
HAL Id: inria-00582570
https://hal.inria.fr/inria-00582570v3

Submitted on 12 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Power of Coercion Abstraction
Julien Cretin, Didier Rémy

To cite this version:
Julien Cretin, Didier Rémy. On the Power of Coercion Abstraction. [Research Report] RR-7587,
INRIA. 2011, pp.59. �inria-00582570v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49937615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00582570v3
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

87
--

FR
+E

N
G

Domaine 2

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the Power of Coercion Abstraction

Julien Cretin — Didier Rémy

N° 7587

December 2011

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

On the Power of Coercion Abstraction

Julien Cretin , Didier Rémy

Domaine : Algorithmique, programmation, logiciels et architectures
Équipes-Projets Gallium

Rapport de recherche n° 7587 � December 2011 � 59 pages

Abstract: Erasable coercions in System Fη, also known as retyping functions, are well-typed
η-expansions of the identity. They may change the type of terms without changing their behavior
and can thus be erased before reduction. Coercions in Fη can model subtyping of known types
and some displacement of quanti�ers, but not subtyping assumptions nor certain forms of delayed
type instantiation. We generalize Fη by allowing abstraction over retyping functions. We follow
a general approach where computing with coercions can be seen as computing in the λ-calculus
but keeping track of which parts of terms are coercions. We obtain a language where coercions do
not contribute to the reduction but may block it and are thus not erasable. We recover erasable
coercions by choosing a weak reduction strategy and restricting coercion abstraction to value-forms
or by restricting abstraction to coercions that are polymorphic in their domain or codomain. The
latter variant subsumes Fη, F<:, and MLF in a uni�ed framework.

Key-words: Type, System F, F-eta, Polymorphism, Coercion, Conversion, Retyping functions,
Type containment, Subtyping, Bounded Polymorphism.

De l'Expressivité de l'Abstraction de Coercions

Résumé : Les coercions e�açables dans le Système Fη, aussi connues sous le nom de fonctions
de retypage, sont des η-expansions de l'identité. Elles peuvent changer le type des termes sans
en changer leur comportement et peuvent donc être e�acées avant la réduction. Les coercions
de Fη peuvent modéliser le sous-typage entre types connus ou le déplacement de quanti�cateurs,
mais elles ne permettent pas certaines formes d'instanciation retardée ni de raisonner sous des
hypothèses de sous-typage. Nous généralisons Fη en introduisant l'abstraction des fonctions de
retypage. Nous suivons une approche générale où le calcul avec des coercions peut être vu comme
une réduction dans le λ-calcul gardant trace de la partie des termes qui sont des coercions. Nous
obtenons un langage où les coercions ne contribuent pas au calcul, mais peuvent le bloquer et ne
sont donc pas e�açables. Nous retrouvons des coercions e�açables en choisissant une stratégie de
réduction faible et en restreignant l'abstraction de coercions aux valeurs ou bien en restreignant
l'abstraction aux coercions qui sont polymorphes en leur domaine ou en leur codomaine. Cette
seconde variante généralise Fη, MLF et F<: dans un cadre uni�é.

Mots-clés : Types, Système F, Polymorphisme, Coercion, Conversion, Fonction de retypage,
Type containment, Sous-typage, Bounded Polymorphism

On the Power of Coercion Abstraction 3

Contents

1 Introduction 4

2 The language Fι 7

2.1 Syntax of Fι . 7
2.2 Typing rules . 9
2.3 Dynamic semantics . 11
2.4 Examples . 14

3 Properties of Fι 15

3.1 Soundness . 15
3.2 Termination of reduction . 17
3.3 Rei�cation of Fι in System F . 17
3.4 Con�uence . 18
3.5 Forward simulation . 19

4 Coercions as retyping functions: Fλι 19

4.1 De�nition of Fλι . 20
4.2 Soundness . 23
4.3 Con�uence . 24
4.4 Rei�cation into System F . 25
4.5 Completeness . 25
4.6 Soundness . 26
4.7 Bisimulation between Fι and Fλι . 30

5 Parametric Fι 30

5.1 Syntax changes . 32
5.2 Adjustments to the semantics . 33
5.3 Properties . 34

6 Expressiveness of Parametric Fι 36

7 Weak Fι 42

8 Related work 45

9 Discussion and future work 47

A Delayed Proofs 50

RR n° 7587

On the Power of Coercion Abstraction 4

1 Introduction

When designing programming languages, types help choosing a small number of well-understood
orthogonal language constructs; they also help programmers by ruling out all unsafe programs as
ill-typed. However, type-safety is only an approximation of good-behavior by design: there will
always remain useful well-behaved programs rejected as ill-typed as well as well-typed programs
that don't behave as intended. These two gaps can be reduced simultaneously by increasing the
expressiveness and accuracy of type systems and so capturing �ner program invariants. Although
this is an endless process, considerable progress has been made over the last couple of decades.

Parametric polymorphism and subtyping polymorphism are the two most popular means of
increasing expressiveness of type systems: although �rst studied independently, they can be ad-
vantageously combined together. Each mechanism alone is relatively simple to understand and
has a more or less canonical presentation. However, their combination is more complex. The most
popular combination is the language F<: [Cardelli, 1993]. However, this is just one (relatively
easy) spot in the design space. In fact, much work in the 90's has been devoted to improving
the combination of parametric and subtyping polymorphism, motivated by its application to the
typechecking of object-oriented features.

Contravariance, the key ingredient of subtyping polymorphism, is already modeled in the
language Fη proposed by Mitchell [1988]. One way to de�ne Fη is as the closure of Curry-style
System F by η-conversion. We write C[M] for �lling a context C with a termM. A retyping context
from τ to σ is a closed one-hole context C such that λx.C〈x〉 is an η-expansion of the identity,
also called a retyping function, and has type τ → σ in System F. If C is a retyping context from
τ to σ andM is a term of type τ , then C[M] is a term of type σ in System F. In System Fη, the
type-containment rule allowsM itself to be claimed of type σ. Moving to Church-style System F,
we may keep type-containment, i.e. �lling of retyping contexts explicit. We write G〈M〉 for the
application of retyping context (i.e. a coercion) G to the term M . We write ♦τ for the empty
(retyping) context of type τ . Contravariance is induced by η-expansion as follows: if G1 and G2

are retyping contexts from τ1 to τ ′1 and from τ2 to τ ′2, then λ(x : τ1) G2〈♦τ
′
1→τ2 (G1〈x〉)〉 is a

retyping context from type τ ′1 → τ2 to τ1 → τ ′2.
Besides contravariance, η-expansion also introduces opportunities for inserting type abstrac-

tions and type applications, which may change polymorphism a posteriori. For instance, from the
type ∀α. τ → σ, we can �nd a retyping context to any type of the form (∀α. τ)→ (∀β̄. σ[α← ρ])
provided β̄ does not appear free in ∀α. σ; this context is λ(x : ∀α. τ) λβ̄ ♦∀α. τ→σ ρ (x ρ). Such
retypings are not supported in F<: where polymorphism can only be introduced and eliminated
explicitly at the topmost part of terms.

Conversely, F<: allows reasoning under subtyping assumptions, which Fη does not support.
Indeed, bounded quanti�cation Λ(α <: τ)M of F<: introduces a type variable α that stands for
any subtype of τ inside M . In particular, a covariant occurrence of α in M can be converted to
type τ by subtyping.

Therefore Fη and F<: are incomparable: is there a language that supersedes both? Before we
tackle this question, let us �rst consider another form of retyping assumptions that have been
introduced in MLF [Le Botlan and Rémy, 2009]: instance-bounded polymorphism Λ(α ≥ τ)M in-
troduces a type variable α that stands for any instance of τ insideM . That is, an occurrence of type
α within M in an instantiable position can be converted to any instance of τ . Instance-bounded
quanti�cation delays the choice of whether a polymorphic expression should be instantiated im-
mediately or kept polymorphic. This mechanism enables expressions to have more general types
and has been introduced in MLF to enable partial type inference in the presence of �rst-class
second-order polymorphism and some type annotations.

Notice that bounded type instantiation allows for deep type instantiation of binders, as Fη does,
but using a quite di�erent mechanism. Bounded type instantiation has similarities with bounded
quanti�cation of F<:, but the two also di�er signi�cantly, since for instance, type conversion is not
congruent on arrow types in MLF.

Surprisingly, among the three languages Fη, F<:, andMLF, any combination of two have features
in common that the other one lacks! Hence, the challenge becomes whether all their features can be

RR n° 7587

On the Power of Coercion Abstraction 5

combined together. This question has in fact already been raised in previous work on MLF [Rémy
and Yakobowski, 2010].

Our contributions We answer positively by introducing a language Fpι that extends Fη with
abstraction over retyping functions, combining all features simultaneously in a uni�ed framework
(�5). The language Fpι subsumes Fη, F<:, and MLF (�6); it also �xes and extends a previous
language of coercions designed for modeling MLF alone [Manzonetto and Tranquilli, 2010]. Our
subset of Fpι that coincides with MLF is well-behaved : it satis�es the subject reduction and progress
lemmas and strongly normalizes. It also has an untyped semantics.

Actually, the extension of Fη with abstraction over coercion functions leads to a larger language
Fι of which Fpι is a restriction (�2). The language Fι is well-behaved. We show that Fι can be
simulated into System F. Hence, reduction rules in Fι are just particular instances of β-reduction
(�4). Fι can also be simulated into the untyped λ-calculus, by dropping coercions, which shows
that coercions do not contribute to the computation. Unfortunately, they may block it, and are
thus not erasable (�3). Erasability can be recovered by choosing a weak reduction strategy (�7),
but this is not entirely satisfactory. So, other restrictions or extensions of Fι with erasable coercions
are still to be found. Nevertheless, we believe that Fι is a solid ground for understanding erasable
coercions (�9).

System F All languages we consider are second order calculi whose origin is System F. System
F comes in two �avors: in Curry-style, terms do not carry type information and are thus a subset
of the untyped λ-calculus, while in Church-style, terms carry explicit type information, namely
type abstractions, type applications, and annotations of function parameters.

Of course, both presentations are closely related, since there is a bisimulation between the
reduction of terms in Church-style and terms in Curry-style via type erasure, where the reduction
of type application between terms in Church-style is re�ected as an equality on terms in Curry-
style. That is, calling ι the reduction of type applications and β the reduction of term applications,
the type erasures of two explicitly-typed terms related by β-reduction (resp. ι-reduction) are
related by β-reduction (resp. equality); conversely, if the erasure of a term M β-reduces to a term
M′, then M also reduces by a sequence of ι-reductions followed by a single β-reduction to a term
whose erasure isM′.

Both views are equally useful: we prefer source expressions to be explicitly typed, so that type
checking is a trivial process and types can be easily maintained during program transformations;
we also wish types to be erasable after compilation for e�ciency of program execution. Moreover,
a source language with an untyped semantics is generally simpler to understand, reason about, and
use. We may argue that even if the source language has intentional polymorphism, it should �rst be
compiled in a type-dependent way to an intermediate language with an untyped semantics [Crary
et al., 2002].

From types to type conversions Our approach to coercions is similar to polymorphism in
System F because we focus here on retyping functions that are erasable. In some circumstances,
one may use other forms of coercions that may have some computational content, e.g. change the
representation of values, and thus not be erasable. Then, we should compile source expressions
into an intermediate language where remaining coercions, if any, are erasable; this is then the
language we wish to study here.

Erasability also means that the dynamic semantics of our language is ultimately that of the
underlying λ-calculus�possibly enriched with more constructs. Therefore the semantics only
depends on the reduction strategy we choose and not on the typechecking details nor on the
coercions we may use. Types are useful for programmers to understand their programs. It is also
useful for programmers that types do not determine the semantics of their programs. At least, we
should provide an intermediate representation in which this is true.

Coercions may also be introduced a posteriori to make type conversions explicit inside source
terms. Coercions usually simplify the meta-theoretical study of the language by providing a

RR n° 7587

On the Power of Coercion Abstraction 6

concrete syntax to manipulate typing derivations. Proofs such as subject reduction become com-
putation on concrete terms instead of reasoning on derivations.

While in practice programming languages use weak evaluation strategies, strong evaluation
strategies provide more insight into the calculus by also modeling reduction of open terms. Since
our focus is on understanding the essence of coercions, and the meta-theoretical properties, we
prefer strong reduction strategies. Imposing a weak reduction strategy on a well-behaved strong
calculus afterward is usually easy�even if all properties do not automatically transfer. Conversely,
properties for weak reduction strategies do not say much about strong reduction strategies.

The two faces of Fη Let us �rst return to the de�nition of Fη, which in Mitchell's original
presentation is given in Curry-style. It is de�ned by adding to System F a type containment rule
that allows to convert a termM of type τ to one of type σ whenever there exists a retyping context
from type τ to σ, which we write ` τ . σ. This judgment, called type containment, is equivalent
to the existence of a (closed) retyping function M′ of System F such that ` M′ : τ → σ, i.e. a
function that is an η-expansion of the identity.

Interestingly, Mitchell gave another characterization of type containment, exhibiting a proof
system for the judgment ` τ . σ, which can be read back as the introduction of a language of
coercions whose expressions G witness type containment derivations. Then, we write ` G : τ . σ
where G fully determines the typing derivation�much as a Church-style System-F term M fully
determines its typing derivation. For example, G1 → G2 is a coercion that, given a function M ,
returns a function that coerces its argument with G1, passes it to M , and coerces the result with
G2�hence the contravariance of type containment. (A full presentation of coercions appears in
�2 where Fη is described as a subset of Fι.)

The interpretation of coercions as λ-terms is more intuitive than coercions as proof witnesses.
Unfortunately, its formal presentation Fλι , which is equivalent to Fι, is technically more involved for
reasons explained in �4. Hence, we prefer to present Fι �rst in �2 and only introduce Fλι informally
in �4. Interestingly, the rei�cation of Fι into System F given in �3.3 already reveals this intuitive
interpretation of coercions�without the technicalities�and we refer to it when describing the
typing rules and reduction rules of Fι.

In Church-style System F, the use of a coercion G around a term M is witnessed explicitly as
G〈M〉. (We may continue seeing a coercion G as a retyping context and reading this as �lling
the hole of G or, equivalently, see G as a retyping function and read this as an application of a
coercion to a term.) Reduction rules are added to reduce such applications when both G and M
have been su�ciently evaluated�in a way depending on the form of both�so that a coercion G
is never stuck in the middle of a (well-typed) redex as in (G〈λ(x : τ) M〉) N . The type system
ensures that G is of a certain shape for which a reduction exists. In the above example, G may
be G1

σ→ G2 and then G〈λ(x : τ) M〉 can be reduced to λ(x : σ) G2〈M [x← G1〈x〉]〉.

The genesis of Fι To abstract over coercion functions, we introduce a new form λ(c : τ . σ) M
in Fι, where the parameter c stands for a coercion function that can be used inside M to convert
an expression of type τ to one of type σ. This abstraction can be typed as (τ . σ)⇒ ρ where ρ is
the type of M . Correspondingly, we need a new application form M{G} to pass a coercion G to
a coercion abstraction, i.e. a term M of type (τ . σ)⇒ ρ.

By typing constraints, coercion abstractions can only be instantiated with coercions, which by
construction are erasable. Thus, intuitively, coercions do not really contribute to the computation.
Is this enough to erase them? Formally, we can exhibit a forward simulation between reduction of
terms in Fι and of their erasure in the untyped λ-calculus. Moreover, Fι has the subject reduction
property and is strongly normalizing. Still, coercions cannot be erased in Fι, since although they
do not create new evaluation paths, they may block existing evaluation paths: a subterm may
be stuck while its erasure could proceed. Since coercions are erasable in Fη, this can only be due
to the use of a coercion variable. Indeed, a coercion variable c may appear in the middle of a
β-redex as in (c〈λ(x : τ) M〉) N . This is irreducible because reduction of coercion applications
G〈M〉 depends simultaneously on the shapes of G andM so that no rule �res when G is unknown.

RR n° 7587

On the Power of Coercion Abstraction 7

x, y variables

M ::= x | λx.M |MM | (M,M) | M.1 | M.2 terms

C ::= λx.[] | []M |M [] | ([],M) | (M, []) | [].1 | [].2 reduction contexts

RedContext

M M′

C[M] C[M′]

RedBeta

(λx.M)M′ M[x←M′]
RedProjFirst

(M1,M2).1 M1

RedProjSecond

(M1,M2).2 M2

Figure 1: λ-calculus: syntax and semantics

More generally, we call a wedge an irreducible term of the form (G〈λ(x : τ) M〉) N . Notice that
the erasure of a wedge (λ(x : τ) bMc) bNc can be reduced, immediately. Hence, the existence of
wedges in reduction contexts prevents erasability.

Taming coercions in F
p
ι An obvious solution to recover erasability is to make wedge con�g-

urations ill-typed�so that they never appear during the reduction of well-typed programs. One
interesting restriction, called Fpι (read Parametric Fι), is to request that coercion parameters be
polymorphic in either their domain or their codomain. This allows coercion variables to appear
either applied to a function or inside an application, but not both simultaneously.

Another solution is to change the semantics: choosing a weak reduction strategy for coercion
abstractions and restricting them to appear only in front of value forms, coercion variables, hence
wedges, cannot occur in a reduction context any more. This variant is called Fwι (read Weak Fι).

Although our main goal�combining Fη, F<:, and MLF in a same language�is reached, both Fpι
and Fwι are restrictions of Fι. We may thus wonder whether other yet more interesting solutions
exist. We further discuss some of the issues in �9, argue about some of the di�culties in the general
case, and suggest other restrictions worth exploring. We defer a discussion of related works to �8.

2 The language Fι

The language Fι generalizes Fη with abstraction over coercions, but does not ensure erasability.
Still coercions do not contribute to the evaluation. That is, reduction in Fι can be simulated into
the untyped λ-calculus, after erasure. Since coercions allow more terms to be typed, the coercion
erasure will not in general be in the implicitly typed System F.

We recall the de�nition of the (untyped) λ-calculus on Figure 1. We include pairs and pro-
jections both to have non trivial errors (otherwise, even untyped terms cannot be stuck) and to
have more interesting forms of subtyping. We assume an enumerable collection of term variables,
ranged over by letters x and y. Untyped terms, writtenM, include variables, abstractions λx.M,
applications MM′, pairs (M,M′), and projections M.1 and M.2. The semantics of untyped
λ-terms is given by a small-step strong reduction relation. Reduction contexts of the λ-calculus
are all one-hole contexts, written C. We now write C[M] for the term obtained by �lling the hole
of C withM andM[x←M′] for the capture avoiding substitution ofM′ for x inM. Expressions
are considered equal up to the renaming of bound variables, which are de�ned in the usual way.
This convention applies to the λ-calculus, as well as to all typed languages presented below.

2.1 Syntax of Fι

The language Fι is explicitly typed. Types are described on Figure 2. We assume given an
enumerable set of type variables, ranged over by letters α and β. Types are type variables,
arrow types τ → τ , product types (τ ∗ τ), polymorphic types ∀α. τ , the top type >, or coercion
abstractions ϕ ⇒ τ where the coercion type ϕ is of the form τ . τ . Coercions are not �rst class,
hence a coercion type ϕ is not itself a type.

RR n° 7587

On the Power of Coercion Abstraction 8

τ, σ ::= α | τ → τ | (τ ∗ τ) | ∀α.τ | > Types

| ϕ⇒ τ coercion abstraction

ϕ ::= τ . τ coercion type

M,N ::= x | λ(x : τ) M |M M | (M,M) |M.1 |M.2 Terms

| λα M |M τ type abs & app

| G〈M〉 term coercion

| λ(c : ϕ) M |M{G} coercion abs & app

G ::= c | Topτ | ♦τ | G τ→ G | (G ∗G) Coercions

| Dist∀α.τ→τ | Distϕ⇒τ→τ | Dist∀α.(τ∗τ) | Distϕ⇒(τ∗τ) distributivity

| λα G | Gτ type abs & app

| G〈G〉 coercion coercion

| λ(c : ϕ) G | G{G} coercion abs & app

Γ ::= ∅ | Γ, α | Γ, x : τ | Γ, c : ϕ Typing environments

Figure 2: Syntax of Fι.

The language of expressions is split into terms and coercions. We reuse the term variables of
the λ-calculus. In addition, we assume an enumerable set of coercion variables written c. Terms
are an extension of Church-style System F. Hence, they include type variables x, abstractions
λ(x : τ) M , applications MM , pairs (M,M), projections M.1 and M.2, type abstractions λα M ,
and type applications M τ . A construct already present in Fη is the use of the application G〈M〉
of a coercion G to a term M . There are two new constructs speci�c to Fι and not present in
Fη: coercion abstraction λ(c : ϕ) M which is annotated with the coercion type ϕ; and coercion
application M{G} that passes a coercion G to a term M�and should not be confused with the
earlier construct G〈M〉 of Fη that places a coercion G around a term M .

Since the main purpose of coercions is to change types, we could postpone the description
of coercion constructs together with their typing rules�and their associated reduction rules that
justify the typing rules. Still, each coercion expression can be understood as a one-hole retyping
context witnessing some type-containment rule. So we introduce each construct with the retyping
context it stands for, also preparing for the rei�cation of coercions as System-F terms given in �3.3.

A coercion variable c stands for the coercion it will be bound to. The opaque coercion Topτ is
a downgraded version of existential types (we currently do not handle existential types for reasons
explained in �9): it turns a term of any type into an opaque term of type > that can only be
used abstractly. The empty coercion ♦τ stands for the empty retyping context and witnesses
re�exivity of type containment. The arrow coercion G1

τ→ G2 stands for λ(x : τ) G2〈[] (G1〈x〉)〉
and witnesses contravariance of the arrow type constructor. The distributivity coercion Dist∀α.τ→σ
stands for λ(x : τ) λα []α x and permutes a type abstraction with a term abstraction: assuming
the hole has type ∀α. τ → σ where α does not appear free in τ , it returns a term of type τ → ∀α. σ.
For instance, the coercion of a polymorphic function λα λ(y : τ) N makes it appear as if it had
been de�ned as λ(y : τ) λα N�which is actually what it will reduce to once coerced. The other
distributivity coercion Distϕ⇒τ→σ, which stands for λ(x : τ) λ(c : ϕ) ([]{c} x), is similar but permutes
a coercion abstraction with a term abstraction.

The product coercion (G1 ∗ G2) stands for (G1〈[].1〉, G2〈[].2〉) and allows congruence on the
product type constructor. The distributivity coercion Dist∀α.(τ∗σ) stands for (λα ([]α).1, λα ([]α).2)
and permutes a type abstraction with a pair constructor: assuming the hole has type ∀α. (τ ∗σ), it
returns a term of type ((∀α. τ)∗ (∀α. σ)). The other distributivity coercion Distϕ⇒(τ∗σ), which stands
for (λ(c : ϕ) ([]{c}).1, λ(c : ϕ) ([]{c}).2) is similar but permutes a coercion abstraction with a pair
construct.

RR n° 7587

On the Power of Coercion Abstraction 9

bxc = x

bλ(x : τ) Mc = λx.bMc
bM Nc = bMc bNc
b(M,N)c = (bMc, bNc)
bM.1c = bMc.1
bM.2c = bMc.2

bλα Mc = bMc
bM τc = bMc
bG〈M〉c = bMc

bλ(c : ϕ) Mc = bMc
bM{G}c = bMc

Figure 3: Coercion erasure

We may need more distributivity coercions when extending the language of terms. Hence, the
notation Distab uses the following mnemonic: the superscript a and the subscript b indicate the
kind of the �rst and second type constructs, respectively. The �rst type construct a should be an
erasable quantifying type construct, i.e. a binding coercion type construct, like type or coercion
abstraction. The second type construct b should be a stlc (simply-typed lambda-calculus) type
construct, like arrow or product. The type of the hole is ab and the coerced type is b where all
positive holes c become ac and negative holes stay the same. When b is [] → [], the positive
(covariant) hole is the right one, while the negative (contravariant) one is the left one. When b is
([] ∗ []), both holes are positive. This is why we get (a[] ∗ a[]). This heavy-weighted distributivity
mechanism might in the end overcome the di�culties about binding coercions in Fλι (�4), which
would then become preferable to work with.

