
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1995

Proof Theoretic Concepts for the Semantics of Types and Proof Theoretic Concepts for the Semantics of Types and

Concurrency Concurrency

Carl A. Gunter
University of Pennsylvania

Val Tannen
University of Pennsylvania, val@cis.upenn.edu

Thierry Coquand
INRIA

Andre Scedrov
University of Pennsylvania, scedrov@math.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Carl A. Gunter, Val Tannen, Thierry Coquand, and Andre Scedrov, "Proof Theoretic Concepts for the
Semantics of Types and Concurrency", . January 1995.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-95-19.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/210
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/210
mailto:repository@pobox.upenn.edu

Proof Theoretic Concepts for the Semantics of Types and Concurrency Proof Theoretic Concepts for the Semantics of Types and Concurrency

Abstract Abstract
We present a method for providing semantic interpretations for languages with a type system featuring
inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and
Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Our goal is to
interpret inheritances in Fun via coercion functions which are definable in the target of the translation.
Existing techniques in the theory of semantic domains can be then used to interpret the extended
polymorphic lambda calculus, thus providing many models for the original language. This technique
makes it possible to model a rich type discipline which includes parametric polymorphism and recursive
types as well as inheritance.

A central difficulty in providing interpretations for explicit type disciplines featuring inheritance in the
sense discussed in this paper arises from the fact that programs can type-check in more than one way.
Since interpretations follow the type-checking derivations, coherence theorems are required: that is, one
must prove that the meaning of a program does not depend on the way it was type-checked. The proof of
such theorems for our proposed interpretation are the basic technical results of this paper. Interestingly,
proving coherence in the presence of recursive types, variants, and abstract types forced us to reexamine
fundamental equational properties that arise in proof theory (in the form of commutative reductions) and
domain theory (in the form of strict vs. non-strict functions).

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-95-19.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/210

https://repository.upenn.edu/cis_reports/210

Proof Theoretic Concepts for. the
Semantics of Types and Concurrency

MS-CIS-95-19
LOGIC & COMPUTATION LAB 90

Edited by Carl Gunter

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department
Philadelphia, PA 19104-6389

April 1995

INHERITANCE AS IMPLICIT COERCION

Val Breazu- Tannen Thierry Coquand Carl A. Gunter Andre Scedrog

Abs t r ac t . We present a method for providing semantic interpretations for languages with a
type system featuring inheritance polymorphism. Our approach is illustrated on an extension of
the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended
polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions
which are definable in the target of the translation. Existing techniques in the theory of semantic
domains can be then used to interpret the extended polymorphic lambda calculus, thus providing
many models for the original language. This technique makes it possible to model a rich type
discipline which includes parametric polymorphism and recursive types as well as inheritance.

A central difficulty in providing interpretations for explicit type disciplines featuring inheritance
in the sense discussed in this paper arises from the fact that programs can type-check in more
than one way. Since interpretations follow the type-checking derivations, coherence theorems
are required: that is, one must prove that the meaning of a program does not depend on the
way it was type-checked. The proof of such theorems for our proposed interpretation are the
basic technical results of this paper. Interestingly, proving coherence in the presence of recursive
types, variants, and abstract types forced us to reexamine fundamental equational properties
that arise in proof theory (in the form of commutative reductions) and domain theory (in the
form of strict vs. non-strict functions).

1 Introduction

In this paper we will discuss an approach to the semantics of a particular form of inheritance which
has been promoted by John Reynolds and Luca Cardelli. This inheritance system is based on the
idea that one may axiomatize a relation < between type expressions in such a way that whenever
the inheritance judgement s 5 t is provable for type expressions s and t , then an expression of type
s can be "considered as" an expression of type t . This property is expressed by the inheritance
rule (sometimes also called the subsumption rule), which states that if an expression e is of type s
and s < t , then e also has type t . The consequences from a semantic point of view of the inclusion
of this form of typing rule are significant. It is our goal in this paper to look carefully at what we
consider to be a robust and intuitive approach to systems which have this form of inheritance and
examine in some detail the semantic implications of the inclusion of inheritance judgements and
the inheritance rule in a type discipline.

Several attempts have been made recently to express some of the distinctive features of object-
oriented programming, principally inheritance, in the framework of a rich type discipline which
can accommodate strong static type-checking. This endeavor searches for a language that offers
some of the flexibility of object-oriented programming [GR83] while maintaining the reliability, and
sometimes increased efficiency of programs which type-check at compile-time (see [BBG88] for a
related comparison).

