12 research outputs found

    Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters

    Get PDF
    OBJECTIVES: The secondary use of medical data contained in electronic medical records, such as hospital discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of medication safety) or for research purposes. However, the automated processing and analysis of medical free text still poses a huge challenge to available natural language processing (NLP) systems. The aim of this study was to implement a knowledge-based best of breed approach, combining a terminology server with integrated ontology, a NLP pipeline and a rules engine. METHODS: We tested the performance of this approach in a use case. The clinical event of interest was the particular drug-disease interaction "proton-pump inhibitor [PPI] use and osteoporosis". Cases were to be identified based on free text digital discharge letters as source of information. Automated detection was validated against a gold standard. RESULTS: Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were detected with 100% precision and 97.97% recall. The F-score for the detection of the given drug-disease-interaction was 96,13%. CONCLUSION: We could show that our approach of combining a NLP pipeline, a terminology server, and a rules engine for the purpose of automated detection of clinical events such as drug-disease interactions from free text digital hospital discharge letters was effective. There is huge potential for the implementation in clinical and research contexts, as this approach enables analyses of very high numbers of medical free text documents within a short time period

    Syntonets: Toward A Harmony-Inspired General Model of Complex Networks

    Full text link
    We report an approach to obtaining complex networks with diverse topology, here called syntonets, taking into account the consonances and dissonances between notes as defined by scale temperaments. Though the fundamental frequency is usually considered, in real-world sounds several additional frequencies (partials) accompany the respective fundamental, influencing both timber and consonance between simultaneous notes. We use a method based on Helmholtz's consonance approach to quantify the consonances and dissonances between each of the pairs of notes in a given temperament. We adopt two distinct partials structures: (i) harmonic; and (ii) shifted, obtained by taking the harmonic components to a given power β\beta, which is henceforth called the anharmonicity index. The latter type of sounds is more realistic in the sense that they reflect non-linearities implied by real-world instruments. When these consonances/dissonances are estimated along several octaves, respective syntonets can be obtained, in which nodes and weighted edge represent notes, and consonance/dissonance, respectively. The obtained results are organized into two main groups, those related to network science and musical theory. Regarding the former group, we have that the syntonets can provide, for varying values of β\beta, a wide range of topologies spanning the space comprised between traditional models. Indeed, it is suggested here that syntony may provide a kind of universal complex network model. The musical interpretations of the results include the confirmation of the more regular consonance pattern of the equal temperament, obtained at the expense of a wider range of consonances such as that in the meantone temperament. We also have that scales derived for shifted partials tend to have a wider range of consonances/dissonances, depending on the temperament and anharmonicity strength

    A framework for evaluating complex networks measurements

    Full text link
    A good deal of current research in complex networks involves the characterization and/or classification of the topological properties of given structures, which has motivated several respective measurements. This letter proposes a framework for evaluating the quality of complex network measurements in terms of their effective resolution, degree of degeneracy and discriminability. The potential of the suggested approach is illustrated with respect to comparing the characterization of several model and real-world networks by using concentric and symmetry measurements. The results indicate a markedly superior performance for the latter type of mapping

