
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1989

Computing With Coercions Computing With Coercions

Val Tannen
University of Pennsylvania

Carl A. Gunter
University of Pennsylvania

Andre Scedrov
Stanford University

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Val Tannen, Carl A. Gunter, and Andre Scedrov, "Computing With Coercions", . November 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-62.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/854
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76387887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F854&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/854
mailto:repository@pobox.upenn.edu

Computing With Coercions Computing With Coercions

Abstract Abstract
This paper relates two views of the operational semantics of a language with multiple inheritance. It is
shown that the introduction of explicit coercions as an interpretation for the implicit coercion of
inheritance does not affect the evaluation of a program in an essential way. The result is proved by
semantic means using a denotational model and a computational adequacy result to relate the
operational and denotational semantics.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-62.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/854

https://repository.upenn.edu/cis_reports/854

COMPUTING WITH COERCIONS
V. Breazu-Tannen

C.A. Gunter
A. Scedrov

MS-CIS-89-62
LOGIC & COMPUTATION 11

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

November 1989

COMPUTING WITH COERCIONS

V . Breazu-Tannen

(Extended Abstract)

C . A. Gunter

University of Pennsylvania

December 4, 1989

Abstract. This paper relates two views of the operational semantics of a language with multiple

inheritance. It is shown that the introduction of explicit coercions as an interpretation for the implicit

coercion of inheritance does not affect the evaluation of a program in an essential way. The result is

proved by semantic means using a denotational model and a computational adequacy result to relate

the operational and denotational semantics.

1 Introduction

There have been a number of efforts to understand the denotational semantics of inheritance polymorphism

and a variety of mathematical models for languages with subtle semantic features have been discovered.

However, as far as the authors of this paper know, no one has attempted to discuss what, if anything, these

denotational models have to do with the intended execution of programs in the languages they model.

For example, all of the published denotational models of the language Fun of Cardelli Wegner [CW85]

(including the work of authors of this paper) model this language in way that corresponds to no reasonable

interpretation of its operational semantics! No functional programming language in common use diverges

when evaluating the program Ax. e, even when the expression e may diverge. Yet the models for Fun

which have been studied identify the abstraction Ax. I with the divergent prograni I. Besides this

problem, all existing models satisfy the unrestricted /3 rule, which fails to be a legitimate transformation

in call-by-value languages. Since call-by-value is the most common form of evaluation, one is led to ask

whether this commitment to /3 was an important feature of the models concerned. In short, very little

has been done to close the gap between denotational and operational theories of inheritance. We see two

basic things as missing from the current theories: (1) a careful discussion of the structional operational

semantics of languages with inheritance type systems and (2) any account of the relationship between the

suggested models and a reasonable account of operational semantics.

Our goal in this paper is to attempt an account of problem (1) guided by an approach to (2). We

carry out this study in a simple, familiar context by using an extension of Plotkin's illustrative language

PCF [Plo77]. We develop a simple structural operational semantics for this language in the spirit of

'~uthor's addresses. Breazu-Tannen (valQcis.upenn.edu) and Gunter (gunterOcis.upenn.edu): Depart-

ment of Computer and Information Sciences, University of Pennsylvania, Philadelphia PA 19104, USA. Scedrov
(andreOcsli.stanford.edu) is on leave at: Department of Computer Science, Stanford University, Stanford CA 94305,

USA.

the evaluation mechanisms of languages such as LISP and ML in which functions call their parameters

by value. Our extension, which we call PCF+, is obtained by adding record and variant types. This

language is extended to a new language, PCF++, by permitting the use of a form of inheritance which

allows more programs to be viewed as type correct. We then study the question of the proper operational

interpretation of PCF++. One possible approach is simple to understand: after a PCF++ program is

shown to be type correct, the type information in the term is erased and the resulting term (which lives

in an extended untyped lambda-calculus) is evaluated. However, in view of the form of semantics that

we have studied in our work on Fun and its relatives [BCGS89, BCGS901 there is another view of the

proper operational semantics of PCF++. Under this view, a term of PCF++ is translated into a PCF+

term by inserting explicit coercions which "explain" the inheritance in the original PCF++ program in an

intuitive way. If this "explanation" really is intuitive and the first form of evaluation (which is a common

from of implementation) is reasonable, then it seems that there must be some relationship between these

two views of program evaluation! Moreover, this latter approach is also not uncommon as a form of

evaluation, and therefore has independent interest. In this paper we will show that these two forms of

evaluation are essentially the same for observable types.

To give the reader an idea of what translation we have in mind let us look at an example of how

a simple program would be evaluated. Applying our semantic paradigm to PCF++, we translate its

programs into PCF+ programs, essentially by inserting explicit coercion terms wherever inheritance is

used in type-checking. In anticipation of an exact definition of this translation (section 2), here is an

example. PCF++ type-checks the program P E G (F) where

G X f : { I : num) -+ num. {kl = f ((1 = O , E 1 = I)), k2 = f ((1 = 2,12 = false)))

F = AX : {I : num). 2.1

Note that G will not type-check in PCF+ because of the different types of the two arguments to which f

is applied.

The translation to PCF+ depends on the way P is type-checked. One possible translation is PI G

G1(F) where

G1 = X f : (1 : num) + num. {kl = f (t l ({ l = 0,11 = I))), k2 = f ((2({1 = 2 , l 2 = false))))

where t1 and t2 are the following coercion term

E Axl : (1 : num,ll : nurn). (1 = xl . l) t2 z Ax2 : { l : num,12 : bool). {I = x2.1) .