'Appears in Information and Computation vol. 93 (1991), pp. 172-221.
'Author's addresses. Breazu-Tannen and Gunter: Department of Computer and Information Sciences, University

of Pennsylvania, Philadelphia PA 19104, USA. Coquand: INRIA, Domaine de Voluceau, 78150 Rocquencourt, France.
Scedrov: Department of Mathematics, University of Pennsylvania, Philadelphia PA 19104, USA.

Inheritance as Implicit Coercion 3

of the translation. We hope that the results in this simpler setting will help the reader get an idea
of what our program is before we proceed to a more interesting calculus in the remainder of the
paper. The fourth section is devoted to developing a translation for an expanded calculus which
adds variants. Fundamental equational properties of variants lead us to develop a target language
which has a type of coercions. The fifth section, which contains the difficult technical results of the
paper, shows that our translation is coherent. In the sixth section we discuss mathematical models
for the full calculus. Since most of the work has already been done, we are able t o produce many
models using standard domain-theoretic techniques. The concluding section makes some remarks
about what we feel has been achieved and what new challenges still need to be confronted.

2 Inheritance as implicit coercion.

A simple analogy will help explain our translation-based technique. Consider how the ordinary
untyped X-calculus is interpreted semantically in such sources as [Sco80, Mey82, Koy82, Ba1-841. One
begins by postulating the existence of a semantic domain D and a pair of arrows a: D -t (D + D)
and @: (D + D) -t D such that @ o Q is the identity on D + D. Certain conditions are required
of D + D to insure that "enough" functions are present. To interpret an untyped X-term, one
defines a translation M w M* on terms which takes an untyped term M and creates a typed term
M*. This operation is defined by induction:

for a variable, x* G x: D,

for an application, M(N)* z @(M*)(N*) and,

for an abstraction, (Ax. M)* ~ (X X : D. M*)

(where we use - for syntactic equality of expressions). For example, the familiar term

translates to

The fact that the latter term is unreadable is perhaps an indication of why we use the former
term in which the semantic coercions are implicit. everthe he less, this translation provides us with
the desired semantics for the untyped term since we have converted that term into a term in a
calculus which we know how to interpret. Of course, this assumes that we really do know how to
provide a semantics for the typed calculus supplemented with triples such as D , @, Q. Moreover,
there are some equations we must check to show that the translation is sound. But, at the end
of the day, we have a simple, intuitive explanation of the interpretation of untyped X-terms based
on our understanding of a certain simply typed X-theory. In this paper we show how a similar
technique may be used to provide an intuitive interpretation for inheritance, even in the presence
of parametric polymorphism and type recursion. As mentioned earlier, our interpretation is carried
out by translating the full calculus into a calculus without inheritance (the target calculus) whose
semantics we already understand. However, our idea differs significantly from the interpretation
of the untyped X-calculus as described above in at least one important respect: typically, the
coercions (such as and !P above) which we introduce will be definable in the target calculus.
Hence our target calculus needs to be an extension of the ordinary polymorphic X-calculus with
records, variants, abstract types, and recursive types. But it need not have any inheritance.

Inheritance as Implicit Coercion 5

Although we believe that the translation just illustrated is intuitive, we need to show that it
is coherent. In other words, we must show that the semantic function is well defined. The need
for coherence comes from the fact that a typing judgement may have many different derivations.
In general, it is customary to present the semantics of typed lambda calculi as a map defined
inductively on type-checking derivations. Such a method would therefore assign a meaning to
each derivation tree. We do believe though, that the language consists of the derivable typing
judgements, rather than of the derivation trees. For many calculi, such as the simply typed or the
polymorphic lambda calculus, there is at most one derivation for any typing judgement. Therefore,
in such calculi, giving meaning to derivations is the same as giving meaning to derivable judgements.
But for other calculi, such as Martin-Lof's Intuitionistic Type Theory (ITT) [Mar841 (see [Sal88]),
and the Calculus of Constructions [CH88] (see [Str88]), and-of immediate concern to us-Cardelti
and Wegner's Fun, this is not so, and one must prove that derivations yielding the same judgement
are given the same meaning. This idea has also appeared in the context of category theory and our
use of the term "coherence" is partially inspired by its use there, where it means the uniqueness
of certain canonical morphisms (see e.g. [KL71] and [LP85]). Although we have not attempted
a rigorous connection in this paper, the possibility of unifying coherence results for a variety of
different calculi offers an interesting direction of investigation. In the case of Fun, we show the
coherence of our semantic approach by proving that translations of any two derivations of the same
typing judgement are equated in the target calculus.