The remaining coercions are the lifting of all term constructs without computational content
to coercions: type abstraction λα G and type application Gτ ; coercion of a coercion G′〈G〉 which
intuitively stands for G′〈G〈[]〉〉 and witnesses transitivity of coercions: it has type ρ . σ if G′

and G have coercion types τ . σ and ρ . τ , respectively; �nally, coercion abstraction λ(c : ϕ) G
and coercion application G′{G}. All these coercions are of the form P [G] where P is one of the
contexts λα [], [] τ , G′〈[]〉, λ(c : ϕ) [], or []{G′}, where the hole is �lled with G. It is convenient to
overload the notation P when the hole holds a term instead of a coercion, although this is formally
another syntactic node.

We recover the syntax of System Fη by removing coercion types from types and coercion
variables, coercion abstractions and applications from both terms and coercions. We recover the
syntax of System F by further removing the top type, term coercions, and all coercion forms,
which become vacuous.

The coercion erasure, written b·c, de�ned on Figure 3, is as expected: type annotations on func-
tion parameters and coercions are erased, while other constructs are projected on their equivalent
constructs in the untyped λ-calculus.

2.2 Typing rules

Typing environments, written Γ, are lists of bindings where bindings are either type variables α,
coercion variables along with their coercion type c : ϕ, or term variables along with their type
x : τ (Figure 2). We write Γ ` M : τ if term M has type τ under Γ and Γ ` G : ϕ if coercion G
has coercion type ϕ under Γ.

The two typing judgments are recursively de�ned on �gures 4 and 5. They use auxiliary
well-formedness judgments for types and typing contexts: we write Γ ` ok to mean that typing
environment Γ is well-formed and Γ ` τ or Γ ` ϕ to mean that type τ or coercion type ϕ is
well-formed in Γ.

As usual, we require that typing contexts do not bind twice the same variable, which is not
restrictive as all expressions are considered equal up to renaming of bound variables. This is
enforced by well-formedness judgments de�ned on Figure 6. This restriction allows us to see Γ as
a partial function from term, coercion, or type variables to their types if they have ones.

Typing rules for terms are described in Figure 4. Rules TermVar, TermTermLam, Term-
TermApp, TermPair, TermFirst, TermSecond, TermTypeLam, and TermTypeApp are exactly

RR n° 7587

On the Power of Coercion Abstraction 10

TermVar

Γ ` ok x : τ ∈ Γ

Γ ` x : τ

TermTermLam

Γ, x : τ `M : σ

Γ ` λ(x : τ) M : τ → σ

TermTermApp

Γ `M : τ → σ Γ ` N : τ

Γ `M N : σ

TermPair

Γ `M1 : τ1 Γ `M2 : τ2

Γ ` (M1,M2) : (τ1 ∗ τ2)

TermFirst

Γ `M : (τ1 ∗ τ2)

Γ `M.1 : τ1

TermSecond

Γ `M : (τ1 ∗ τ2)

Γ `M.2 : τ2

TermTypeLam

Γ, α `M : τ

Γ ` λα M : ∀α. τ

TermTypeApp

Γ `M : ∀α. τ Γ ` σ
Γ `M σ : τ [α← σ]

TermCoer

Γ ` G : τ . σ Γ `M : τ

Γ ` G〈M〉 : σ

TermCoerLam

Γ, c : ϕ `M : τ

Γ ` λ(c : ϕ) M : ϕ⇒ τ

TermCoerApp

Γ `M : ϕ⇒ τ Γ ` G : ϕ

Γ `M{G} : τ

Figure 4: System Fι: term typings

CoerDot

Γ ` τ
Γ ` ♦τ : τ . τ

CoerForget

Γ ` τ
Γ ` Topτ : τ .>

CoerArrow

Γ ` G1 : τ1 . τ
′
1 Γ ` G2 : τ2 . τ

′
2

Γ ` G1
τ1→ G2 : (τ ′1 → τ2) . (τ1 → τ ′2)

CoerDistTypeArrow

Γ ` τ Γ, α ` σ
Γ ` Dist∀α.τ→σ : ∀α. (τ → σ) . τ → ∀α. σ

CoerDistCoerArrow

Γ ` τ Γ ` ϕ Γ ` σ
Γ ` Distϕ⇒τ→σ : (ϕ⇒ (τ → σ)) . (τ → (ϕ⇒ σ))

CoerPair

Γ ` G1 : τ1 . τ
′
1 Γ ` G2 : τ2 . τ

′
2

Γ ` (G1 ∗G2) : (τ1 ∗ τ2) . (τ ′1 ∗ τ ′2)

CoerDistTypeProd

Γ, α ` τ Γ, α ` σ
Γ ` Dist∀α.(τ∗σ) : ∀α. (τ ∗ σ) . (∀α. τ ∗ ∀α. σ)

CoerDistCoerProd

Γ ` ϕ Γ ` τ Γ ` σ
Γ ` Distϕ⇒(τ∗σ) : (ϕ⇒ (τ ∗ σ)) . ((ϕ⇒ τ) ∗ (ϕ⇒ σ))

CoerTypeLam

Γ ` τ Γ, α ` G : τ . σ

Γ ` λα G : τ . ∀α. σ

CoerTypeApp

Γ ` G : τ ′ . ∀α. σ Γ ` τ
Γ ` Gτ : τ ′ . σ[α← τ]

CoerCoer

Γ ` G : τ . σ Γ ` G′ : ρ . τ

Γ ` G〈G′〉 : ρ . σ

CoerCoerLam

Γ, c : ϕ ` G : τ . σ

Γ ` λ(c : ϕ) G : τ . (ϕ⇒ σ)

CoerCoerApp

Γ ` G′ : τ . (ϕ⇒ σ) Γ ` G : ϕ

Γ ` G′{G} : τ . σ

CoerVar

Γ ` ok c : ϕ ∈ Γ

Γ ` c : ϕ

Figure 5: System Fι: coercion typings

TypeVar

Γ ` ok α ∈ dom(Γ)

Γ ` α

TypeArrow

Γ ` τ Γ ` σ
Γ ` τ → σ

CoerType

Γ ` τ Γ ` σ
Γ ` τ . σ

TypeProd

Γ ` τ Γ ` σ
Γ ` (τ ∗ σ)

TypeForall

Γ, α ` τ
Γ ` ∀α. τ

TypeCoerArrow

Γ ` τ Γ ` ϕ
Γ ` ϕ⇒ τ

EnvCoer

c /∈ dom(Γ) Γ ` ϕ
Γ, (c : ϕ) ` ok

EnvEmpty

∅ ` ok

EnvType

Γ ` ok α /∈ dom(Γ)

Γ, α ` ok

EnvTerm

Γ ` τ x /∈ dom(Γ)

Γ, (x : τ) ` ok

Figure 6: System F: well-formedness rules

RR n° 7587

On the Power of Coercion Abstraction 11

the typing rules of System F. Rule TermCoer is similar to rule TermTermApp, except that a co-
ercion G of coercion type τ .σ is used instead of a functionM of type τ → σ. Rule TermCoerLam
is similar to TermTermLam, except that the parameter c stands for a coercion of coercion type
ϕ instead of a term of type σ: the result is a coercion abstraction of type ϕ ⇒ τ . Consistently,
TermCoerApp applies a term that is a coercion abstraction of type ϕ ⇒ τ to a coercion G of
coercion type ϕ.

Typing rules for coercions are described in Figure 5. They are all straightforward when read
with the retyping context that the coercion stands for in mind. Rule CoerVar reads the coercion
type of a coercion variable from its typing context. The empty coercion has type τ .τ provided τ is
well-formed in the current context. As all basic coercions, it contains just enough type information
so that its typing rule is syntax-directed. The top coercion Topτ converts an expression of type τ to
the top type, provided τ is well-formed. The arrow coercion G1

τ1→ G2 turns an arrow type τ ′1 → τ2
into an arrow type τ1 → τ ′2, provided Gi coerces type τi into τ

′
i for i in {1, 2}. The distributivity

coercion Dist∀α.τ→σ turns an expression of type ∀α. τ → σ into one of type τ → ∀α. σ provided τ
is well-formed in the current environment, which prevents α from appearing free in τ , and σ is
well-formed in the current environment extended with α. Finally, Rule CoerDistCoerArrow is
similar to CoerDistTypeArrow, but swaps a coercion abstraction and a term abstraction.

The product coercion (G1 ∗ G2) turns a product type (τ1 ∗ τ2) into a product type (τ ′1 ∗ τ ′2),
provided Gi coerces type τi into τ ′i for i in {1, 2}. The distributivity coercion Dist∀α.(τ∗σ) turns
an expression of type ∀α. (τ ∗ σ) into one of type (∀α. τ ∗ ∀α. σ) provided τ and σ are well-
formed in the current environment extended with α. Rule CoerDistCoerProd is similar to
CoerDistTypeProd, but swaps a coercion abstraction and a pair constructor.

The remaining rules CoerTypeLam, CoerTypeApp, CoerCoer, CoerCoerLam, and Coer-

CoerApp are similar to their counterpart for terms, but where the term M of type τ has been
replaced by a coercion (i.e. a one-hole context) G of coercion type τ1 . τ2, where τ1 is the type of
the hole and τ2 the type of the body. Rule CoerTypeLam for typing λα G introduces a variable
α that is bound in G and can be used in the type of the body of G but not in the type of its hole,
which is enforced by the �rst premise. In particular, λα G builds a coercion to a polymorphic type
τ . ∀α. σ and not a polymorphic coercion ∀α. τ . σ. Accordingly, only the codomain of the type
of the conclusion is polymorphic. Rule CoerCoerLam is typed in a similar way: λ(c : ϕ) G has
type τ1 . (ϕ⇒ τ2) and not ϕ⇒ (τ1 . τ2) as one could naively expect�which would be ill-formed.
Type and coercion applications are typed accordingly (rules CoerTypeApp and CoerCoerApp).

The typing rules for Fη are obtained by removing TermCoerLam and TermCoerApp for terms
and their counter parts CoerCoerLam and CoerCoerApp for coercions as well as Rule CoerVar
for coercion variables and Rules CoerDistCoerArrow and CoerDistCoerProd for distributivity
of coercion abstraction.

The type superscripts that appear in re�exivity, distributivity, and top coercions make type
checking syntax directed. The type superscript in arrow coercions is not needed for typechecking
but to keep reduction a local rewriting rule. (We may leave superscripts implicit when they are
unimportant or can be unambiguously reconstructed from the context.)

Our presentation of Fι is in Church-style. Curry-style Fι is the image of Fι by coercion erasure.
That is, it is the subset of terms of the untyped λ-calculus that are the erasure of a term of
Church-style System Fι. We write Γ ` M : τ to mean that there exists M such that Γ ` M : τ
and bMc isM.

2.3 Dynamic semantics

The dynamic semantics of System Fι is given by a standard small-step strong reduction relation.
The syntax of values and reduction contexts is recalled on Figure 7.

A value is an abstraction of a value, a pair of values, an opaque value Topτ 〈v〉, or a prevalue. A
prevalue is a variable, a prevalue applied to a value, type, or coercion, a projection of a prevalue, a
value coerced by a coercion variable, or a partial application of a distributivity coercion. Reduction
contexts C are all one-hole term contexts. For convenience, we have distinguished a subset of

RR n° 7587

On the Power of Coercion Abstraction 12

p ::= x | p v | p.1 | p.2 | p τ | p{G} | c〈v〉 Prevalues

| Dist∀α.τ→τ 〈p〉 | Dist∀α.τ→τ 〈λα p〉 | (G
τ→ G)〈p〉

| Distϕ⇒τ→τ 〈p〉 | Distϕ⇒τ→τ 〈λ(c : ϕ) p〉
| Dist∀α.(τ∗τ)〈p〉 | Dist∀α.(τ∗τ)〈λα p〉 | (G ∗G)〈p〉
| Distϕ⇒(τ∗τ)〈p〉 | Distϕ⇒(τ∗τ)〈λ(c : ϕ) p〉

v ::= p | λ(x : τ) v | (v, v) | λα v | λ(c : ϕ) v | Topτ 〈v〉 Values

C ::= λ(x : τ) [] | [] M |M [] | ([],M) | (M, []) | [].1 | [].2 | P Reduction contexts

P ::= λα [] | [] τ | G〈[]〉 | λ(c : ϕ) [] | []{G} Retyping contexts

Figure 7: System Fι: values and reduction contexts

RedContextBeta

M β N

C[M] β C[N]

RedContextIota

M ι N

C[M] ι C[N]

RedTerm

(λ(x : τ) M) N β M [x← N]
RedFirst

(M,N).1 β M

RedSecond

(M,N).2 β N
RedType

(λα M) τ ι M [α← τ]
RedCoer

(λ(c : ϕ)M){G} ι M [c← G]

RedCoerArrow

(G1
τ→ G2)〈λ(x : σ) M〉 ι λ(x : τ) G2〈M [x← G1〈x〉]〉

RedCoerDistTypeArrow

Dist∀α.τ ′→σ′〈λα λ(x : τ) M〉 ι λ(x : τ) λα M

RedCoerDistCoerArrow

Distϕ
′⇒
τ ′→σ′〈λ(c : ϕ) λ(x : τ) M〉 ι λ(x : τ) λ(c : ϕ) M

RedCoerProd

(G1 ∗G2)〈(M,N)〉 ι (G1〈M〉, G2〈N〉)

RedCoerDistTypeProd

Dist∀α.(τ ′∗σ′)〈λα (M,N)〉 ι (λα M,λα N)

RedCoerDistCoerProd

Distϕ
′⇒

(τ ′∗σ′)〈λ(c : ϕ) (M,N)〉 ι (λ(c : ϕ) M,λ(c : ϕ) N)
RedCoerDot

♦τ 〈M〉 ι M

RedCoerFill

(P [G])〈M〉 ι P [G〈M〉]

Figure 8: Reduction rules for Fι

reduction contexts P , called retyping reduction contexts: a term M placed in a retyping reduction
context is just a retyping of M , i.e. a term that behaves as M but possibly with another type.

Reduction rules are de�ned on Figure 8. We have indexed the reduction rules so as to dis-
tinguish between β-steps with computational content (RedTerm, RedProjFirst, and RedProj-

Second), that are preserved after erasure, and ι-steps (RedType) that become equalities after
erasure. We write βι for the union of β and ι.

Hence, Rule RedContext is split into two rules, so as to preserve the index of the premise.
The only β-redexes are RedTerm, RedProjFirst, and RedProjSecond; all other reductions are
ι-reductions. Rule RedType is type reduction (a ι-reduction). The �rst six rules cover System
F. Notice that RedContext allows all possible contexts. Hence, there is no particular reduction
strategy and a call-by-value evaluation would be a particular case of reduction.

Rule RedCoer is the counterpart of β-reduction for coercion applicationM{G}. It only reduces
a term applied to a coercion; a coercion applied to a coercion is a coercion and is not reduced
directly, but only when it is applied to a term so that rule RedCoerCoerApp eventually applies.

RR n° 7587

On the Power of Coercion Abstraction 13

All other rules reduce the application G〈M〉 of a coercion G to a term M , which plays the role
of a destructor: both G and M must be su�ciently evaluated before it reduces�except when G
is the opaque coercion or a variable since Topτ 〈v〉 and c〈v〉 are values.

Other coercion nodes are all constructors. We thus have one rule for each possible shape of G.
The most interesting rules are for basic coercions:

� When G is an arrow coercion G1
τ→ G2 and M is a function λ(x : σ) M , Rule RedCoerAr-

row reduces the application by pushing G1 on all occurrences of x in M and G2 outside of
M . This changes the type of the parameter x from σ to τ , hence the need for the annotation
τ on arrow coercions.

� When G is a distributivity coercion Dist∀α.τ ′→σ′ and M is a polymorphic function λα λ(x :
τ) M , Rule RedCoerDistTypeArrow reduces the application to λ(x : τ) λα M by ex-
changing the type and value parameters; this is sound since α cannot be free in τ .

� When G is a distributivity coercion Distϕ
′⇒
τ ′→σ′ and M is a coercion abstraction followed

by a value abstraction λ(c : ϕ) λ(x : τ) M , Rule RedCoerDistCoerArrow reduces the
application to λ(x : τ) λ(c : ϕ) M by exchanging the coercion and value parameters.

Notice that as in the previous rule, the type annotation on Dist and the parameters need
not be identical since reduction does not assume that terms are well-typed.

� When G is a product coercion (G1∗G2) andM is a pair (M,N), Rule RedCoerProd reduces
the application by pushing G1 on M and G2 on N .

� When G is a distributivity coercion from a forall on a product, Dist∀α.(τ ′∗σ′), and M is a
polymorphic product λα (M,N), Rule RedCoerDistTypeProd reduces the application by
exchanging the type and pair construct to (λα M,λα N).

� When G is a distributivity coercion Distϕ
′⇒

(τ ′∗σ′) and M is a coercion abstraction followed by a
product λ(c : ϕ) (M,N), Rule RedCoerDistCoerProd similarly exchanges the parameters
to (λ(c : ϕ) M,λ(c : ϕ) N).

The remaining cases for G can be factored as P [G′]. Rule RedCoerFill �lls G′ with M , trans-
forming P [G′]〈M〉 into P [G′〈M〉]. Notice that the two occurrences of P are di�erent abstract
nodes on each side of the rule�a coercion on the left-hand side and a term on the right-hand side.
Rule RedCoerFill is actually a meta-rule that could be expanded into, and should be understood
as, the following �ve di�erent rules:

(λα G)〈M〉 ι λα (G〈M〉) RedCoerTypeLam

(Gτ)〈M〉 ι (G〈M〉) τ RedCoerTypeApp

(G2〈G1〉)〈M〉 ι G2〈G1〈M〉〉 RedCoerCoer

(λ(c : ϕ) G)〈M〉 ι λ(c : ϕ) (G〈M〉) RedCoerCoerLam

(G1{G2})〈M〉 ι (G1〈M〉){G2} RedCoerCoerApp

The use of the meta-rule emphasizes the similarity between all �ve cases; it is also more concise.
For example, the application G1{G2} of a coercion abstraction G1 to a coercion G2 is only

reduced when it is further applied to a term M (as other complex coercions), by �rst wrapping
elements of G around M (two �rst steps below) so that Rule RedCoer can �nally �re (last step):

((λ(c : τ . σ)G){G′})〈M〉 ι ((λ(c : τ . σ)G)〈M〉){G′}
 ι (λ(c : τ . σ) (G〈M〉)){G′}
 ι (G〈M〉)[c← G′]

The reduction rules for System Fη are obtained by removing rules RedCoer, RedCoerCoer-
Lam, RedCoerCoerApp, RedCoerDistCoerArrow, and RedCoerDistCoerProd

RR n° 7587

On the Power of Coercion Abstraction 14

Optional reduction rules Our presentation of Fι could be extended with additional reduction
rules for arrow, distributivity and product coercions such as:

(Dist∀α.τ ′→σ′〈M〉) N ρ ι M ρ N (Dist∀α.τ ′→σ′〈λα M〉) N ι λα M N

(Distϕ
′⇒
τ ′→σ′〈M〉) N G ι M G N (Distϕ

′⇒
τ ′→σ′〈λ(c : ϕ) M〉) N ι λ(c : ϕ) M N

RedCoerArrowApp

((G1
τ→ G2)〈M〉) N ι G2〈M (G1〈N〉)〉

((G1 ∗G2)〈M〉).1 ι G1〈M.1〉 ((G1 ∗G2)〈M〉).2 ι G2〈M.2〉

(Dist∀α.(τ ′∗σ′)〈M〉).1 ρ ι (M ρ).1 (Dist∀α.(τ ′∗σ′)〈M〉).2 ρ ι (M ρ).2

(Dist∀α.(τ ′∗σ′)〈λα M〉).1 ι λα M.1 (Dist∀α.(τ ′∗σ′)〈λα M〉).2 ι λα M.2

(Distϕ
′⇒

(τ ′∗σ′)〈M〉).1{G} ι (M{G}).1 (Distϕ
′⇒

(τ ′∗σ′)〈M〉).2{G} ι (M{G}).2

(Distϕ
′⇒

(τ ′∗σ′)〈λ(c : ϕ) M〉).1 ι λ(c : ϕ) M.1 (Distϕ
′⇒

(τ ′∗σ′)〈λ(c : ϕ) M〉).2 ι λ(c : ϕ) M.2

However, this narrows the set of values and reestablishing progress would require binding coercions,
as for Fλι described in �4, which are technically more involved. For sake of simplicity, the current
presentation has fewer, but su�ciently many, reduction paths. To better understand why we need
binding coercions, let's forget about pairs and focus on arrows. The rule RedCoerArrowApp is
telling us that (G1

τ→ G2)〈M〉 behaves like a arrow constructor, since when it is under the arrow
destructor (which is the application node) they reduce. This morally means that (G1

τ→ G2)〈M〉
behaves like λ(x : τ) M ′�actually this can be easily understood after rei�cation (Section 3.3). This
correspondence implies that we should de�ne an additional reduction rule with (G1

τ→ G2)〈M〉
everywhere we previously had a λ(x : τ) M ′, and in particular in RedCoerDist. So we have to
de�ne the reduction of Dist∀α.τ ′′→σ′′〈λα (G1

τ→ G2)〈M〉〉 where Γ, α `M : τ ′ → σ′, Γ, α ` G1 : τ .τ ′,
and Γ, α ` G2 : σ′ . σ. We would like to say it reduces to (G1

τ→ (λα G2))〈M〉 but we need the
λα to bind additionally in both G1 and M .

2.4 Examples

Let us �rst see examples in the Fη subset. Retyping functions in Fη allow for the commutation
of quanti�ers and removal of useless quanti�ers. They also let terms have more principal types.
For example, in System F, the S-combinator λx.λy.λz.x z (y z) can be given the two incomparable
types:

∀α.∀β.∀γ. (α→ β → γ)→ (α→ β)→ α→ γ

(∀α. α→ α)→ (∀α. α→ α)→ (∀α. α→ α)→ (∀α. α→ α)

However, the former type is more general as it can be coerced to the latter (already in Fη), using
three η-expansions. This example does not use distributivity, but the following example, still in
Fη, does. (In the examples, we use type constructors List and D, which we assume to be covariant.)
The map function has type:

∀α.∀β. (α→ β)→ List α→ List β (1)

It can also be given the type

(∀α. α→ Dα)→ ∀α. List (Dα)→ List (D(Dα)) (2)

RR n° 7587

On the Power of Coercion Abstraction 15

for some type constructor D, using the following coercion, which is already typable in Fη:(
(♦ → λα ♦ (Dα))〈Dist∀〉

)
〈λα (♦ α→ ♦)〈♦ α (Dα)〉〉

Indeed, applying the coercion λα (♦ α→ ♦)〈♦ α (Dα)〉 turns a term of type (1) into one of type:

∀α. (∀α. α→ Dα)→ List (α)→ List (Dα)) (3)

which in turn (♦ → λα ♦ (Dα))〈Dist∀〉 coerces to type (2). This example also illustrates the
low-level nature of the language of coercions, to which we will come back in �4.

The last two examples illustrate coercion abstraction. We de�ne a function �rst, inspired from
F<:, that implements the �rst projection for non-empty tuples of arbitrary length. Tuples are
encoded as chained pairs ending with >. The function �rst

λβ λα λ(c : α . (β ∗ >))λ(x : α) (c〈x〉).1

of type ∀β.∀α. (α . (β ∗ >)) ⇒ α → β abstracts over a coercion c from arbitrary tuples to the
singleton tuple. It can be applied to any non-zero tuple by passing the appropriate coercion. (In
this example, subtyping could be encoded with just polymorphism instead of coercion abstration,
but this is not true in general.)