Another possible translation is PI1 = GI1(F) where

G" = A f : (1 : num) --+ num. {kl = G(f) ({ l = 0 , l1 = I)), k2 = &(f)({E = 2, 12 = false)))

where

C1 z X fi : (1 : num) -+ num. Axl : {I = num, l I = nurn). f i (t l (x l))
and

z 3 f2 : { I : num) -+ num. Ax2 : {I = num,12 = bool). f 2 (E 2 (x 2))

The fact that the translation (more generally, the meaning) depends on the type-checking derivation

entails the need for denotational coherence results [BCGS89]. In this paper, however, we will examine

the computational (operational) aspects of this translation. Notice that the "execution" of both P' and P"

yields the same result

{kl = 0, k2 = 2)

More importantly, so does the direct execution of P. The "direct" operational semantics for PCF++

that we have in mind is just the same as that of PCF+. It is a simple but crucial observation that the

same evaluation rules work on programs allowed by the more permissive type discipline of PCF++.

Not surprisingly, this is the natural way to implement such languages (Cardelli, personal communication

about Quest [Car89]). Although it is may not be useful to fully translate a term before executing it, it is

reasonable to ask whether translation would affect the evaluation. Since coercions remove the ''junk" in

a term, they may play a useful role in efficient implementation. However, our primary interest is in the

abstract specification of the language and not the details of its efficient implenientation.

Our main result relates the direct execution of a PCF++ program phrase e to the execution of any of

its PCF+ translations, e*. We prove that

e terminates if and only if e* terminates.

If both e and e* terminate, what can we say about the relationship between the results of the two

computations? Of course, we are able to show that if the type of e is ground, (integer or boolean)

then the results are the exactly the same. In this language we are also interested in computing with

more complex objects, such as records/variants of records/variants of ground data (this is particularly

consistent with the way things are viewed in object-oriented database programming applications [OBB89]

for example). We call the types of such data observable types. Now, the philosophy of PCF++ is that

the type of program phrases is part of them, i.e., user-supplied in some sense. (This is in contrast with

the approaches based on type inference; see for example [Wan89].) At observable types, we show that

the results of the two computations have the same components in those record fields which appear in

the prescribed type of the program phrase. This is the best we can hope for, since the introduction of

coercions yields computations which may remove "junk" fields, namely the fields not occumng in the

prescribed type. Moral: if you specify a type for your program, don't expect to observe more than what

the type allows. Anyway, our conclusion is that coercions make no essential difference to the computation.

While this result only relates our translation to the operational semantics, it can be used for transfer

of computational adequacy. Consider a denotational semantics D+ of PCF+ for which our translation

is coherent. This yields a denotational semantics v++ for PCF++ where a term is interpreted by first

translating it into PCF+ and then taking the V+-meaning of the translation. Under some reasonable

assumptions about V+, our main result implies that if D+ is computationally adequate (i.e. the meaning

of a term e is non-bottom iff the evaluation of e terminates) for the operational semantics of PCF+ then

'D++ is computationally adequate for the operational semantics of PCF++.
An interesting methodological twist is that our proof of the main result actually uses a specific

denotational semantics [.IS which is computationally adequate for PCF+ and for which this transfer can

be done! As it is, we show directly that [.If + is computationally adequate for PCF++ and we derive our

main result from this. We regard this as a nice example of the use of a domain-theoretic semantics for

obtaining an essentially syntactic result.

Another comment on methodology. We have chosen to focus on call-by-value operational semantics

since this is the most common style of implementation for the languages we are studying and because

it offers a change of pace from our earlier results [BCGS89] where we focused on models in which the

unrestricted ,B axiom holds. We expect that results such as the ones we are proving in this paper could

be formulated for a call-by-name operational semantics, although this would call for some changes in our

concept of observability.

In section 2 we begin by introducing the syntax of PCF++ as an extension of PCF+. Then we describe

the translation back, from P C F u to PCF+. Finally we give the call-by-value operational semantics and

state our main theorem. In section 3 we give a domain-theoretic denotational semantics of PCF+ for which

our translation is coherent and for which the operational semantics of PCF+ is sound and computationally

adequate. We prove that the operational semantics of PCF++ is sound and computationally adequate for

the induced denotational semantics and then we show how to derive from this our main theorem. The

paper ends with a section of conclusions and ideas for more work.

2 From PCF+ to PCF++ and back again.

In this section we introduce the two calculi on which the central result of the paper focuses.

2.1 Extending PCF+ to PCF++.

The following grammar defines the syntax of type expressions s and raw terms e of our calculi. We

assume primitive syntax classes of variables and labels:

x E Variable
1 E Label
s ::= num I bool I s -+ s I { I l : s l , . . . , I n : s , } I [E l : s l , . . . , E n : s,]

e ::= 0 I Succ(e) 1 Pred(e) 1 true I false I IsZero(e) I
x : s I Ax : s . e I e(e) I px : s . e I i f e then e else e I
{ E l = e ,..., 1, = e } (e .1 I [E=e] I case e o f E l * e ,..., I , * e

For records { I 1 = e l , . . . , E n = e n) and variants [I l = e l , . . . , E n = en], it is assumed that the labels

E l , . . . , I n are all distinct. We assume that the reader can infer from our notation what is meant by free

and bound variables of raw terms. A raw term is said to be closed if it has no free variables.

