tell which 

data movement are required. When describing a data movement, the list of data groups 

is made available, so that the user can pick the involved one. 

 

If the size of the given application has already been measured in FP and the measure in 

CFP has to be computed, it is possible to exploit the convertibility concepts described in 

subsection 6.1.1. 

 

Suppose that we have measured the WSP application in FP and we want to size it in 

CFP as well, we switch to the COSMIC view and find it empty, as expected (Figure 57) 

 

 
Figure 57 Empty COSMIC view 

 

CFP view - Software model 

When entering data groups, the tool suggests picking one of the logical data files 

identified during the FPA, as shown in Figure 58.  

 

 
Figure 58 Specifying a data group after a FP logical data file 
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Of course, it is always possible to ignore the suggestions of the tool and insert different 

data. This is usually the case for transient data groups, which do not correspond to any 

FPA logical data file. The situation for the SWP after data group specification –not 

considering transient data groups– is illustrated in Figure 59.  

 

 
Figure 59 Data group 

 

CFP view - Software model-Functional process 

 

When inserting functional processes, the tool suggests picking them from the list of 

FPA transactions. It is thus easy to create the list of functional processes from the list of 

FPA transactions. The result is shown in Figure 60.  

 

 

 
Figure 60 Functional processes in the CFP specific view 

 

When entering data movements, the tool presents the list of data groups that have 

already been defined, since every data movement has to involve a data group. If the 

involved data group is not in the list, then the user has to add it. For instance, specifying 

data movements of the AddCustomer functional process is illustrated in Figure 61. 
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When considering the exits of the process, it is likely that the user realizes that a 

diagnostic is issued when the customer to be added is already in the database: transient 

data group CustomerAlreadyPresentErr is thus added to the list of data groups.  

 

 
Figure 61 Data movement specification 

                       

COSMIC view - Computes the size in CFP 

When all the data movements have been specified, the tool computes the total size in 

CFP, as illustrated in Figure 62. The resulting size is 83 CFP, slightly different from the 

size (81 CFP) obtained via a direct application of the COSMIC measurement process as 

reported in [33]: this difference is due to the fact that we based our counting on FUR 

that are slightly different from those reported in [33]; besides, we followed the 

indications of [39], which were not yet available when the WSP was described and 

measured in [33]. 

 

17
27
27
12
83

 
Figure 62 CFP count 

 

6.3 Tool validation 

In order to further test the proposed approach, we used the tool to size the tool itself. 

Although this tool is not a very large piece of software, it is larger than about 40% of 

the new development projects measured according to IFPUG Function Points appearing 

in the ISBSG dataset [68]. 
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Table 52 Results of FPA for the tool in section 6.2  

Function 
Type 

Complexity 

Low Average High Size 

ILF 14 0 0 98 

EIF 0 0 0 0 

EI 40 4 0 136 

EO 2 0 0 8 

EQ 11 1 3 55 

Total 297 

 

The first author of [7] used the tool to measure the tool itself according to FPA only. 

The results of the measurement are reported in Table 52.  

 

The third author of [7] was given the FPA measures and model produced by the first 

author and used the tool to derive the COSMIC measure, using the conversion 

capability of the tool. In the meantime, the first author used the tool to measure it 

according to the COSMIC methods in ―native‖ mode, that is, without using the 

conversion capabilities of the tool. The results of the measures are given in Table 53. 
 

Table 53 Results of COSMIC measurement of the tool presented in Section 6.2  

  Author 1 Author 3 

Functional processes 60 60 

Entries 60 69 

Exits 57 82 

Reads 76 97 

Writes 70 70 

COSMIC size 263 318 

 

We gathered the data of the two cases in Table 54 to facilitate the analysis. 

 
Table 54 Data gathered from the two cases study 

Type of Values Initial Converted (Results) Standard 

Type of results FPA CFP CFP CFP 

Case 
1^ 77 83 82 81 

2^ 297 263 318 / 

Measurement 
mode 

Using the 
tool 

Using the 
tool 

Using the 
tool 

via direct 
application 
of COSMIC 

Performer No.1 author No.1 author No.3 author CASE 

Ability of 
performer 

quite 
experienced 

quite 
experienced 

little 
experienced 

quite 
experienced 

 

6.4 Lessons learned and conclusions  

 

6.4.1 Lessons learned from the first case study 

In conclusion, the tool effectively supports not only the sizing of the WSP application in 

terms of Function Points, but also the conversion of the measure into COSMIC 

Function Points. 
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It must be noted that –besides the availability of the BFCFPA and their details– the 

conversion process needs that some knowledge about the process is available. Such 

knowledge is partly made available by the tool: for instance, the information that in the 

PrintCustomerItemList process the Value of each item and the total value of all items 

are output can be retrieved from the data associated with FPA transaction function 

(there are corresponding outbound DET). However, getting a clear idea of the role of 

each FTR and DET can require some effort, if the process details are not known. 

 

Because of this reason, the most efficient way of performing the conversion is to do it 

on the fly, while measuring the size in FP. In fact, in this case, the procedure would be 

organized as follows: 

 Step 1: Processes and data are analyzed and modeled according to FPA rules; 

 Step 2: The corresponding COSMIC functional process and data groups are derived; 

since correspondences are suggested by the tool according to Table 51, this step is 

usually quite straightforward. 

 Step 3: Data movements are specified. This step is eased by the fact that the 

processes have just been analyzed and data groups have already been defined. 

 

If the conversion is made some time after the FPA measurement, step 3 is less 

straightforward, since the knowledge of the processes is no longer fresh, and has to be 

―reconstructed‖ with some effort. 

6.4.2 Lessons learned from the second case study 

The results of the measures are given in Table 53. It is easy to see that in this case the 

differences are larger than for the WSP system. We analyzed in details the differences 

and found two main types of reasons for differences in the measured sizes: 

 

 Different interpretations of requirements. For instance, the two authors had different 

ideas about the feedback that the system has to provide to the user after performing 

(or not performing) some operations. 

 Different interpretations of COSMIC counting rules in very specific cases. For 

instance, when some data is deleted, it is not clear whether the fact that the system 

shows nothing in place of the original data should involve an exit (i.e., writing 

―nothing‖ is an exit?).  

 

In conclusion, we noted, from Table 54, that the tool‘s performance is only as good as 

its user‘s. In fact, during the modeling phase the tool acts as a simple editor, letting the 

user create and define FPA and/or COSMIC elements as he/she considers correct. Also 

in the ―conversion‖ phase, the tool just highlights possible correspondences among FPA 

and COSMIC elements, but the responsibility of accepting the suggestions is ultimately 

with the user. 

 

Actually, as described in Section 6.1.1, the ―intelligence‖ of the tool is limited to the 

mappings among FPA and COSMIC concepts (see Table 51). Accordingly, our tool is 

not comparable with those that aim at automatically measuring the given FUR. In order 

to get a smarter support from the tool, it should be necessary to provide the tool with 

additional information. For instance, in principle one could think of deriving 

information concerning a FSM method form a model specifically built to support FSM, 

as described in [26]. However, this procedure is out of the scope of the work presented 

here. It could be the objective of future work. 
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6.4.3 Conclusion  

 

In conclusion, the tool effectively supports not only the sizing of the WSP application in 

terms of Function Points, but also the conversion of the measure into COSMIC 

Function Points. 