Hence, the coherence of a given translation is a property of the equational theory of the target
calculus. When the target calculus is the polymorphic lambda calculus extended with records and
recursive types, the standard axiomatization of its equational theory is sufficient for the coherence
theorem. But when we add variants, the standard axiomatization of these features, while sufficient
for coherence, clashes with the standard axiomatization of recursive types, yielding an inconsistent
theory (see [Law69, HP89al for variants, that is, coproducts). The solution lies in two observations:
(1) the (too) strong axioms are only needed for "coercion terms", and (2) in the various models we
examined these coercion terms have special interpretations (such as strict, or linearmaps), so special
in fact, that they satisfy the corresponding restrictions of the strong axioms! Correspondingly, one
has to restrict the domains over which "coercion variables" can range, which leads naturally to the
type of coercions mentioned above.

3 Translation for a fragment of the calculus

For pedagogical reasons, we begin by considering a language whose type structure features function
spaces (exponentials), record types, bounded generic types (an inheritance-generalized form of
universal polymorphism), recursive types, and, of course, inheritance. In the next section we will
enrich this calculus by the addition of variants. As we have mentioned before, this leads to some
(interesting) complications which we avoid by restricting ourselves to the simpler calculus of this
section. Since the calculus in the next section is stronger, we omit details for the proofs of results
in this section. They resemble the proofs for the calculus with variants, but the calculations are
simpler. Rather than generate four different names for the calculi which we shall consider in
this section and the next we simply refer to the calculus with inheritance as S O U R C E and the
inheritance-free calculus into which it is translated as TARGET. The fragment of the calculus
which we consider in this section is fully described in the appendices to the paper.

We provide semantics t o S O U R C E via a translation into a language for which several well-
understood semantics already exist. This "target" language, which we shall call T A R G E T , is an
extension with record and recursive types of the Girard-Reynolds polymorphic lambda calculus

Inherit an ce as Implicit Coercion 7

Appendix A under the heading Fragment.
Among these proof rules, the following two illustrate the effect of inheritance on type-checking:

[B-SPEC]

They make use of inheritance judgements which have the form C t- s < t where C is an
inheritance context. Inheritance contexts are contexts in which only declarations of the form a < t
appear. If I' is a context, we denote-by teh inheritance context obtained from I' by erasing the
declarations of the form x: t . The proof system for deriving inheritance judgments is, with the
exception of one rule, the same as the relevant fragment of the corresponding proof system for Fun
(see [CW85], on page 519). In this paper we do not attempt to enrich it with any rule deriving
inheritances between recursive types. A discussion of this issue appears in our conclusions. The
Appendix contains a complete list of these proof rules too.

In comparison with Fun, we would like to strengthen the rule deriving inheritances between
bounded generics, and we are able to do so for some of our results. Where Fun had just

(W-FORALL)

we will consider

(FORALL)

This makes the system strictly stronger, allowing more inheritances to be derived, and thus more
terms to type-check.

Originally, we believed that coherence could be proved for a system that includes variants
and the stronger rule (FORALL) [BCGS89]. In dealing with the case construct for variant types,
however, our coherence proof uses an order-theoretic property (see Lemma 11) which fails for the
stronger system for deriving inheritances that uses (FORALL) (for a counterexample, see Giorgio
Gelli's dissertation [GhegO]). Thus, we prove the coherence of the translation of variants (Theo-
rem 13) only for the weaker system with (W-FORALL). Note, however, that we prove coherence
in the presence of (FORALL) for the system without variants (Theorem 4) and for the system for
deriving inheritances between types, including variant types (Lemma 9).

Remark. Decidability of type-checking in the stronger system is a non-trivial question. The
question whether an algorithm of Luca Cardell will decide the provability of judgements in this
calculus has only recently been settled by Ghelli [GheSO].

The salient feature of bringing inheritance into a type system is that (in given contexts) terms
will not have a unique type any more. For example, due to the rule

C t- t 5 Top

where the free variables of t are declared in C, by [INH], all terms that type-check with some type
will also type-check with type Top. This makes it possible to define ordinary generics as syntactic

de f sugar: Va. t = Va < Top. t .