A type context is a list x l : s l , . . . , x , : s , of pairs of variables and types. We assume that the

variables xi in such a context are distinct. A typing judgement is a sequent of the form H t- e : s where

H is a typing context which includes all of the free variables of the raw term e. A typing judgement

is said to be derivable in PCF+ if it can be proved using the axioms and rules listed in Table 1. It is

not hard to see that any derivable sequent has a unique derivation. This latter fact will not be true of

the calculus PCF++ which we now define. PCF++ is the extension of PCF+ to a calculus with multiple

inheritance. First of all, we define a binary relation s < t of subtyping between type expressions s and t

using the rules in Table 2. The reader can check that < is a preorder on type expressions. This relation

is now incorporated into the typing system of PCF++ by the addition of the subsumption rule:

2.2 Translation from PCF++ into PCF+.

Definition: Given types s and t such that s < t is provable, we define a PCF+ term coerce[s < t] of

type s + t by induction on the proof of s < t as follows:

coerce[bool < bool] G AX : bool. x and coerce[num < num] = Ax : num. X .

S a y s = { 1 1 : s l , ..., En : s n ,..., 1, : s , } andt = (11 : t l ,..., En : t ,) and s < t , then

0 : num false : boo1 true : boo1

H t e : n u m H I - e : n u m H I - e : n u m
H I- Pred(e) : n u m H !- Succ(e) : n u m H I- IsZero(e) : boo1

H , x : s t e : t H t e : s + t H I - e t : s
H , x : s , H ' I - 2 : s

H t X z : s . e : t H I- e (e l) : t

H , x : s t e : s H t e : b o o l H I - e ' : s H I - e " : s
H I - p 2 : s . e : ~ H I- i f e then e' else e" : s

H I - e l : s l H !- en : sn H !- e : {l l : ~ 1 , ..., ln : sn}
H I- {il = e l , . . . ,ln = en} : {il : s l , . . . ,in = ~ n } H I- e.li : si

H I- ei : si
H l- [E ; = e;] : [I l : s l , . . . , ln = s,]

H t e : [E l : s l , ..., 1, = s,] H t- f l : sl -t s H I - e n : s , + s
H t-case e of ll 5 f l . . . l n 3 fn : s

Table 1: Typing rules for PCF+.

nun1 < n u m s l < s t < t 1
boo1 < boo1 s + t < s1 -+ t'

S l < t l sn < tn

{ll : ~ l ~ . . . , l n : ~ ~ , . . . , l ~ : s m } < {11 : t l ,..., ln : i n }

S l < t l ..- sn < tn

[I I : s ~ , ... 7 1 n : ~ n] < [l l : t 1 7 ~ . . 7 1 n : t n ,..., l m : t m]

Table 2: Inheritance rules.

Say s - [E l : s l , . . . , 1 , : s,] and t r [11 : t l , . . . , l , : t , , . . . , l , : t,] and s < t , then

coerce[s < t] = AX : s . case x of l1 * f i , . . . , I , =. f ,

where fi = Xy : si. [li = coerce[si < t ;] (y)] for each i = 1,. . . , n. 1

Lemma 1 Ifs < t is derivable, then so is t- coerce[^ < t] : s + t I

We will now describe how we translate the derivations of typing judgments of P C F u into derivations

of PCF+. The translation is defined by recursion on the structure of the derivation trees. Since these are

freely generated by the typing rules, it is sufficient to provide for each rule of PCF++ a corresponding rule

on trees of PCF+ judgments. For the correspondence which we describe, it is possible to show that these

corresponding rules are directly derivable in PCF+, therefore the translation takes derivations in PCF++

into derivations in PCF+.

A PCF++ derivation A yielding an inheritance judgment H t- e : s is translated as a tree T A of

PCF+ judgments yielding a translation T * A of the form H t- e* : s. All of the rules of PCF++ except

the subsumption rule are translated "without change." For example, the axiom 0 : num is translated as

itself, whereas the rule

is translated as

H t- Succ(e) : num

H t- e* : num
H t- Succ(e*) : num

where H I- e* : num is the root of the translation of the derivation of H t- e : num. Only the subsumption

rule is altered by die translation. In particular, the rule

is translated by the rule
H t- e* : s coerce[s < t] : s + t

H t- coerce[^ < t] (e*) : t

which "makes the implicit coercion explicit."

It is not hard to see that a PCF++ typing judgement may have many different derivations. The reader

may wish to look at different possible derivations for the term in the introduction to get a sense of why

this is the case. This presents a problem for the translation: is there any sense in which two translations

to PCF+ of a given PCF++ term are related? In particular, this paper's main theorem can be used to

demonstrate a close relationship between the operational semantics of the two translations.

2.3 Operational semantics and Main Theorem.

The operational semantics of the closed raw terms of is given by the least relation between raw terms
and canonical forms which satisfies the rules and axioms in Table 3. Canonical froms are defined as

follows: 0, true, and false are canonical forms. For any expression e , Ax : s . e is a canonical form. If

c l , . . . C , are canonical forms, then {Il = c l , . . . , I , = c,) is a canonical form. If c is a canonical form,

Table 3: Call-by-value evaluation.