 

The case study showed that the approach is effective. However, we found out that even 

though the data groups and functional processes can be identified very easily on the 

basis of the FPA software model, identifying the type of data movements in which each 

data group is involved is not so immediate. To overcome this problem, two strategies 

are possible. 

 

A first strategy consists in double measurement. When measuring the given application, 

each process is measured according to both FPA and COSMIC methods. This procedure 

costs very little more than applying a single measurement method. In fact, once a 

transaction has been measured according to FPA, the corresponding COSMIC 

functional process and data groups involved are immediately known, and identifying the 

data movements is very easy, thanks to the fresh analysis of the process.  

 

A second strategy –which can be applied at any moment after FPA– requires exploiting 

all the details of transactions that were recorded. For instance, knowing that in a given 

transaction a given DET crosses the application boundary inbound suggests that the data 

group corresponding to the logic data file to which the DET belongs is subject to an 

Entry data movement, in the functional process corresponding to the given transaction.  

 

This second strategy could also greatly benefit from automated support. The tool could 

look for the DET involved in transactions, identify the logical data file they belong to, 

identify the corresponding data group, and suggest the proper data movement according 

to the direction of the DET movement. We plan to extend the tool to implement this 

type of functionality. 

 

Finally, it is worth stressing that the proposed technique is applicable also to convert 

COSMIC measures into FP measures, though this is less often required. Experimenting 

with this type of conversion is also among future objectives. 
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Chapter 7  Investigation of statistical correlations 

between FSM and Object-Oriented Measures of 

Requirements models 
 

It has been shown that functional size measures can be derived from UML models of 

requirements. In particular, if UML models are measurement-oriented, i.e., if they were 

written with the goal of clearly representing the elements upon which functional size 

emasurment is based, it is easy to identify BFC and all those elements that contribute to 

size measures. However, the analysis of UML diagrams to identify BFC and the 

elements that have to be taken into consideration to compute functional size measures is 

still a manual process. On the contrary, it is very easy to automatically derive object-

oriented measures –like those proposed by Chidamber and Kemerer [111]– from UML 

models. So, if we were able to find an association (and the corresponding quantitative 

model) between the object-oriented measures of a measurement-oriented UML model 

and the functional size measures derived from the same UML model, we could exploit 

this knowledge to simplify the measurement. 

 

The situation is depicted in Figure 63. It is noticeable that activity ―Object-oriented 

measurement‖ is fully automatic, while activity ―Identification of factors characterizing 

the SW application‖ is performed manually. In principle, the automation of the latter 

activity would be possible, but it would imply either rather sophisticated expert 

reasoning, or a decoration of the input model with information that could help the 

counting program in difficult decisions (e.g., what is the main purpose of a process). In 

practice, till now no tool implementing fully automated FSM has been recognized 

compliant with the standards. 

 

 
Figure 63 FSM Vs. OO measure 

 

If we were able to find and model the relationship between OO measures and functional 

size measures, we could automatically measure the UML models and 

 Estimate the functional size based on the OO measures, or 
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 Use the OO measures in place of the functional size measures, which would be no 

longer needed. 

7.1 Object-oriented measurement 

 

Before describing the work done, let‘s have a look at the measures that can be obtained 

from UML diagrams. After a brief survey of the available tools, we selected SDMetrics 

[54] as the most complete, mature, usable, and easily available tool.  

 

SDMetrics accepts as input XMI and is able to measure nine UML diagrams, including 

sequence diagram, activity diagrams and use cases diagram. SDMetrics calculates about 

120 measures and is also able to evaluate rules, covering all UML diagram types. After 

the initial configuration, measurement is performed automatically. 

 

How to carry out the OO measurement using SDMetrics 

In order to correctly carry out the OO measurement using SDMtrics, a set of project 

files, such as XML Source File, XMI Transformation File, Metamodel Definition File, 

and Metrics Definition File, are needed to be prepared and specified (only the first one 

is obligatory).  Figure 64 [112] illustrates the role of the project files.  

 

 
Figure 64 SDMetrics Project files 

 

XMI Source File 

SDMetrics works on XMI file generated from a UML case tool for extracting the 

needed information (such as attributes of a class, methods and their parameters, etc.). 



Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented 

Measures of Requirements models 

 

 

123 

 

This is the input of the SDMtrics and it includes all the information about the elements 

in the model being measured. We use the StarUml modelling tool to construct the 

models and export relative XMI files.  

 

The SDMetrics metamodel definition file 

The SDMetrics metamodel defines which UML model elements (e.g., classes, packages, 

associations, and so on) SDMetrics knows about, and what information is stored with 

each UML model element. This information is used to define and calculate design 

metrics. 

 

The SDMtrics XMI Transformation File 

XMI transformation file specifies how to retrieve the information pertaining to each 

SDMetrics metamodel element and its attributes from the XMI file. 

 

Metrics definition file 

Metrics definition file defines the set of metrics to be calculated for your UML model. 

The file contains a list of definitions of metrics, as well as sets (sets of UML elements, 

sets of values), rules and word lists, relation matrices, literature reference and glossary 

terms. 

7.2 Organization of the empirical investigation 

 

The research question we addressed is the following: 

Is there a quantitative relationship that links functional size measures (namely, Function 

Points and COSMIC Function Points) of an application to some object-oriented measure 

of the UML model that describes the requirements of the same application? 

 

In order to answer this question, we took the requirement specifications of a set of 11 

software applications; then 

1. UML measurement-oriented models of requirements were built; 

2. Functional size measures were derived from models; 

3. OO measures of UML models were obtained using SDmetrics; 

4. Possible correlations between the measures obtained at steps 2 and 3 were studied, 

using statistical methods. 

 

The process described above was carried out for both Function Point Analysis and the 

COSMIC method. 

7.3 Datasets  

In this section we give the datasets resulting from the measurement activities described 

in above. 

 
Table 55 Measures collected according to the FPA method 

Proj 

ID UFP ILF EIF EI EO EQ 

Num_ 

ILF 

Num_ 

EIF 

Num_ 

EI 

Num_ 

EO 

Num_ 

EQ 

AvFTR 

perTr 

1 160 98 0 49 4 9 14 0 12 1 3 2.00 

2 140 56 25 46 4 9 8 5 11 1 3 2.93 

3 84 35 5 30 4 10 5 1 9 1 3 1.46 

4 163 84 0 66 4 9 12 0 18 1 3 2.18 
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5 128 49 0 66 4 9 7 0 19 1 3 2.26 

6 130 63 0 54 4 9 9 0 14 1 3 2.06 

7 78 21 0 32 12 13 3 0 9 3 4 1.69 

8 107 35 10 48 14 0 5 2 12 3 0 2.13 

9 102 42 0 31 8 21 6 0 9 2 5 2.13 

10 79 42 5 28 4 0 6 1 7 1 0 3.13 

11 105 49 0 56 0 0 7 0 17 0 0 1.29 

 

 

 
Table 56 Measures collected according to the COSMIC method 

ProjID CFP 

Num_ 

FPr 

Num_ 

DG Entry eXit Read Write 

AvDM 

perFPr 

AvDG 

perFPr 

1 93 15 15 29 25 16 23 6.20 2.47 

2 83 14 12 18 18 26 21 5.93 2.86 

3 66 13 7 20 19 15 12 5.08 2.00 

4 146 22 16 50 29 35 32 6.64 2.41 

5 154 24 7 37 42 36 39 6.16 2.21 

6 102 18 12 28 27 23 24 5.67 2.28 

7 86 16 3 19 30 27 10 5.38 1.69 

8 92 15 7 20 28 30 14 6.13 2.40 

9 86 16 7 22 24 23 17 5.38 2.31 

10 65 8 9 20 16 11 18 8.13 2.88 

11 99 17 7 31 30 21 17 5.82 1.29 

 

 

The measures obtained from our FPA-oriented models are given in Table 57. 