The other example of coercion abstraction, inspired from MLF, delays the instantiation of a
call to the polymorphic function choose of type ∀γ. γ → γ → γ, say σch, when given itself as an
argument. Let chch be λγ λ(c : σch . γ) choose γ (c〈choose〉) of type ∀γ. (σch . γ) ⇒ γ → γ. We
may then pass chch the function plus of type int→ int→ int, say σplus. This application is written
(chch σplus){♦σch int} plus and has type σplus.

3 Properties of Fι

In this section, we show that Fι is well-behaved: it has the subject reduction property and strongly
normalizes; moreover, there is a forward simulation between terms of Fι and their coercion erasure.
Hence, coercions do not really contribute to the reduction. However, coercions are not erasable as
they may sometimes appear in wedges and block the reduction.

The termination of Fι is proved by reifying proof terms as plain System-F terms in �3.3, which
shows that the dynamic semantics of proof-terms is in fact derivable. Unfortunately, in System F,
one cannot distinguish between terms that are rei�cation of proof terms and terms that compute.
We then present the retyping function view of coercions, which is much closer to the rei�ed
approach in System F. We may regain this disjunction in Fλι , which is the presentation of Fι as
retyping functions (�4). Terms of Fλι may still be rei�ed into System F, but the rei�cation is a
so simple transformation that Fλι can be seen almost (but not quite) as an annotated version of
System F.

3.1 Soundness

Type soundness of Fι follows as usual from the subject reduction and progress lemmas. The proof
of subject reduction uses substitution lemmas for terms, types, and coercions, which in turn use
weakening. The proof is easy because coercions are explicit. So the reduction rules actually are
the proof.

De�nition 1 (Valid Extension). A valid extension of a well-formed context Γ is a well-formed
context Γ′ that contains Γ (i.e. as it extends Γ as a partial function).

Lemma 2 (Extract Environment). If Γ `M : τ , Γ ` G : ϕ, or Γ ` τ holds, then Γ ` ok.

Lemma 3 (Weakening). If Γ′ is a valid extension of Γ, then:

1. If Γ ` τ holds, then Γ′ ` τ holds.

RR n° 7587

On the Power of Coercion Abstraction 16

dαe = α
dτ → σe = dτe → dσe
d(τ ∗ σ)e = (dτe ∗ dσe)
d∀α. τe = ∀α. dτe
dϕ⇒ τe = dϕe → dτe
d>e = ∀α. (∀β. β → α)→ α

dτ . σe = dτe → dσe

dxe = x
dλ(x : τ) Me = λ(x : dτe) dMe

dM Ne = dMe dNe
d(M,N)e = (dMe, dNe)
dM.1e = dMe.1
dM.2e = dMe.2

dλα Me = λα dMe
dM τe = dMe dτe
dG〈M〉e = dGe dMe

dλ(c : ϕ) Me = λ(xc : dϕe) dMe
dM{G}e = dMe dGe

d∅e = ∅
dΓ, Be = dΓe, dBe
dαe = α

d(x : τ)e = (x : dτe)
d(c : ϕ)e = (xc : dϕe)

dce = dxce
d♦τe = dλ(x : τ) xe
dTopτe = dλ(y : τ) λα λ(x : ∀β. β → α) x τ ye

dG1
τ→ G2e = dλ(y : dom(G1

τ→ G2)) λ(x : τ) G2〈y (G1〈x〉)〉e
dDist∀α.τ→σe = dλ(y : dom(Dist∀α.τ→σ)) λ(x : τ) λα y α xe
dDistϕ⇒τ→σe = dλ(y : dom(Distϕ⇒τ→σ)) λ(x : τ) λ(c : ϕ) y{c} xe
d(G1 ∗G2)e = dλ(y : dom(G1 ∗G2)) (G1〈y.1〉, G2〈y.2〉)e
dDist∀α.(τ∗σ)e = dλ(y : dom(Dist∀α.(τ∗σ))) (λα (y α).1, λα (y α).2)e
dDistϕ⇒(τ∗σ)e = dλ(y : dom(Distϕ⇒(τ∗σ))) (λ(c : ϕ) (y{c}).1, λ(c : ϕ) (y{c}).2)e
dP [G]e = dλ(x : dom(G)) P [G〈x〉]e

Figure 9: Rei�cation of Fι into System F

2. If Γ `M : τ holds, then Γ′ `M : τ holds.

3. If Γ ` G : ϕ holds, then Γ′ ` G : ϕ holds.
(Proof p. 50)

Lemma 4 (Type Substitution). If Γ ` ρ holds and θ is [α← ρ], we have:

1. If (x : τ) ∈ Γ, α,Γ′ holds, then (x : τθ) ∈ Γ,Γ′θ holds.

2. If (c : ϕ) ∈ Γ, α,Γ′ holds, then (c : ϕθ) ∈ Γ,Γ′θ holds.

3. If β ∈ dom(Γ, α,Γ′) holds and α 6= β, then β ∈ dom(Γ,Γ′θ) holds.

4. If Γ, α,Γ′ ` ok holds, then Γ,Γ′θ ` ok holds.

5. If Γ, α,Γ′ ` τ holds, then Γ,Γ′θ ` τθ holds.

6. If Γ, α,Γ′ `M : τ holds, then Γ,Γ′θ `Mθ : τθ holds.

7. If Γ, α,Γ′ ` G : ϕ holds, then Γ,Γ′θ ` Gθ : ϕθ holds.
(Proof p. 50)

Lemma 5 (Extract Type). The following assertions hold:

1. If Γ `M : τ holds, then Γ ` τ holds.

2. If Γ ` G : ϕ holds, then Γ ` ϕ holds.
(Proof p. 50)

Lemma 6 (Term Substitution). If Γ ` N : ρ holds, then:

RR n° 7587

On the Power of Coercion Abstraction 17

1. If Γ, x : ρ `M : τ holds, then Γ `M [x← N] : τ holds.

2. If Γ, x : ρ ` G : ϕ holds, then Γ ` G[x← N] : ϕ holds.

3. If Γ, x : ρ ` τ holds, then Γ ` τ holds.
(Proof p. 50)

Lemma 7 (Coercion Substitution). If Γ ` G′ : ϕ′ holds, then:

1. If Γ, c : ϕ′ `M : τ holds, then Γ `M [c← G′] : τ holds.

2. If Γ, c : ϕ′ ` G : ϕ holds, then Γ ` G[c← G′] : ϕ holds.

3. If Γ, c : ϕ′ ` τ holds, then Γ ` τ holds.
(Proof p. 50)

Proposition 8 (Subject Reduction). If Γ `M : τ and M βι N hold, then Γ ` N : τ holds.
(Proof p. 50)

The proof of progress is standard, using the classi�cation lemma to determine the shape of values
from the shape of their types. Under a strong reduction strategy, the classi�cation of values is
stated as follows:

Lemma 9 (Classi�cation). If Γ ` v : τ holds, then either v is a prevalue p or:

1. If τ is of the form τ1 → τ2, then v is of the form λ(x : τ ′) v′.

2. If τ is of the form (τ1 ∗ τ2), then v is of the form (v1, v2).

3. If τ is of the form ∀α. τ ′, then v is of the form λα v′.

4. If τ is of the form ϕ⇒ τ ′, then v is of the form λ(c : ϕ′) v′.

5. If τ is of the form >, then v is of the form Topτ 〈v′〉.
(Proof p. 51)

Proposition 10 (Progress). If Γ `M : τ holds, then either M is a value or M reduces.
(Proof p. 51)

3.2 Termination of reduction

The termination of reduction for Fι can be piggybacked on the termination of reduction in System
F: following Manzonetto and Tranquilli [2010], we show a forward simulation between Fι and
System F, by translating Fι into System F so that every reduction step in Fι is simulated by at
least one reduction step in System F.

3.3 Rei�cation of Fι in System F

There is indeed a natural translation of Fι into System F obtained by reifying coercions as actual
computation steps: even though we ultimately erase ι-steps, we do not actually need to do so, and
on the contrary, we may see them as computation steps in System F.

Rei�cation is described on Figure 9. We write dMe for the rei�cation of M . Coercions of
coercion type τ . σ are rei�ed as functions of type τ → σ. Hence, a coercion abstraction λ(c :
τ . σ) M is rei�ed as a higher-order function λ(xc : dτe → dσe) dMe. A coercion variable c is
rei�ed as a term variable xc (we assume an injective mapping of coercion variables to reserved
term variables). Thus, the type (τ . σ) ⇒ ρ of a term abstracted over a coercion is translated
into the type (dτe → dσe) → dρe of a higher-order function. Other type expressions are rei�ed
homomorphically. The application of a coercion to a term and the application of a term to a
coercion are both rei�ed as applications.

RR n° 7587

On the Power of Coercion Abstraction 18

The remaining cases are the translation of coercions G, which are all done in two steps: we �rst
translate G into some Fι-term performing η-expansions to transform a coercion from τ to σ into
a function from τ to σ. For atomic coercions (variables, identity, or distributivity), the result of
this step is in the System-F subset of Fι. However, for complex coercions, the result still contains
inner coercions. Hence, in the second step, we recursively translate the result of the �rst step.
This translates types and residual coercions. Notice that the �rst step may introduce applications
of coercions to terms, which are then turned into applications of terms to terms during the second
step.

The translation of P [G] covers �ve subcases, one for each form of P . Here as in the reduction
rules, the two occurrences of P are di�erent abstract nodes since P is a coercion on the left-hand
side and a term on the right-hand side.

The translation uses an auxiliary predicate dom that computes the domain of a coercion: the
domain of a coercion G in environment Γ is the unique type τ such that Γ ` G : τ . σ for some
type σ. This cannot be computed locally. Hence, we assume that terms of Fι have been previously
typechecked and all coercions have been annotated with their domain type. Alternatively, we can
de�ne the rei�cation as a translation of typing derivations. We actually use such a translation to
show that rei�cation preserves well-typedness.

Proposition 11 (Well-typedness of rei�cation). The following assertions hold:

1. If Γ `M : τ holds, then dΓe ` dMe : dτe holds.

2. If Γ ` G : ϕ holds, then dΓe ` dGe : dϕe holds.

3. If Γ ` τ holds, then Γ ` dτe holds.

4. If Γ ` ok holds, then dΓe ` ok holds.

Proof. The translation of typing derivations can be easily deduced from Figure 9 since we are
explicitly typed. To prove each assertion we proceed by induction on its judgment. For each
typing rule we just verify that the translated derivation is valid in System F using induction
hypothesis.

It is easy to verify that reduction in Fι can be simulated in the translation, which implies the
termination of reduction in Fι.

Lemma 12 (Forward simulation). If Γ `M : τ holds, then:

1. If M β N , then dMe dNe;

2. If M ι N , then dMe + dNe.
(Proof p. 53)

Corollary 13 (Termination). Reduction in Fι is terminating.

Proof. Assume that M is well-typed in Fι. By Lemma 11, dMe is well-typed in System F , hence
the length of reduction sequences starting with dMe in System F is bounded by some integer N .
By Lemma 12, N is also a bound to the length of reduction sequence starting with M in Fι.

3.4 Con�uence

Reduction in Fι is allowed in any term-context. Since coercions do not contain terms and coercions
are never reduced alone, we may equivalently allow reduction in all coercion contexts, since no
rule will ever apply. Hence, reduction in Fι is a rewriting system.

An analysis of reduction rules in Fι shows that there are no critical pairs. Hence, the reduction
is weakly con�uent. Since reduction is also terminating, it is con�uent.

Corollary 14 (Con�uence). Reduction in Fι is con�uent.

RR n° 7587

On the Power of Coercion Abstraction 19

Proof. There is no critical pairs in Fι. Rule RedCoerFill cannot be part of a critical pair because
its left-hand side is of the form P [W]〈M〉 and reduction contexts do not allow reduction in contexts
of the form []〈M〉. The left-hand sides of all other rules start with a destructor and do not contain
any other destructor underneath� destructors are term, type, and coercion applications (M M ,
M τ , and M{G}), term projections (M.1 and M.2), and term coercion (G〈M〉). Thus, there is
no opportunity for superposition.

Because reduction is permitted in any term context, it is a rewriting system. Hence, the
reduction in Fι is locally con�uent. Because it is terminating (Lemma 13), it is con�uent (Newman's
lemma).

In fact, the relation ι alone is con�uent.

Lemma 15. If both M ?
ι M1 and M ?

ι M2 hold, then there exists a term N such that
M1 ?

ι N and M2 ?
ι N .

Moreover, the reduction β and ?
ι commute:

Lemma 16. If M β M1 and M ι M2 hold, then there is a term N such that M1 ?
ι N and

M2 β N .

3.5 Forward simulation

Coercion erasure sends terms of Fι into the (untyped) λ-calculus. It also induces a simulation from
the reduction in Fι by the reduction in the λ-calculus, where ι-steps becomes equalities.

Lemma 17 (Forward simulation). If Γ `M : τ holds, then:

1. If M β N , then bMc bNc.

2. If M ι N , then bMc = bNc.
(Proof p. 54)

Unfortunately, the backward simulation fails. The wedge λ(c : τ → τ . τ → τ)λ(y : τ) c〈λ(x :
τ) x〉 y is a well-typed closed value in Fι while its erasure λy.(λx.x) y β-reduces to λy.y.

To recover bisimulation, the de�nition of the language must be adjusted so that wedge con�g-
urations cannot appear in a reduction context. This observation leads to two opposite solutions,
which we present in �5 and �7.

4 Coercions as retyping functions: Fλι

While the rei�cation of Fι into System F carries good intuitions about what coercions really are,
it lacks the ability to distinguish coercions from expressions with computational content. There
is an alternative presentation of Fι, called Fλι , that maintains the distinction between coercions
and expressions while remaining closer to the rei�ed form of coercions: Fλι is mainly a coercion
decoration of System F. In this sense, it can be seen as an explicit version (with pairs and coercion
abstraction) of Mitchell's presentation of Fη as System F with retyping functions.

The main di�erence is that coercions are directly built as retyping functions in Fλι , using the
constructs of the λ-calculus instead of the combinator-like coercion language of Fι. This makes it
easier to write coercions manually and it is thus more appealing from a practical point of view.

The rei�cation of Fι into System F can be rede�ned as the composition of a translation from
Fι to Fλι that keeps the distinction between coercions and terms and the �nal erasing of this
di�erenceobtained by mapping all abstraction-like nodes and application-like nodes of Fλι to term
abstractions and applications of System F. The �rst part, along with its inverse, de�ne translations
between Fι and Fλι that preserves well-typedness and coercion erasure. Although we have not
proved it, Fι and Fλι should be the same up to their representation of coercions.

Unfortunately, typechecking in Fλι is more involved than in Fι, as we need to typecheck coercions
as binding expressions.

RR n° 7587

On the Power of Coercion Abstraction 20

x, y term
c coercion
α, β type
φ hole

M,N ::= x | λ(x : τ)M |MM | (M,M) |M.1 |M.2 terms

| HM | λαM |M τ | Topτ M
| λ(c : ϕ)M |M H

| λ(φ : τ)G {φ←M G} | (G,G){φ, φ←M}
G ::= φ | H G | λαG | Gτ | Topτ G open coercions

| λ(c : ϕ)G | GH
| λ(φ : τ)G {φ← GG} | (G,G){φ, φ← G}

H ::= c | λ(φ : τ)G close coercions

τ, σ, ρ ::= α | τ → τ | (τ ∗ τ) | ∀α.τ | ϕ⇒ τ | > types

ϕ ::= τ . τ coercion types

Γ ::= ∅ | Γ, x : τ | Γ, α | Γ, c : ϕ expression environments

∆ ::= ∅ | α,∆ | c : ϕ,∆ coercion type environments

Z ::= � | ∆ ? (φ : τ) coercion types

Figure 10: System Fλι : syntax

The reason is that coercions are not exactly λ-expressions. Having coercions as λ-expressions
would require an even more elaborated type system, as it would have to ensure that coercions are
η-expansions, which means maintaining a stack of the currently η-expanded variables to remember
closing them. For example, consider typechecking the retyping context λ(x : τ) λα []α x that
permutes term abstraction and type abstraction (known as distributivity): when typechecking the
subterm λα []α x, we must verify that it is the body of an η-expansion with the variable x. We
initially followed this approach and it was cumbersome; moreover, it did not scale to products as
the type system must also ensure that two sub-derivation trees have the same coercion erasure.

Instead, we make the η-expansion of a termM an atomic construct, namely λ(φ1 : τ)G2 {φ2 ←M G1}
where φ's stand for hole variables. This can be interpreted as λ(x : τ) G′2[M G′1[x]] which is the
η-expansion ofM (i.e. λx.M x) using coercionG1 (interpreted asG′1) around the argument and co-
ercion G2 (interpreted as G′2) around the result. Here G2 may bind coercion or hole variables that
are used inside M and G1. Hence, the type system must keep track of those variables with their
types when typechecking G2 and extend the typing environment accordingly when typechecking
M and G1.

We presented Fι rather than its more intuitive version Fλι to avoid the additional complexity in
the type system; moreover, it is not obvious how to extend Fλι with projectors, as discussed in �9.

4.1 De�nition of Fλ
ι

Syntax The syntax of Fλι is described on Figure 10. The main di�erences between Fι and Fλι is
the replacement of distributivity and both arrow and product congruence rules with more general
constructs based on η-expansion (last two forms of expressions). However, there are also a few
changes in the presentation. We introduce a new kind of variables, called hole variables and
written φ, to name the hole of coercions�when seen as retyping contexts. The main reason for
naming the holes in Fλι is to bring the representation of coercions closer to their rei�ed form, which
is abstracted over their unique hole. This induces changes in the syntax of expressions. We also
distinguish between close and open coercions, respectively written with letter H and G, which
can also be respectively understood as retyping functions and retyping contexts.

RR n° 7587

On the Power of Coercion Abstraction 21

LExprTermVar

` Γ Γ(x) = τ

Γ ` x : τ

LExprTermLam

Γ, x : τ `M : σ

Γ ` λ(x : τ)M : τ → σ

LExprTermApp

Γ `M : τ → σ Γ ` N : τ

Γ `M N : σ

LExprTermPair

Γ `M : τ Γ ` N : σ

Γ ` (M,N) : (τ ∗ σ)

LExprTermFst

Γ `M : (τ ∗ σ)

Γ `M.1 : τ

LExprTermSnd

Γ `M : (τ ∗ σ)

Γ `M.2 : σ

LExprHoleVar

Γ ` τ
Γ; ∅ ? (φ : τ) ` φ : τ

LExprHoleApp

Γ ` H : τ . σ Γ;Z `W : τ

Γ;Z ` HW : σ

LExprTypeLam

Γ, α;Z `W : τ

Γ; (α, ∅), Z ` λαW : ∀α.τ

LExprTypeApp

Γ;Z `W : ∀α.σ Γ ` τ
Γ;Z `W τ : σ[α← τ]

LExprTop

Γ;Z `W : τ

Γ;Z ` Topτ W : >

LExprCoerLam

Γ, c : ϕ;Z `W : ρ

Γ; (c : ϕ, ∅), Z ` λ(c : ϕ)W : ϕ⇒ ρ

LExprCoerApp

Γ;Z `W : ϕ⇒ ρ Γ ` H : ϕ

Γ;Z `W H : ρ

LExprEtaArr

Γ; ∆ ? (φ2 : σ′) ` G2 : σ Γ,∆;Z `W : τ ′ → σ′ Γ,∆; ∆′ ? (φ1 : τ) ` G1 : τ ′ Γ ` τ
Γ; ∆, Z ` λ(φ1 : τ)G2 {φ2 ←W G1} : τ → σ

LExprEtaPrd

Γ; ∆ ? (φ1 : τ ′) ` G1 : τ Γ; ∆ ? (φ2 : σ′) ` G2 : σ Γ,∆;Z `W : (τ ′ ∗ σ′)
Γ; ∆, Z ` (G1, G2){φ1, φ2 ←W} : (τ ∗ σ)

LExprCoerVar

` Γ Γ(c) = ϕ

Γ ` c : ϕ

LExprHoleLam

Γ; ∆ ? (φ : τ) ` G : σ Γ ` τ
Γ ` λ(φ : τ)G : τ . σ

Figure 11: System Fλι : typing rules

Terms are presented in four groups (each one on a separate line). The �rst group corresponds
to constructs of the λ-calculus. The second group corresponds to coercion application, System-
F coercion constructs, and coercion to top. Terms of these two groups are as in Fι up to minor
di�erences. The third group corresponds to coercion abstraction. The last group describes the new
η-expansion coercion forms: λ(φ1 : τ)G2 {φ2 ←M G1} for arrows and (G1, G2){φ1, φ2 ←M} for
products. The brace notation suggests the substitution of hole variables by an expression. In both
terms variables φ1 is bound in G1 (but not in G2) and variable φ2 is bound in G2 (but not in G1).
As suggested by the notation these are let-like bindings except for φ1 in λ(φ1 : τ)G2 {φ2 ←M G1},
which is λ-bound.

Coercions are in three groups. The �rst group corresponds to re�exivity, transitivity, System-F
coercion constructs, and coercion to top. The third group corresponds to coercion abstraction.
The last group describes the new η-expansion coercion forms.

Notice that there are four kinds of λ-abstractions, which can be immediately distinguished by
the syntactic class of the variable they bind: x is used for term abstraction, α for type abstraction,
c for coercion abstraction, and φ is used for hole abstraction. Correspondingly, there are four kind
of applications. There are all syntactically written by juxtaposition but can be distinguished as
follows: type application is M τ ; coercion application is W H; hole application HW ; and term
application MM being the default, where H is syntactically recognizable as it is either a coercion
variable c or a coercion abstraction λ(φ : τ)G.

We introduce a subset of environments, called a coercion type environment and written ∆,
that does not bind term variables, which is used in the static semantics to allow coercions to bind.
Notice however that ∆ is extended on the left, while Γ is extended on the right.

RR n° 7587

On the Power of Coercion Abstraction 22

LTypeVar

` Γ Γ(α)

Γ ` α

LTypeArrow

Γ ` τ Γ ` σ
Γ ` τ → σ

LTypeProduct

Γ ` τ Γ ` σ
Γ ` (τ ∗ σ)

LTypeForall

Γ, α ` τ
Γ ` ∀α.τ

LTypeCoer

Γ ` ϕ Γ ` ρ
Γ ` ϕ⇒ ρ

LTypeTop

` Γ

Γ ` >

LEnvEmpty

` ∅

LEnvExpr

Γ ` τ x /∈ dom(Γ)

` Γ, x : τ

LEnvType

` Γ α /∈ dom(Γ)

` Γ, α

LEnvCoer

Γ ` ϕ c /∈ dom(Γ)

` Γ, c : ϕ

LDEnvEmpty

` ∅

LDEnvType

` ∆ α /∈ dom(∆)

` α,∆

LDEnvCoer

∅,∆ ` ϕ c /∈ dom(∆)

` c : ϕ,∆

Figure 12: System Fλι : well-formedness rules

Typing The static semantics, de�ned on Figure 11, is quite similar to the one of Fι. To factor
out typing rules, we use a new judgment Γ;Z `W : σ where Z is either � or ∆ ? (φ : τ): when Z
is �, then W is a term M of type σ under Γ, whereas when Z is ∆ ? (φ : τ) then W is a coercion
G that may bind, retyping a term (bound to φ) of type τ under Γ,∆ into one of type σ under
Γ. For conciseness, we just write Γ ` M : τ instead of Γ;� ` M : τ . The notation ∆, Z, de�ned
on Figure 13, is used for optional extension of coercion type bindings. These judgments could
be expanded into several more basic judgments by eliminating disjunctions on Z. We also de�ne
Γ ` H : ϕ to type close coercions.