0 4 0 true 4 true false .& false

e 4 Succ(c) e 4 c e 4 O e .& Succ(c)
Pred(e) c Succ(e) 4 Succ(c) IsZero(e) l,l true IsZero(e) J. false

eJ .Ax:s .el ' e1.IJc' [c'/x]e1'IJc
Ax : s. e 4 Ax : s. e

e(el) 4 c

el 4 true ez 4 c el l). false e3 4 c
if el then ez else e3 4 c if el then ez else e3 J. c

el l). cl en U cn e .U {Il = ~ 1 , . .. ,In = cn)

{11 = e l , . . . , ln = en} 4 {ll CI , . . . , In = en} e.l; 4 C;

e V c e$[1;=c1] f;(c')$c
[l = e] 4 [I = c] case e of 11 + fl, . . . ,I; + f;, . . . , I n =+ fn l,l

[P.. e/xle 4 c
px. e $ c

then Succ(c) and [l = c] are canonical forms. We may also write e 4 if there is a canonical form c such

that e 4 c.

For raw terms e and e' we write [el/x]e for the result of substituting e' for x in e. We demand all of the

usual assumptions about the renaming of bound variables in e to avoid capturing free variables of el. We

assume that the substitution operation associates to the right and we may write [el,. . . , en/xl, . . . , xn]e

for the simultaneous substitution of e l , . . . , en for XI, . . . , xn respectively in e. In the event that the terms

e; are closed, note that this is the same as [el/xl] . . . [en/xn]e and, indeed, the order of the substitutions

does not matter.

It is not hard to see that if e is a closed raw term such that e JJ c, then c is uniquely determined.

This can be proved by showing that, for a given term e, there is at most one axiom or rule from Table 3
which applies to it. Hence the rules define a deterministic evaluation strategy. The evaluation of function

application is call-by-value, since the argument to the application is evaluated before being substituted

into the body of the applied procedure. There is no evaluation under a lambda-abstraction, but note that

records are eagerly evaluated. For example, the evaluation of an expression (1 = e, 1' = el}.E will result

in the evaluation of e' as well as e even though e' is "not needed" in the result. Putting aside efficiency

c

issues, this is only significant if e' diverges since, in that case, the evaluation of (1 = e , I' = e'}.l will also

diverge. Since evaluation is deterministic, we may define a partial function & on raw temls as follows

e 4 c if there is such a c
&(e) -

undefined otherwise i c
We use the symbol - between mathematical expressions to indicate that one of the expressions being

related may be undefined. In general, for expressions E and E', E - E' means that if either E or E' is

defined, then so is the other and the values are the same.

Let t- e : s be a judgement which type-checks in PCF+ and suppose e JJ c. It is easy to show that

!- c : s also type-checks in PCF+. This fact is less obvious for PCF++. We express it in the following:

Lemma 2 Suppose t- e : s is derivable in PCF++ and e JJ c, then t- c : s. 1

This sort of result is closely related to the subject reduction theorems that appear in type theory research.

Let e be raw term such that t- e : s is a derivable in PCF++ and suppose e* is a translation of e

into PCF+. Our central question is this: what, if anything, is the relationship between &(e) and &(e*)?

Naturally, we might start by guessing that &(e) 11 &(e*) in the sense that when one of them exists, then

so does the other, and the results of evaluation are syntactically identical. However, it does not take much

looking to see that the syntactic identity may fail in some cases. First of all, if & (e) is a record, then it

may contain some fields which do not appear in the result &(e*) of evaluating the coerced term since the

latter evaluation will include coercions which may strip various fields in the course of the evaluation of

e*. Moreover, if &(e) is a lambda term, then &(e*) may contain unexecuted coercions in its body which

do not appear in &(e). Worse yet, it seems that even two different translations of e : s may have different

canonical forms! Hence we cannot expect a result as simple as the one just proposed and, indeed, we

cannot expect a simple-minded statement of an operational coherence result. Nevertheless, there are some

obvious counter-observations to the problems just mentioned. In the case of records, the extra fields which

appear in &(e) may be "junk fields" which were not mentioned in the type s. One might argue that it is

not even desirable that the result of the evaluation should have fields not included in the specified type

s. Could it be that &(e) and &(e*) share "essential" fields in common? Also, the problem with higher

types (lambda-abstractions) misses a central point: the "appearance" of a term at non-observable type is

not important. Since most interpreters do not display any description of a higher-order procedure, we are

interested only in the applicative behavior of such terms in observable contexts. Our goal is therefore to

define what we mean by an observable type and define a notion of essential observable equivalence for

PCF++ judgements at these types.

Definition: Types boo1 and num are ground types. A type s is observable if

s is a ground type, or

s = (11 : ~ 1 , . . . , I n : s,} where s l , . . . ,s, are observable types, or

a s = [11 : s l , . . . , 1, : s,] where s l , . . . , s, are observable types. I

Definition: The relation =, between canonical forms of PCF++ observable type s is defined inductively

as follows:

If s is a ground type, then c =, c1 iff c = c1

Let s = {El : s l , . . . ,in : s,), then

I I I
{ ~ l = ~ ~ ~ . - . , ~ n = ~ n , . . . , ~ ~ = ~ ~ } = ~ { ~ ~ = C ~ , ..., l n = c n ,..., Ek=c;)

iff c; =,; c: for i = 1 ,..., n.