    Energy Efficiency in Cooperative Wireless Sensor Networks

    Full text link
    [EN] The transport of sensitive products is very important because their deterioration may cause the value lost and even the product rejection by the buyer. In addition, it is important to choose the optimal way to achieve this end. In a data network, the task of calculating the best routes is performed by routers. We can consider the optimal path as the one that provides a shortest route. However, if a real transport network is considered the shortest path can sometimes be affected by incidents and traffic jams that would make it inadvisable. On the other hand, when we need to come back, due to features that symmetry provides, it would be interesting to follow the same path in reverse sense. For this reason, in this paper we present a symmetric routing mechanism for cooperative monitoring system for the delivery of fresh products. The systems is based on a combination of fixed nodes and a mobile node that stores the path followed to be able of coming back following the same route in reverse sense. If this path is no longer available, the system will try to maintain the symmetry principle searching the route that provide the shortest time to the used in the initial trip. The paper shows the algorithm used by the systems to calculate the symmetric routes. Finally, the system is tested in a real scenario which combines different kind of roads. As the results shows, the energy consumption of this kind of nodes is highly influenced by the activity of sensors.This work has been supported by the "Ministerio de Economia y Competitividad", through the "Convocatoria 2014. Proyectos I+D -Programa Estatal de Investigacion Cientifica y Tecnica de Excelencia" in the "Subprograma Estatal de Generacion de Conocimiento", (project TIN2014-57991-C3-1- P) and the "programa para la Formacion de Personal Investigador - (FPI-2015-S2-884)" by the "Universitat Politecnica de Valencia".Sendra, S.; Lloret, J.; Lacuesta, R.; Jimenez, JM. (2019). Energy Efficiency in Cooperative Wireless Sensor Networks. Mobile Networks and Applications. 24(2):678-687. https://doi.org/10.1007/s11036-016-0788-3S678687242Derks HG, Buehler WS, Hall MB (2013) Real-time method and system for locating a mobile object or person in a tracking environment. US Patent 8514071 B2. Aug 20, 2013Witmond R, Dutta R, Charroppin P (2006) Method for tracking a mail piece. US Patent 7003376 B2, Feb 21, 2006Lu L, Liu Y, Han J (2015) ACTION: breaking the privacy barrier for RFID systems. Ad Hoc and Sensor Wireless Networks 24(1–2):135–159Dhakal S, Shin S (2013) Precise time system efficiency of a frame slotted aloha based anti-collision algorithm in a RFID system. Network Protocols and Algorithms 5(2):16–27. doi: 10.5296/npa.v5i2.3373Ghafoor KZ, Bakar KA, Lloret J, Khokhar RH, Lee KC (2013) Intelligent beaconless geographical forwarding for urban vehicular environments. Wirel Netw 19(3):345–362. doi: 10.1007/s11276-012-0470-zWeinsberg U, Shavitt Y, Schwartz Y (2009) Stability and symmetry of internet routing. In proc of the 2009 I.E. INFOCOM Workshops 2009, April 19–25, Rio de Janeiro, Brazil, p 1–2 doi: 10.1109/INFCOMW.2009.5072192Garcia M, Bri D, Sendra S, Lloret J (2010) Practical deployments of wireless sensor networks: a survey. Int Journal on Advances in Networks and Services 3(1&2):163–178Bri D, Garcia M, Lloret J, Dini P (2009) Real deployments of wireless sensor networks. in Proc of the third International Conference on Sensor Technologies and Applications (SENSORCOMM’09), June 18–23. Athens (Greece), p 415–423 doi: 10.1109/SENSORCOMM.2009.69Karim L, Anpalagan A, Nasser N, Almhana J (2013) Sensor-based M2 M agriculture monitor-ing Systems for Developing Countries: state and challenges. Network Protocols and Algorithms 5(3):68–86. doi: 10.5296/npa.v5i3.3787Garcia M, Lloret J, Sendra S, Rodrigues JJPC (2011) Taking cooperative decisions in group-based wireless sensor networks. Lect Notes Comput Sci 6874:61–65. doi: 10.1007/978-3-642-23734-8_9Garcia M, Sendra S, Lloret J, Lacuesta R (2010) Saving energy with cooperative group-based wireless sensor networks. Lect Notes Comput Sci 6240:231–238. doi: 10.1007/978-3-642-16066-0_11Silva FN, Comin CH, Peron TKDM, Rodrigues FA, Ye C, Wilson RC, Hancock ER, Costa LF (2016) Concentric network symmetry. Inf Sci 333:61–80. doi: 10.1016/j.ins.2015.11.014Jedermann R, Schouten R, Sklorz A, Lang W, Van Kooten O (2006) Linking keeping quality models and sensor systems to an autonomous transport supervision system. In proc of the 2nd Int Workshop Cold Chain Management, May 8–9, Bonn, Germany, p 3–18Li J, Cao J (2015) Survey of object tracking in wireless sensor networks. Ad Hoc and Sensor Wireless Networks 25(1–2):89–120Shamsuzzoha A, Addo-Tenkorang R, Phuong D, Helo P. (2011). Logistics tracking: An implementation issue for delivery network. In proc of the PICMET’11: Conference Technology Management in the Energy Smart World, July 31–August 4, Portland, (Oregon-USA) p 1–10Torres RV, Sanchez JC, Galan LM (2014) Unmarked point and adjacency vertex, mobility models for the generation of emergency and rescue scenarios in urban areas. Ad Hoc and Sensor Wireless Networks 23(3–4):211–233Paxson V (1997) Measurements and Analysis of End-to-End Internet Dynamics. (Ph.D. Thesis). University of California, Berkeley. April, 1997. Available at: ftp://ftp.ee.lbl.gov/papers/vp-thesis/ Last access: 18 Oct 2016Codish M, Frank M, Itzhakov A, Miller A. (2014). Solving Graph Coloring Problems with Abstraction and Symmetry. AarXiv preprint arXiv:1409.5189. Available at: http://arxiv.org/abs/1409.5189 Last access: 18 Oct 2016Chambers D, Flapan E (2014) Topological symmetry groups of small complete graphs. Symmetry 6(2):189–209. doi: 10.3390/sym6020189Gong Y, Zhang W, Zhang Z, Li Y (2016) Research and implementation of traffic sign recognition system. Wireless Communications, Networking and Applications 348:553–560. doi: 10.1007/978-81-322-2580-5_50Waspmote features (2016) In Digi Web Site. Available at: http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module#specs , Last access: 18 Oct 2016Wang Z, Lu M, Yuan X, Zhang J, Van De Wetering H (2013) Visual traffic jam analysis based on trajectory data. IEEE Trans Vis Comput Graph 19(12):2159–2168. doi: 10.1109/TVCG.2013.228Meghanathan N, Mumford P (2013) Centralized and distributed algorithms for stability-based data gathering in mobile sensor networks. Network Protocols and Algorithms 5(4):84–116. doi: 10.5296/npa.v5i4.4208Alrajeh NA, Khan S, Lloret J, Loo J (2014) Artificial neural network based detection of energy exhaustion attacks in wireless sensor networks capable of energy harvesting. Ad Hoc & Sensor Wireless Networks 22(3–4):109–133Garcia M, Sendra S, Lloret J, Canovas A (2013) Saving energy and improving communications using cooperative group-based wireless sensor networks. Telecommun Syst 52(4):2489–2502. doi: 10.1007/s11235-011-9568-

    Random Walks: A Review of Algorithms and Applications

    Get PDF
    A random walk is known as a random process which describes a path including a succession of random steps in the mathematical space. It has increasingly been popular in various disciplines such as mathematics and computer science. Furthermore, in quantum mechanics, quantum walks can be regarded as quantum analogues of classical random walks. Classical random walks and quantum walks can be used to calculate the proximity between nodes and extract the topology in the network. Various random walk related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding. In this paper, we aim to provide a comprehensive review of classical random walks and quantum walks. We first review the knowledge of classical random walks and quantum walks, including basic concepts and some typical algorithms. We also compare the algorithms based on quantum walks and classical random walks from the perspective of time complexity. Then we introduce their applications in the field of computer science. Finally we discuss the open issues from the perspectives of efficiency, main-memory volume, and computing time of existing algorithms. This study aims to contribute to this growing area of research by exploring random walks and quantum walks together.Comment: 13 pages, 4 figure
    corecore