For example, LExprTypeLam can be seen as the union of the two following rules (the �rst is
for terms and the second for coercions):

Γ, α `M : τ

Γ ` λαM : ∀α.τ
Γ, α; ∆ ? (φ : ϕ) ` G : τ

Γ;α,∆ ? (φ : ϕ) ` λαG : ∀α.τ

However, the use of ∆ cannot be eliminated in typing rules. Consider for example LExprEtaArr,
which becomes when Z is �:

LExprEtaArr

Γ; ∆ ? (φ2 : σ′) ` G2 : σ Γ,∆ `M : τ ′ → σ′ Γ,∆; ∆′ ? (φ1 : τ) ` G1 : τ ′ Γ ` τ
Γ ` λ(φ1 : τ)G2 {φ2 ←M G1} : τ → σ

The coercion G2 retypes a term φ2 of type σ′ under Γ,∆ into a term G2 of type σ under Γ;
this allows M and G1 to use both type and coercion variables that are bound in G2. We need
this expressiveness to encode distributivity. For example, Dist∀α.τ→σ in Fι is translated to λ(φ1 :
τ) (λα φ2) {φ2 ← (φα)φ1} in Fλι , which is only well-typed (and in particular well-scoped) if we
allow coercions to bind as described above.

Rules LExprEtaArr and LExprEtaProd are the two new typing rules in Fλι �for each of the
two new language constructs λ(z1 : τ)G2 {z2 ←W G1} and (G1, G2){z1, z2 ← W}, which apply
coercions in the η-expansions of terms (λ-abstractions and pairs, respectively). For instance,
λ(φ1 : τ)G2 {φ2 ←M G1} can be understood as λ(x : τ) G2[φ2 ← M G1[φ1 ← x]] which is the
coerced η-expansion of M , and similarly (G1, G2){φ1, φ2 ← M} can be understood as (G1[φ1 ←
M.1], G2[φ2 ←M.2]). However, while in the later case the η-expansion duplicatesM , the primitive
construct does not�it only shares the typechecking of G1 and G2 with the same coercion typing
context ∆.

Well-formedness rules for types and environments are de�ned in the obvious way on Figure 12.

Operational semantics Values and reduction contexts are de�ned on Figure 14; reduction
rules are given on both Figure 15, which are as in Fι, and Figure 16, which are just β-reduction

RR n° 7587

On the Power of Coercion Abstraction 23

∆,� = �

∆, (∆′ ? (φ : τ)) = (∆,∆′) ? (φ : τ)

Figure 13: System Fλι : coercion type extension

p ::= x | p v | p.1 | p.2 | c v | p τ | pH prevalues

v ::= p | λ(x : τ) v | (v, v) | λα v | λ(c : ϕ) v | Topτ v values

| λ(φ : τ)G {φ← pG} | (G,G){φ, φ← p}
C ::= λ(x : τ) [] | []M |M [] | ([],M) | (M, []) | [].1 | [].2 | P evaluation contexts

P ::= H [] | λα [] | [] τ | λ(c : ϕ) [] | []H | Topτ [] retyping contexts

| λ(φ : τ)G {φ← []G} | (G,G){φ, φ← []}

Figure 14: System Fλι : values and reduction contexts

LRedContextBeta

M β N

C[M] β C[N]

LRedContextIota

M ι N

C[M] ι C[N]

LRedTerm

(λ(x : τ)M)N β M [x← N]
LRedFirst

(M,N).1 β M

LRedSecond

(M,N).2 β N
LRedType

(λαM) τ ι M [α← τ]
LRedCoer

(λ(c : ϕ)M)H ι M [c← H]

LRedHole

(λ(φ : τ)G)M ι G[φ←M]

Figure 15: System Fλι : usual reduction rules

for the new η-expansion constructs. This can be seen by rei�cation into System F (de�ned in
Figure 17 below). For example, the rei�cation of Rule LRedEtaArrApp is:

(λ(x : dτe) dG2e[φ2 ← dMe dG1e[φ1 ← x]]) dNe dG2e[φ2 ← dMe dG1e[φ1 ← dNe]]

Another minor di�erence is that (λ(φ : τ)G)M is now reduced in one big step to G[φ ← M] in
rule LRedHole, instead of a sequence of smaller step-by-step reductions as in Fι. The advantage
is that after rei�cation, this will be a usual β-reduction, hence the mathematical substitution in
one big step. Notice that this substitution G[φ←M] has to convert all the P nodes between the
occurence of φ in G and the root of G. This was already happening in Fι, but in small step. Now,
because the hole substitution happens in one big step, we also rewrite the nodes along the path
to the hole in one big step.

Rules LRedEtaArrApp, LRedEtaArrEtaArr, LRedEtaPrdFst, LRedEtaPrdSnd, and LRe-
dEtaPrdEtaPrd are the missing rules of Fι.

4.2 Soundness

In order to prove subject reduction, we need the usual weakening and substitution lemmas, as
usual. We will only give the substitution lemma for hole variables since ∆ plays a particular role.
Other substitution lemmas and weakening lemmas are as usual. Their proofs are routine.

Lemma 18 (Hole substitution). If Γ; ∆ ? (φ : τ) ` G : σ and Γ,∆ `M : τ hold, then Γ ` G[φ←
M] : σ.

As usual, soundness follows from subject reduction and progress lemmas.

Proposition 19 (Subject Reduction). If Γ `M : τ and M βι N hold, then Γ ` N : τ holds.
(Proof p. 54)

Progress lemmas uses the following classi�cation of values.

RR n° 7587

On the Power of Coercion Abstraction 24

LRedEtaArrApp

(λ(φ1 : τ)G2 {φ2 ←M G1})N ι G2[φ2 ←M G1[φ1 ← N]]

LRedEtaArrLam

λ(φ1 : τ)G2 {φ2 ← (λ(x : τ ′)M)G1} ι λ(x : τ)G2[φ2 ←M [x← G1[φ1 ← x]]]

LRedEtaArrEtaArr

λ(φ1 : τ)G2 {φ2 ← (λ(φ′1 : τ ′)G′2 {φ′2 ←M G′1})G1} ι λ(φ1 : τ)G2[φ2 ← G′2] {φ′2 ←M G′1[φ′1 ← G1]}

LRedEtaPrdFst

((G1, G2){φ1, φ2 ←M}).1 ι G1[φ1 ←M.1]
LRedEtaPrdSnd

((G1, G2){φ1, φ2 ←M}).2 ι G2[φ2 ←M.2]

LRedEtaPrdPair

(G1, G2){φ1, φ2 ← (M,N)} ι (G1[φ1 ←M], G2[φ2 ← N])

LRedEtaPrdEtaPrd

(G1, G2){φ1, φ2 ← ((G′1, G
′
2){φ′1, φ′2 ←M})} ι (G1[φ1 ← G′1], G2[φ2 ← G′2]){φ′1, φ′2 ←M}

Figure 16: System Fλι : eta-related reduction rules

Lemma 20 (Classi�cation of values). If Γ ` v : τ holds, then either v is a prevalue p or:

1. If τ is of the form τ1 → τ2, then v is either of the form λ(x : τ1) v′ or of the form λ(φ1 :
τ1)G2 {φ2 ← pG1}.

2. If τ is of the form (τ1 ∗ τ2), then v is either of the form (v1, v2) or (G1, G2){φ1, φ2 ← p}.

3. If τ is of the form ∀α.τ ′, then v is of the form λα v′.

4. If τ is of the form ϕ⇒ τ ′, then v is of the form λ(c : φ) v′.

5. If τ is of the form >, then v is of the form Topτ
′
v′.

Proposition 21 (Progress). If Γ `M : τ holds, then either M is a value or M reduces.
(Proof p. 54)

4.3 Con�uence

The new η-reduction rules introduce several critical pairs in Fλι each originating from one of the
following con�gurations:

(λ(φ1 : τ)G2 {φ2 ← (λ(x : τ ′) M)G1}) N

(λ(φ1 : τ)G2 {φ2 ← (λ(φ′1 : τ ′)G′2 {φ′2 ←M G′1})G1}) N

λ(φ1 : τ)G2 {φ2 ← (λ(φ′1 : τ ′)G′2 {φ′2 ← (λ(x : τ ′′) M)G′1})G1}

λ(φ1 : τ)G2 {φ2 ← (λ(φ′1 : τ ′)G′2 {φ′2 ← (λ(φ′′1 : τ ′′)G′′2 {φ′′2 ←M G′′1})G′1})G1}

(G1, G2){φ1, φ2 ← (G′1, G
′
2){φ′1, φ′2 ← (M,N)}}

(G1, G2){φ1, φ2 ← (M,N)}.1 (G1, G2){φ′1, φ′2 ← (M,N)}.2

(G1, G2){φ1, φ2 ← (G′1, G
′
2){φ′1, φ′2 ←M}}.1 (G1, G2){φ1, φ2 ← (G′1, G

′
2){φ′1, φ′2 ←M}}.2

(G1, G2){φ1, φ2 ← (G′1, G
′
2){φ′1, φ′2 ← (G′′1 , G

′′
2){φ′′1 , φ′′2 ←M}}}

For example, the �rst con�guration can be reduced with either LRedEtaArrLam or LRedE-
taArrApp leading to the following critical pair, which however converges in one step as described

RR n° 7587

On the Power of Coercion Abstraction 25

below:

(λ(φ1 : τ)G2 {φ2 ← (λ(x : τ ′) M)G1}) N

(λ(x : τ) G2[φ2 ←M [x← G1[φ1 ← x]]]) N G2[φ2 ← (λ(x : τ ′) M) G1[φ1 ← N]]

G2[φ2 ←M [x← G1[φ1 ← N]]]

LRedEtaArrLam

LRedTerm

LRedEtaArrApp

LRedTerm

Other con�gurations are similar.

4.4 Rei�cation into System F

The rei�cation, which is mainly decoration erasure, is de�ned on Figure 17. We reify a well-formed
type of Fλι to a well-formed type of System F. And we reify a well-typed expression to a well-typed
term in System F.

We have the following properties:

Lemma 22. The following assertions hold:

� If Γ `M : τ holds, then dΓe ` dMe : dτe holds.

� If Γ ` H : τ . σ holds, then dΓe ` dHe : dτe → dσe holds.

� If both Γ; ∆ ? (φ : τ) ` G : σ and dΓ,∆e ` M : dτe hold, then dΓe ` dGe[xφ ←M] : dσe
holds.

Notice that ∆ is absent in the last assertions. This is because ∆ is the environment when
typing φ (which becomes M) and is not used to type G or σ, but only φ and τ .

Lemma 23. If M βι N holds in F
λ
ι , then dMe + dNe holds.

One step is not translated to exactly one step because products η-expansion duplicates terms.
Using some parallel reduction, we might have a step to step translation.

4.5 Completeness

We show that Fι is complete wrt Fλι by de�ning a translation from Fλι expressions to Fι expressions,
that preserves coercion-erasure and typing�see �gures 18 and 19 for the translation of terms
and coercions, respectively. Types and environments remain the same. We use two translation
judgments: one for terms Γ `M : τ Γ ` M̂ : τ where the left side is a judgment in Fλι and the
right side is a judgment in Fι; and one for coercions Γ; ∆ ? (φ : τ) ` G : σ Γ ` Ĝ : ∀∆. τ . σ.
We write ∀∆. τ and λ∆ τ , and W ∆ in Fι for the folding of universal quanti�cation, λ-abstraction
and application over ∆, de�ned as follows:

∀∅. τ = τ
∀(α,∆). τ = ∀α.∀∆. τ

∀((c : ϕ),∆). τ = ϕ⇒ ∀∆. τ

λ∅ τ = τ
λ(α,∆) τ = λα λ∆ τ

λ((c : ϕ),∆) τ = λ(c : ϕ) λ∆ τ

W ∅ = W
W (α,∆) = (W α) ∆

W ((c : ϕ),∆) = (W{c}) ∆

We also omit type annotations when they can easily be rebuilt from context, in particular for
re�exivity ♦ and arrow congruence G1 → G2. We use two helper functions Dist∀∆.τ→σ and Dist∀∆.(τ∗σ)

to build sequences of distributivity coercions from a coercion type environment ∆, de�ned as
follows:

Dist∀∅.τ→σ = ♦τ→σ

Dist∀(α,∆).
τ→σ = Dist∀α.τ→∀∆. σ〈λα Dist∀∆.τ→σ〈♦ α〉〉

Dist∀((c:ϕ),∆).
τ→σ = Distϕ⇒τ→∀∆. σ〈λ(c : ϕ) Dist∀∆.τ→σ〈♦{c}〉〉

RR n° 7587

On the Power of Coercion Abstraction 26

dαe = α
dτ → σe = dτe → dσe
d(τ ∗ σ)e = (dτe ∗ dσe)
d∀α.τe = ∀α. dτe

d(τ . σ)⇒ ρe = (dτe → dσe)→ dρe
d>e = ∀α. (∀β. β → α)→ α

dxe = x
dλ(x : τ)Me = λ(x : dτe) dMe

dM Ne = dMe dNe
d(M,N)e = (dMe, dNe)
dM.1e = dMe.1
dM.2e = dMe.2

dφe = xφ
dλ(φ : τ)Ge = λ(xφ : dτe) dGe

dHW e = dHe dW e
dλαW e = λα dW e
dW τe = dW e dτe

dce = xc
dλ(c : τ . σ)W e = λ(xc : dτe → dσe) dW e

dW He = dW e dHe
dTopτ W e = λα λ(x : ∀β. β → α) x dτe dW e

dλ(φ1 : τ)G2 {φ2 ←W G1}e = dλ(x : τ)G2[φ2 ←W G1[φ1 ← x]]e
d(G1, G2){φ1, φ2 ←W}e = d(G1[φ1 ←W], G2[φ2 ←W])e

Figure 17: System Fλι : rei�cation

and
Dist∀∅.(τ∗σ) = ♦(τ∗σ)

Dist
∀(α,∆).
(τ∗σ) = Dist∀α.(∀∆. τ∗∀∆. σ)〈λα Dist∀∆.(τ∗σ)〈♦ α〉〉

Dist
∀((c:ϕ),∆).
(τ∗σ) = Distϕ⇒(∀∆. τ∗∀∆. σ)〈λ(c : ϕ) Dist∀∆.(τ∗σ)〈♦{c}〉〉

All the rules but CTermEtaArr, CCoerEtaArr, CTermEtaProd, and CCoerEtaProd are quite
easy to understand and retype. We prove that CTermEtaArr and CCoerEtaArr produce a well-
typed Fι term and coercion. The other cases are similar.

Lemma 24. Assume that Γ ` τ and Γ ` G2 : ∀∆. σ′ . σ and Γ,∆ `M : τ ′ → σ′ and Γ,∆ ` G1 :
∀∆′. τ . τ ′ hold. Then, Γ ` (♦ → G2)〈Dist

∀∆.
τ→σ′〈λ∆ ((G1〈λ∆′ ♦〉)→ ♦)〈M〉〉〉 : τ → σ also holds.

(Proof p. 55)

Lemma 25. Assume that Γ ` G2 : ∀∆. σ′ . σ and Γ,∆ ` G : ∀∆′′. ρ . τ ′ → σ′ and Γ,∆ `
G1 : ∀∆′. τ . τ ′ hold. Then Γ ` (♦ → G2)〈Dist

∀∆.
τ→σ′〈λ∆ ((G1〈λ∆′ ♦〉)→ ♦)〈G[� ← ♦ ∆]〉〉〉 :

∀(∆,∆′′). ρ . τ → σ also holds.
(Proof p. 55)

Remark The proofs of both lemmas rely on the fact that the notation Dist∀∆.τ→σ is total on ∆.
This is indeed the case in Fι. However, this means that if we were to extend Fι with an erasable
binder, we should add a distributivity coercion between this binder and any other type construct
(arrow and product until now) in order to preserve completeness. Without this guideline, it would
be quite easy to propose extensions of the language where completeness is lost.

4.6 Soundness

We show that Fι is sound wrt Fλι by de�ning a translation from Fι expressions to Fλι expressions
that preserves typings and coercion-erasure�see �gures 20, 21 and 22 for the translation of terms
and coercions, respectively.

RR n° 7587

On the Power of Coercion Abstraction 27

CTermTermVar

Γ ` ok Γ(x) = τ

Γ ` x : τ Γ ` x : τ

CTermTermLam

Γ, (x : τ) `M : σ Γ, (x : τ) ` M̂ : σ

Γ ` λ(x : τ) M : τ → σ Γ ` λ(x : τ) M̂ : τ → σ

CTermTermApp

Γ `M : τ → σ Γ ` M̂ : τ → σ

Γ ` N : τ Γ ` N̂ : τ

Γ `M N : σ Γ ` M̂ N̂ : σ

CTermTermPair

Γ `M : τ Γ ` M̂ : τ

Γ ` N : σ Γ ` N̂ : σ

Γ ` (M,N) : (τ ∗ σ) Γ ` (M̂, N̂) : (τ ∗ σ)

CTermTermFst

Γ `M : (τ ∗ σ) Γ ` M̂ : (τ ∗ σ)

Γ `M.1 : τ Γ ` M̂.1 : τ

CTermTermSnd

Γ `M : (τ ∗ σ) Γ ` M̂ : (τ ∗ σ)

Γ `M.2 : σ Γ ` M̂.2 : σ

CTermHoleApp

Γ ` H : τσ Γ ` Ĥ : τ . σ

Γ `M : τ Γ ` M̂ : τ

Γ ` HM : σ Γ ` Ĥ〈M̂〉 : σ

CTermTypeLam

Γ, α `M : τ Γ, α ` M̂ : τ

Γ ` λα M : ∀α. τ Γ ` λα M̂ : ∀α. τ

CTermTypeApp

Γ `M : ∀α. σ Γ ` M̂ : ∀α. σ Γ ` τ
Γ `M τ : σ[α← τ] Γ ` M̂ τ : σ[α← τ]

CTermTop

Γ `M : τ Γ ` M̂ : τ

Γ ` Topτ M : > Γ ` Topτ 〈M̂〉 : >

CTermEtaArr

Γ ` τ
Γ; ∆ ? (φ2 : σ′) ` G2 : σ Γ ` Ĝ2 : ∀∆. σ′ . σ

Γ,∆ `M : τ ′ → σ′ Γ,∆ ` M̂ : τ ′ → σ′

Γ,∆; ∆′ ? (φ1 : τ) ` G1 : τ ′ Γ,∆ ` Ĝ1 : ∀∆′. τ . τ ′

Γ ` λ(φ1 : τ)G2 {φ2 ←M G1} : τ → σ
Γ ` (♦ → Ĝ2)〈Dist∀∆.τ→σ′〈(λ∆ ((Ĝ1〈(λ∆′ ♦)〉)→ ♦)〈M̂〉)〉〉 : τ → σ

CTermEtaProd

Γ; ∆ ? (φ1 : τ ′) ` G1 : τ Γ ` Ĝ1 : ∀∆. τ ′ . τ
Γ; ∆ ? (φ2 : σ′) ` G2 : σ Γ ` Ĝ2 : ∀∆. σ′ . σ

Γ,∆ `M : (τ ′ ∗ σ′) Γ,∆ ` M̂ : (τ ′ ∗ σ′)
Γ ` (G1, G2){φ1, φ2 ←M} : (τ ∗ σ) Γ ` (Ĝ1 ∗ Ĝ2)〈Dist∀∆. (τ

′∗σ′)〈(λ∆ M̂)〉〉 : (τ ∗ σ)

CTermCoerLam

Γ, (c : τ . σ) `M : ϕ Γ, (c : τ . σ) ` M̂ : ϕ

Γ ` λ(c : τ . σ)M : (τ . σ)⇒ ϕ Γ ` λ(c : τ . σ) M̂ : (τ . σ)⇒ ϕ

CTermCoerApp

Γ `M : (τ . σ)⇒ ϕ Γ ` M̂ : (τ . σ)⇒ ϕ

Γ ` H : τσ Γ ` Ĥ : τ . σ

Γ `M H : ϕ Γ ` M̂{Ĥ} : ϕ

Figure 18: System Fλι : completeness for terms

RR n° 7587

On the Power of Coercion Abstraction 28

CCoerHoleVar

Γ ` τ
Γ; ∅ ? (φ : τ) ` φ : τ Γ ` ♦τ : τ . τ

CCoerHoleLam

Γ; ∆ ? (φ : τ) ` G : σ Γ ` Ĝ : ∀∆. τ . σ
Γ ` λ(φ : τ)G : τσ Γ ` Ĝ〈(λ∆ ♦τ)〉 : τ . σ

CCoerHoleApp

Γ ` H : τσ Γ ` Ĥ : τ . σ

Γ; ∆ ? (φ : ϕ) ` G : τ Γ ` Ĝ : ∀∆. ϕ . τ
Γ; ∆ ? (φ : ϕ) ` H G : σ Γ ` Ĥ〈Ĝ〉 : ∀∆. ϕ . σ

CCoerTypeLam

Γ, α; ∆ ? (φ : ϕ) ` G : τ Γ, α ` Ĝ : ∀∆. ϕ . τ
Γ; (α,∆) ? (φ : ϕ) ` λα G : ∀α. τ Γ ` λα Ĝ[� ← ♦ α] : ∀(α,∆). ϕ . ∀α. τ

CCoerTypeApp

Γ; ∆ ? (φ : ϕ) ` G : ∀α. σ Γ ` Ĝ : ∀∆. ϕ . ∀α. σ Γ ` τ
Γ; ∆ ? (φ : ϕ) ` Gτ : σ[α← τ] Γ ` Ĝ τ : ∀∆. ϕ . σ[α← τ]

CCoerTop

Γ; ∆ ? (φ : σ) ` G : τ Γ ` Ĝ : ∀∆. σ . τ
Γ; ∆ ? (φ : σ) ` Topτ G : > Γ ` Topτ 〈Ĝ〉 : ∀∆. σ .>

CCoerCoerVar

` Γ Γ(c) = τ . σ

Γ ` c : τσ Γ ` c : τ . σ

CCoerCoerLam

Γ, (c : τ . σ); ∆ ? (φ : ρ′) ` G : ϕ Γ, (c : τ . σ) ` Ĝ : ∀∆. ρ′ . ϕ
Γ; (c : τ . σ),∆ ? (φ : ρ′) ` λ(c : τ . σ)G : (τ . σ)⇒ ϕ

Γ ` λ(c : τ . σ) Ĝ[� ← ♦{c}] : ∀((c : τ . σ),∆). ρ′ . (τ . σ)⇒ ϕ

CCoerCoerApp

Γ; ∆ ? (φ : ρ′) ` G : (τ . σ)⇒ ϕ Γ ` Ĝ : ∀∆. ρ′ . (τ . σ)⇒ ϕ

Γ ` H : τσ Γ ` Ĥ : τ . σ

Γ; ∆ ? (φ : ρ′) ` GH : ϕ Γ ` Ĝ{Ĥ} : ∀∆. ρ′ . ϕ

CCoerEtaArr

Γ ` τ
Γ; ∆ ? (φ2 : σ′) ` G2 : σ Γ ` Ĝ2 : ∀∆. σ′ . σ

Γ,∆; ∆′′ ? (φ : ϕ) ` G : τ ′ → σ′ Γ,∆ ` Ĝ : ∀∆′′. ϕ . τ ′ → σ′

Γ,∆; ∆′ ? (φ1 : τ) ` G1 : τ ′ Γ,∆ ` Ĝ1 : ∀∆′. τ . τ ′

Γ; ∆,∆′′ ? (φ : ϕ) ` λ(φ1 : τ)G2 {φ2 ← GG1} : τ → σ
Γ ` (♦ → Ĝ2)〈Dist∀∆.τ→σ′〈(λ∆ ((Ĝ1〈(λ∆′ ♦)〉)→ ♦)〈Ĝ[� ← ♦ ∆]〉)〉〉 : ∀(∆,∆′′). ϕ . τ → σ

CExprEtaProd

Γ; ∆ ? (φ1 : τ ′) ` G1 : τ Γ ` Ĝ1 : ∀∆. τ ′ . τ
Γ; ∆ ? (φ2 : σ′) ` G2 : σ Γ ` Ĝ2 : ∀∆. σ′ . σ

Γ,∆; ∆′ ? (φ : ϕ) ` G : (τ ′ ∗ σ′) Γ,∆ ` Ĝ : ∀∆′. ϕ . (τ ′ ∗ σ′)
Γ; ∆,∆′ ? (φ : ϕ) ` (G1, G2){φ1, φ2 ← G} : (τ ∗ σ)