I Le t s = [11 : sl ,..., En : s,], then [E ; = c;] =, [I j = c>] iff c; =si cj . I

If E and El are expressions that may be undefined, write E -, El to mean that if one expression

exists, then so does the other and E =, El. We may now express the desired result:

Main Theorem: Suppose k e : s is derivable in PCF++ and e* is any PCF+ term which

translates this sequent, then e l,l iff e* 4. Moreover, ifs is observable, then &(e) E, &(el). I

It seems difficult to prove this result directly because of the recursion case. This problem is resolved by

appealing to denotational models for PCF+ and PCF++ which we now describe.

3 A computationally adequate denotational semantics.

For technical reasons we have found that it is useful to appeal to some results relating PCF+ and PCF++

to a specific denotational model which we will describe in this section. Although our goal is to prove a

purely syntactic result (the Main Theorem at the end of the previous section), the semantic results which

we will now establish are of independent interest.

We describe a domain-theoretic model for PCF+. The interpretation of types is as follows:

[bool] is the flat domain with three distinct elements tt, ff and least element I.

[num] is the flat domain consisting of the numbers 0,1 ,2 , . . . together with a least element I.

a [S + t] = (S CH t)l, the lifted domain of strict (i.e. I-preserving) functions from [s] into [t].

[I {El : s l , . . . , E n : s,} consists of a bottom element I, together with the set of tuples {11 =

dl , . . . ,ln = d,) where each d; is a non-bottom element of us;]. The ordering is defined by

I {El = dl , . . . , ln = d n) 5 (11 = d l , ..., E n = d;)

iff d; 5 d: for each i = 1, ..., n and 15 d for each record d.

a [I [I l : s l , . . . , 1, : s,]] consists of a bottom element I, together with the set of pairs [l; = d;]

such that di is a non-bottom element of [si]l. For two such pairs, [l; = dl C [I j = dl] iff i = j and

d C_ dl.

Suppose H = x l : s l , . . . x, : s , is a type context. An H-environment is a function which assigns to

each variable x ; an element p (x i) of the domain [s;] . The PCF+ interpretation of a sequent H I- e : s is

a function which assigns to each H-environment p a value [H I- e : s]+ +P in us].

We will refrain from writing out all of the semantic equations for the sequents of PCF+. The rules for

the introduction and elimination operators for the record and variant types are straightforward, holding in

mind that the interpretation of a record with a field which is I is itself equal to I. Recursion is defined

in the usual way using least fixedpoints. The function space requires some explanation which we now

provide.

The lift Dl of a domain D is obtained by adding a new bottom element. There is a continuous

function u p : D -t Dl which sends elements of D to their images in the lifted domain. This function

is not strict, since it sends the bottom of D to an element of Dl which dominates the "new" bottom

element. There is a unique continuous strict function down : Dl -t D such that (d o w n o u p) (x) = x for

any x and (up o d o w n) (y) = y for any y # I. This equational relationship between the two functions

plays an essential role in the computational adequacy result which we will state later. Now, the meaning

of a derivable typing judgement of the form H t- Ax. e : s -t t is given as follows:

[H k Ax. e : s -t t] + p = up(strictAd E [s] . [H , x : s I- e : t] + p [d / x])

where p [d / x] is the H , x : s environment which is the same as p except it sends x to d (we assume that

x is a "fresh" variable which does not appear in H) and the second lambda abstraction is the "semantic"

notation for a function which takes an argument d E I s] . Since the interpretation a function application

to a program with value I should have value I to model call-by-value properly, one must apply the

function strict defined as

The resulting strict function is lifted by the function u p to insure that its value is non-bottom. Again, this

will be important later when we prove a correspondence between operational divergence and having I

as a meaning. Under our intended operational semantics, no lambda-abstraction is a divergent program.

The definition of application is given as follows:

We may now show how our model for PCF+ can be used to construct a model for PCF++. Following

ideas from [BCGS89] we use the following Semantic Coherence Theorem due to Rick Blute:

Theorem 3 (Semantic Coherence) If r and A are PCF++ derivations of a sequent H t- e : s, then

A similar result was a central objective of the work in [BCGS89] where the coherence is proved for a

class of models of an equational theory. The model here differs from the ones considered there since

the unrestricted ,!? rule does not hold in the model we have described in the current paper. The semantic

function for sequents of PCF++ is now defined as follows: [H k e : s] + + ~ = [H I- e* : s]+p where

H t e* : s is any translation of H I- e : s. If we note that any PCF+ derivation is a PCF++ derivation,

then we get the following corollary:

Corollary 4 I f H t e : s is a derivable judgment of PCF+, then [H t e : s]+p = [H l- e : sI++p for

any H-environment p. I

As we shall see later, this corollary permits us to transfer some hard-earned results about PCF++ to results

about PCF+. In light of the corollary, we may sometimes omit the tags on the semantic brackets for PCF+

derivable typing judgements.