 
Table 57 OO measures obtained from FPA-oriented UML models 

Proj 

ID 

Num_ 

Class 

Num_ 

Attr 

Num_ 

Met 

AvMet 

perClass 

AvAtt 

perClass 

Num_ 

UseCase 

Num_ 

Msgs 

Num_ 

Sent 

Msgs 

Num_ 

Rec. 

Msgs 

AvMsgs 

perClass 

AvMsgs 

perSD 

1 17 88 65 2.04 3.67 15 127 44 83 7.47 10.62 

2 13 53 38 2.92 4.08 22 104 34 70 8.00 8.00 

3 7 36 38 5.43 5.14 12 64 19 45 9.14 5.33 

4 17 49 55 3.24 2.88 23 128 44 84 7.53 5.57 

5 8 34 27 3.38 4.25 24 114 37 77 14.25 4.75 

6 15 39 36 2.40 2.60 19 111 39 72 7.40 5.84 

7 3 11 16 5.33 3.67 16 65 26 39 21.67 4.06 

8 7 29 20 2.86 4.14 15 65 26 39 9.29 4.33 

9 8 30 37 4.63 3.75 17 91 34 57 11.38 5.35 

10 9 19 33 3.67 2.11 7 70 24 46 7.78 10.00 

11 7 25 28 3.11 3.44 18 75 29 46 10.71 9.61 

 

 

The measures obtained from our COSMIC-oriented models are given in Table 58. 

 
Table 58 OO measures obtained from COSMIC-oriented UML models 
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Proj 

ID 

Num_ 

Class 

Num_ 

Attr 

Num_ 

Met 

AvMet 

perClass 

AvAtt 

perClass 

Num_ 

UseCase 

Num_ 

Msgs 

Num_ 

Sent 

Msgs 

Num_ 

Recv 

Msgs 

AvMsgs 

perClass 

AvMsgs 

per 

UseCase 

1 17 86 0 2.17 3.74 15 44 44 83 5.29 10.35 

2 13 44 38 2.92 3.38 22 104 34 70 8.00 4.73 

3 7 36 34 4.86 5.14 12 64 19 45 9.14 5.33 

4 17 47 54 3.18 2.76 23 128 44 84 7.53 5.57 

5 8 34 26 3.25 4.25 24 114 37 77 14.25 4.75 

6 15 39 38 2.53 2.60 19 110 39 71 7.33 5.79 

7 3 11 9 3.00 3.67 16 65 26 39 21.67 4.06 

8 7 24 10 1.43 3.43 15 65 26 39 9.29 4.33 

9 8 30 11 1.38 3.75 17 77 29 48 9.63 4.53 

10 9 19 32 3.56 2.11 7 70 24 46 7.78 10.00 

11 7 23 25 2.78 3.22 18 77 29 48 8.56 9.65 

 

 

7.4 Analysis 

 

Linear regression was applied to the data described in the previous section, to find 

statistically significant models. 

 

As is usual in empirical software engineering studies, we considered models having p-

value < 0.05. Other validity conditions –like the normal distribution of residuals– were 

taken in due account. 

 

Outliers were identified by means of Cook‘s distance. 

 

The multivariate models described below are characterized by non-correlated 

independent variables. 

Given the relatively small number of data points, to avoid overfitting, intercepts were 

forced to be null; i.e., all regression lines pass through the origin. This is reasonable, 

since an application having a null object oriented measure cannot account for non-null 

functional size. 

7.4.1 FP vs. OO measures 

In the following paragraphs the statistically significant models found from our FPA-

oriented models are described. 

7.4.1.1 UFP vs. Number of classes 

A first model associates the size in UFP to the number of classes (the regression line is 

shown in Figure 65): 

UFP = #Class ×10.56  (38) 

The model is characterized by R
2
 = 0.942. No outliers were found. 
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Figure 65 UFP vs. Num_Class regression line 

 

The accuracy of the model is characterized by: 

 MMRE =  22.7%  

 Pred(25) =  63.6%  

 Error range = (-59.4%, 21.8%) 

 

The distribution of model‘s relative residuals is described in Figure 66. 

 
Figure 66 UFP vs. Num_Class residuals’ distribution 

 

7.4.1.2 UFP vs. Number of attributers  

A second model associates the size in UFP to the number of attributes (the regression 

line is shown in Figure 67): 
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UFP = #Attr×3.60  (39) 

The model is characterized by R
2
 = 0.976. Three outliers were excluded in the 

computation of the regression. 

 

 
Figure 67 UFP vs. Num_Attr regression line 

 

The accuracy of the model is characterized by: 

 MMRE =  26.8%  

 Pred(25) =  63.6%  

 Error range = (-49.2%, 98.2%) 

 

The distribution of model‘s relative residuals is described in Figure 68. 
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Figure 68 UFP vs. Num_Attr residuals’ distribution 

7.4.1.3 UFP vs. Numer of methods  

A third model associates the size in UFP to the number of methods (the regression line 

is shown in Figure 69): 

UFP = #Met×3.28  (40) 

The model is characterized by R
2
 = 0.936. One outlier was excluded in the computation 

of the regression. 

 
Figure 69 UFP vs. Num_Met regression line 

 

The accuracy of the model is characterized by: 

 MMRE =  25.3%  

 Pred(25) =  45.5%  
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 Error range = (-39.5%, 46.5%) 

 

The distribution of model‘s relative residuals is described in Figure 70. 

 

 
Figure 70 UFP vs. Num_Met residuals’ distribution 

7.4.1.4 UFP vs. Number of SentMessage  

A fourth model associates the size in UFP to the number of SentMessage  (the 

regression line is shown in Figure 71): 

UFP = #SentMessage×3.57  (41) 

The model is characterized by R
2
 = 0.989. No outliers were found. 
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Figure 71 UFP vs. Num_SentMessage regression line 

 

The accuracy of the model is characterized by: 

 MMRE =  9.9%  

 Pred(25) =  100.0%  

 Error range = (-19.2%, 19.1%) 

 

The distribution of model‘s relative residuals is described in Figure 72. 

 

 
Figure 72 UFP vs. Num_SendMessage residuals’ distribution 
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7.4.1.5 UFP vs. Number of class, Average number of methods per each 
class  

A fifth model associates the size in UFP to the number of class and the average number 

of methods per each class: 

UFP = #Class× 8.13 + #AvMetperClass×9.10  (42) 

The model is characterized by R
2
 =0.972. No outliers were found.  

 

The accuracy of the model is characterized by: 

 MMRE =  14.6%  

 Pred(25) =  72.7%  

 Error range = (-25.2%, 34.9%) 

 

The distribution of model‘s relative residuals is described in Figure 73. 

 

 
Figure 73 UFP vs. Num_Class and AvMetperClass residuals’ distribution 

 

7.4.1.6 UFP vs. Number of methods, Average number of attributes per 
class  

A sixth model associates the size in UFP to the number of methods and the average 

number of attributes per class: 

UFP = #Met × 2.07 + #AvAttperClass×14.11  (43) 

The model is characterized by R
2
 = 0.981. Two outliers were excluded in the 

computation of the regression. 

