666 research outputs found

    Behavioral analysis in cybersecurity using machine learning: a study based on graph representation, class imbalance and temporal dissection

    Get PDF
    The main goal of this thesis is to improve behavioral cybersecurity analysis using machine learning, exploiting graph structures, temporal dissection, and addressing imbalance problems.This main objective is divided into four specific goals: OBJ1: To study the influence of the temporal resolution on highlighting micro-dynamics in the entity behavior classification problem. In real use cases, time-series information could be not enough for describing the entity behavior classification. For this reason, we plan to exploit graph structures for integrating both structured and unstructured data in a representation of entities and their relationships. In this way, it will be possible to appreciate not only the single temporal communication but the whole behavior of these entities. Nevertheless, entity behaviors evolve over time and therefore, a static graph may not be enoughto describe all these changes. For this reason, we propose to use a temporal dissection for creating temporal subgraphs and therefore, analyze the influence of the temporal resolution on the graph creation and the entity behaviors within. Furthermore, we propose to study how the temporal granularity should be used for highlighting network micro-dynamics and short-term behavioral changes which can be a hint of suspicious activities. OBJ2: To develop novel sampling methods that work with disconnected graphs for addressing imbalanced problems avoiding component topology changes. Graph imbalance problem is a very common and challenging task and traditional graph sampling techniques that work directly on these structures cannot be used without modifying the graph’s intrinsic information or introducing bias. Furthermore, existing techniques have shown to be limited when disconnected graphs are used. For this reason, novel resampling methods for balancing the number of nodes that can be directly applied over disconnected graphs, without altering component topologies, need to be introduced. In particular, we propose to take advantage of the existence of disconnected graphs to detect and replicate the most relevant graph components without changing their topology, while considering traditional data-level strategies for handling the entity behaviors within. OBJ3: To study the usefulness of the generative adversarial networks for addressing the class imbalance problem in cybersecurity applications. Although traditional data-level pre-processing techniques have shown to be effective for addressing class imbalance problems, they have also shown downside effects when highly variable datasets are used, as it happens in cybersecurity. For this reason, new techniques that can exploit the overall data distribution for learning highly variable behaviors should be investigated. In this sense, GANs have shown promising results in the image and video domain, however, their extension to tabular data is not trivial. For this reason, we propose to adapt GANs for working with cybersecurity data and exploit their ability in learning and reproducing the input distribution for addressing the class imbalance problem (as an oversampling technique). Furthermore, since it is not possible to find a unique GAN solution that works for every scenario, we propose to study several GAN architectures with several training configurations to detect which is the best option for a cybersecurity application. OBJ4: To analyze temporal data trends and performance drift for enhancing cyber threat analysis. Temporal dynamics and incoming new data can affect the quality of the predictions compromising the model reliability. This phenomenon makes models get outdated without noticing. In this sense, it is very important to be able to extract more insightful information from the application domain analyzing data trends, learning processes, and performance drifts over time. For this reason, we propose to develop a systematic approach for analyzing how the data quality and their amount affect the learning process. Moreover, in the contextof CTI, we propose to study the relations between temporal performance drifts and the input data distribution for detecting possible model limitations, enhancing cyber threat analysis.Programa de Doctorado en Ciencias y Tecnologías Industriales (RD 99/2011) Industria Zientzietako eta Teknologietako Doktoretza Programa (ED 99/2011

    Artificial Intelligence and Machine Learning in Cybersecurity: Applications, Challenges, and Opportunities for MIS Academics

    Get PDF
    The availability of massive amounts of data, fast computers, and superior machine learning (ML) algorithms has spurred interest in artificial intelligence (AI). It is no surprise, then, that we observe an increase in the application of AI in cybersecurity. Our survey of AI applications in cybersecurity shows most of the present applications are in the areas of malware identification and classification, intrusion detection, and cybercrime prevention. We should, however, be aware that AI-enabled cybersecurity is not without its drawbacks. Challenges to AI solutions include a shortage of good quality data to train machine learning models, the potential for exploits via adversarial AI/ML, and limited human expertise in AI. However, the rewards in terms of increased accuracy of cyberattack predictions, faster response to cyberattacks, and improved cybersecurity make it worthwhile to overcome these challenges. We present a summary of the current research on the application of AI and ML to improve cybersecurity, challenges that need to be overcome, and research opportunities for academics in management information systems