Γ ` (Ĝ1 ∗ Ĝ2)〈Dist∀∆. (τ
′∗σ′)〈(λ∆ Ĝ[� ← ♦ ∆])〉〉 : ∀(∆,∆′). ϕ . (τ ∗ σ)

Figure 19: System Fλι : completeness for coercions

RR n° 7587

On the Power of Coercion Abstraction 29

STermVar

Γ ` ok (x : τ) ∈ Γ

Γ ` x : τ Γ ` x : τ

STermTermLam

Γ, (x : τ) `M : σ Γ, x : τ ` M̂ : σ

Γ ` λ(x : τ) M : τ → σ Γ ` λ(x : τ) M̂ : τ → σ

STermTermApp

Γ `M : τ → σ Γ `M : τ → σ
Γ ` N : τ Γ ` N : τ

Γ `M N : σ Γ ` M̂ N̂ : σ

STermPair

Γ `M : τ Γ ` M̂ : τ

Γ ` N : σ Γ ` N̂ : σ

Γ ` (M,N) : (τ ∗ σ) Γ ` (M̂, N̂) : (τ ∗ σ)

STermFirst

Γ `M : (τ ∗ σ) Γ ` M̂ : (τ ∗ σ)

Γ `M.1 : τ Γ ` M̂.1 : τ

STermSecond

Γ `M : (τ ∗ σ) Γ ` M̂ : (τ ∗ σ)

Γ `M.2 : σ Γ ` M̂.2 : σ

STermTypeLam

Γ, α `M : τ Γ, α ` M̂ : τ

Γ ` λα M : ∀α. τ Γ ` λα M̂ : ∀α.τ

STermTypeApp

Γ `M : ∀α. τ Γ ` M̂ : ∀α.τ Γ ` σ
Γ `M σ : τ [α← σ] Γ ` M̂ σ : τ [α← σ]

STermCoer

Γ ` G : τ . σ Γ ` Ĝ : τσ

Γ `M : τ Γ ` M̂ : τ

Γ ` G〈M〉 : σ Γ ` Ĝ M̂ : σ

STermCoerLam

Γ, (c : ϕ . ρ′) `M : σ Γ, c : ϕρ′ ` M̂ : σ

Γ ` λ(c : ϕ . ρ′)M : (ϕ . ρ′)⇒ σ Γ ` λ(c : ϕ) ρ′M̂ : ϕ⇒ ρ′σ

STermCoerApp

Γ ` G : ϕ . ρ′ Γ ` Ĝ : ϕρ′

Γ `M : (ϕ . ρ′)⇒ σ Γ ` M̂ : ϕ⇒ ρ′σ

Γ `M{G} : σ Γ ` M̂ Ĝ : σ

Figure 20: System Fλι : soundness for terms

RR n° 7587

On the Power of Coercion Abstraction 30

SCoerTrans

Γ ` G2 : σ . ϕ Γ ` Ĝ2 : σϕ

Γ ` G1 : τ . σ Γ ` Ĝ1 : τσ

Γ ` G2〈G1〉 : τ . ϕ Γ ` λ(φ : τ) Ĝ2 (Ĝ1 φ) : τϕ

SCoerTypeLam

Γ ` τ Γ, α ` G : τ . σ Γ, α ` Ĝ : τσ

Γ ` λα G : τ . ∀α. σ Γ ` λ(φ : τ)λα Ĝ φ : τ∀α. σ

SCoerTypeApp

Γ ` ϕ Γ ` G : τ . ∀α. σ Γ ` Ĝ : τ∀α.σ
Γ ` Gϕ : τ . σ[α← ϕ] Γ ` λ(φ : τ) Ĝ φϕ : τσ[α← ϕ]

SCoerDot

Γ ` τ
Γ ` ♦τ : τ . τ Γ ` λ(φ : τ)φ : ττ

SCoerForget

Γ ` τ
Γ ` Topτ : τ .> Γ ` λ(φ : τ) Topτ φ : τ>

SCoerVar

Γ ` ok (c : τ . σ) ∈ Γ

Γ ` c : τ . σ Γ ` c : τσ

SCoerCoerLam

Γ, (c : ρ . ρ′) ` G : τ . σ Γ, c : ϕρ′ ` Ĝ : τσ

Γ ` λ(c : ρ . ρ′)G : τ . (ρ . ρ′)⇒ σ Γ ` λ(φ : τ)λ(c : ϕ) ρ′Ĝ φ : τ(ρ . ρ′)⇒ σ

SCoerCoerApp

Γ ` G′ : ρ . ρ′ Γ ` Ĝ′ : ϕρ′

Γ ` G : τ . (ρ . ρ′)⇒ σ Γ ` Ĝ : τ(ρ . ρ′)⇒ σ

Γ ` G{G′} : τ . σ Γ ` λ(φ : τ) Ĝ φ Ĝ′ : τσ

Figure 21: System Fλι : soundness for coercions 1/2

4.7 Bisimulation between Fι and F
λ
ι

Of course, these two translations (soundness and completeness) preserve typing and coercion
erasure. But they also preserve wedging con�gurations. This means that a wedging con�guration is
translated to a wedging con�guration and reciprocally, only wedging con�gurations are translated
to wedging con�gurations.

Lemma 26. ForM in Fι in ι-normal form, if the ι-normal formM ′ of its translation M̂ β-reduces
to N ′, then M̂ β-reduces to N which is ι-equivalent to N ′.

(Proof p. 55)

Lemma 27. For M0 in Fι in ι-normal form, if the ι-normal form of its translation M̂0 β-reduces
to N1, then there is a M2 such that M0 ?

ι β M2 and M̂2 is ι-equivalent to M2.
(Proof p. 55)

5 Parametric Fι

Parametric Fι, written Fpι , restricts the language so as to rule out wedge con�gurations by means
of typechecking. The restriction is on the type ϕ of coercion abstractions λ(c : ϕ) M , i.e. on
the type of coercion variables. Observe that a coercion variable appearing in a wedge position
c〈λ(x : τ) M〉 N has a coercion type σ . ρ where σ and ρ are both arrow types. To prevent this
situation from happening in Fpι , we require that either the domain or the codomain of the type of
a coercion parameter be a variable. Hence, we only allow λ(c : α . ρ) M or λ(c : σ . α) M .

In order to preserve this invariant by reduction, we must request the type variable to be
introduced simultaneously. So, we may write λα λ(c : α . τ) M but not λ(c : α . τ) M alone. This
is a form of parametricity since either the domain or the codomain of c must be treated abstractly

RR n° 7587

On the Power of Coercion Abstraction 31

SCoerArrow

Γ ` G1 : τ . τ ′ Γ ` Ĝ1 : ττ ′

Γ ` G2 : σ . σ′ Γ ` Ĝ2 : σσ′

Γ ` G1
τ→ G2 : τ ′ → σ . τ → σ′

Γ ` λ(φ : τ ′ → σ)λ(φ1 : τ) (Ĝ2 φ2)
{
φ2 ← φ (Ĝ1 φ1)

}
: τ ′ → στ → σ′

SCoerTransDistTypeArrow

Γ ` τ Γ, α ` σ
Γ ` Dist∀α.τ→σ : ∀α. (τ → σ) . τ → ∀α. σ

Γ ` λ(φ : ∀α. (τ → σ))λ(φ1 : τ) (λαφ2) {φ2 ← (φα)φ1} : ∀α. (τ → σ)τ → ∀α. σ

SCoerProd

Γ ` G1 : τ . τ ′ Γ ` Ĝ1 : ττ ′

Γ ` G2 : σ . σ′ Γ ` Ĝ2 : σσ′

Γ ` (G1 ∗G2) : (τ ∗ σ) . (τ ′ ∗ σ′)
Γ ` λ(φ : (τ ∗ σ)) (Ĝ1 φ1, Ĝ2 φ2){φ1, φ2 ← φ} : (τ ∗ σ)(τ ′ ∗ σ′)

SCoerDistTypeProd

Γ, α ` τ Γ, α ` σ
Γ ` Dist∀α.(τ∗σ) : ∀α. (τ ∗ σ) . (∀α. τ ∗ ∀α. σ)

Γ ` λ(φ : ∀α. (τ ∗ σ)) (λαφ1, λα φ2){φ1, φ2 ← φα} : ∀α. (τ ∗ σ)(∀α. τ ∗ ∀α. σ)

SCoerDistCoerArrow

Γ ` τ Γ ` ϕ Γ ` ρ′ Γ ` σ
Γ ` Distϕ.ρ

′⇒
τ→σ : ((ϕ . ρ′)⇒ (τ → σ)) . (τ → (ϕ . ρ′)⇒ σ)

Γ ` λ(φ : (ϕ . ρ′)⇒ (τ → σ))λ(φ1 : τ)λ(c : ϕ) ρ′φ2 {φ2 ← (φ c)φ1} :
((ϕ . ρ′)⇒ (τ → σ)) . (τ → (ϕ . ρ′)⇒ σ)

SCoerDistCoerProd

Γ ` ϕ Γ ` ρ′ Γ ` τ Γ ` σ
Γ ` Distϕ.ρ

′⇒
(τ∗σ) : ((ϕ . ρ′)⇒ (τ ∗ σ)) . (((ϕ . ρ′)⇒ τ) ∗ ((ϕ . ρ′)⇒ σ))

Γ ` λ(φ : (ϕ . ρ′)⇒ (τ ∗ σ)) (λ(c : ϕ) ρ′φ1, λ(c : ϕ) ρ′φ2){φ1, φ2 ← φ c} :
((ϕ . ρ′)⇒ (τ ∗ σ)) . (((ϕ . ρ′)⇒ τ) ∗ ((ϕ . ρ′)⇒ σ))

Figure 22: System Fλι : soundness for coercions 2/2

RR n° 7587

On the Power of Coercion Abstraction 32

/. ::= / | . bounds

τ ::= . . . 6 | ϕ⇒ τ | ∀(α /. τ)⇒ τ types

M ::= . . . 6 | λ(c : ϕ) M | λ(α /. c : τ)M expressions

6 | M{G} |M{τ /. G}

G ::= . . . 6 | Distϕ⇒τ→τ | Dist∀α/.τ⇒τ→τ coercions

6 | Distϕ⇒(τ∗τ) | Dist∀α/.τ⇒(τ∗τ)

6 | λ(c : ϕ) G | λ(α /. c : τ)G

6 | G{G} | G{τ /. G}

Γ ::= . . . 6 | Γ, c : ϕ | Γ, α /. c : τ environments

Figure 23: Parametric Fι: syntax restriction wrt Fι

TermTCoerLam

Γ, α /. c : τ `M : σ

Γ ` λ(α /. c : τ)M : ∀(α /. τ)⇒ σ

TermTCoerApp

Γ `M : ∀(α /. τ)⇒ τ ′ Γ ` G : σ /. τ [α← σ]

Γ `M{σ /. G} : τ ′[α← σ]

TCoerVar

Γ ` ok α /. c : τ ∈ Γ

Γ ` c : α /. τ

CoerTCoerLam

Γ, α /. c : τ ` G : σ . σ′ Γ ` σ
Γ ` λ(α /. c : τ)G : σ . ∀(α /. τ)⇒ σ′

CoerTCoerApp

Γ ` G′ : ρ . ∀(α /. τ)⇒ τ ′

Γ ` G : σ /. τ [α← σ]

Γ ` G′{σ /. G} : ρ . τ ′[α← σ]

CoerDistTCoerArrow

Γ ` τ Γ, α ` ρ Γ, α ` σ
Γ ` Dist∀α/.ρ⇒τ→σ : (∀(α /. ρ)⇒ τ → σ)

. (τ → ∀(α /. ρ)⇒ σ)

CoerDistTCoerProd

Γ, α ` τ Γ, α ` ρ Γ, α ` σ
Γ ` Dist∀α/.ρ⇒(τ∗σ) : ∀(α /. ρ)⇒ (τ ∗ σ) . (∀(α /. ρ)⇒ τ ∗ ∀(α /. ρ)⇒ σ)

Figure 24: Parametric Fι: typing rules wrt Fι

(and thus not as an arrow type) in M . To enforce this restriction we stick a type abstraction to
every coercion abstraction and see λα λ(c : α . τ) M as a single syntactic node, which we write
λ(α . c : τ)M to avoid confusion. Although, we modify the syntax of source terms, Fpι can still be
understood as a syntactic restriction of Fι.

5.1 Syntax changes

The syntax of Parametric Fι is de�ned on Figure 23 as a patch to the syntax of Fι (we write 6 | for
removal of a previous grammar form). We replace coercion abstraction λ(c : τ . σ)M of Fι by two
new constructs λ(α . c : τ)M and λ(α / c : τ)M to mean λα λ(c : α . τ)M and λα λ(c : τ . α)M
but atomically. For conciseness, we introduce a mode /. that ranges over . and /. Hence, we
write λ(α /. c : τ)M for either λ(α . c : τ)M or λ(α / c : τ)M . Note that the type variable α is
bounded in both τ and M . As a mnemonic device, we can read the type of the coercion variable
by moving �c :� in front, i.e. α . c : τ becomes c : α . τ while α / c : τ becomes c : α / τ which can
also be read c : τ . α. The reason to keep the type variable α before the coercion variable is to
preserve the order of the abstractions in Fι.

We say that λ(α . c : τ)M and λ(α / c : τ)M are negative and positive coercion abstractions,
respectively. The positive form is parametric on the codomain of the coercion and implements a
lower bounded quanti�cation τ . α, as in xMLF. The negative form is parametric on the domain
of the coercion and implements an upper bounded quanti�cation α . τ , as in F<:.

RR n° 7587

On the Power of Coercion Abstraction 33

p ::= . . . 6 | p{G} | p{τ /. G} prevalues

6 | Distϕ⇒τ→τ 〈p〉 | Dist∀α/.τ⇒τ→τ 〈p〉
6 | Distϕ⇒τ→τ 〈λ(c : ϕ) p〉 | Dist∀α/.τ⇒τ→τ 〈λ(α /. c : τ) p〉
6 | Distϕ⇒(τ∗τ)〈p〉 | Dist∀α/.τ⇒(τ∗τ) 〈p〉
6 | Distϕ⇒(τ∗τ)〈λ(c : ϕ) p〉 | Dist∀α/.τ⇒(τ∗τ) 〈λ(α /. c : τ) p〉

v ::= . . . 6 | λ(c : ϕ) v | λ(α /. c : τ) v values

P ::= . . . 6 | λ(c : ϕ) [] | λ(α /. c : τ) [] 6 | []{G} | []{τ /. G} retyping contexts

Figure 25: Parametric Fι: changes in values wrt Fι

TCoerArrow

Γ, α ` τ Γ, α ` σ
Γ ` ∀(α /. τ)⇒ σ

EnvCoer

Γ, α ` τ α, c /∈ dom(Γ)

Γ, α /. c : τ ` ok

Figure 26: Parametric Fι: well-formedness judgments wrt Fι

Continuing with the de�nition of Fpι , we replace coercion application M{G} by M{τ /. G} to
perform type and coercion applications (M τ){G} atomically. Both positive and negative versions
have the same meaning, but di�erent typing rules. Type τ appears before G to remind that
the type application is performed before the coercion application in the expanded form. As a
mnemonic device, the /. is oriented towards the side of the variable it instantiates in the coercion
type of M . Hence, if M is λ(α . c : σ)N , we must write M{τ . G}.

We must change types accordingly, replacing coercion types ϕ ⇒ τ by ∀(α /. τ) ⇒ σ, which
factors the two forms ∀(α . τ)⇒ σ and ∀(α / τ)⇒ σ whose expansions in Fι are ∀α. (α . τ)⇒ σ
and ∀α. (τ . α) ⇒ σ, respectively. Typing environments are modi�ed accordingly. Notice that
Γ, α /. c : τ stands for Γ, α, c : α /. τ (c : α / τ should be read as c : τ . α) and therefore α may
appear free in τ�as for coercion abstractions: this allows the encoding of �recursively de�ned
bounds� discussed below.

In the syntax of coercions, we replace coercion abstractions and coercion applications as we
did for expressions. We also change the distributivity coercion that exchanges term abstraction
with coercion abstraction to re�ect the change in coercion types: it must simultaneously permute
the term abstraction with the type abstraction and coercion abstraction that are stuck together.
The same modi�cations are also done for product type.

5.2 Adjustments to the semantics

The syntactic changes imply corresponding adjustments to the semantics of the language. Notice
that all restrictions are captured syntactically, so no further restriction of typing rules is necessary.

Typing rules Consistently with the change of syntax, we replace the typing rules TermCoerLam
and TermCoerApp by rules TermTCoerLam and TermTCoerApp given on Figure 24. The
corresponding typing rules CoerCoerLam and CoerCoerApp for coercions are changed similarly.
We also replace CoerVar by TCoerVar. Finally, the modi�ed distributivity coercions are typed as
described by rules CoerDistTCoerArrow and CoerDistTCoerProd. Notice that /. is a meta-
variable as M or τ and di�erent occurrences of the same meta-variable can only be instantiated
simultaneously all by . or all by /. (We use di�erent meta-variables /.1 and /.2 when we mean
to instantiate them independently.)

The new typing rules for Fpι are derived from the typing rules of the corresponding nodes in Fι.
For example, TermTCoerLam is just the combination of rules TermCoerLam and TermTypeLam
in Fι.

Well-formedness judgments are adjusted in the obvious way, as described on �gures 26.

RR n° 7587

On the Power of Coercion Abstraction 34

RedTCoer

(λ(α /. c : τ)M){σ /. G} ι M [α← σ][c← G]

RedCoerDistTCoerArrow

Dist∀α/.σ1⇒
σ2→σ3

〈λ(α /. c : τ)λ(x : σ) M〉 ι

λ(x : σ) λ(α /. c : τ)M

RedCoerDistTCoerProd

Dist∀α/.σ1⇒
(σ2∗σ3) 〈λ(α /. c : τ) (M,N)〉 ι (λ(α /. c : τ)M,λ(α /. c : τ)N)

Figure 27: Parametric Fι: new reduction rules wrt Fι

(λ(α /. c : τ)W)
◦

= λα λ(c : α /. τ◦) W ◦

(W{τ /. G})◦ = (W ◦ τ◦){G◦}
(Dist∀α/.ρ⇒τ→σ)

◦
= Dist∀α.τ◦→(α/.ρ◦)⇒σ◦〈λα Distα/.ρ

◦⇒
τ◦→σ◦ 〈♦ α〉〉

(Dist∀α/.ρ⇒(τ∗σ))
◦

= Dist∀α.(α/.ρ◦⇒τ◦∗α/.ρ◦⇒σ◦)〈λα Distα/.ρ
◦⇒

(τ◦∗σ◦)〈♦ α〉〉

τ . σ◦ = τ◦ . σ◦

τ / σ◦ = σ◦ . τ◦

(∀(α /. τ)⇒ σ)
◦

= ∀α. (α /. τ◦)⇒ σ◦

(Γ, α /. c : τ)
◦

= Γ, α, c : α /. τ◦

Figure 28: Translation of Fpι into Fι

Operational semantics The operational semantics is modi�ed in the obvious way. The syntax
of values for Fpι is de�ned on Figure 25 as a modi�cation of the syntax of Fι. The adjustments in
the reduction rules are the replacement of RedCoer by RedTCoer, RedCoerDistCoerArrow
by RedCoerDistTCoerArrow, RedCoerDistCoerProd by RedCoerDistTCoerProd, and the
change of retyping contexts that induces a change in RedCoerFill as described in Figure 25.

5.3 Properties

Since Fpι can be seen as a restriction of Fι where coercion abstraction is always preceded by a type
abstraction, some properties of Fpι can be derived from those of Fι. In particular, normalization
and subject reduction properties are preserved, just by observing that Fpι is syntactically closed
by reduction.

This can be formalized by making the correspondence between Fpι and Fι explicit.

De�nition 28 (Fpι to Fι traduction). We de�ne a Translation from F
p
ι to Fι witnessing the language

inclusion on Figure 28. We write M◦ the translation of M . We only give the translations that
do not simply reuse the same construct by calling recursively the translation function on subtrees.
The meta-variable W stand for either M or G.

Lemma 29 (Restriction equivalence). The following assertions hold.

1. Γ `M : τ holds in F
p
ι if and only if Γ◦ `M◦ : τ◦ holds in Fι.

2. Γ ` G : τ . σ holds in F
p
ι if and only if Γ◦ ` G◦ : τ◦ . σ◦ holds in Fι.

3. Γ ` τ holds in F
p
ι if and only if Γ◦ ` τ◦ holds in Fι.

4. Γ ` ok holds in F
p
ι if and only if Γ◦ ` ok holds in Fι.

Lemma 30. The following assertions hold.

1. If M β N in F
p
ι , then M

◦ β N
◦ in Fι.

2. If M ι N in F
p
ι , then M

◦ +
ι N

◦ in Fι.

RR n° 7587

On the Power of Coercion Abstraction 35

Proposition 31 (Preservation). If Γ `M : τ and M βι N hold, then Γ ` N : τ holds.
(Proof p. 55)

Proposition 32 (Termination). Reduction in F
p
ι is terminating.

(Proof p. 55)

Con�uence and progress must still be veri�ed. For con�uence, we observe that there are still
no critical pairs (although this does not follow from the absence of critical pairs in Fι), so weak
con�uence is still preserved and con�uence comes as a corollary.

Corollary 33 (Con�uence). Reduction in F
p
ι is con�uent.

(Proof p. 55)

Progress is a proof on its own, but it is similar to the one in Fι.

Lemma 34 (Classi�cation). If Γ ` v : τ holds, then either v is a prevalue p or:

1. If τ is of the form τ → τ , then v is of the form λ(x : τ) v.

2. If τ is of the form (τ ∗ τ), then v is of the form (v, v).

3. If τ is of the form ∀α. τ , then v is of the form λα v.

4. If τ is of the form ∀(α /. τ)⇒ τ , then v is of the form λ(α /. c : τ) v.

5. If τ is of the form >, then v is of the form Topτ 〈v〉.
(Proof p. 56)

Proposition 35 (Progress). If Γ `M : τ holds, then either M is a value or M reduces.
(Proof p. 56)

As expected, coercions are erasable in Fpι . Because the new reduction rules are a combination
of two ι-rules, and are themselves ι-rules, the forward simulation follows from forward simulation
in Fι. It remains to check the backward simulation.

Lemma 36 (Forward simulation). If Γ `M : τ holds, then:

1. If M β N , then bMc bNc.

2. If M ι N , then bMc = bNc.
(Proof p. 57)

Lemma 37 (Classi�cation). If Γ ` Q[λ(x : ρ) M] : τ (resp. Γ ` Q[(M,N)] : τ) holds and
Q[λ(x : ρ) M] (resp. Q[(M,N)]) is in ι-normal-form, then:

1. If τ is σ → σ′ (resp. (σ ∗ σ′)) then Q is [].

2. If τ is ∀α. σ then Q is λα Q′.

3. If τ is ∀(α /. σ)⇒ τ ′ then Q is λ(α /. c : σ)Q′.

4. For all α . c : σ in Γ, τ is not α.

Proof. We only do the proof for Q[λ(x : ρ) M]. The proof for Q[(M,N)] is similar. By induction
on Q.

� []: Conditions 2 and 3 do not apply. Conditions 1 and 4 hold trivially.

� λα Q′: Conditions 2 and 4 hold trivially. Other conditions do not apply.

� Q′ τ ′: By typing we have Γ ` Q′[λ(x : ρ) M] : ∀α. ρ′ such that ρ′[α← τ ′] = τ . By induction
hypothesis we have Q′ of the form λα Q′′, which contradicts the fact that we were in ι-
normal-form, since RedType applies.

� G〈Q′〉: By induction on G.

RR n° 7587

On the Power of Coercion Abstraction 36

� x, λ(x : τ) M , M M , (M,M), M.1, and M.2: These are refused by typing, because
they are terms instead of coercions.

� λα W , W τ , G〈W 〉, λ(α /. c : τ)W , and W{τ /. G}: These are not in ι-normal-form,
since RedCoerFill applies.