 

The accuracy of the model is characterized by: 

 MMRE =  17.8%  

 Pred(25) =  81.8%  

 Error range = (-14.6%, 79.9%) 
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The distribution of model‘s relative residuals is described in Figure 74. 

 

 
Figure 74 UFP vs. Num_ Met and AvAttperClass  residuals’ distribution 

 

7.4.2 CFP vs. OO measures 

In the following paragraphs the statistically significant models found from our 

COSMIC-oriented models are described. 

7.4.2.1 CFP vs. Number of attributes  

A first model associates the size in CFP to the number of attributes (the regression line 

is shown in Figure 75): 

CFP = #Attr×3.43  (44) 

The model is characterized by R
2
 = 0.929. Three outliers were excluded in the 

computation of the regression. 
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Figure 75 CFP vs. Num_Attr regression line 

 

The accuracy of the model is characterized by: 

 MMRE =  50.9%  

 Pred(25) =  54.5%  

 Error range = (-56.1%, 217.6%) 

 

The distribution of model‘s relative residuals is described in Figure 76. 

 

 
Figure 76 CFP vs. Num_Attr residuals’ distribution 
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7.4.2.2 CFP vs. Number of sent messages  

A second model associates the size in CFP to the number of SentMeaasges (the 

regression line is shown in Figure 77): 

CFP = #SentMessages×3.26  (45) 

The model is characterized by R
2
 = 0.994. Four outliers were excluded in the 

computation of the regression. 

 

 
Figure 77 CFP vs. Num_SentMessages regression line 

 

The accuracy of the model is characterized by: 

 MMRE =  16.9%  

 Pred(25) =  81.8%  

 Error range = (-21.8%, 54.0%) 

 

The distribution of model‘s relative residuals is described in Figure 78. 
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Figure 78 CFP vs. Num_Sent_messages residuals’ distribution 

7.4.2.3 CFP vs. Number of classes, Number of Use Case  

A third model associates the size in CFP to the number of class and the number of Use 

Case: 

CFP = #Class×1.48 + #UseCase×4.89  (46) 

The model is characterized by R
2
 = 0.988.  Two outliers were excluded in the 

computation of the regression. 

 

The accuracy of the model is characterized by: 

 MMRE =  13.5%  

 Pred(25) =  81.8%  

 Error range = (-27.0%, 53.6%) 

 

The distribution of model‘s relative residuals is described in Figure 79. 
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Figure 79 CFP vs. Num_Class and Num_UseCase residuals’ distribution 

 

7.5 Discussion of results 

 

In Table 59, we summarized the results obtained in previous section. 

 
Table 59 Model-based Measurement-oriented OO estimation models and their accuracy 

FSM ID Factor(s) Model R
2
 MMRE Pred(25) 

FPA 1 Class UFP = #Class×10.56 0.942 22.7% 63.6% 

2 Attribute UFP = #Attr×3.60 0.976 26.8% 63.6% 

3 Method UFP = #Met×3.28 0.936 25.3% 45.5% 

4 SentMessage UFP = #SentMessage×3.57 0.989 9.9% 100.0% 

5 Class, 

AvMetperClass 

UFP = #Class×8.13 + 

#AvMetperClass×9.10 

0.972 14.6% 72.7% 

6 Method, 

AvAttperClass 

UFP = #Met × 2.07 + 

#AvAttperClass×14.11 

0.981 17.8% 81.8% 

CFP 7 Attribute CFP = #Attr×3.43 0.929 50.9% 54.5% 

8 SentMessage CFP = 

#SentMessages×3.26 

0.994 16.9% 81.8% 

9 Class, UseCase CFP = #Class × 1.48 + 

#UseCase×4.89 

0.988 13.5% 81.8% 

 

Statistical analysis showed that both FPA and COSMIC functional size measures appear 

correlated to object-oriented measures. In particular, associations with basic OO 

measures were found: 

 FP appear associated with the number of classes, the number of attributes and the 

number of methods 

 CFP appear associated with the number of attributes. 
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This result suggests that even a very basic UML model, like a class diagram, can 

support size measures that appear equivalent to functional size measures (which are 

much harder to obtain). 

 

Both FPA and COSMIC functional size measures appear associated with the number of 

messages sent by a class in sequence diagrams (i.e., in elementary/functional processes). 

Moreover, the model that gives functional size as a function of the number of messages 

sent by a class is the most accurate for FPA and the second most accurate for COSMIC. 

This is noticeable, but not very surprising. In fact, the number of messages sent is 

derived from sequence diagrams, which convey quite detailed descriptions of 

elementary/functional processes. Noticeably, this result is coherent with the findings 

described in Section 5.2.  

 

Therefore, practitioner can use our Model-based Measurement-Oriented object-oriented 

(MbMO-OO) method as a simplified method to measure OO applications. 

 

However, analysis on the models listed in Table 59 shows that, although FSM rules are 

considered during the modeling process, several models consider only ―plain‖ UML 

elements (as the number of classes or the number of attributes) and no elements 

contributing to functional size (like FTR or RET).  Based on this observation, we could 

measure UML models built in the usual way: we do not need to build measurement-

oriented model that incorporate FSM concepts. For example, the numbers of classes and 

use cases are the same in customary UML models and in COSMIC-oriented UML 

models; therefore the analyst does not have to consider FSM rules when he/she models 

the FURs. The model of CFP = #Class × 1.48 + #UseCase×4.89 (see Table 59) can be 

applied to the measures (#Class, #UseCase) obtained from a UML model built 

according to plain object-oriented analysis criteria. In this way, the modeling & 

measurement process can be much simpler and cost less. 

7.6 Threats to validity 

 

The dataset used for the empirical study described above is relatively small. Hence, it is 

possible that it is not representative of any possible application. 

7.7 Conclusions 

The results obtained tend to confirm that, having modeled an application‘s functional 

user requirements using UML and highlighting the typical elements of software models 

used by FSM methods (i.e., elementary/functional processes, data files/groups, etc.), the 

measures obtained automatically by means of measurement tools like SDMetrics are 

essentially equivalent to those obtained by certified functional size measurers. 

 

The small cost, rapidity, accuracy, and repeatability of UML measurement suggests that 

manually performed FSM methods could be abandoned. However, the results reported 

here need further experimental evidence, before we can safely suggest practitioners to 

drop FSM methods. 



Chapter 7 . Investigation of statistical correlations between FSM and Object-Oriented 

Measures of Requirements models 

 

 

138 

 

This page intentionally left blank. 



Chapter 8 . Related work 

 

 

139 

 

 

Chapter 8  Related work 
 

This chapter consists of two parts: one is about simplified function points, the other part 

is about the conversion between FPA and COSMIC. 

 

The generic concepts of Function Points Analysis were published in the late 1970s; later, 

more detailed measurement rules were developed to improve consistency of 

measurement. Due to lack of good software documentation, it is not always possible to 

apply all the detailed rules, and measurers must fall back on approximation techniques. 

[73]  

 

In [73] M. Lelli and R. Meli pronounced this as a paradox: Size estimation is necessary 

when we do not have enough information (thus, early estimation methods must be used 

to obtain it). When we can measure with the greatest accuracy, we no longer need that 

information any more. 

 

In order to research whether FPA in the early phases is a realistic option, the committee 

―FPA in the early phases‖ was established in September 1989. The committee 

investigates whether FPA can be used to perform an indicative size estimate before a 

complete logical (detailed) design is available.[41] 

8.1 Terms 

There are a large number of methods for function size measurement, and there are even 

more simplified methods. But there is no standard for the naming of simplified methods. 

