950 research outputs found

    Computing With Coercions

    Get PDF
    This paper relates two views of the operational semantics of a language with multiple inheritance. It is shown that the introduction of explicit coercions as an interpretation for the implicit coercion of inheritance does not affect the evaluation of a program in an essential way. The result is proved by semantic means using a denotational model and a computational adequacy result to relate the operational and denotational semantics

    On the Power of Coercion Abstraction

    Get PDF
    International audienceErasable coercions in System F-eta, also known as retyping functions, are well-typed eta-expansions of the identity. They may change the type of terms without changing their behavior and can thus be erased before reduction. Coercions in F-eta can model subtyping of known types and some displacement of quantifiers, but not subtyping assumptions nor certain forms of delayed type instantiation. We generalize F-eta by allowing abstraction over retyping functions. We follow a general approach where computing with coercions can be seen as computing in the lambda-calculus but keeping track of which parts of terms are coercions. We obtain a language where coercions do not contribute to the reduction but may block it and are thus not erasable. We recover erasable coercions by choosing a weak reduction strategy and restricting coercion abstraction to value-forms or by restricting abstraction to coercions that are polymorphic in their domain or codomain. The latter variant subsumes F-eta, F-sub, and MLF in a unified framework

    Type classes for efficient exact real arithmetic in Coq

    Get PDF
    Floating point operations are fast, but require continuous effort on the part of the user in order to ensure that the results are correct. This burden can be shifted away from the user by providing a library of exact analysis in which the computer handles the error estimates. Previously, we [Krebbers/Spitters 2011] provided a fast implementation of the exact real numbers in the Coq proof assistant. Our implementation improved on an earlier implementation by O'Connor by using type classes to describe an abstract specification of the underlying dense set from which the real numbers are built. In particular, we used dyadic rationals built from Coq's machine integers to obtain a 100 times speed up of the basic operations already. This article is a substantially expanded version of [Krebbers/Spitters 2011] in which the implementation is extended in the various ways. First, we implement and verify the sine and cosine function. Secondly, we create an additional implementation of the dense set based on Coq's fast rational numbers. Thirdly, we extend the hierarchy to capture order on undecidable structures, while it was limited to decidable structures before. This hierarchy, based on type classes, allows us to share theory on the naturals, integers, rationals, dyadics, and reals in a convenient way. Finally, we obtain another dramatic speed-up by avoiding evaluation of termination proofs at runtime.Comment: arXiv admin note: text overlap with arXiv:1105.275

    A theory of contracts for web services

    Get PDF
    <p>Contracts are behavioural descriptions of Web services. We devise a theory of contracts that formalises the compatibility of a client to a service, and the safe replacement of a service with another service. The use of contracts statically ensures the successful completion of every possible interaction between compatible clients and services.</p> <p>The technical device that underlies the theory is the definition of filters, which are explicit coercions that prevent some possible behaviours of services and, in doing so, they make services compatible with different usage scenarios. We show that filters can be seen as proofs of a sound and complete subcontracting deduction system which simultaneously refines and extends Hennessy's classical axiomatisation of the must testing preorder. The relation is decidable and the decision algorithm is obtained via a cut-elimination process that proves the coherence of subcontracting as a logical system.</p> <p>Despite the richness of the technical development, the resulting approach is based on simple ideas and basic intuitions. Remarkably, its application is mostly independent of the language used to program the services or the clients. We also outline the possible practical impact of such a work and the perspectives of future research it opens.</p&gt