� ♦τ : It is not in ι-normal-form, since RedCoerDot applies.

� c when α / c : τ : Conditions 1 to 3 do not apply. And 4 holds because α cannot be
bounded twice in Γ and it is already present with α / c : τ .

� c when α . c : τ : This case is rejected by induction hypothesis, since we have Γ `
Q′[λ(x : ρ) M] : α with α . c : τ ∈ Γ.

� G
τ→ G: By typing we have Γ ` Q′[λ(x : ρ) M] : σ → σ′. By induction hypothesis we

have that Q′ is empty, which contradicts the fact that we were in ι-normal-form, since
RedCoerArrow applies.

� Dist∀α.τ→τ : By typing and induction hypothesis used twice, we have that Q′ is λα λ(x :
ρ) M , which contradicts the fact that we were in ι-normal-form, since RedCoerDist-
TypeArrow applies.

� Dist∀α/.τ⇒τ→τ : By typing and induction hypothesis used twice, we have that Q′ is λ(α /.
c : σ)λ(x : ρ) M , which contradicts the fact that we were in ι-normal-form, since
RedCoerDistTCoerArrow applies.

� Topτ , (G ∗G), Dist∀α.(τ∗τ), and Dist∀α/.τ⇒(τ∗τ) : Conditions 1 to 3 do not apply, and condition
4 trivially holds.

� λ(σ /. c : α)Q′: Conditions 3 and 4 hold trivially. Other conditions do not apply.

� Q′{σ′ /.G}: By typing we have Γ ` Q′[λ(x : ρ) M] : ∀(α /. σ)⇒ τ . By induction hypothesis
we have Q′ of the form λ(α/. c : σ)Q′′, which contradicts the fact that we were in ι-normal-
form, since RedTCoer applies.

Proposition 38 (Backward simulation). If Γ ` M : τ and bMc M, then M ?
ι β N such

that bNc =M.

Proof. The proof schema is not original: following Manzonetto and Tranquilli [2010]. we show
that the ι-normal-form of M β-reduces to N with bNc equal toM. Since Fι strongly normalizes,
we may assume, without lost of generality that M is already in ι-normal-form. Because bMc
reduces, we can use the reduction derivation to show that it must be of the form e[(λx.M1)M2].
By inversion of the coercion-erasure function, we show thatM is of the form C[Q[λ(x : τ) M1] M2]
where C is a reduction context and Q a retyping context of arbitrary depth, such that C, M1,
and M2 erase to e, M1, and M2 respectively. We show using Lemma 37 that if a ι-normal
term of the form Q[λ(x : τ) M] has an arrow type, then Q is empty. Hence, M is of the form
C[(λ(x : τ) M1) M2] and β-reduces to C[M1[x←M2]] whose erasure is e[a1[x← a2]]. A similar
proof holds for pairs instead of arrows.

6 Expressiveness of Parametric Fι

Although it is bridled by-design, Fpι is already an interesting spot in the design space, as it subsumes
in a uni�ed framework three known languages: Fη, xMLF, and F<: (in fact, its more expressive
version with F-bounded polymorphism [Canning et al., 1989]).

By construction, Fη is included (and simulated) in Parametric Fι. In the rest of this section, we
show that xMLF and F<: are also subsumed by Fpι . In each case, we exhibit a translation of typing
judgments from the source language to typing judgments of Fpι so that the coercion erasure of the
translation of a source term is equal to the type erasure of this term, and therefore the translation
is semantics preserving.

RR n° 7587

On the Power of Coercion Abstraction 37

Kernel-Fsub

Σ, α <:A ` B <: B′

Σ ` ∀(α <:A) B <: ∀(α <:A) B′

Full-Fsub

Σ ` A′ <: A Σ, α <:A′ ` B <: B′

Σ ` ∀(α <:A) B <: ∀(α <:A′) B′

F-Bounded

Σ, α <:A′ ` α <: A Σ, α <: A′ ` B <: B′

Σ ` ∀(α <:A) B <: ∀(α <:A′) B′

Figure 29: Bounded polymorphism: variants on the subtyping rule

To avoid confusion between source and target terms, we write T or S for terms, A or B for
types, and Σ for typing environments in the source language. Formally, we exhibit a translation of
judgments Σ ` T : A Γ `M : τ that is well-de�ned, type preserving, and semantics preserving.
That is, if Σ ` T : A then Σ ` T : A Γ ` M : τ holds for some Γ, M , and τ such that
Γ `M : τ and bT c = bMc. As a consequence, reduction in the source language terminates, since
it is simulated in Fpι .

Bounded polymorphism. F<: is a well-known extension of System F with subtyping. There
are several variations on F<:, all sharing the same features, but with di�erent expressiveness due to
the way they deal with subtyping of bounded quanti�cation. Bounded quanti�cation ∀(α<:A) B
restricts types A′ that α ranges over to be subtypes of the bound A. The di�erences lie in when
the subtyping judgment Σ ` ∀(α <: A) B <: ∀(α <: A′) B′ holds. Di�erent versions of the
corresponding subtyping rule are given on Figure 29. In Kernel F<:, the bounds A and A′ must
be equal, whereas Full F<: only requires the bound A′ to be a subtype of the bound A. Moreover,
α cannot appear free in the bounds A or A′ in Kernel or Full F<:, while Fµ<: allows this form of
recursion, called F-bounded polymorphism. The most general assumption, Σ, α <: A′ ` α <: A,
is that of Fµ<:. Perhaps surprisingly, this is a slightly more general rule [Baldan et al., 1999] than
the more intuitive one Σ, α <: A′ ` A′ <: A. In summary, we have Kernel F<: ⊂ Full F<: ⊂ Fµ<:

where all inclusions are strict.
We show that the most expressive version Fµ<: is included into Fpι . The translation of typing

judgments uses auxiliary translations of subtyping judgments Σ ` A <: B Γ ` G : τ . σ and
well-formedness judgments. Bounded polymorphism ∀(α <: A) B is translated into a negative
coercion abstraction ∀(α . τ) ⇒ σ which encodes upper bounds. (Positive coercion abstraction
∀(α / τ)⇒ σ encodes lower bounds and are never needed in the translation of Fµ<:.)

Translation of expressions is easy. For example, the translation of a type application is a
coercion application, as follows:

Σ ` T : ∀(α <:B) B′ Γ `M : ∀(α . σ)⇒ σ′ Σ ` A <: B[α← A] Γ ` G : τ . σ[α← τ]

Σ ` T A : B′[α← A] Γ `M{τ . G} : σ′[α← τ]

The most involved part in the translation is for subtyping judgments�in particular, for the
bounded-quanti�cation case:

Σ, α <:A′ ` α <: A Γ, α . c : τ ′ ` G : α . τ (1)
Σ, α <: A′ ` B <: B′ Γ, α . c : τ ′ ` G′ : σ . σ′ (2)

Σ ` ∀(α <:A) B <: ∀(α <:A′) B′
Γ ` λ(α . c : τ ′)G′〈♦{α . G}〉 : ∀(α . τ)⇒ σ . ∀(α . τ ′)⇒ σ′

Let us check that the judgment returned by the conclusion holds under the assumptions returned
by the premises (1) and (2). The implicit superscript of the hole in the conclusion is the domain
of the coercion ∀(α . τ)⇒ σ, say ρ. In environment Γ, α . c : τ ′, the coercion ♦{α . G} has type
ρ . σ by rule CoerTCoerApp and, since G′ coerces σ to σ′, the coercion G′〈♦{α . G}〉 has type
ρ . σ′. Hence, by rule CoerTCoerLam, the coercion of the conclusion has type ρ . ∀(α . τ ′)⇒ σ′,
as expected.

RR n° 7587

On the Power of Coercion Abstraction 38

αb = α

(T → S)
b

= T b → Sb

(∀(α <: T) S)
b

= ∀(α . T b)⇒ Sb

>b = >

εb = ∅
(A,α <: T)

b
= Ab, (α . cα : T b)

(A, x : T)
b

= Ab, (x : T b)

Figure 30: Fµ<:: type and environment translation

BTermVar

T = A(x)

A ` x : T Ab ` x : T b

BSubs

A ` m : T Γ `M : τ
A ` T <: S Γ ` G : τ . σ

A ` m : S Γ ` G〈M〉 : σ

BTermLam

A, x : T ` m : S Γ, (x : τ) `M : σ

A ` λx : T.m : T → S Γ ` λ(x : τ) M : τ → σ

BTermApp

A ` m : T → S Γ `M : τ → σ
A ` n : T Γ ` N : τ

A ` m(n) : S Γ `M N : σ

BTypeLam

A,α <: S ` m : T Γ, (σ / cα : α) `M : τ

A ` Λ(α <: S)m : ∀(α <: S) T Γ ` λ(α . cα : σ) M : ∀(α . σ)⇒ τ

BTypeApp

A ` m : ∀(α <: T) S Γ `M : ∀(α . τ)⇒ σ
A ` T ′ <: T [α← T ′] Γ ` G : τ ′ . τ [α← τ ′]

A ` m{T ′} : S[α← T ′] Γ `M{τ ′ / G} : σ[α← τ ′]

Figure 31: Fµ<:: term translation

Notice that Fµ<: is missing type abstraction and type application in coercions, as well as
distributivity of the universal on the arrow as in Fη. Indeed, Fµ<: only allows instantiation of
quanti�ers at the root of types, as in System F and contrary to Fη. Hence, the inclusion Fµ<: ⊂ Fpι
is strict.

It is remarkable that Fpι naturally matches the most expressive version Fµ<:. This encourages
following a systematic approach and viewing type conversions as erasable coercions as in Fpι rather
then a limited subtyping relation. Additionally, Fpι may simplify the proof of type soundness for
Fµ<:, as coercions are explicit.

To show that Fµ<: is included in Fpι , we de�ne a translation for types and environments on
Figure 30, for term judgments on Figure 31, and for subtyping rules on Figure 32.

We have the following obvious lemma stating that the translation of term and subtyping
judgments respect the translation of types and environments:

Lemma 39. 1. If A ` m : T Γ `M : τ holds then Γ = Ab and τ = T b hold.

2. If A ` T <: S Γ ` G : τ . σ holds then Γ = Ab, τ = T b, and σ = Sb hold.

We show that Fµ<: is included in Fpι by showing in Proposition 40 that well-typed expressions
are included.

Proposition 40. The following assertions hold:

1. If A ` m : T Γ `M : τ holds, then Γ `M : τ holds.

2. If A ` T <: S Γ ` G : τ . σ holds, then Γ ` G : τ . σ holds.
(Proof p. 57)

RR n° 7587

On the Power of Coercion Abstraction 39

BId

A ` T <: T Γ ` ♦T
b

: T b . T b

BTrans

A ` T <: S Γ ` G1 : τ . σ
A ` S <: U Γ ` G2 : σ . ρ

A ` T <: U Γ ` G2〈G1〉 : τ . ρ

BCoerVar

α <: T ∈ A
A ` α <: T Γ ` cα : α . τ

BTop

A ` T <: > Γ ` Topτ : τ .>

BArrow

A ` T ′ <: T Γ ` G1 : τ ′ . τ
A ` S <: S′ Γ ` G2 : σ . σ′

A ` T → S <: T ′ → S′ Γ ` G1
τ ′→ G2 : τ → σ . τ ′ → σ′

BForall

A,α <: T ′ ` α <: T Γ, (α . cα : τ ′) ` G : α . τ
A, α <: T ′ ` S <: S′ Γ, (α . cα : τ ′) ` G′ : σ . σ′

A ` ∀(α <: T) S <: ∀(α <: T ′) S′ Γ ` λ(α . c : τ ′) G′〈♦{α / G}〉 : ∀(α . τ)⇒ σ . ∀(α . τ ′)⇒ σ′

Figure 32: Fµ<:: subtyping translation

τ ::= . . . 6 | ∀(α . τ)⇒ τ types

M ::= 6 | λ(α . c : τ)M 6 | M{τ . G} expressions

G ::= . . . 6 | G τ→ G 6 | Dist∀α.τ→τ 6 | Dist∀α.τ⇒τ→τ coercions

6 | (G ∗G) 6 | Dist∀α.(τ∗τ) 6 | Dist∀α.τ⇒(τ∗τ)

6 | λ(α . c : τ)G′ 6 | G′{τ . G}

Figure 33: Fµxι : syntax and notations

Instance-bounded polymorphism. The language xMLF [Rémy and Yakobowski, 2010] is the
internal language of MLF which is itself an extension of System F with instance-bounded polymor-
phism. Instance-bounded polymorphism is a mechanism to delay type instantiation of System F;
it is a key to performing type inference in MLF and keeping principal types�given optional type
annotations of function parameters. As our current concern is not type inference but expressive-
ness, we use xMLF rather than MLF for comparison with Fpι . By lack of space, we cannot formally
present xMLF. Instead, we identify a subset Fxι of Fpι and explains how it closely relates to xMLF
without giving all the details of xMLF.

We �rst de�ne the subset Fµxι of Fpι by removing negative coercion abstractions (in types,
terms, and coercions), arrow coercions G

τ→ G, and distributivity coercions from the syntax of
terms. Of course, we remove typing rules and reduction rules for these constructs, accordingly.

We then de�ne Fxι as the restriction of Fµxι where a type variable cannot appear in its instance
bound, i.e. α is not free in τ in ∀(α / τ) ⇒ σ. Both restrictions are closed by reduction, so they
preserve the properties of Fpι .

We claim that xMLF is equivalent to Fxι . Unsurprisingly, the translation of instance-bounded
polymorphism ∀(α ≥ A).B is a positive coercion abstraction ∀(α / τ)⇒ σ where τ and σ are the
translation of A and B. The translation of expressions and type instantiations is then routine.
The proof for the direct inclusion is similar to one by Manzonetto and Tranquilli [2010]. The proof
for the reverse inclusion is new but not much more di�cult.

In summary, we have xMLF ≈ Fxι ⊂ Fµxι ⊂ Fpι . It is interesting that the natural restriction of Fι
that resembles xMLF allows variables to appear in their instance bounds, much as with F-bounded
polymorphism. This suggests an extension to xMLF with recursively de�ned bounds. However,
we do not know whether this extension could still permit partial type inference in MLF.

RR n° 7587

On the Power of Coercion Abstraction 40

αx = α
(T → S)

x
= T x → Sx

(∀(α ≥ T).S)
x

= ∀(α / T x)⇒ Sx

⊥x = ∀α. α

∅x = ∅
(A, (α ≥ T))

x
= Ax, (α / cα : T x)

(A, (x : T))
x

= Ax, (x : T x)

Figure 34: xMLF: type and environment translation

XVar

x : T ∈ A
A ` x : T Ax ` x : T x

XLet

A ` m : T Γ `M : τ A, (x : T) ` n : S Γ, (x : τ) ` N : σ

A ` let x = m in n : S Γ ` (λ(x : τ) N) M : σ

XApp

A ` m : T → S Γ `M : τ → σ A ` n : T Γ ` N : τ

A ` mn : S Γ `M N : σ

XAbs

A, (x : T) ` m : S Γ, (x : τ) `M : σ

A ` λ(x : T)m : T → S Γ ` λ(x : τ) M : τ → σ

XTAbs

A, (α ≥ S) ` m : T Γ, (α / cα : σ) `M : τ α /∈ ftv(A,S)

A ` Λ(α ≥ S)m : ∀(α ≥ S).T Γ ` λ(α / cα : σ) M : ∀(α / σ)⇒ τ

XTApp

A ` m : T Γ `M : τ A ` φ : T ≤ S Γ ` G : τ . σ

A ` mφ : S Γ ` G〈M〉 : σ

Figure 35: xMLF: term translation

Moreover, reduction in xMLF is simulated in Fxι . This implies termination of reduction in xMLF
(a result already proved by Manzonetto and Tranquilli [2010]).

To show that xMLF is included into Fxι , we de�ne a translation for types and environments on
Figure 34, for term judgments on Figure 35, and for instance judgments on Figure 36.

We have the following obvious lemma stating that the translation of term and instance judg-
ments respect the translation of types and environments:

Lemma 41. 1. If A ` m : T Γ `M : τ holds then Γ = Ax and τ = T x hold.

2. If A ` φ : T ≤ S Γ ` G : τ . σ holds then Γ = Ax, τ = T x, and σ = Sx hold.

We show that xMLF is included in Fxι by showing in Proposition 42 that well-typed expressions
are included and in Proposition 43 that the reduction relation is included.

Proposition 42. The following assertions hold:

1. If A ` m : T Γ `M : τ holds, then Γ `M : τ holds and bmc = bMc.

2. If A ` φ : T ≤ S Γ ` G : τ . σ holds, then Γ ` G : τ . σ holds.
(Proof p. 57)

Proposition 43. If A ` m : T Γ ` M : τ , A ` n : T Γ ` N : τ , and m n hold, then
M +

ιβ N holds.
(Proof p. 57)

To show that Fxι is included into xMLF, we de�ne a translation for types and environments on
Figure 37 and for expressions on Figure 38.

We show that Fxι is included in xMLF by showing in Proposition 44 that well-typed expressions
are included in terms and instances and in Proposition 45 that the reduction relation is included.

RR n° 7587

On the Power of Coercion Abstraction 41

XIBot

A ` T : ⊥ ≤ T Γ ` ♦∀α. α τ : ∀α. α . τ

XIAbs

α ≥ T ∈ A
A `!α : T ≤ α Γ ` cα : τ . α

XIUnder

A, (α ≥ T) ` φ : T1 ≤ T2 Γ, (α / cα : τ) ` G : τ1 . τ2

A ` ∀(α ≥)φ : ∀(α ≥ T).T1 ≤ ∀(α ≥ T).T2
Γ ` λ(α / cα : τ) G〈♦∀(α/τ)⇒τ1{α . cα}〉 : ∀(α / τ)⇒ τ1 . ∀(α / τ)⇒ τ2

XIInside

A ` φ : T1 ≤ T2 Γ ` G : τ1 . τ2

A ` ∀(≥ φ) : ∀(α ≥ T1).T ≤ ∀(α ≥ T2).T
Γ ` λ(α / cα : τ2) ♦∀(α/τ1)⇒τ{α . cα〈G〉} : ∀(α / τ1)⇒ τ . ∀(α / τ2)⇒ τ

XIIntro

α /∈ ftv(T)

A `

&

: T ≤ ∀(α ≥ ⊥).T Γ ` λ(α / cα : ∀α. α) ♦τ : τ . ∀(α / ∀α. α)⇒ τ

XIComp

A ` φ1 : T1 ≤ T2 Γ ` G1 : τ1 . τ2 A ` φ2 : T2 ≤ T3 Γ ` G2 : τ2 . τ3

A ` φ1;φ2 : T1 ≤ T3 Γ ` G2〈G1〉 : τ1 . τ3

XIElim

A ` & : ∀(α ≥ T).S ≤ S[α← T] Γ ` ♦∀(α/τ)⇒σ{τ . ♦τ} : ∀(α / τ)⇒ σ . σ[α← τ]

XIId

A ` 1 : T ≤ T Γ ` ♦τ : τ . τ

Figure 36: xMLF: instance translation

αy = α
(τ → σ)

y
= τ y → σy

(∀α. τ)
y

= ∀(α ≥ ⊥).τ y

(∀(α / τ)⇒ σ)
y

= ∀(α ≥ τ y).σy

∅y = ∅
(Γ, (α / c : τ))

y
= Γy, (α ≥ τ y)

(Γ, (x : τ))
y

= Γy, (x : τ y)
(Γ, α)

y
= Γy, (α ≥ ⊥)

Figure 37: xMLF: type and environment reverse translation

xy = x
(λ(x : τ) M)

y
= λ(x : τ y)My

(M N)
y

= MyNy

(λα M)
y

= Λ(α ≥ ⊥)My

(M τ)
y

= My (∀(≥ τ y); &)
(λ(α / c : τ) M)

y
= Λ(α ≥ τ y)My

(M{τ . G})y = My (∀(≥ Gy); &)
(G〈M〉)y = MyGy

(♦τ)
y

= 1
cy = !(codom(τ))

(λα G)
y

=

&

;∀(α ≥)Gy

(Gτ)
y

= Gy;∀(≥ τ y); &
(λ(α / c : τ) G)

y
=

&

;∀(≥ τ y); ∀(α ≥)Gy

(G{τ . G′})y = Gy;∀(≥ G′y); &
(G〈G′〉)y = G′

y
;Gy

Figure 38: xMLF: expression reverse translation

RR n° 7587

On the Power of Coercion Abstraction 42

Extension of System F Fη F<: xMLF F
p
ι

Deep instantiation
√

-
√ √

Arrow congruence
√ √

-
√

Permutation of ∀ and → √
- -

√

Upper bounds -
√

-
√

Lower bounds - -
√ √

Figure 39: Language and feature comparison

Proposition 44. The following assertions hold.

1. If Γ `M : τ holds, then Γy `My : τ y holds and bMyc = bMc.

2. If Γ ` G : τ . σ holds, then Γy ` Gy : τ y ≤ σy holds.
(Proof p. 58)

Proposition 45. If M βι N holds, then My + Ny holds.
(Proof p. 58)

Summary Features of Fpι and its variants are summed up on Figure 39. The expressiveness
of Fη, xMLF, and F<: can be compared by checking which feature is present in one language and
not in the others. Deep instantiation corresponds to the λα G and Gτ constructs, allowed in Fη
and xMLF, but not in F<:. Upper bounds are used in F<: and lower bounds are used xMLF. They
correspond to coercion abstraction λ(α/. c : τ)G and G{τ /.G} when /. is . or /, respectively. Fη
allows neither. Arrow congruence is the G

τ→ G construct, allowed in Fη and F<:. Distributivity
Dist∀α.τ→σ is used in Fη. The other form Dist∀α/.ρ⇒τ→σ is only used in Fpι since it involves coercion
abstraction.

Notice that xMLF and F<: only have coercion abstraction in common, but with opposite polar-
ities. Each of them share a di�erent feature with Fη. None of them uses distributivity as it only
makes sense when deep instantiation and arrow congruence are available simultaneously.

All examples of �2.4 are actually typable in Fpι �with some syntactic adjustment of course. For
instance, the last example becomes λ(γ/c : σch) choose {γ/(c{choose})} of type ∀(γ/σch)⇒ γ → γ.
For instance, it can be coerced to the type ∀(γ / σplus) ⇒ γ → γ. This uses the coercion
λ(γ / c : σplus)♦{γ / c〈♦σch int〉}.

7 Weak Fι

Another solution to recover erasability is to prevent wedges from appearing in a reduction context.
At �rst, it seems to su�ce to use weak reduction on coercion abstraction. Indeed, if a coercion

variable cannot appear under a reduction context, it cannot appear in a wedging con�guration.
However, since λ(c : ϕ) M is irreducible, its erasure bMc should also be irreducible, i.e. a value.
If we choose strong reduction for term abstraction, we must also choose strong reduction in the
λ-calculus used as the target, hence bMc must be a value for strong reduction. That is, λ(c : ϕ) M
would only be allowed when M is fully evaluated, which would considerably limit the interest of
abstracting over c. Therefore, we choose a weak strategy for both coercions and terms. Keeping
strong reduction on types is optional and independent.

Syntactic restrictions The syntax of Weak Fι, written Fwι , is de�ned on Figure 40 as a re-
striction of the syntax of Fι. We remove distributivity of coercion abstraction on term abstraction
Distϕ⇒τ→σ in order to preserve the value restriction during reduction. We replace λ(c : ϕ) M in
terms by λ(c : ϕ) u where u is a value form. A value form is a term that erases to a value, i.e. a

RR n° 7587

On the Power of Coercion Abstraction 43

M ::= . . . 6 | λ(c : ϕ) M | λ(c : ϕ) u expressions

G ::= . . . 6 | Distϕ⇒τ→σ coercions

v ::= λ(x : τ) M | λα v | λ(c : ϕ) u | (v, v) | Topτ 〈v〉 values

u ::= v | G〈u〉 value forms

C ::= [] M |M [] | ([],M) | (M, []) | [].1 | [].2 | λα [] | [] τ | G〈[]〉 | []{G} reduction ctx

RedCoerCoerLam
w

(λ(c : ϕ) G)〈u〉 ι λ(c : ϕ) G〈u〉

Figure 40: Weak Fι: syntax and semantics wrt Fι

value or an application of a coercion G to a value form. A value is any form of abstraction whose
subterm is an arbitrary term for a term abstraction, a value for a type abstraction (because we
may evaluate under type abstractions), or a value form for a coercion abstraction.