We now wish to show that the semantics for PCF++ which we have just defined is closely related to

its operational semantics. Here is our first crucial relationship:

Theorem 5 (Soundness) I f e : s is derivable in PCF++, and e J,l c , then [e : s]++ = I[c : s]++

We have omitted the proof, which is straight-forward but tedious. We mention only the following facts

which are needed:

Lemma 6 1. I f r < s < t , then [coerce[r < t] : r -+ t] = [coerce[s < t] : s -+ t] o [coerce[r < s] :

T -+ S]

2. I f s < t , then [coerce[s < t] : s -+ t] (d) = I i f f d = 1.1

Lemma 7 I f k c : s is a derivable judgement of PCF++ and c is a canonical form, then [c : s]++ # I . 1

Most of the rest of this section is devoted to a proof of a kind of converse to the Soundness Theorem

which we will call computational adequacy (the term is suggested by Albert Meyer [Mey88], although

his definition includes soundness). For PCF++, it can be stated as follows:

Theorem 8 (Computational Adequacy.) Suppose e : s is derivable in PCF++. I f [e : s]++ # I then

e 4 c for some canonical form c.

We focus on explaining how the methods that one uses for results such as those above are applied to

a calculus with multiple inheritance. We will look at the proof of adequacy in some detail. The proof

requires a relation between program meanings and programs sometimes called an "inclusive predicate".

We define this relationship as follows:

Definition: Define a relation 5, between elements of [s] on the left and closed raw terms of type s on

the right as follows. d 5, e if d = I or e J,l c for some c and d 5, c where

f z,,~ Xa: : T. e iff for each d E [s] and term c, d 5, c implies d o w n (f) (d) 5, [c / x] e .

{Il = d l , . . . ,ln = d n) 5(11:, in:,") {II = e l , . . . , l , = em) iff m 2 n and d; zSi c; for
i = 1 , ... n.

[li = dl qll:, in:,,] [l j = c] iff i = 3 and d 5,; c.

tt zbool true and ff sb,l false.

O znum 0 and if n snum c for a number n, then n + 1 Znum SUCC(C). 1

Some of the essential semantic properties of 5 are given in the following:

2. If ao L a1 a:! L . . . is an ascending chain and a, 5, e for each n, then UT=, a, 5, e. I

We are now ready to sketch the proof of the primary technical lemma which is needed for the proof of

PCF++ adequacy.

t Lemma 10 Suppose H = xl : sl . . . x , : s!, and H I- et : st is derivable. Zfdi E [s f] and di 5 t ef for
i

t t i = 1, . . . , k, then [H I- et : st]l++[dl,. . . , d k / x l , . . . , x k] 5,t [e l , . . . , e k / x l , . . . , xk]et.

t Proof: Let p be the environment [d l , . . . , d n / x l , . . . x,] and a be the substitution [e l , . . . , e L / x l , . . . , x,] .
Let A be a PCF++ derivation of the typing judgement H t- et : st. We prove that [H I- et : 5,t
aet by an induction on A. Assume that the Theorem is known for proofs of lesser height. There are

eleven possibilities for the last step of A. Some of the more interesting cases (subsumption in particular)

are written out fully below.

t a Base case: H I- X i : si.

Suppose the sequent H t- et : st is an axiom of the form above (i.e. et - xi). Then we have

[H I- xi : = di 5 t ei = axi by assumption.
' i

H , x : s I - e : t
a Lambda abstraction:

H I - X x : s . e : s - + t
Suppose the last inference in A has the form above (in particular, et : st = Ax : s. e : s -+ t) . Let

A' be part of the proof A which proves H , x : s I- e : t and suppose H , x : s I- e* : t is T*A1.

Let f = [H I- Ax : s. e : s -t t]++p = [H I- Ax : s. e* : s -+ t] + ~ and suppose d 5 , c. We must

show that

d' = down(f) (d) zt (aXx : r. e) (c) (1)

If d' = I then there is no problem. Suppose d' # I, then down(f) + I, so

dl = down(up(strictXdU E [s] . [H , x : s t- e* : t]+p[d" /x])) (d)
= (strictXdn E [s] . [H , x : s t- e* : t] l sp[d"/x]) (d)

and there are two cases. if d = I , then d' = I 5t a [c / x] e as desired. However, if d # I, then

d' = [H , x : s t- e* : tl)+ p[d/x]
= [H , x : s t- e : tl]++p[d/x]

st a [c / x] e

by the induction hypothesis. Since d' # I, there is a canonical c' such that a [c / x] e JJ. c' and

d' st c'. Since [c /x]ae = a [c / x] e , we have (Ax : s. a e) (c) = (aAx : s . e) (c) so it must be the

case that (aXx : s. e) (c) 4 c' too, so 1 holds.

H I - e l : s + t H I - e 2 : s
Application:

H I- e l (e2) : t
Let H I- e; : s -+ t and H I- e;l : s be translations dictated by A. If d' = [H I- e l (e2) : t]++p =

[H I- e;(e3) : t]+p # I, then f = [H I- el : s -+ t]++p = [H I- e; : s -+ t]+p # I and

d = [H I- e2 : s]++p = [H I- e; : s]+ # 1 (using the fact that all our functions are strict!). By the

induction hypothesis, f 5,,t ael : s -+ t and d 5 , ae2 : s , so there is a term e3 and a canonical

form c such that
ael 4 Ax : s. e3 and f z,,t Ax : s. e3

Now d' = down(f) (d) zt [c /x]e3 by the definition of zSdt, so there is a canonical c' such that

[c / x] ~ , 4 C' and d' st c'. But [c/x]e3 J. c' means (a e l) (a e z) 4 c'. Since (m)(w) - a(ei (e2)) ,

we have dl zt a (e l (e 2)) as desired.