    Multi-aspect rule-based AI: Methods, taxonomy, challenges and directions towards automation, intelligence and transparent cybersecurity modeling for critical infrastructures

    Get PDF
    Critical infrastructure (CI) typically refers to the essential physical and virtual systems, assets, and services that are vital for the functioning and well-being of a society, economy, or nation. However, the rapid proliferation and dynamism of today\u27s cyber threats in digital environments may disrupt CI functionalities, which would have a debilitating impact on public safety, economic stability, and national security. This has led to much interest in effective cybersecurity solutions regarding automation and intelligent decision-making, where AI-based modeling is potentially significant. In this paper, we take into account “Rule-based AI” rather than other black-box solutions since model transparency, i.e., human interpretation, explainability, and trustworthiness in decision-making, is an essential factor, particularly in cybersecurity application areas. This article provides an in-depth study on multi-aspect rule based AI modeling considering human interpretable decisions as well as security automation and intelligence for CI. We also provide a taxonomy of rule generation methods by taking into account not only knowledge-driven approaches based on human expertise but also data-driven approaches, i.e., extracting insights or useful knowledge from data, and their hybridization. This understanding can help security analysts and professionals comprehend how systems work, identify potential threats and anomalies, and make better decisions in various real-world application areas. We also cover how these techniques can address diverse cybersecurity concerns such as threat detection, mitigation, prediction, diagnosis for root cause findings, and so on in different CI sectors, such as energy, defence, transport, health, water, agriculture, etc. We conclude this paper with a list of identified issues and opportunities for future research, as well as their potential solution directions for how researchers and professionals might tackle future generation cybersecurity modeling in this emerging area of study

    Next Generation AI-Based Firewalls: a Comparative Study

    Get PDF
    Cybersecurity is a critical concern in the digital age, demanding innovative approaches to safeguard sensitive information and systems. This paper conducts a thorough examination of next-generation firewalls (NGFWs) that integrate artificial intelligence (AI) technologies, presenting a comparative analysis of their efficacy. As traditional firewalls fall short in addressing modern cyber threats, the incorporation of AI provides a promising avenue for enhanced threat detection and mitigation. The literature review explores existing research on AI-based firewalls, delving into methodologies and technologies proposed by leading experts in the field. A compilation of 20-25 references from reputable sources, including ijcseonline.org, forms the basis for this comparative study. The selected references provide insights into various AI-based firewall architectures, algorithms, and performance metrics, laying the groundwork for a comprehensive analysis. The methodology section outlines the systematic approach employed to compare different AI-based firewall methods. Leveraging machine learning and deep learning approaches, the study assesses key performance metrics such as detection accuracy, false positive rates, and computational efficiency. The goal is to provide a nuanced understanding of the strengths and weaknesses inherent in each approach, facilitating an informed evaluation. The comparative analysis section employs graphical representations to elucidate the findings, offering a visual overview of the performance disparities among selected AI-based firewall methods. Pros and cons are meticulously examined, providing stakeholders with valuable insights for decision-making in cybersecurity strategy. This research aims to contribute to the ongoing discourse on AI-based firewalls, addressing current limitations and paving the way for advancements that fortify the cybersecurity landscape

    An efficient hybrid system for anomaly detection in social networks

    Get PDF
    Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system. © 2021, The Author(s)

    An Application-centric Perspective on Industrial Artificial Intelligence

    Get PDF
    Advances in Artificial Intelligence have made its application increasingly relevant to all types of Information Systems. One area where researchers and practitioners see massive potential is the interface between Artificial Intelligence-empowered Information Systems and industrial processes. This explicit area of Industrial Artificial Intelligence and Industry 4.0 has been a popular topic of recent work and has opened up new research streams and applications. However, given the increasing number of publications, it is difficult to discern where the research field is heading. In our work, we conduct a systematic literature review of 296 scientific articles to provide a comprehensive overview of the current state of Industrial Artificial Intelligence in terms of research streams and application areas. We present both a metadata analysis as well as an application-specific analysis. Our results reveal insights into 14 major application areas as well as several findings on applied algorithms and approaches of Industrial Artificial Intelligence
    corecore