Inheritance as Implicit Coercion 9

where n > 1, and

{RECD-ETA). {ll=&f.ll ,..., E,=M.E,) = M

where M : {I1: sl , . . . , In: s,} .The last rule gives, for n = 0, the equation { = 1Lf which
makes 1 into a terminator. Under our interpretation, the type Top will be nothing like a "universal
domain" which can be used to interpret Type:Type [CGW89, GJ901. On the contrary, it will be
interpreted as a one point domain in the models we list below!

The translation. For any SOURCE item we will denote by item* its translation into TARGET.
We begin with the types. Note the translation of bounded generics and of Top.

d ~ f d&
a* - a {II: S I , . . .,En: sn}* - {Il: s;, . . . , ln: s:}

Top* %f 1 d ~ f (V a i s . t)* - Va. (a + s *) - + t *

(S + t)* dcl S* -+ t* (pa. t)* ef pa. t*

One shows immediately that ([s/a]t)* = [s*/a]t* . We extend this to contexts and inheritance
contexts, which translate into just typing contexts in TARGET.

0* d!f 0 0* %f 0
dzf dzf (r, a F t) * - r*, a , f : a + t * (C, a < t) * - C*, a, f : a+t*

def
(r , ~ : t) * - r*, ~ : t *

where f is a fresh variable for each a.
Next we will describe how we translate the derivations of judgments of SOURCE. The transla-

tion is defined by recursion on the structure of the derivation trees. Since these are freely generated
by the derivation rules, it is sufficient to provide for each derivation rule of SOURCE a correspond-
ing rule on trees of TARGET judgments. It will be a lemma (Lemma 2 to be precise) that these
corresponding rules are directly derivable in TARGET, therefore the translation takes derivations
in SOURCE into derivations in TARGET.

A SOURCE derivation yielding an inheritance judgment C I- s 5 t is translated as a tree
of TARGET judgments yielding C* t- P : s* -+ t* . We present three of the rules here; the full
list for the fragment appears in Appendix C. The coercion into Top is simply the constant map:

To see how coercion works on types, assume that we are given a coercion P: s + t from s into t
and a coercion Q: u --t v from u into v. Then it is possible to coerce a function f : t -+ u into a
function from s to v as follows. Given an argument of type s, coerce it (using P) into an argument
of type t. Apply the function f to get a value of type u. Now coerce this value in u into a value
in v by applying Q. This describes a function of the desired type. More formally, we translate the
(ARROW) rule by

(ARROW)"
C* l - P : s * + t * C* t - Q : u * + v *

C* t- R : (t* -t u*) -+ (s* + v*)

where R de' XZ: t* + u*. P ; r ; Q . (We use ; as shorthand for composition. For example, P ; r ; Q
above stands for Ax: s*. Q(z(P(x))) where x is fresh.) Now, t o translate the rule (FORALL)

Inheritance as Implicit Coercion

4 Between incoherence and inconsistency: adding variants

The calculus described so far does not deal with a crucial type constructor: variants. In particular,
i t is very useful to have a combination of variant types with recursive types. On the other hand, the
combination of these operators in the same calculus is also problematic, especially for the equational
theory. The situation is familiar from both domain theory and proof theory. In this section we
propose an approach which will suffice to prove the coherence theorem which we need to show that
our semantic function is well-defined.

We extend the type formation rules of S O U R C E by adding variant type expressions:
[Il: tl, . . .,I,: t,] where n 2 1. We also extend the term formation rule by the formation of variant
terms [Il: t l , . . . , 1; = e, . . . , 1,: t,] and the case statement:

The inheritance judgement derivation rules are extended correspondingly with the rule:

(VART)

Note the "duality" between this rule and the inheritance rule (RECD) for records (see Appendix
A). While a record subtype has more fields, a variant subtype has fewer variations (summands).

Like before, we intend to translate this calculus into a calculus without inheritance and, nat-
urally, we extend T A R G E T with variants (see Appendix B). Note how the syntax of variant
injections differs from [CW85]. This is in order for the resulting system to enjoy the property of
having unique type derivations: the proof of Proposition 1 extends immediately to the variant con-
structs. Most importantly, we must extend the equational theory of T A R G E T in a manner that
insures the coherence of our translation. It is here that we encounter an interesting problem which
readers who know domain theory will find familiar. The following two axioms hold in a variety of
models:

{VART-BETA} case injli(Mi) of El + Fl, .. . ,l,*Fn = F;(Mi)

where Fl : tl -+t, . . . , F, : t, i t , Mi : t; and injli is shorthand for
Xx:ti. [Zl:t17. - . , l i = x 7 . ,In:tn].