Some key words often used include early, estimated, approximation, quick, fast, easy, 

predicting, simplified and so on.  

8.1.1 Early measurement and the lifecycle of software development 

―Early‖ is a relative concept. Its semantic context is the software development life cycle. 

In [73] M. Lelli and R. Meli described the various stages of a project life cycle and the 

type of estimation approach - ranging from approximate to accurate approach - 

applicable to the various project stages ( i.e.,  requirements definition, analysis, design, 

implementation, test and setup), as described in Figure 80.   

 

 
Figure 80 Approximate estimation and accurate measurement of the project life cycle 

 

In [5] del Bianco et al. explored the relationships between the simplified measurement 

and the various FUR specification artefacts (such as use case diagram, class diagram, 

component diagram, and sequence diagram). 
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8.1.2 Level of accuracy, estimation, and measurement 

In [110] [74] six accuracy levels for software sizing were defined and described (see 

Table 60).  Each size estimation technique can be classified based on the following: 

detailed linked and flagged measure, detailed linked measure, detailed measure, default 

complexity measure, rough measure, and size approximation. 

 
Table 60 Accuracy levels for software sizing and basic attributes of sizing levels 

Lev. Level Name FSM result 

1 
Detailed linked and 
flagged measure 

Most detailed 

Easily auditable 

Accurate (+/-5%) 

Very well documented 

Easily maintained 

2 
Detailed linked 

measure 

More detailed 

Easily auditable 

Accurate (+/-5%) 

Very well documented 

Easily maintained 

3 Detailed measure  

Detailed 

Auditable 

Accurate (+/-10%) 

Well documented 

Easily maintained 

4 
Default complexity 

measure  

Less detailed 

Auditable 

Reasonably accurate (+/-15%) 

Documented 

Maintained 

5 Rough measure 

Low detailed 

Less accurate (+/-20%) 

Documented(issues and assumptions) 

Skeleton(base for more refined measurement) 

6 Size approximation 

Very little detailed 

Accurate (+/-30%) 

Not documented 

 Not maintained 

 

 

There are a large number of software functional size estimation techniques available for 

levels 4 to 6. During a project, it is likely that you will start with an approximate 

technique close to Level 6, and move towards Level 1 as the project characteristics 

become better defined. In fact, measurement can be conducted to a number of ―accuracy 

levels‖, based on the purpose of the measurement and desired accuracy of the result, the 

quality of project or application documentation available, and the time in which the 

measurement must be completed. It is important to choose an estimation technique 

based on the documentation, time available, and the measurement purpose. As the 

project progresses, the size estimate should be validated and refined (eventually moving 

from low-accuracy to high-accuracy techniques). This observation is suitable not only 

to select the measurement method, but also to analyze and establish the measurement 

method.   
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8.2 Methods adhering to IFPUG FA definition 

 

In order to evaluate whether FPA in the early phase is a realistic option, the committee 

―FPA in the early phases‖ was established in September 1989. From then, many 

techniques for early size estimation have been proposed for FP, such as component 

sizing technique by Putnam and Myers [94] and the Early and Quick Function Point 

size estimation techniques by Conte et al. [95]. 

8.2.1 E&Q technique 

 

The E&Q technique uses both analogical and analytical classification of functions; it 

permits the use of different levels of detail for different branches of the system. It was 

originally proposed in the approach of Early Functions Points (EFP) by R. Meli in 1997 

for FPA. The EFP method provides a breake-down, hierarchical structure of the 

software functional items. In [109] L. Santillo proposed how to use the EFP in practice 

and evaluated the EFP through one year of actual use and more than 20 cases. This 

technique has proved to be very effective, providing a result within ± 10% of the actual 

size in most cases.  

 

The general E&Q technique fully complies with the concepts, definitions and the 

structure of any functional size measurement method, as defined by ISO/IEC 14143: 

1998. Thus, this technique can be extended to any Functional Size Measurement 

method that is found to be compliant with the ISO/IEC standard. Then, the E&Q 

technique has evolved and has been generalized, extending its applicability domain to 

the COSMIC measurement method [95]. In 2004, E&QCFFP 2.0 was proposed. The 

empirical evaluation of simplified estimation methods for FP indicates that some of 

these methods actually yield reasonably accurate estimates [6]. 

8.2.2 Average value  

 

These methods – such as Estimated NESMA method [41], ISBSG average weights, 

simplified FP [18], prognosis of CNV AG [42] and so on - do not require the weighting 

of functions; instead each function is weighted with average values. 

 

In [75], Vogelezang summarized the approximate technique and the refined 

approximate technique given in the COSMIC measurement manual. In the approximate 

technique, the average size of a functional process is multiplied with the number of 

functional processes the software should provide. The refined approximate technique 

uses the average sizes of small, medium, large and very large functional processes. The 

accuracy of the COSMIC-FFP approximate technique is good enough with less than 

10% deviation on a project portfolio and less than 15% on a project within a specified 

environment [75]. 

 

Conversion between FP and COSMIC 

 

An approach to simplified CFP measurement was obtained as a side effect of a work on 

convertibility between FP and CFP measures. In [72] Lavazza used the dataset 

published in [59] to analyze the relationships existing between FP and CFP in general, 

and between CFP and the non-weighted Base Functional Components of FP in 

particular. By means of linear OLS regression a statistically significant model was 
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found, which can be used to estimate the size in CFP, given the number of transactions 

identified via Function Point Analysis. This can be considered a sort of simplified CFP 

measurement method, since the identification of transaction functions is an activity 

much simpler and shorter than both the full fledged CFP and FP counting processes. 

8.2.3 Size estimation based on a single component of FP 

 

Some methods extrapolate the FP counts from the countable components (usually the 

Internal Logical Files) using statistical methods (mostly regression analysis). Some 

simplified methods – Mark II, NESMA‘s Indicative FP, Tichenor ILF Model, Prognosis 

by CNV AG, and ISBSG Benchmark – were constructed according to such technique. 

8.2.4 Measure from models 

 

The possibility of basing CFP measurement on UML models of user requirements has 

been widely studied [2], [76], [77], [78], [79], [80], [81], [82], [83], [84]. Some of the 

mentioned papers also proposed approaches to the automation of the measurement of 

UML models, and a few also prototyped such tools. All of the mentioned papers address 

the standard COSMIC method as described in [33], thus they consider the models that 

are available after the completion of the requirements elicitation and specification phase. 

On the contrary, hardly any works explore the relationship between the UML model 

process and the simplified FSM methods.  

8.2.5 “Smart” technique 

In [14], Santillo suggested probabilistic approaches, where the measurer can indicate the 

minimum, medium and maximum weight of each BFC, together with the expected 

probability that the weight is actually minimum, medium or maximum. This leads to 

estimate not only the size, but also the probability that the actual size is equal to the 

estimate. 

8.2.6 Measurement in iterative process 

 

Hericko and Zivkovic address size estimation in iterative development [61]. Their 

approach enables early size estimation using UML. However, they do not consider 

simplified measurement processes (hardly any work was devoted to defining simplified 

measurement processes for the COSMIC method). In fact, their method deals with the 

evolution of the functionality through iterations, rather than the level of detail that can 

be achieved in the requirements elicitation and specification phase, as we do.  