The static semantics of Fwι and Fι are the same.

Changes in the dynamic semantics The reduction relation of Fwι is a subrelation of the re-
duction relation of Fι that prevents evaluation under term and coercion abstractions and preserves
the value restriction. Reduction contexts are modi�ed accordingly: λ(x : τ) [] and λ(c : ϕ) [] are
removed. Rule RedCoerCoerLam (the coercion abstraction part of RedCoerFill) is restricted
to make it call-by-value. Indeed, keeping the Fι rule:

(λ(c : ϕ) G)〈M〉 ι λ(c : ϕ) G〈M〉

would place the arbitrary term M under a coercion abstraction. We also completely remove
RedCoerDistCoerArrow as it can never happen.

Preservation of properties By construction, a well-typed term of Weak Fι is also a well-typed
term of Fι, since the syntax of Weak Fι is a subset of that of Fι and the typing rules are the same.

Additionally, the reduction relation of Weak Fι is included into the reduction relation of Fι.
This is the case because we restricted the reduction contexts to implement weak reduction and
the RedCoerCoerLam rule to preserve the value restriction.

As a consequence, subject reduction and normalization properties of Fι are preserved in Weak
Fι. The progress lemma cannot be lifted in a similar way, because the reduction relation of Weak
Fι is strictly included into the one of Fι and we changed the values. Because we do strong reduction
only on types, we state the progress lemma for terms that are typed in an environment containing
only type variables. The proof is done as usual. But prior to this, we prove that reduction stays
in the language.

Lemma 46 (Value restriction preservation). If M is syntactically correct and M βι N holds,
then N is syntactically correct.

(Proof p. 58)

Lemma 47. If Γ ` M : τ , Γ ` G : τ . σ, Γ ` τ , Γ ` ok, or M βι N holds in Weak Fι, then it
also holds in Fι.

(Proof p. 58)

Lemma 48. If Γ ` M : τ holds in Fι and M is syntactically correct in Weak Fι, then Γ ` M : τ
holds in Weak Fι.

(Proof p. 58)

Proposition 49 (Preservation). If Γ `M : τ and M βι N hold, then Γ ` N : τ holds.
(Proof p. 59)

Proposition 50 (Termination). Reduction in Weak Fι is terminating.

RR n° 7587

On the Power of Coercion Abstraction 44

(Proof p. 59)

Lemma 51 (Classi�cation). If Γ ` v : τ holds, then:

1. If τ is of the form τ → τ , then v is of the form λ(x : τ) v.

2. If τ is of the form (τ ∗ τ), then v is of the form (v, v).

3. If τ is of the form ∀α. τ , then v is of the form λα v.

4. If τ is of the form (τ . τ)⇒ τ , then v is of the form λ(c : τ . τ) v.

5. If τ is of the form >, then v is of the form Topτ 〈v〉.
(Proof p. 59)

Lemma 52 (Progress). If −→α `M : τ holds, then either M is a value or it reduces.
(Proof p. 59)

Con�uence in Weak Fι must be proved separately because its statement uses reduction both
in premises and conclusion. However, since the only source of non-determinism if the order of
evaluation between the function and the argument of an application, con�uence is easy to establish.

Corollary 53 (Con�uence). Reduction in Weak Fι is con�uent.

Bisimulation It remains to check that coercions are erasable in Weak Fι, i.e. to establish a
bisimulation with λ-calculus. Of course, this is when λ-calculus is also equipped with a weak
evaluation strategy. The forward simulation holds, since it holds in Fι and the reduction relation
is smaller in Weak Fι, and the erasure of reduction contexts in Fwι are Call-by-value reduction
contexts in λ-calculus.

Lemma 54 (Forward simulation). If Γ `M : τ holds, then:

1. If M β N , then bMc bNc.

2. If M ι N , then bMc = bNc.
(Proof p. 59)

It remains to check that the backward simulation also holds. Because backward simulation is
similar to a progress lemma for ι-reduction, we �rst show a classi�cation lemma on ι-normal-forms.
To do so, we de�ne retyping contexts of arbitrary depth Q as a sequence of retyping contexts P .
These Q are arbitrary contexts that erase to their hole.

Lemma 55 (Classi�cation). If −→α ` Q[λ(x : τ ′) M] : τ (resp. −→α ` Q[(M,N)] : τ) holds and
Q[λ(x : τ ′) M] (resp. Q[(M,N)]) is in ι-normal form, then:

1. If τ is σ → σ′ (resp. (σ ∗ σ′)) then Q is [].

2. If τ is ∀α. σ then Q is λα Q′.

3. If τ is ϕ⇒ σ then Q is λ(c : ϕ) Q′.

Proof. By induction on Q.

� []: Only the �rst case is possible by typing. And it has the right form.

� λα Q′: Only the second case is possible by typing. And it has the right form.

� Q′ τ ′: By typing we have −→α ` Q′[λ(x : ρ) M] : ∀α. ρ′ (resp. −→α ` Q′[(M,N)] : ∀α. ρ′)
such that ρ′[α ← τ ′] = τ . By induction hypothesis we have Q′ of the form λα Q′′, which
contradicts the fact that we were in ι-normal-form, since RedType applies.

� G〈Q′〉: By induction on G.

RR n° 7587

On the Power of Coercion Abstraction 45

� x, λ(x : τ) M , M M , (M,M), M.1, and M.2: These are refused by typing, because
they are terms instead of coercions.

� λα W , W τ , G〈W 〉, λ(c : τ . τ)W , and W{G}: These are not in ι-normal-form, since
RedCoerCoer applies.

� ♦τ : It is not in ι-normal-form, since RedCoerDot applies.

� c: This is refused by typing, since we only have type variables in the environment.

� Topτ : No case apply.

� G
τ→ G: By typing we have −→α ` Q′[λ(x : ρ) M] : σ → σ′. By induction hypothesis we

have that Q′ is empty, which contradicts the fact that we were in ι-normal-form, since
RedCoerArrow applies.

� Dist∀α.τ→τ : By typing and induction hypothesis used twice, we have that Q′ is λα λ(x :
ϕ) M , which contradicts the fact that we were in ι-normal-form, since RedCoerDist
applies.

� (G ∗G), Dist∀α.(τ∗τ), and Distϕ⇒(τ∗τ): No case apply.

� G
τ→ G and Dist∀α.τ→τ (resp.): No case apply.

� (G ∗G) (resp.): By induction hypothesis, RedCoerProd applies.

� Dist∀α.(τ∗τ) (resp.): By induction hypothesis used twice, RedCoerDistTypeProd applies.

� Distϕ⇒(τ∗τ) (resp.): By induction hypothesis used twice, RedCoerDistCoerProd applies.

� λ(c : σ . σ′)Q′: Only the third case is possible by typing. And it has the right form.

� Q′{G}: By typing we have −→α ` Q′[λ(x : ρ) M] : (σ . σ′)⇒ τ (resp. −→α ` Q′[(M,N)] :
(σ . σ′)⇒ τ). By induction hypothesis we have Q′ of the form λ(c : σ . σ′)Q′′, which
contradicts the fact that we were in ι-normal-form, since RedCoer applies.

Lemma 56 (Backward simulation). If −→α ` M : τ and bMc a, then M ?
ι β N such that

bNc = a.

Proof. We show that the ι-normal-form of M β-reduces to N with bNc equal to a. Since Fι
strongly normalizes, we may assume, without lost of generality, that M is already in ι-normal-
form. Because bMc reduces, we can use the reduction derivation to show that it must be of the
form e[(λx.a1) a2]. By inversion of the coercion-erasure function, we show that M is of the form
C[Q[λ(x : τ) M1] M2] where C is a reduction context (we can have neither term abstraction since
we do not have them in the λ-calculus, nor coercion abstraction because we have an application
node below, and there is no way to have an application node under a coercion abstraction without
using a term abstraction) and Q a retyping context of arbitrary depth, such that C, M1, and M2

erase to e, a1, and a2 respectively. We show using Lemma 55 that if a ι-normal term of the form
Q[λ(x : τ) M] has an arrow type, then Q is empty. Hence, M is of the form C[(λ(x : τ) M1) M2]
and β-reduces to C[M1[x ← M2]] whose erasure is e[a1[x← a2]]. A similar proof holds for
reduction of pairs.

8 Related work

Although many type systems could be explained using coercions, since for instance they use a form
of subtyping, very few have followed this path and made the connection with coercions explicit.

We have already widely discussed Fη, F<:, and xMLF. Parts of Fxι is closely related to the work
of Manzonetto and Tranquilli [2010] who proposed the �rst encoding of xMLF in a calculus of
coercions, but for the main purpose of proving the termination of xMLF. They exhibit a type and

RR n° 7587

On the Power of Coercion Abstraction 46

semantics preserving encoding of xMLF into (their version of) Fxι and show a simulation of compu-
tation between their Fxι and System F. Unfortunately, subject reduction and other properties that
depend on it do not hold in their system. Our version of Fxι can be seen as a �x to their de�nition.
Hence, there are many resemblances between their development of Fxι and our development of
Fι�but the typing rules di�er. We omitted the proof of inclusion from xMLF into Fxι by lack of
space, but also because it resembles theirs. In fact, their translation of xMLF into Fxι has itself
been inspired by the translation of MLF into System F by Leijen and Löh [2005] and Leijen [2007].
However, Manzonetto and Tranquilli restrict their study to the termination of xMLF without any
interest in Fη or F<:, while our main interest is not in Fxι , but in Fpι and Fι, i.e. a general treatment
of abstraction over coercion functions that extends Fη, and as a side result a possible enhancement
of xMLF.

Although Fι subsumes core F<:, we have not included records in Fι, which are often the �rst
application of F<:. Our formalization includes tuples, and therefore models tuple inclusion. We
claim that Fι can model record subtyping as well. However, our treatment of records in Fι would
be similar to their treatment in F<: and require an expressive runtime system so that subtyping is
erasable.

Record subtyping in F<: may also be compiled away into records without subtyping in plain
System F by inserting coercions with computational content [Breazu-Tannen et al., 1991] that
change the representation of records whenever subtyping is used. Since these coercions are not
erasable and can be inserted in di�erent ways, the soundness of the approach depends on a coher-
ence result to show that the semantics of the translation does not actually depend on the places
where coercions are inserted.

Another method for eliminating subtyping has been used by Crary [2000]: bounded polymor-
phism ∀(α ≤ τ). σ is compiled away into an intersection type ∀α. σ[α ← α ∩ τ] while intersection
types are themselves encoded with explicit erasable coercions. This directly relates to our work
by their canonization, which is similar to our ι-reduction, and their use of bisimulation up to
canonization to show erasability of coercions. Of course, the languages are di�erent, as we do
not consider intersection types while they do have neither coercion abstraction nor distributivity
and only consider call-by-value reduction. Their work could serve as a reference to extend Fι with
recursive types.

Languages with dependent types often split terms with and without computational content
using kinds so that parts of terms that contribute only to the static semantics can be dropped
at runtime. This is more powerful than our notion of coercions; for instance, it could allow to
build coercions by computation�a feature that we would like to have. However, we do not know
whether this approach could be applied and bene�t to our extension of Fη.

Coercions introduced in FC2 [Weirich et al., 2011], the internal language of Haskell, are inter-
esting because they use coercion projections and cannot be expressed in Fλι . Although FC2 uses
a weak evaluation strategy, it can declare abstract coercions at the toplevel, which amount to a
form of coercion abstraction�hence they need coercion projections to regain erasability. However,
coercions in FC2 are non-oriented, do not have distributivity nor deep instantiation of quanti�ers
and are thus structural, which allows for an easier setting and a simple criteria to be used for
consistency checking. A new version of FC2 [Vytiniotis and Jones, 2011] makes coercions �rst-
class values in an otherwise comparable setting. Coercions can be abstracted over as in Fι and
also stored in data-structures. However, as a result of being �rst-class, coercions may change the
termination (hence the semantics) of programs and are not erasable in our terminology. The two
languages Fι and FC2 follow orthogonal approaches and are thus not easily comparable; combining
the features of both would be an interesting challenge.

Adding coercion projections to Fι and taking distributivity away, we could obtain a version
much closer to FC2 but where coercions are oriented. Surprisingly few works have consider dis-
tributivity and include the power of Fη, apart from theoretical papers on Fη itself.

Retyping functions can also be seen as a way of rearranging typing derivations. Abstraction
over coercions is then abstraction over type derivation transformations. There might be interesting
connections to establish with expansion variables for ∀-quanti�ers introduced by Lenglet and Wells
[2010].

RR n° 7587

On the Power of Coercion Abstraction 47

9 Discussion and future work

The language Fι extends Fη with abstraction over coercion functions in a general way where
coercions are retyping functions, i.e. certain terms of the λ-calculus that do not contribute but
may block the evaluation. In order to solve this problem and make coercions erasable, we have
proposed two restrictions of Fι.

Weak Fι restricts the reduction relation by choosing a weak evaluation strategy for both co-
ercions and terms and restrict coercion abstraction to value forms. The main advantage of this
solution is its simplicity and its generality. Still, the restriction of coercion abstractions to value
forms, which is analogous to value-only polymorphism in languages with side e�ects, is signi�cant.
Moreover, it allows the abstraction over coercions of uninhabited coercion types, which are never
applicable, thus leaving the possibility of non-sensible code hidden under coercion abstraction
undetected�or at least delaying its detection.

Instead, Fpι restricts the types of coercion parameters and forces them to be polymorphic in
either their domain or codomain. The advantage of Fpι is to retain a strong reduction relation,
which shows that the calculus is really well-behaved. Although restrictive, it already subsumes
Fη, xMLF, and F<:. We believe it is an interesting point in the design space. It also shows that
an extension of xMLF with subtyping would be possible and bene�cial, even if the question of
designing the surface language to make type inference possible remains open.

Still, as both solutions are signi�cant and orthogonal restrictions to Fι, we may explore other
possibilities.

Relaxing Fpι Relaxing Fpι so that it could type more expressions but still prevent wedges from
being typable is probably the easiest extension to this work. An obvious but minor generalization
is to let λ(α /. c̄ : τ̄)M abstract over several coercions simultaneously, but all with the same
polarity. Allowing multiple polarities cannot come without further restrictions, as transitivity
could then be used to build an abstract coercion between arrow types.

A more ambitious generalization is to replace the local constraint on the type of coercions by a
global constraint de�ned by some auxiliary consistency judgment. We could allow abstractions of
the form λ(ᾱ, c̄ : τ̄ . σ̄) M using a side condition on the typing rule to ensure that the combination
of coercions in context still prevents the creation of wedges. However, �nding a suitable notion of
consistency in the presence of distributivity is challenging.

Beyond Fι So far, we have explored restrictions of Fι to prevent wedges from appearing in a
reduction context. Instead, we could perhaps extend the calculus to allow breaking them apart.
Observe that when a coercion variable appears in a wedge, it is always a coercion between arrow
types and that any actual coercion that will be passed at runtime will start with an arrow coercion
G1

τ→ G2 that can be decomposed into G1 and G2 and pushed out of the way. So, we could
decompose the abstract coercion as well, by introducing coercion projections LeftG and RightG
that behaves as G1 and G2 whenever G is G1

τ→ G2.
While this idea is intuitively simple, it is actually quite involved as new di�culties appear one

after the other when solving them, due to the presence of distributivity. Projectors require both
binding coercions as in Fλι and, independently, a notion of structural equivalence to treat coercions
up to some rearrangements; unfortunately, the combination of both breaks con�uence; a �x to
con�uence is to reduce coercions themselves, which introduces further problems! Moreover, even
assuming that such a calculus can be set up, there will remain to solve a typechecking problem
quite similar to (although more �exible than) the one for relaxing Fpι with non-local consistency.
Indeed, decomposing nonsensical coercions cannot ensure erasability, ι-reduction may either get
stuck, being unsound, or loop forever. We leave this exploration for future work.

Here are some hints on the di�culties to add projectors. Since we can abstract over coercions,
we can have in context a coercion c between arbitrary arrow types for which they may not be
any actual coercion. For example, we may assume c of coercion type (Int → ∀α. α) . (Char →
Bool). Although, we cannot build any coercion of such type in Fι, it could be considered valid,

RR n° 7587

On the Power of Coercion Abstraction 48

semantically: since Int → ∀α. α is empty, any function of such type can also be treated as a
function of type Char → Bool. However, Left c would then have coercion type Char . Int, which
is semantically nonsensical. We thus need stronger typing rules to rule out these types from
which projection could be meaningless. However, because of distributivity it is not obvious how
to syntactically do so. (Removing distributivity is a huge source of simpli�cations, which might
be worth exploring when adding projectors, even if it reduces expressiveness accordingly.)

Here is the intuition why we need binding coercions. Consider the wedgeM equal to c〈λα λ(n :
Int) λ(x : α) x〉 3, typed as follows c : (∀α. Int → α → α) . (Int → τ) ` M : τ where τ is
∀α. α → α. It erases to (λn.λx.x) 3 which reduces to λx.x. The reduction of M should result
in something like (Right c〈λα ♦〉)〈λ(x : α) x〉 : ∀α. α → α where Right c〈λα ♦〉 binds the type
variable α.

We also need structural equivalence. In the previous example we need the two following terms
to be equivalent:

M1 = c〈λα λ(n : Int) λ(x : α) x〉 (1)

M2 = (c〈λα ♦〉)〈λ(n : Int) λ(x : α) x〉 (2)

M1 must reduce to M2 so that the projection reduction can occur. M2 must also reduce to M1

to handle all our previous rules about coercions (like RedType or RedCoerDistTypeArrow).
However, we cannot add both reductions simultaneously, as the calculus would not terminate.
Instead, one solution is to treat M1 and M2 as structurally equivalent. (Notice that we just need
an equivalence relation on terms, not on coercions.)

Leaving Fη and freezing quanti�ers We have added coercion abstraction to the language
Fη as it is the reference in the absence of abstraction. However, many of the di�culties in Fι
come from the distributivity rules, which allow coercions to move quanti�ers inside types, or more
precisely, from the combination of distributivity with contravariance of the arrow constructor�
which is already the source of di�culties in Fη, including undecidability of type-containment. This
suggests exploring a restriction of Fι that does not have distributivity, nor type abstraction and
type application of coercions, that would not extend Fη, but have a much simpler metatheory.

Language extensions Several features of programming languages have also been left out of Fι.
We have only included pairs in our presentation of Fι, but labeled products should work similarly.

We do not expect di�culties with tagged unions or iso-recursive types, e.g. following Crary
[2000] although details are subtle and still need to be checked. We don't foresee any di�culties
for adding �x points to the source language.

Some care is needed for existential types, which already raise a problem in System F as they
do not have an erasing semantics with a strong evaluation strategy. Therefore, we left them out
of Fι and replaced them by a top type. This is, however, an orthogonal issue.

An interesting extension is to make coercion �rst-class objects which raises another challenge
for erasability: since coercions can then be built by computation, should a computation that just
builds coercions be erasable as well? Coercion types are monomorphic in Fι but between possibly
polymorphic types. We do not expect di�culties to have polymorphic coercion types. First-class
coercions would naturally bring polymorphic coercion types.

We have studied coercions for second-order polymorphism. We should not expect di�culties
with higher-order polymorphism. However, adding coercions to a language with dependent types
may be more challenging.

Conclusions

We have explored extensions of System Fη with abstraction over coercion functions. We have
proposed a typed calculus Fι that strongly normalizes. Coercions do not contribute to the reduction
but may block it and are thus non erasable.

RR n° 7587

On the Power of Coercion Abstraction 49

We have proposed two restrictions of coercion abstraction to ensure erasability: Weak Fι pre-
vents evaluation under coercion abstraction while Parametric Fι prevents coercion variables to
appear in the middle of redexes. We believe that Parametric Fι is an interesting point in the
design space, as it factors out several known languages in a simple framework.

Still, Parametric Fι only permits a limited use of coercion abstraction. We have sketched a few
other directions for recovering erasability, which we leave for future work.

Finally, we would like to better understand the logical counter-part of erasable coercions. An
intriguing question is a better characterization of the expressiveness of Fι which is more expressive
than Fη which is itself already closed by η-expansion.

References

P. Baldan, G. Ghelli, and A. Ra�aetà. Basic theory of F-bounded quanti�cation. Inf. Comput., 153:
173�237, September 1999. URL http://portal.acm.org/citation.cfm?id=320278.320285.

V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance as implicit coercion.
Information and Computation, 93:172�221, 1991.

P. Canning, W. Cook, W. Hill, W. Oltho�, and J. C. Mitchell. F-bounded polymorphism for object-
oriented programming. In Proceedings of the fourth international conference on Functional
programming languages and computer architecture, FPCA'89, pages 273�280, New York, NY,
USA, 1989. ACM. ISBN 0-89791-328-0. URL http://doi.acm.org/10.1145/99370.99392.

L. Cardelli. An implementation of FSub. Research Report 97, Digital Equipment Corporation
Systems Research Center, 1993. URL http://research.microsoft.com/Users/luca/Papers/

SRC-097.pdf.

K. Crary. Typed compilation of inclusive subtyping. In Proceedings of the �fth ACM SIGPLAN
international conference on Functional programming (ICFP), pages 68�81, New York, NY, USA,
2000. ACM. ISBN 1-58113-202-6. URL http://doi.acm.org/10.1145/351240.351247.

K. Crary, S. Weirich, and J. G. Morrisett. Intensional polymorphism in type-erasure semantics.
Journal of Functional Programming, 12(6):567�600, 2002. URL http://dx.doi.org/10.1017/

S0956796801004282.

D. Le Botlan and D. Rémy. Recasting MLF. Information and Computation, 207(6):726�785, 2009.
ISSN 0890-5401. URL http://dx.doi.org/10.1016/j.ic.2008.12.006.

D. Leijen. A type directed translation of MLF to System F. In The International Confer-
ence on Functional Programming (ICFP'07). ACM Press, Oct. 2007. URL http://research.

microsoft.com/users/daan/download/papers/mlftof.pdf.

D. Leijen and A. Löh. Quali�ed types for MLF. In ICFP '05: Proceedings of the tenth ACM
SIGPLAN international conference on Functional programming, pages 144�155, New York, NY,
USA, Sept. 2005. ACM Press. ISBN 1-59593-064-7. URL http://murl.microsoft.com/users/

daan/download/papers/qmlf.pdf.

S. Lenglet and J. B. Wells. Expansion for forall-quanti�ers. Available electronically, 2010. URL
http://sardes.inrialpes.fr/~slenglet/papers/systemFs.pdf.

G. Manzonetto and P. Tranquilli. Harnessing MLF with the Power of System F. In P. Hlinený and
A. Kucera, editors, Mathematical Foundations of Computer Science 2010, 35th International
Symposium, (MFCS), volume 6281 of LNCS, pages 525�536. Springer, 2010. ISBN 978-3-642-
15154-5. doi: http://dx.doi.org/10.1007/978-3-642-15155-2_46.

J. C. Mitchell. Polymorphic type inference and containment. Information and Computation, 2/3
(76):211�249, 1988.

RR n° 7587

http://portal.acm.org/citation.cfm?id=320278.320285
http://doi.acm.org/10.1145/99370.99392
http://research.microsoft.com/Users/luca/Papers/SRC-097.pdf
http://research.microsoft.com/Users/luca/Papers/SRC-097.pdf
http://doi.acm.org/10.1145/351240.351247
http://dx.doi.org/10.1017/S0956796801004282
http://dx.doi.org/10.1017/S0956796801004282
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://research.microsoft.com/users/daan/download/papers/mlftof.pdf
http://research.microsoft.com/users/daan/download/papers/mlftof.pdf
http://murl.microsoft.com/users/daan/download/papers/qmlf.pdf
http://murl.microsoft.com/users/daan/download/papers/qmlf.pdf
http://sardes.inrialpes.fr/~slenglet/papers/systemFs.pdf

On the Power of Coercion Abstraction 50

D. Rémy and B. Yakobowski. A Church-Style Intermediate Language for MLF. In M. Blume,
N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming, volume 6009 of Lecture
Notes in Computer Science, pages 24�39. Springer Berlin / Heidelberg, 2010. URL http:

//dx.doi.org/10.1007/978-3-642-12251-4_4.