H , x : s i - e : s
Recursion:

H I - p x : s . e : s e
Let H , x : s I- e* : s be the translation dictated by A. Let do = I and d;+l = [H , x :

s I- e : s]++p[d;/x] = [H , x : s I- e* : s]+p[d;/x]. We show that d; 5, a p x : s. e for

each i. This is immediate for do = I. Suppose d; 5, a p x : s. e. By induction hypothesis,

da+1 = [H, x : s i- e : s]++p[d;/x] 5 , a [p x : s.e/x]e. If d;+l # I , then a [p x : s. e / x] e 4 c for

some c such that d;+l 5 , c. Now a [p x : s. e / x] e = [apx : s . e / x] a e = [p x : S . a e / x] a e . Hence

a p x : s. e = px : s. a e 4 c as well. Since [H I- px : s . e : s]++p = [H I- px : s. e* : s]+p =
Ug,dd the desired result follows.

H I - e : s s < t
Subsumption rule:

H I - e : t
The proof for this case is by induction on the height of the proof that s < t . Assume that we know

that the theorem holds for H I- e : s and let H I- e* : s be any translation of this sequent to PCF+.
There are four subcases:

- Base types: These are both obvious since the coercion is the identity map.
u ' < u v < v l - Functions:
U -+ v < ul-+ v"

Suppose s = u -+ v and t = u' -+ v'. Let = down[coerce[ul < u]] and t2 =

down[coerce[v < v']]. Then [= down[coerce[u -+ v < u' -+ v']] satisfies [(f) = GO f ot l

for f : [u] c+[v]. Set f = down[H I- e : s]++p. If d 5,1 c, then & (d) 5, c by induction

hypothesis on u' < u. Thus f (&(d)) 5, (a e) (c) by induction hypothesis on H I- e : s. We

may now apply the induction hypothesis on v < v' to conclude that t(f) = Fl (f (& (d))) zvl
(ae) (c) . Since [(f) = [H I- e : t]++p we conclude that [H I- e : t]l++p zt ae.

S l < t l . .- - Records: sn < tn
{II : S l , . . . , z n :Sn , . . . , lm : S m } < {I1 : t l , . . . , l n : i n) '

Let ti = down[coerce[s; < t i]] for i = 1,. . . n and let [= down[coerce[s < t]] . By
induction hypothesis, we have d = [H I- e : s]++p 5, ae. If d = I , then [(d) = [H I-

e : t] + + ~ = I and we are done. If d # I, then d = {Il = d l , . . . , 1, = dm) where

d l , ..., dm # I and ae J,t c for some canonical c of the form c = {Il = cl7. . . ,Zj = c j)

such that j >_ m and d; zSi c; for i = 1, . . . m. By the induction hypothesis on inheritance

judgements, we must therefore have Ji (d i) zti c; for each i = 1 , . . . , n. Hence t (d) = {Il =

<i(d i) , . . . ,In = t n (d n)) Z t (11 = c l , . . . , I j = c j) by the definition of and we are done.
s1 < t l ... sn < tn

- Variants:
[11 : s1, ..., 1, : s n] < [11 : t l ,..., 1, : t n ,..., 1, :t,]'

Let ti = down[coerce[s, < t i]] for i = 1,. . . n and let J = down[coerce[s < t]] . By
induction hypothesis, we have d = [H 1 e : s]++p 5, ae. If d = I, then [(d) = [H I- e :

t]++p = I and we are done. If d # I , then d = [I; = d;] where d; # I and ae J. c where

ae J. c and d 5, c. By the definition of z , , the term c has the form [I ; = c;] and d; zSi c;. By

induction hypothesis on s ; < t;, we know that Ji(d;) Zt i ci so J (d) = [l; = t ; (d)] 5, [li = c;] . I

We may now express the desired proof of Computational Adequacy for PCF++.

Proof: (of Theorem 8) By Lemma 10 we know that [e : s]++ 5, e. Since the value on the left is

assumed to differ from I, the Theorem follows immediately from the definition of 5 , . 1

The following theorem follows immediately from Soundness and Computational Adequacy for P C F u

together with Corollary 4 of the Semantic Coherence Theorem for P a + + .

Theorem 11 (Soundness and Adequacy for PCF+) If I- e : s is derivable in PCF+, then

1. (Soundness) e J. c implies [e : s] = [c : sj .

2. (Computational Adequacy) [e : s]+ # I implies e J. c for some canonical form c. 1

The following lemma is needed for the proof of the Main Theorem:

Lemma 12 Let c and c' be canonical forms such that I- c : s and I- c' : s are derivable in PCF++ for an
observable type s. Then [c : s]++ = [c' : s]++ i f f c =, c'. 1

Corollary 13 Let e and e' be raw terms such that I- e : s and I- e' : s are derivable for an observable type

s . Then [e : s]++ = [el : s]++ z f f & (e) E~ &(el).

Proof: This follows from Adequacy, Soundness and Lemma 12.1

Main Theorem: Suppose k e : s is derivable in PCF++ and e* is any PCF+ term which translates this

sequent, then e J. iff e* J.. Moreover, if s is observable, then £ (e) -, &(el). I

Proof: Suppose e J,L c. Then [e : s]++ = [c : s]++ # 1 by the Soundness Theorem for P C F u and

Lemma 7. Since [e : s]++ = [e* : s]+, we may conclude from Soundness and Adequacy for PCF+ that

there is a canonical form c' such that e* J. c' and [c' : s]+ + = [c : s]++. If s is an observable type then

c =, C' by Lemma 12.