8.3 Function Points like measures 

 

Since the introduction of Object Oriented technologies and web technologies, a number 

metrics were proposed to evaluate the characteristics of object-oriented design, to 

estimate the development effortm and for other purposes. Among these are Use Case 

Points [62], Class Points (FP-like) [64], UML Points (UCP+Class Point) [85], 

Predictive Object Points (POPs) [86], Object-Oriented Function Points (OOFP) [87], 

Object Oriented Design Function Points [88], Web Points [89], Pattern Points (PP) [90], 

and TP method (―Transactions‖  and ―Paths‖) proposed by Robiolo et al. [91]. The 

common characteristic of these proposals is that they, although inspired by FPs, do not 
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strive to adhere to the classical FP approach. So, in general the provided size measure is 

not given in FP. 

8.4 Evaluated of the proposed methods 

 

Meli and Santillo were among the first to recognize the need for comparing the various 

functional size methods proposed in the literature [92]. To this end, they also provided a 

benchmarking model. The E&Q technique has proved to be very effective, providing a 

result within ± 10% of the actual size in most cases, while the savings in measurement 

effort can be between 50% and 90% (depending on the aggregation level used, up to 

Macro Processes).[74] 

 

In [21], van Heeringen et al. report the results of measuring 42 projects with the full-

fledged, indicative and estimated NESMA methods. They found a 1.5% mean error of 

NESMA estimated method and a 16.5% mean error of NESMA indicative method. 

 

Popović and Bojić compared different functional size measures –including NESMA 

indicative and estimated– by evaluating their accuracy in effort estimation in various 

phases of the development lifecycle [93]. Not surprisingly, they found that the NESMA 

indicative method provided the best accuracy at the beginning of the project.  

 

Using a database of about 100 applications, NESMA did some research on the accuracy 

of the estimated and indicative function point counts. They got very good results 

(http://www.nesma.nl/section/fpa/earlyfpa.htm), although no statistics (e.g., mean 

relative error) are given. 

8.5 Convertibility 

 

8.5.1 Theoretical conversion within an empirical range 

A first comprehensive discussion of the possible approaches to convertibility between 

different functional size measures is reported in [59]. Namely, the convertibility 

between unadjusted IFPUG function points [8] [10] and COSMIC function points [33] 

is considered. In [59] the impossibility of computing the conversion by means of a 

mathematical formula is discussed. However, the discussion in [59] makes reference 

exclusively to formulae of type CFP=f(FP). There is little doubt that no such formula 

can work, since FP and CFP are defined differently, and each of these size measures 

―hides‖ different details. 

 

A very specific approach to convertibility concerns the cases when not only the size in 

FP of a given program is known, but also the number of File Type Referenced (FTR).  

 

In the COSMIC method, a file type can be referenced to read it or to update it, and 

updates are typically performed with data received from outside the application, while 

reads are often performed to deliver some output. The data groups being moved within a 

functional process are similar to the concept FTP in FPA. Exploiting the knowledge that 

the notion of FTR is close to the notion of COSMIC data group being moved in a 

functional process, it is possible to compute a range in which the corresponding 

COSMIC size should lie.  
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Based on this observation, Cuadrado et al. have published a method based on a mapping 

of the IFPUG and COSMIC BFCs that requires knowledge only of the number of file 

type references made in each of the FPA transactions [70] [71]. This method associates 

a minimum and maximum number of data movements with each FTR. As a result, the 

conversion delivers an upper and lower bound for the COSMIC size corresponding to a 

given size in FP. However, no attempt is made to devise the actual number of data 

movements associated with a given FTR. This technique [70] [71] is interesting from a 

conceptual point of view, but in practice it is of little utility, since the confidence range 

is usually quite wide. 

8.5.2 Statistically based conversion 

The literature [59] also discusses the statistical convertibility of IFPUG FP and 

COSMIC FP. Statistical convertibility has been widely investigated, and numerous 

papers were published on that topic, e.g., [69][96][97][98][99][101][102]. It is quite 

noticeable that the regression models illustrated in these papers are usually of the type 

CFP = a + b × FP or CFP = a × FP
b
. Such models should not hold, according to the 

discussion on mathematical conversion formulae in [59]. The reason why these 

empirical models are statistically significant (and reasonably accurate) is probably that 

the considered projects have specific characteristics that make them comparable at the 

functional size level.  

 

Most of the mentioned works were not unexceptionable from a statistical point of view. 

To improve the situation, a systematic analysis of the known datasets according to well 

established statistical techniques was performed and documented in [103]. 

 

Following the indications given in COSMIC [33], piecewise linear models and other 

types of non-linear models (including parabolic ones) have been investigated in [104]. 

Also in this case, statistically significant models were found for the available datasets.  

 

The possibility of establishing a relationship between the size of transaction functions 

and CFP was illustrated in [97].  

 

4) DF/FP ratio 

 

In [97] Desharnais et al. suggested that applications featuring an anomalous value of the 

DF/FP ratio could be the ones that are affected by the largest relative errors of 

convertibility based on FP or transaction functions.  

 

However, Desharnais et al. provided an explanation of the convertibility errors only in 

terms of both FPA and COSMIC BFC values; since COSMIC BFC values are not 

known at conversion time (otherwise there would be no reason for performing a 

statistical conversion) the explanations provided in [97] are of little practical utility, 

though conceptually interesting. With respect to previous work, Lavazza showed the 

increasing role of transactions over data for larger applications, both in single datasets 

and in the ISBSG dataset [100]. 

 

5) “Cut-off” effect 

 

The cut–off effect is the phenomenon due to the fact that a process has a maximum size 

of 7 FP according to IFPUG measurement, while it has no size limit in COSMIC. 
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In [97], it was also observed that models based on transaction functions provide good 

results, although the ―cut-off‖ effect can affect convertibility. However, Desharnais et al. 

did not investigate the ‗cut-off‘ effect quantitatively. In [100] Lavazza discussed the 

convertibility based on the measure of transaction functions and the ―cut-off‖ effect, as 

well as the role of data functions. 

 

Lavazza derived a piecewise linear model based on TF which clearly shows the 

presence of the ―cut-off‖ effect [101]. 

 

By analyzing the non weighted transaction numbers from the dataset by van Heeringen 

[89] Lavazza concluded that the ―cut-off‖ effect disappears (i.e., does not affect the 

conversion) when unweighted data are used [101]. 

 

6) Confidence intervals 

In [101], the evaluation of confidence intervals for the parameters of the FP-CFP 

convertibility models was introduced. In [100] confidence intervals for model 

parameters were evaluated systematically, thus providing an increased level of 

confidence on the results. For instance, it was possible to state with high confidence that 

the models found for the datasets available in the literature actually involve a change in 

slope of the model, i.e., the CFP/FP ratio is bigger for larger software applications. 

 

In [100] it is shown that the sets of projects for which statistical convertibility holds are 

characterized by a small variance in the size of managed data with respect to the size of 

provided functions. Since we cannot be sure that all projects are characterized by a 

given ratio between data size and operation size, we must be very careful with adopting 

statistical convertibility. It must also be noted that different datasets yield different 

conversion formulae, thus it is quite difficult to generalize the results of such approach. 

8.5.3 Manual conversion 

A last type of convertibility discussed in [59] is called ―manual‖. In this type of 

conversion, only the basic raw data of the Function Point counting are available, the rest 

of the required data must be provided by people who have the necessary knowledge of 

the software being measured, so that good judgments or intelligent guesses on the 

equivalence between the base functional components (BFC) of the two methods can be 

made  (ISO/IEC 14143-1 defines the BFC as ―an elementary unit of Functional User 

Requirement defined by and used by an FSM Method for measurement purpose‖ [106]). 