    A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions

    Full text link
    The paper describes the refinement algorithm for the Calculus of (Co)Inductive Constructions (CIC) implemented in the interactive theorem prover Matita. The refinement algorithm is in charge of giving a meaning to the terms, types and proof terms directly written by the user or generated by using tactics, decision procedures or general automation. The terms are written in an "external syntax" meant to be user friendly that allows omission of information, untyped binders and a certain liberal use of user defined sub-typing. The refiner modifies the terms to obtain related well typed terms in the internal syntax understood by the kernel of the ITP. In particular, it acts as a type inference algorithm when all the binders are untyped. The proposed algorithm is bi-directional: given a term in external syntax and a type expected for the term, it propagates as much typing information as possible towards the leaves of the term. Traditional mono-directional algorithms, instead, proceed in a bottom-up way by inferring the type of a sub-term and comparing (unifying) it with the type expected by its context only at the end. We propose some novel bi-directional rules for CIC that are particularly effective. Among the benefits of bi-directionality we have better error message reporting and better inference of dependent types. Moreover, thanks to bi-directionality, the coercion system for sub-typing is more effective and type inference generates simpler unification problems that are more likely to be solved by the inherently incomplete higher order unification algorithms implemented. Finally we introduce in the external syntax the notion of vector of placeholders that enables to omit at once an arbitrary number of arguments. Vectors of placeholders allow a trivial implementation of implicit arguments and greatly simplify the implementation of primitive and simple tactics

    On the Power of Coercion Abstraction

    Get PDF
    Erasable coercions in System F-eta, also known as retyping functions, are well-typed eta-expansions of the identity. They may change the type of terms without changing their behavior and can thus be erased before reduction. Coercions in F-eta can model subtyping of known types and some displacement of quantifiers, but not subtyping assumptions nor certain forms of delayed type instantiation. We generalize F-eta by allowing abstraction over retyping functions. We follow a general approach where computing with coercions can be seen as computing in the lambda-calculus but keeping track of which parts of terms are coercions. We obtain a language where coercions do not contribute to the reduction but may block it and are thus not erasable. We recover erasable coercions by choosing a weak reduction strategy and restricting coercion abstraction to value-forms or by restricting abstraction to coercions that are polymorphic in their domain or codomain. The latter variant subsumes F-eta, F-sub, and MLF in a unified framework.Les coercions effaçables dans le SystĂšme F-eta, aussi connues sous le nom de fonctions de retypage, sont des eta-expansions de l'identitĂ©. Elles peuvent changer le type des termes sans en changer leur comportement et peuvent donc ĂȘtre effacĂ©es avant la rĂ©duction. Les coercions de F-eta peuvent modĂ©liser le sous-typage entre types connus ou le dĂ©placement de quantificateurs, mais elles ne permettent pas certaines formes d'instanciation retardĂ©e ni de raisonner sous des hypothĂšses de sous-typage. Nous gĂ©nĂ©ralisons F-eta en introduisant l'abstraction des fonctions de retypage. Nous suivons une approche gĂ©nĂ©rale oĂč le calcul avec des coercions peut ĂȘtre vu comme une rĂ©duction dans le lambda-calcul gardant trace de la partie des termes qui sont des coercions. Nous obtenons un langage oĂč les coercions ne contribuent pas au calcul, mais peuvent le bloquer et ne sont donc pas effaçables. Nous retrouvons des coercions effaçables en choisissant une stratĂ©gie de rĂ©duction faible et en restreignant l'abstraction de coercions aux valeurs ou bien en restreignant l'abstraction aux coercions qui sont polymorphes en leur domaine ou en leur codomaine. Cette seconde variante gĂ©nĂ©ralise F-eta, MLF et F-sub dans un cadre unifiĂ©

    Elaboration in Dependent Type Theory

    Full text link
    To be usable in practice, interactive theorem provers need to provide convenient and efficient means of writing expressions, definitions, and proofs. This involves inferring information that is often left implicit in an ordinary mathematical text, and resolving ambiguities in mathematical expressions. We refer to the process of passing from a quasi-formal and partially-specified expression to a completely precise formal one as elaboration. We describe an elaboration algorithm for dependent type theory that has been implemented in the Lean theorem prover. Lean's elaborator supports higher-order unification, type class inference, ad hoc overloading, insertion of coercions, the use of tactics, and the computational reduction of terms. The interactions between these components are subtle and complex, and the elaboration algorithm has been carefully designed to balance efficiency and usability. We describe the central design goals, and the means by which they are achieved
    • 

    corecore