{VART-ETA} case M of ll + injl,, . . . , 1, + injln = M

where M : [Il: tl , .. .,I,: t,] . Unfortunately, these two axioms do not suffice t o prove all the
identifications required by the coherence of our translation!

To see the problem, we start with an example. In SOURCE, suppose that t 5 s is derivable
in the context 5, and that we have a derivation A of I' I- e : [11: t l , 12: t2] and derivations A; of
I' t- f; : t; -+ t , i = 1,2. Consider then the following two S O U R C E derivations of the typing
judgement I' I- case e of l1 + fl, 12 * f2 : s .

1. by A, A,, A2 and the rule [CASE], one deduces I' t- case e of ll + f1,l2 + f2 : t. Since
I- t 5 s by hypothesis, one infers by inheritance I' I- case e of ll + fl , I2 + f2 : s.

2. from ? t- t 5 s we can deduce I- (t; -. t) 5 (ti -. s). Hence, by inheritance from
A;, one deduces I' F f; : ti -t s. Then, from A and by the rule [CASE], one deduces
I' I- case e of l1 + f l , 12 + f2 : S.

Inheritance as Implicit Coercion 13

translation. Thus, the previous discussion of variants leads us to introduce a new type constructor
s a t , the type of "coercions" from s to t. Consequently, the coercion assumptions a 5 t that
occur in inheritance contexts must translate to variables ranging over types of coercions f: a cw t* .
As a consequence, the translation of bounded quantification must change:

(Va 5 s. t)* !Ef Va. ((a a s*) 4 t*)

In order t o express the correct versions of {VART-CRN), we introduce a family of constants in
TARGET

L,,t : (so+ t)+ (s+ t)

called coercion-coercion combinators. With this, we have

{VART-CRN) ~(P)(case M of El + Fl, . . . , 1, + Fn) = case A!! of El * Fl ; L(P) , . . . , En s- F,; L(P)

where M: [ll:tl, . . . ,En:t,], F l : t l + t , . . . , F,: tn-+t, P : t a s .
(the complete list is in Appendix B).
In order to translate all inheritance judgements into coercion terms, we add a special set of con-

stants (coercion combinators) that "compute" the translations of the rules for deriving inheritance
judgements. To prove coherence, we axiomatize the behavior of the L-images of these combinators.
For example, the coercion combinator for the rule (ARROW) takes a pair of coercions as arguments
and yields a new coercion as value:

arrow[s, t , U, v] : (S w t) -+ (u c+ v) 4 ((t 4 u) a (s + v))

Since (ARROW) is a rule scheme, we naturally have a family of such combinators, indexed by
types. To simplify the notation, these types will be omitted whenever possible. The equational
property of the arrow combinator is given in terms of the coercion coercer:

~(arrow(P)(Q)) = Xz: t + u. (L(P)); Z ; (L (Q))

where P : s a t, Q: u a v. For the rule (TRANS), we introduce

which, of course, behaves like composition, modulo the coercion coercer:

4trans(P)(Q)) = 4'); L(Q)

where P: r cw s, Q: s a t. The combinator for the rule (FORALL) is the most involved:

forall[s, t , a , u, v] : (s cw t) +Va. ((a o+ s) + (u 0--+ v)) --+ (Va. ((a a t) + U) c+ Va. ((a cw S) + v))

with the equational axiomatization

~(forall(P)(W)) = Xz: (Va. (a cw t) -+ u). Aa. X f : a c+ s. ~(W(a)(f))(z(a)(trans(f)(P)))

where P: s c+ t , W: Va. (a c-+ s) -t (u o+ v). Of course, we have gone to the extra inconvenience
of introducing the type of coercions in order to provide a satisfactory account of variants. These
require a scheme of combinators having the types:

Inheritance as Implicit Coercion

5 Coherence of the translation for the full calculus

In this section we prove first the coherence of the translation of inheritance judgements. This result
is then used to show the coherence of the translation of typing judgements.

The main cause for having distinct derivations of the same inheritance judgements is the rule
(TRANS). Our strategy is to show that the usage of (TRANS) can be coherently postponed to the
end of derivations emma ma 6), and then to prove the coherence of the translation of (TRANS)-
postponed derivations (Lemma 8).