Suppose conversely that e* J. c' for some canonical c'. By the Soundness for PCF+, I[e* : s]+ =

[[c' : s]+ # I. Hence [e : s]++ = [e* : s]+ # I. By Adequacy and Soundness for PCF++, there is a

canonical form c such that e J. c and [c : s]++ = [c' : s]++. Thus c =, c' by Lemma 12.1

4 Conclusions and directions for further research.

We have shown that inheritance-interpreted-as-definable-coercion semantic paradigm behaves well with

respect to operational semantics. More specifically, we have shown that the coercion terms that we in-

troduce in this interpretation, while possibly generating more computation, will only generate "harmless"

computation, in particular that no unexpected divergence can be introduced, nor can expected diver-

gence be lost. (In the process, we actually exhibited a nice domain-theoretic model which is sound and

computationally adequate for PCF++'s straightforward operational semantics.)

There are at least two points where we can see improvements to our results. One problem is that

we would like to strenghthen the main theorem so as to say something interesting about the relationship

between &(e) and &(e*) when their type is not necessarily observable. The other problem is that the proof

of Theorem 5 does not really use the particularities of the denotational semantics but rather the fact that

certain identities between PCF+ terms hold in it. These two points are related and here is a conjectured

improvement which would solve both problems.

Suppose t e : s type-checks in PCF++ and let e* be any PCF+ translation of it. Further suppose that

e JJ c for some canonical form c. By our main theorem, there is a canonical form c' such that e* 4 c'.

We would like to relate c and c' as PCF+ terms, but t- c : s may type-check in PCF++ only. So, let

c* be any PCF+ translation of it. What do we know about the relationship between c* and c'? It is a

consequence of the soundness results that the model we introduce in section 3 equates them. But equality

in this model is II;-hard. Surely the relationship between c* and c' is much simpler. . .
We believe that it is possible to formulate a reasonable logical theory about PCF+ terms, call it 7

in which c* and c' can be shown to be provably equal. In fact, we believe that such a theory would be

closely related to the call-by-value lambda-calculi studied by Plotkin and Moggi [Mog88]. This result

would have the following pleasant corollaries. Let D+ be any denotational model of PCF+ in which the

operational semantics and the axiomatization of 7 are sound (actually, we expect that the soundness of

the later will imply that of the former). One immediately concludes that our translation is denotationally

coherent with respect to D+, which induces a model 2)++ of PCF++, and that the operational semantics

of PCF++ terms is sound in D++. Of course, by the main theorem of this paper, we can also get transfer

of computational adequacy. Therefore, we would be able to neatly concentrate in the axiomatization

of 7 all the conditions needed by a "good" model of PCF+ in order to become a model of PCF++ in

accordance to our paradigm.

An intriguing question is whether c* = c' will turn out to be more than an r.e. statement, whether

it is actually decidable? In other words, is full PCF+ computation required in order to systematically

disentangle the coercions we introduce?

Finally, we should restate that we expect that the results of this paper generalize to more complicated

type disciplines (Fun, Quest, etc.) and that analogs can be shown for call-by-name operational semantics.

5 Acknowledgements.

Breazu-Tannen's research was partially supported by ONR Grant N00014-88-K-0634. Gunter's research

was partially supported by ONR Grant N00014-88-K-0557. Breazu-Tannen and Gunter were also par-

tially supported by ARO Grant DAAG29-84-K-0061. Scedrov's research was partially supported by NSF

Grant CCR-87-05596, by ONR Grant N00014-88-K-0635, and by the 1987 Young Scientist Award from

the Natural Sciences Association of the University of Pennsylvania.

References

[BCGS89] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance and explict coercion

(preliminary report). In R. Parikh, editor, Logic in Computer Science, pages 112-134, IEEE

Computer Society, June 1989.

[BCGS9O] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as implicit coercion.

Information and Computation., ?? :??-??, 1990. To appear.

[Car891 L. Cardelli. Typeful programming. Research Report 45, DEC Systems, Palo Alto, May 1989.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism. ACM

Computing Surveys, 17(4):471-522, 1985.

[Mey88] A. R. Meyer. Semantical paradigms: notes for an invited lecture. In Y. Gurevich, editor,

Logic in Computer Science, pages 236-253, IEEE Computer Society, July 1988.

[Mog88] E. Moggi. The Partial Lambda-Calculus. PhD thesis, University of Edinburgh, 1988.

[OBB89] A. Ohori, P. Buneman, and V. Breazu-Tannen. Datbase programming in Machiavelli-a

polymorphic language with static type inference. In SIGMOD Conference on the Management

of Data, pages 46-57, ACM, 1989.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,

5:223-255, 1977.

[Wan891 M. Wand. Type inference for record concatenation and multiple inheritance. In Proceedings

of the Symposium on Logic in Computer Science, pages 92-97, IEEE, June 1989.

	Computing With Coercions
	Recommended Citation

	Computing With Coercions
	Abstract
	Comments

	tmp.1201535256.pdf.qYBBc