D. Vytiniotis and S. P. Jones. Practical aspects of evidence-based compilation in system FC. Avail-
able electronically, 2011. URL http://research.microsoft.com/en-us/um/people/simonpj/

papers/ext-f/.

S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Generative type abstraction and
type-level computation. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL '11, pages 227�240, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0490-0. URL http://doi.acm.org/10.1145/1926385.1926411.

A Delayed Proofs

Proof of Lem 3

The proof is standard. It uses Lemma 2 to ensure well-formedness of Γ from the hypothesis. The
second and third cases are proved by mutual induction.

Proof of Lem 4

This proof is standard. Cases 4 and 5 are proved by mutual induction, as well as for cases 6 and
7.

Proof of Lem 5

The proof is standard and uses lemmas 3 and 4.

Proof of Lem 6

The proof is standard and uses Lemma 3.

Proof of Lem 7

The proof is standard and uses Lemma 3.

Proof of Prop 8

By induction on M0 βι N0.

� RedContextBeta and RedContextIota: By case analysis on the context. By inversion
of typing, only one typing rule match, and we reuse it along with the induction hypoth-
esis to build the premise in the hole (other premises stay the same) since typechecking is
compositional.

� RedTerm: By Lemma 6.

� RedFirst and RedSecond: We use the corresponding subderivation.

� RedCoer: By Lemma 7.

� RedType: By Lemma 4.

RR n° 7587

http://dx.doi.org/10.1007/978-3-642-12251-4_4
http://dx.doi.org/10.1007/978-3-642-12251-4_4
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://doi.acm.org/10.1145/1926385.1926411

On the Power of Coercion Abstraction 51

� RedCoerArrow: By inversion of typing we have Γ ` G1 : τ . τ ′, Γ ` G2 : σ . σ′, and
Γ, (x : τ ′) ` M : σ. We build Γ, (y : τ) ` G1 : τ . τ ′ and Γ, (y : τ) ` G2 : σ . σ′ using
Lemma 5 (to show the valid extension) and Lemma 3 where y is fresh for Γ and x. We
build Γ, (y : τ), (x : τ ′) ` M : σ using Lemma 5 and 3. We can now use Lemma 6 to build
Γ, (y : τ) `M [x← G1〈y〉] : σ′. The result follows by rules TermCoer and TermTermLam.

� RedCoerDistTypeArrow: We have Γ, α, (x : τ) ` M : σ. We build Γ, (x : τ), α ` M : σ
using Lemma 3. We use Γ ` τ (which means α /∈ ftv(τ)) to show that Γ, (x : τ), α is a valid
extension of Γ, α, (x : τ).

� RedCoerDistCoerArrow: We have Γ, (c : ρ . ρ′), (x : τ) ` M : σ. We build Γ, (x : τ), (c :
ρ . ρ′) `M : σ using Lemma 3. We show Γ ` τ using Lemma 7.

� RedCoerProd: Obvious.

� RedCoerDistTypeProd: We have Γ, α `M : τ and Γ, α ` N : σ. The result is obvious.

� RedCoerDistCoerProd: We have Γ, (c : ρ . ρ′) ` M : τ and Γ, (c : ρ . ρ′) ` N : σ. The
result is obvious.

� RedCoerDot: Obvious.

� RedCoerFill: By cases on P .

� λα []: We have Γ, α ` G : τ . σ and Γ `M : τ . We use Lemma 3 to build Γ, α `M : τ
(and Lemma 2 to show Γ, α ` ok).

� [] τ : Easy.

� G〈[]〉: Easy.
� λ(c : ρ . ρ′) []: We have Γ, (c : ρ . ρ′) ` G : τ . σ and Γ ` M : τ . We use Lemma 3 to
build Γ, (c : ρ . ρ′) `M : τ (and Lemma 2 to show Γ, (c : ρ . ρ′) ` ok).

� []{G}: Easy.

Proof of Lem 9

This is proved by induction on v. At a higher level, we observe that value forms are partitioned
and mapped to a partition of types, hence the mapping can be inverted.

Proof of Prop 10

This is a standard proof using Lemma 9. By induction on M0.

� C[M] when M is not a value: The induction hypothesis applies to M , and we use RedCon-
textBeta or RedContextIota to build C[M] βι C[N].

� x, λ(x : τ) v, λα v, λ(c : τ1 . τ2) v, and (v1, v2): These are values.

� ♦τ , G1
τ→ G2, Dist∀α.τ→σ, Distϕ⇒τ→σ, (G1 ∗G2), Dist∀α.(τ∗σ), Distϕ⇒(τ∗σ), Top

τ , and c: These expres-
sions are rejected by typing because they are coercions and not terms.

� v1 v2: Using Lemma 9 on v1.

� p: It is a value.

� λ(x : τ) v3: RedTerm applies.

� v τ : Using Lemma 9 on v.

� p: It is a value.

RR n° 7587

On the Power of Coercion Abstraction 52

� λα v′: RedType applies.

� v{G}: Using Lemma 9 on v.

� p: It is a value.

� λ(c : τ1 . τ2) v′: RedCoer applies.

� v.1: Using Lemma 9 on v.

� p: It is a value.

� (v1, v2): RedFirst applies.

� v.2: Using Lemma 9 on v.

� p: It is a value.

� (v1, v2): RedSecond applies.

� G〈v〉: By induction on G.

� x, λ(x : τ) M , M N , (M,N), M.1, M.2: These expressions are rejected by typing
because they are terms and not coercions.

� c, Topτ : These are values.

� ♦τ : RedCoerDot applies.

� λα W , W τ , λ(c : τ1 . τ2)W , W{G}, and G〈W 〉: RedCoerFill applies.
� G1

τ→ G2: Using Lemma 9 on v.

* p: It is a value.
* λ(x : τ) v′: RedCoerArrow applies.

� Dist∀α.τ→σ: Using Lemma 9 on v.

* p: It is a value.
* λα v′: Using Lemma 9 on v′.

· p′: It is a value.
· λ(x : τ) v′′: RedCoerDistTypeArrow applies.

� Distϕ⇒τ→σ: Using Lemma 9 on v.

* p: It is a value.
* λ(c : ρ . ρ′) v′: Using Lemma 9 on v′.

· p′: It is a value.
· λ(x : τ) v′′: RedCoerDistCoerArrow applies.

� (G1 ∗G2): Using Lemma 9 on v.

* p: It is a value.
* (v1, v2): RedCoerProd applies.

� Dist∀α.(τ∗σ): Using Lemma 9 on v.

* p: It is a value.
* λα v′: Using Lemma 9 on v′.

· p′: It is a value.
· (v1, v2): RedCoerDistTypeProd applies.

� Distϕ⇒(τ∗σ): Using Lemma 9 on v.

* p: It is a value.
* λ(c : ρ . ρ′) v′: Using Lemma 9 on v′.

· p′: It is a value.
· (v1, v2): RedCoerDistCoerProd applies.

RR n° 7587

On the Power of Coercion Abstraction 53

Proof of Lem 12

The proof consists in reducing the translation of every redex. This is just simple computation and
all details below could be easily rebuilt by the reader.

1. By induction on M β N .

� RedContextBeta: By case on the context. Reduction contexts are rei�ed on System F
contexts, and because we are in strong reduction, all contexts are reduction contexts.

� RedTerm, RedFirst, and RedSecond: These rules were already in System F and are
rei�ed on themselves.

2. By induction on M ι N .

� RedContextIota: Same argument as for β-reduction.

� RedType: This was already a rule of System F and is rei�ed on itself.

� RedCoerArrow: We have

(λ(y : dτ ′e → dσe) λ(x : dτe) dG2e (y (dG1e x))) (λ(x : dτ ′e) dMe)
 λ(x : dτe) dG2e ((λ(x : dτ ′e) dMe) (dG1e x))

 λ(x : dτe) dG2eM [x← dG1e x]

� RedCoerDist: We have

(λ(y : ∀α. dτe → dσe) λ(x : dτe) λα y α x) (λα λ(x : dτe) dMe)
 λ(x : dτe) λα (λα λ(x : dτe) dMe)α x
 λ(x : dτe) λα (λ(x : dτe) dMe) x
 λ(x : dτe) λα dMe

� RedCoerDistCoerArrow: We have

(λ(y : (dρe → dρ′e)→ dτe → dσe) λ(x : τ) λ(xc : dρe → dρ′e) y xc x)

(λ(xc : dρe → dρ′e) λ(x : dτe) dMe)
 λ(x : τ) λ(xc : dρe → dρ′e) (λ(xc : dρe → dρ′e) λ(x : dτe) dMe) xc x
 λ(x : τ) λ(xc : dρe → dρ′e) (λ(x : dτe) dMe) x
 λ(x : τ) λ(xc : dρe → dρ′e) dMe

� RedCoerProd: We have

(λ(y : (dτe ∗ dσe)) (dG1e y.1, dG2e y.2)) (dMe, dNe)
 (dG1e (dMe, dNe).1, dG2e (dMe, dNe).2)

 (dG1e dMe, dG2e dNe)

� RedCoerDistTypeProd: We have

(λ(y : ∀α. (τ ∗ σ)) (λα (y α).1, λα (y α).2)) (λα (dMe, dNe))
 (λα ((λα (dMe, dNe))α).1, λα ((λα (dMe, dNe))α).2)

 (λα (dMe, dNe).1, λα (dMe, dNe).2)

 (λα dMe, λα dNe)

RR n° 7587

On the Power of Coercion Abstraction 54

� RedCoerDistCoerProd: We have

(λ(y : (dρe → dρ′e)→ (dτe ∗ dσe))
(λ(xc : dρe → dρ′e) (y xc).1, λ(xc : dρe → dρ′e) (y xc).2))

(λ(xc : dρe → dρ′e) (dMe, dNe))
 (λ(xc : dρe → dρ′e) ((λ(xc : dρe → dρ′e) (dMe, dNe)) xc).1
, λ(xc : dρe → dρ′e) ((λ(xc : dρe → dρ′e) (dMe, dNe)) xc).2)

 (λ(xc : dρe → dρ′e) (dMe, dNe).1
, λ(xc : dρe → dρ′e) (dMe, dNe).2)

 (λ(xc : dρe → dρ′e) dMe, λ(xc : dρe → dρ′e) dNe)

� RedCoerDot: We have (λ(x : dτe) x) dMe dMe
� RedCoerCoer: We have (λ(x : dτe) P [dGe x]) dMe P [dGe dMe]
� RedCoer: This rei�es on a simple RedTerm.

Proof of Lem 17

The proof is by simple computation.

Proof of Prop 19

The proof is by induction on the reduction and unsurprising. We only detail the most signi�cant
cases; other cases are either similarly or easy.

� LRedCoer and LRedHole work with substitution lemmas.

� LRedEtaArrApp: By inversion of typing we have

� Γ; ∆ ? (φ2 : σ′) ` G2 : σ,

� Γ,∆ `M : τ ′ → σ′,

� Γ,∆; ∆′ ? (φ1 : τ) ` G1 : τ ′,

� Γ ` N : τ .

which leads to the result with weakening, substitution, and LExprTermApp.

� LRedEtaProdFst: By inversion of typing we have Γ; ∆ ? (φ1 : τ) ` G1 : τ ′ and Γ,∆ ` M :
(τ ∗ σ).

Proof of Prop 21

By induction on the term.

� C[M]: If M reduces, then we apply the context rule.

� x, λ(x : τ) v, (v1, v2), λα v, λ(c : ϕ) v, Topτ v, and c v: These are values.

� φ: Refused by typing.

� v1 v2: By classi�cation of values on v1.

� p: This is a value.

RR n° 7587

On the Power of Coercion Abstraction 55

� λ(x : τ) v: LRedTerm applies.

� λ(φ1 : τ)G2 {φ2 ← pG1}: LRedEtaArrApp applies.

� v′.1 and v′.2: By classi�cation of values on v′ and LRedFirst, LRedEtaProdFst, LRed-
Second, or LRedEtaProdSnd.

� H v′: By cases on H. If it is a coercion variable c then the whole application is a value, else
it is a hole abstraction λ(φ : τ)G and LRedHole applies.

� v′ τ and v′H: By classi�cation of values on v′ and LRedType or LRedCoer.

� λ(φ1 : τ)G2 {φ2 ← pG1} and (G1, G2){φ1, φ2 ← p}: By classi�cation of values on v′ and
LRedEtaArrLam, LRedEtaArrEtaArr, LRedEtaProdPair, or LRedEtaProdEtaProd.

Proof of Lem 24

We �rst check that G2, M , and G1 are used in the correct environments. G2 is used under Γ,
whereas M and G1 appear under λ∆ which extends their environment to Γ,∆. Then we check
that the term is typed τ → σ under Γ. We observe that (G1〈λ∆′ ♦〉)→ ♦ is typed τ ′ → σ′.τ → σ′.
So its application to M is typed τ → σ′. Abstracting over ∆ gives type ∀∆. τ → σ′. Applying
the distributivity returns a term of type τ → ∀∆. σ′ (this is where we use Γ ` τ). And �nally we
apply ♦ → G2 which coerces our term into a term of type τ → σ which was our goal.

Proof of Lem 25

The proof is very similar to the previous one but for G[� ← ♦ ∆]. This allows us to start from
type ∀(∆,∆′′). ρ instead of ∀∆′′. ρ.

Proof of Lem 26

Using M ′ β N
′, we have that M ′ is of the form C[(λ(x : τ) M0) M1].

We observe that no ι-reduction rule can reveal a β-redex which was not already present.

Proof of Lem 27

Let's call N0 the ι-normal form of M̂0.

Proof of Prop 31

Using Lemma 29 and Lemma 30, we build Γ◦ ` M◦ : τ◦ and M◦ +
βι N

◦. Using Lemma 8,
potentially several times, in Fι, we build Γ◦ ` N◦ : τ◦. Finally, we use Lemma 29 to show
Γ ` N : τ .

Proof of Prop 32

Assume we have an in�nite reduction path starting fromM . Then using Lemma 29 and Lemma 30,
we build an in�nite reduction path in Fι. However it contradicts Corollary 13.

Proof of Cor 33

There is no critical pairs in Fpι . Thus the reduction in Fpι is locally con�uent. Because it is
terminating, it is con�uent (Newman).

RR n° 7587

On the Power of Coercion Abstraction 56

Proof of Lem 34

This holds with a simple induction on v.

Proof of Prop 35

This is a standard proof using Lemma 34. The proof is by induction on M . Using RedContext-
Beta and RedContextIota, we can only consider cases where subterms are values.

� x, λ(x : τ) v, λα v, λ(α /. c : τ) v, and (v, v): These are values.

� ♦τ , G
τ→ G, Dist∀α.τ→σ, Dist∀α/.ρ⇒τ→σ , (G ∗G), Dist∀α.(τ∗σ), Distα⇒(ρ∗τ)σ, Top

τ , and c: These expres-
sions are rejected by typing because they are coercions and not terms.

� v1 v: Using Lemma 34 on v1.

� p: It is a value.

� λ(x : τ) v: RedTerm applies.

� v τ : Using Lemma 34 on v.

� p: It is a value.

� λα v: RedType applies.

� v{τ /. G}: Using Lemma 34 on v.

� p: It is a value.

� λ(α /. c : τ) v: RedTCoer applies.

� v.1: Using Lemma 34 on v.

� p: It is a value.

� (v, v): RedFirst applies.

� v.2: Using Lemma 34 on v.

� p: It is a value.

� (v, v): RedSecond applies.

� G〈v〉: Using Lemma 34 on G.

� x, λ(x : τ) M , M M , (M,M), M.1, M.2: These expressions are rejected by typing
because they are terms and not coercions.

� c, Topτ : These are values.

� ♦τ : RedCoerDot applies.

� λα W , W τ , λ(α /. c : τ)W , W{τ /. G}, and G〈W 〉: RedCoerFill applies.

� G
τ→ G: Using Lemma 34 on v.

* p: It is a value.

* λ(x : τ) v: RedCoerArrow applies.

� Dist∀α.τ→τ : Using Lemma 34 on v.

* p: It is a value.

* λα v: Using Lemma 34 on v.

· p: It is a value.

· λ(x : τ) v: RedCoerDist applies.

RR n° 7587

On the Power of Coercion Abstraction 57

� Dist∀α/.τ⇒τ→τ : Using Lemma 34 on v.

* p: It is a value.

* λ(α /. c : τ) v: Using Lemma 34 on v.

· p: It is a value.

· λ(x : τ) v: RedCoerDistTCoerArrow applies.

� (G ∗G): Using Lemma 34 on v.

* p: It is a value.

* (v, v): RedCoerProd applies.

� Dist∀α.(τ∗τ): Using Lemma 34 on v.

* p: It is a value.

* λα v: Using Lemma 34 on v.

· p: It is a value.

· (v, v): RedCoerDistTypeProd applies.

� Dist∀α/.τ⇒(τ∗τ) : Using Lemma 34 on v.

* p: It is a value.

* λ(α /. c : τ) v: Using Lemma 34 on v.

· p: It is a value.

· (v, v): RedCoerDistTCoerProd applies.

Proof of Lem 36

We simply use Lemma 29 and Lemma 30 to call Lemma 17.

Proof of Prop 40

1. By induction on A ` m : T Γ `M : τ . All the proof are just type-checking.

2. By induction on A ` T <: S Γ ` G : τ . σ. All the proof are just type-checking.

Proof of Prop 42

1. By induction on A ` m : T Γ `M : τ . All the proof are just type-checking.

2. By induction on A ` φ : T ≤ S Γ ` G : τ . σ. All the proof are just type-checking.

Proof of Prop 43

By induction on m n. The context and beta rules are translated on the same rules. Let's
consider the remaining rules, which are all the rules involving instantiations. We proceed by
inversion of A ` m : T Γ `M : τ and A ` n : T Γ ` N : τ to get M and N .

� m1 m: We have ♦τ 〈M〉 ι M with RedCoerDot.

� m (φ;φ′) (mφ)φ′: We have (G′〈G〉)〈M〉 ι G
′〈G〈M〉〉 with RedCoerCoer.

� m

&

 Λ(α ≥ ⊥)m (with α /∈ ftv(m)): We have (λ(α / cα : ∀α. α) ♦)〈M〉 ι λ(α / cα :
∀α. α) M with RedCoerCoer.

RR n° 7587

On the Power of Coercion Abstraction 58

� (Λ(α ≥ T)m) & m[!α← 1][α← T]: We have with RedCoerCoer and RedCoerPos:

(♦{τ . ♦τ})〈λ(α / cα : τ) M〉 ι(λ(α / cα : τ) M){τ . ♦τ}
 ιM [α← τ][cα ← ♦τ]

� (Λ(α ≥ T)m) (∀(α ≥)φ) Λ(α ≥ T) (mφ): We have:

(λ(α / cα : τ) G〈♦∀(α/τ)⇒τ1{α . cα}〉)〈λ(α / cα : τ) M〉
 ιλ(α / cα : τ) G〈(λ(α / cα : τ) M){α . cα}〉
 ιλ(α / cα : τ) G〈M〉

� (Λ(α ≥ T)m) (∀(≥ φ)) Λ(α ≥ Tφ)m[!α← φ; !α]: We have:

(λ(α / cα : τ2) ♦∀(α/τ1)⇒τ{α . cα〈G〉})〈λ(α / cα : τ) M〉
 ιλ(α / cα : τ2) (λ(α / cα : τ) M){α . cα〈G〉}
 ιλ(α / cα : τ2) M [cα ← cα〈G〉]

Proof of Prop 44

By induction. This is just type-checking.

Proof of Prop 45

By induction on M βι N .

Proof of Lem 46

By induction on M βι N . We have two syntactic restrictions: �rst, we removed Distϕ⇒τ→τ ; then,
we added a value restriction on coercion abstraction. We notice that no rules introduce a Distϕ⇒τ→τ ,
so we only need to check the preservation of the second restriction:

� RedContextBeta and RedContextIota: By induction on C.

� RedCoerFill: Only the RedCoerCoerLam involves a coercion abstraction and it was mod-
i�ed to work correctly.

� RedCoerDistCoerProd: The pair has to already be a value, so both subterms are values.
Hence the resulting term does not break the restriction.

� Remaining rules do not involve coercion abstraction.

Proof of Lem 47

Obvious, since the syntax, typing rules, and reduction rules are restrictions of those in Fι.

Proof of Lem 48

The derivation of the judgment in Fι is a valid derivation in Weak Fι because typing rules are the
same.

RR n° 7587

On the Power of Coercion Abstraction 59

Proof of Prop 49

Using Lemma 47, we can call Lemma 8 in Fι, and then use Lemma 48 to come back in Weak Fι.

Proof of Prop 50

Assume we have an in�nite reduction path starting from M . Then using Lemma 47, we build an
in�nite reduction path in Fι. However it contradicts Corollary 13.

Proof of Lem 51

This holds with a simple induction on v.

Proof of Lem 52

By induction on M . Using RedContextBeta and RedContextIota, we can only consider cases
where subterms are values when reduction contexts allow it. For each reduction context we need
to check that it only binds type variables in his hole, which is the case.

� x: This is refused by typing since we only have type variables in the environment.

� λ(x : τ) M , λα v, λ(c : τ . τ)u, and (v, v): These are values.

� ♦τ , G
τ→ G, Dist∀α.τ→σ, (G ∗G), Dist∀α. (τ∗σ), Dist(ϕ.ρ

′)⇒(τ∗σ), Topτ , and c: These expressions
are rejected by typing because they are coercions and not terms.

� v1 v: Using Lemma 51 on v1, RedTerm applies.

� v τ : Using Lemma 51 on v, RedType applies.

� v{G}: Using Lemma 51 on v, RedCoer applies.

� v.1: Using Lemma 51 on v, RedFirst applies.

� v.2: Using Lemma 51 on v, RedSecond applies.

� G〈v〉: By induction on G.

� x, λ(x : τ) M , M M , (M,M), M.1, M.2: These expressions are rejected by typing
because they are terms and not coercions.

� c: This is refused by typing since we only have type variables in the environment.

� Topτ : It is a value.

� ♦τ : RedCoerDot applies.

� λα W , W τ , λ(c : τ . τ)W , W{G}, and G〈W 〉: RedCoerCoer applies.

� G
τ→ G: Using Lemma 51 on v, RedCoerArrow applies.

� Dist∀α.τ→τ : Using Lemma 51 consecutively twice on v, RedCoerDist applies.

� (G ∗G): Using Lemma 51 on v, RedCoerProd applies.

� Dist∀α.(τ∗τ): Using Lemma 51 consecutively twice on v, RedCoerDistTypeProd applies.

� Distϕ⇒(τ∗τ): Using Lemma 51 consecutively twice on v, RedCoerDistCoerProd applies.

Proof of Lem 54

We simply use Lemma 47 to call Lemma 17.

RR n° 7587

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	The language F-iota
	Syntax of F-iota
	Typing rules
	Dynamic semantics
	Examples

	Properties of F-iota
	Soundness
	Termination of reduction
	Reification of F-iota in System F
	Confluence
	Forward simulation

	Coercions as retyping functions: F-iota-lambda
	Definition of F-iota-lambda
	Soundness
	Confluence
	Reification into System F
	Completeness
	Soundness
	Bisimulation between F-iota and F-iota-lambda

	Parametric F-iota
	Syntax changes
	Adjustments to the semantics
	Properties

	Expressiveness of Parametric F-iota
	Weak F-iota
	Related work
	Discussion and future work
	Delayed Proofs