We introduce some convenient notations for the rest of this section. For any derivation A
in S O U R C E , let A* be the T A R G E T derivation into which it is translated. We will write
C I- ro < - < r , instead of C I- TO < rl ,..., C I- r,-1 5 r , . The composition of
coercions given by trans occurs so often that we will write P @ Q instead of trans(P)(Q) . It is
easy to see, making essential use of the rule {IOTA-INJ), that @ is provably associative. We will
take advantage of this to unclutter the notation. We will also write I instead of ref1 . Again it is
easy to see that I is provably an identity for O , that is, I O M = M O I = M is provable in
T A R G E T .

Lemma 6 For any S O U R C E derivation A yielding the inheritance judgement C I- s < t ,
there exist types T O , . . . , rn such that s E ro , r , = t , and (TRANS)-free derivations Al, . . . ,A,
yielding respectively

C I- ro < ... 5 rn

Moreover, if the translations A*, A;, . . . , A: yield respectively the (coercion) terms C* I-
P : s*o+ t* , C* F PI : rzo+r; ,..., C* I- Pn : T ; - ~ o+ri then

is provable in T A R G E T .

Proof: By induction on the height of the derivation A. The base is trivial since derivations
consisting of instances of (TOP), (VAR), or (REFL) are already (TRANS)-free. We present the
more interesting cases of the induction step.

Suppose A ends with an application of (ARROW). By induction hypothesis there are (TRANS)-
free derivations for

s G ro < - - . < r, _= t and u wo 5 < w, = v

(for simplicity, we omit the context). From these, using (REFL) and (ARROW) we get (TRANS)-
free derivations for

(This is not most economical: one can get a derivation requiring only max(m, n) , rather than
m + n, steps of (TRANS) at the end.) Proving the equality of the corresponding translations uses
the associativity of @ and the fact that I acts like an identity, as well as

which can be verified, in view of {IOTA-INJ), by applying L to both sides, resulting in a simple
{BETA)-conversion.

Inheritance as Implicit Coercion

Proof: By induction on the height of 0 . I

Lemma 8 Let Al, . . . ,A, be (TRANS)-free derivations in SOURCE yielding respectively C t-
so 5 - 5 s, and 01, . . . ,On be (TRA NS)-free derivations yielding respectively C t- to 5
. . . 5 tn . Let the translations A;, . . . , A;, 0;, . . . ,0; yield respectively the (coercion) terms

C* t- P I : S ~ W S ; ,..., C* I- P,: S ~ - ~ W S ~ , C* t- Q1: t:o+t; ,..., C* t- Q,: t E - l ~ t z .

If SO = to and s, - t, then

is provable in TARGET.

Proof: We begin with the following remarks:

r If one of SO,. . . , s,, to, . . . , tn is Top then the desired equality holds. Indeed, then s, =
Top r tn and the equality follows from the identity

P < top

which is verified by applying L to both sides (recall that 1 is a terminator).

r Those derivations among Al, . . . , A,, 01, . . . ,0, which consist entirely of one application of
(REFL) can be eliminated without loss of generality. Indeed, the corresponding coercion term
is I which acts as an identity for 0.

If none of the derivations among Al , . . .,A,, 0 1 , . . ., 0, consists of just (TOP), then those
derivations which consist of just (VAR) can also be eliminated without loss of generality.
Indeed, once we have eliminated the (REFL)'s, the (VAR)'s must form an initial segment of
both A,, . . . , A, and 01, . . . ,0, because whenever s 5 a is derivable, s must also be a

- type variable. Let's say that so - ao, . . . , s, = a,-1 , (p 5 m), where Al , . . . ,A, are all the
derivations consisting of just (VAR), and also that to r bo, . . . , t q G bq-1 , (q 5 n), where
e l , . . . ,0, are all the derivations consisting of just of (VAR). Then, a0 < a l , . . . , a,-1 5 s, as
well as bo 5 bl, . . . , bq-1 S t , must all occur in C. But a0 5 so to = bo so by the uniqueness
of declarations in contexts, a1 = bl,. . . , etc. Suppose p < q. Then, s, = b, is a variable. Since
A,+, can't be just a (REFL) or a (TOP) is must be a (VAR) contradicting the maximality
of p. Thus p = q and s, t, and the (VAR)'s can be eliminated.

We proceed to prove the lemma by induction on the maximum of the heights of the derivations
A,, . . . , A,, 01 , . . . ,on. The basis of the induction is an immediate consequence of the remarks
above .