8.5.4 Unified Model based conversion 

Demirors and Gencel suggested the creation of a Unified Model (UM) of the 

information upon which functional size is measured [46]. The UM should contain all 

the information needed by FPA, COSMIC and possibly other FSM methods, like MKII 

Function Points [107] [108]. The approach by Demirors and Gencel [46] is made 

possible by the fact that different FSM methods are based on a common set of basic 

elementary concepts (data group, data item, process, etc.). Therefore, a model that 

represents this information at a quite low level is able to support the identification of 

method-specific BFC. 
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8.5.5 Conversion method using analytical criteria 

In Chapter 6 we proposed a conversion method that uses analytical criteria. Our 

proposal has some points in common with [46]. However, there are a few fundamental 

differences between the two proposals.  

 

According to Demirors and Gencel, their model ―has certain restrictions. For one thing, 

it doesn‟t handle the detailed rules each method suggests (for example, the IFPUG 

method specifies, „don‟t count code tables,‟ whereas the other methods don‟t have this 

restriction).‖ We do not have this type of problems, because we do not establish precise 

mapping rules; instead, we just indicate the most probable correspondence between 

FPA BFC and COSMIC BFC, then we leave the user free to exploit the correspondence 

to directly create a COSMIC BCF out of a FPA BFC, or not (in the latter case, it is the 

user that has the responsibility of defining a different correspondence).  

 

A second relevant difference is that we provide a tool for helping the user perform the 

conversions (or the double counting). 

 

Finally, we note that there are several software tools that aim at supporting function 

point or COSMIC counting; among these are Scope, NH's Function Point Analyzer, 

Function Point Modeler, Function Point Workbench, SFERA and many others. 

However –as far as we know– none of the available tools supports conversion. 
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Chapter 9  Conclusion 
 

9.1 Summary of results 

 

Functional size measurement plays an important role in the development effort 

estimation, project management, and quality control of software development. In fact, 

Function Point Analysis is widely used, especially to quantify the size of applications in 

the early stages of development, when effort estimates are needed. However, the 

measurement process is often too long or too expensive, or it requires more knowledge 

than available when development effort estimates are due. To overcome these problems, 

simplified methods are proposed to measure Function Points.  

 

In Chapter 3, we presented the main simplified methods and classified them into four 

categories, namely, E&QFP, Average complexity (weight) values, single component 

based, and Smart approximation techniques. Then we compared the simplified methods 

with respect to factor(s) used, factor granularity, factor capture difficulty, factor value 

and measurement process difficulty. 

 

Such simplified methods were used for sizing both ―traditional‖ and Real-Time 

applications, for the purpose of evaluating the accuracy of the sizing with respect to 

full-fledged Function Point Analysis.  

9.1.1 Model-based FSM 

It has been shown that functional size measures can be derived from UML models of 

requirements. The process is easy if UML models are built in a measurement-oriented 

way, i.e., highlighting the information required for FSM. Based on this idea, Lavazza et 

al. proposed Model-based Measurement-Oriented method [3]. Throughout this work, 

we used measurement-oriented models to support FSM. 

9.1.2 Evaluation of simplified FSM (FPA) 

Functional Size Measurement methods are widely used but have two major 

shortcomings: they require a complete and detailed knowledge of user requirements, 

and they involve relatively expensive and lengthy processes. So many simplified 

methods emerged. We assessed several simplified methods in Section 5.1 to answer 

questions like the following: "What is the accuracy of simplified FSM methods?‖ and 

―Which simplified method is the best one for my application(s)?‖ 

 

We collected 18 applications‘ models and obtained the ―correct‖ values using the 

standard method (FPA) at first. Then we measured the applications using simplified 

methods, including those proposed by NESMA, the Early&Quick Function Points, the 

ISBSG average weights, and others: the resulting size measures were then compared.  

 

It was found that all the methods that use predefined weights for all the transaction and 

data types identified in Function Point Analysis yielded similar results, characterized by 

acceptable accuracy. On the contrary, methods that rely on just one of the elements that 
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contribute to functional size tend to be quite inaccurate. In general, different methods 

show different accuracy for Real-Time and non Real-Time applications.  

 

We also derived simplified size models on the basis of the measures from the dataset 

used for experimentations, and yielded results that are similar to those obtained via the 

methods proposed in the literature. 

 

Therefore, it was clear that model-based simplified method is feasible, and its accuracy 

is also reliable. 

9.1.3 Model-based simplified COSMIC measurement 

Also the COSMIC method requires a complete and detailed knowledge of user 

requirements. The COSMIC measurement process involves: Identification of functional 

processes; Identification of data groups; Identification of Data Groups used in Each 

Functional Process. Identify the data group movements involved in each functional 

Process. Therefore, measurement-oriented model building involving the following 

diagrams: Use case diagram, class diagram, component diagram, and sequence 

diagrams.  

 

Since software requirements can be effectively described by means of UML models, 

which grow in detail and completeness through the requirements analysis phase, it is 

reasonable to expect that progressively more accurate measures can be derived from 

these UML models. This is particularly useful when COSMIC measures have to be 

obtained earlier than assumed by the official counting manual, because of reasons such 

as a tight deadline, or not sufficiently detailed requirements specifications. 

 

Therefore, we formulated the following research questions:  (1) During the requirements 

elicitation and specification phase, is it possible to write progressively more complete 

and detailed UML models that support progressively more accurate simplified CFP 

measurement methods? (2) What is the accuracy of the estimates provided by different 

simplified CFP measurement methods? (3) Do simplified CFP measurement methods 

provide a level of accuracy that is proportional to the amount of information required?  

 

To explore the above mentioned issues, we modeled a set of 23 software applications 

and measured them, with the goal of obtaining the measures needed to support 

simplified measurement methods. 

 

Our analysis shows that it is possible to write progressively more detailed and complete 

UML models of user requirements that provide the data required by the simplified 

COSMIC methods, which in turn yield progressively more accurate measures of the 

modeled software. Initial measures are based on simple models and are obtained quickly 

and with little effort. As models grow in completeness and detail, the measures increase 

their accuracy.  

 

Developers that use UML for requirements modeling can obtain an early estimation of 

the application size at the beginning of the development process, when only a very 

simple UML model has been built for the application, and can obtain increasingly more 

accurate size estimates while the knowledge of the product increases and UML models 

are refined accordingly. 
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9.1.4 FSM vs. OO measures 

It has been shown that functional size measure can be derived from UML models of 

requirements. In particular, if UML models are measurement-oriented, it is easy to 

identify BFC and all those elements that contribute to size measures. However, the 

analysis of UML diagrams to identify BFC and the elements that have to be taken into 

consideration to compute functional size measures is still a manual process. On the 

contrary, it is very easy to automatically derive object-oriented measures from UML 

models via tools like SDMetrics. So, an association (and the corresponding quantitative 

model) between the object-oriented measures of a measurement-oriented UML model 

and the functional size measures derived from the same UML model, would make it 

possible to estimate the functional size based on the (automatically obtained) OO 

measures, or use the OO measures in place of the functional size measures, which 

would be no longer needed. 

 

We took the requirement specifications of a set of 11 software applications, and we built 

the UML measurement-oriented models of requirements; then we measured the 

functional size of UML models and measured UML models using SDMetrics; finally, 

we analyzed the relationship between functional size and OO measures. Statistical 

analysis showed that both FPA and COSMIC functional size measures appear correlated 

to object-oriented measures. In particular, associations with basic OO measures were 

found: FP appear associated with the number of classes, the number of attributes and the 

number of methods; CFP appears associated with the number of attributes. This result 

suggests that even a very basic UML model, like a class diagram, can support size 

measures that appear equivalent to functional size measures (which are much harder to 

obtain). 

 

The results obtained tend to confirm that, having modeled an application‘s functional 

user requirements using UML and highlighting the typical elements of software models 

used by FSM methods (i.e., elementary/functional processes, data files/groups, etc.), the 

measures obtained automatically by means of measurement tools like SDmetrics are 

essentially equivalent to those obtained by certified functional size measurers. The small 

cost, rapidity, accuracy and repeatability of UML measurement suggest that manually 

performed FSM methods could be abandoned. However, these results need further 

experimental evidence, before we can safely suggest practitioners to drop FSM methods. 

9.1.5 Conversion between FPA and COSMIC 

The introduction of the COSMIC method as an alternative of Function Point Analysis 

originated the problem of converting Function Point measures into other units. To this 

end, several methods – ranging from statistical analysis to ―manual‖ conversion– have 

been used. However, none of the proposed conversion methods guarantees the 

necessary accuracy. 

 

We defined a seamless and cheap procedure that allows measurers to derive functional 

size measures expressed in COSMIC Function Points from size measures expressed in 

Function Points, and viceversa. 

 

To get accurate conversions, we exploit all the available information provided by the 

measurement process, that is, not only the size in Function Points, but also the details of 

basic functional components. To make the procedure efficient, a mapping of Function 

Point Analysis concepts onto COSMIC concepts was defined. 



Chapter 9 . Conclusion 

 

 

150 

 

 

A conversion procedure based on the aforementioned mapping was proposed. Such 

procedure is supported by a software tool that eases the conversion process. The usage 

of both the procedure and tool was tested via an example of realistic complexity. 

 

The proposed procedure and tool can be effectively used to perform the required 

measurement with very good accuracy. The tool can also be used to perform a sort of 

―double‖ measurement, i.e., both Function Points and COSMIC Function Points are 

measured at the same time. 

9.2 Guidelines for developers 

The work has led to an increase in knowledge on how to simplify the methods for 

measuring the functional size of the software, referring to the functional user 

requirements. The presented analyses can be replicated by other researchers, to increase 

the reliability and generality of the results. 

 

The results of the work done that are most relevant in practice concern the identification 

and evaluation of possible FSM processes. In fact, this knowledge is immediately 

usable by developers. 

 

The possible FSM processes that have been identified are: 

 1) Standard methods. Standard measurement manuals (either IFPUG or COSMIC) 

are applied. 

 2) Simplified methods. See Chapter 3 . 

 3) Model-based measurement using measurement-oriented models. See Chapter 4 . 

 4) Simplified methods applied to FUR modeled as measurement-oriented models. 

See Section 5.1. 

 5) Object-oriented measurement applied to measurement-oriented models. See 

Chapter 7 . 

 6) Object-oriented measurement applied to object-oriented models.  See Chapter 7 . 

 

Table 61 schematically describes the characteristics of the modeling phases involved in 

each type of FSM process. 

 
Table 61 FSM processes: the modelling phase 

Ord

. 

Method Model Type Analyst competence 

1 Standard 

methods 

Traditional  N/A 

2 Simplified Traditional N/A 

3 MbMO Measurement-

Oriented 

Analysts understand FSM and the 

MbMO 

4 Simplified 

MbMo 

Measurement-

Oriented 

Analysts understand FSM and the 

MbMO 

5 MbMO-OO Measurement-

Oriented 

Analysts understand FSM and the 

MbMO 

6 OO OO model OO Analysis 
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Table 62 schematically describes the characteristics of the measurement phases 

involved in each type of FSM process. 

 
Table 62 FSM processes: the measurement phase 

Ord. Method Measurer Factors Granularity Result 

1 Standard 

methods 

Certified measurer BFC Small FP/CFP 

2 Simplified Anybody who 

knows basics of 

FSM and the 

simplified model 

Subsets and/or 

generalizations of 

BFC 

Large FP 

3 MbMO Anybody who 

knows basics of 

FSM and UML 

BFC Small FP/CFP 

4 Simplified 

MbMO 

Anybody who 

knows basics of 

FSM, the 

simplified model 

and UML 

Subsets and/or 

generalizations of 

BFC 

Large FP/CFP 

5 MbMO-OO SDMetrics(Tool) elements of OO Large (low 

accuracy) 

FP/CFP 

6 OO SDMetrics(Tool) elements of OO idem FP/CFP 

 

 

Table 63 gives the main properties of the FSM processes, in terms of cost and results. 

Here it is important to note that: 

 The accuracy of standard processes depends on measurers. The process is manual, 

so it is affected by errors and subjective interpretations. 

 In Model-based measurement, the measurement phase is much less error-prone and 

hardly affected by subjectivity. On the contrary, the model can affect the 

measurement. 

 The cost of providing measurement-oriented models depends on how FUR is written. 

If FUR is already written using UML, making the models measurement-oriented is 

easy; if FUR is written using a mix of E/R diagrams, data flow diagrams, tables, text, 

formulas, etc., the modeling phase can be quite expensive and long. 

 When simplified methods are used, the cost and accuracy depend on how much the 

process is simplified. In general, the more information is modeled, the higher the 

cost and the higher the accuracy. 

 
Table 63 FSM process properties 

Ord. Methods Modeling 

cost  

Measurement 

cost  

Standard 

measure(FP 

/ CFP)  

Accuracy 

1 Standard 

methods 

N/A High Yes Depends on 

measurer 

2 Simplified N/A Low-Medium Yes Error ~ 10% 
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3 MbMO Low if FUR 

are written 

in UML 

Low Yes Depends on 

model 

4 Simplified 

MbMO 

Low if FUR 

are written 

in UML 

Low Yes 10% or more 

(depends on 

simplification) 

5 MbMO - OO Low/Short if 

FUR are 

written in 

UML 

Null Yes N/A 

6 OO Null (if FUR 

are written 

in UML) 

Null Yes Error > 10% 

 

By considering the tables reported above, practitioner can choose the FSM process that 

most suites their needs. 

9.3 Future research directions 

 

The work described in this thesis can be continued in the following directions: 

 

As already mentioned in the work on conversion between FP and CFP (see Chapter 6 ), 

the tool supports the mappings among FPA and COSMIC concepts (described in Table 

51, but ultimately it is the user who has to choose if a given FPA element actually 

corresponds to a COSMIC element or not). A smarter support from the tool, involving 

less work by the user could be achieved by providing the tool with expert reasoning 

capabilities. 

 

Simplified measurement models should be better derived via regression analysis, 

especially if multiple independent variables are involved. Unfortunately, our evaluation 

of simplified FSM methods (Section 5.1) and the analysis of FSM vs. OO measure 

(Chapter 7 ), were based on relatively small datasets. In order to increase the reliability 

and to guarantee the general validity of results, the dataset should be extended to 

include data points from additional applications. 

 

As already mentioned, most results are based on relatively small applications: further 

work for verifying the accuracy of simplified measurement methods when dealing with 

larger project is needed. 
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