For the induction step, in the view of the remarks above, we can assume without loss
of generality that none of the derivations is just a (TOP), (VAR), or (REFL). Consequently,
A,, . . . , A m , o l , . . . , o n must all end with the same rule, depending on the type construction used
in s o = to .

If all derivations end in (ARROW), the desired equality follows from the induction hypothesis,
the associativity of 8 and the equation (1). Similarly for (VART) using the equation (3). The
desired equality in the case (FORALL) follows from the induction hypothesis using Lemma 7, from
the associativity of @ and from the equation (2). The remaining cases are straight-forward. 1

Inheritance as Implicit Coercion

C t- tl n t 2 5 t; , (i = 1,2) and

for any s such that C k s < t; , (i = 1,2) we have C k s 5 tl n t2 . 1

2. There is a type tl U t2 such that

c t- ti < tl u t2 , (i = 1,2) and . for any s such that C t- t; I s , (i = 1,2) we have (7 I- t i lJ t2 < 3 . l

Proof: Because of the contravariance property of the first argument of the function space operator
manifest in the rule (ARROW), we will prove items 1 and 2 simultaneously. In view of Lemma 6, it
is sufficient t o work with proofs where all instances of (TRANS) appear at the end. Since moreover
any two types have a common upper bound, Top, the statement of the lemma is equivalent to the
following formulation:

For any Al , . . . , A,, (TRANS)-free derivations in SOURCE yielding respectively C k uo <
... 5 urn and any G1, . . . , On, (TRA NS)-free derivations yielding respectively C I- vo <
" ' < v , ,

1. if uo z vo, and let tl = urn and t2 E v,, then there is a type t l n t2 having the properties in
item 1 of the Eemma;

2. if urn z vn, and let tl = uo and t2 = vo, then there is a type t l U t2 having the properties in
item 2 of the Eemma.

This is shown by induction on the maximum of m , n and of the heights of
A,, . . .,A,, @,, . . . ,on. To be able to apply the induction hypothesis, a case analysis is per-
formed, depending on the structure of tl and t ~ . We will only look at a few illustrative cases.
The facts listed in Remark 10 and the reasoning that produced these facts as well as the remarks
opening the proof of Lemma 8 are used throughout.

For example, if tl is a type variable in item 1, then u; is also a type variable for each i, and
u; - l < u ; ~ C , i = l , . . . , n . Then,oneof C I- uo < < u, or C t- vo < . - . < v, ,
must be an initial segment of the other, so tl and tz are comparable and tl n t2 can be taken as
the smaller among them. For item 2, if tl is a type variable, then uo 5 ul E C and, by induction
hypothesis (m decreases), tl U t2 can be taken to be ul LJ t2.

As another example, suppose that in item 1 tl has the form Va 5 s. r l . If u0 G vo is a
type variable, then uo 5 ul E C and vo 5 vl E C hence ul - vl and we can apply the
induction hypothesis by eliminating A1, 01. Assume that uo vo is not a type variable. By
Remark 10 (simplified to take into account the weakening of (FORALL)), it must have the form
Va < s. T. Again by Remark 10 t2 is either Top or has the form Va < s. r2. If t2 Top then
tl n t2 can be taken to be tl. Otherwise, there are (TRANS)-free derivations A:, . . .,A:, yielding
C , a < s I- ub 5 < u:, and@',, ..., 0Lyieldingrespectively C , a < u I- vb 5 < vh
where ub - vh and u h = TI and vh = 7-2, and where each of these derivations has strictly smaller
height than the corresponding one among A1,. . .,A,, 01,. . . ,On. By induction hypothesis we get
a type rl Tl r2, and we can then take tl n t2 to be Va 5 s. rl Tl rg. This calculation makes clear where
our proof breaks down if we were to use the more general rule (FORALL) instead of (W-FORALL).
Indeed, if the bounds on the type variables were allowed to differ, as in the more general case, we
would be unable to apply the induction hypothesis since the two contexts would differ between the
0's and the A's.

We omit the remaining cases, which use similar ideas. 1

Inheritance as lmplici t Coercion 21

This implies that the statement of the lemma holds for Al , A2, with common type s + r , with
C = [ABS] (C') , and with Oi z (ARROW) ((REFL) , O:), (i = 1,2). The congruence claim
follows from

Ax: s . L(P)(M) = ~(arrow(l)(P)(Xx: s. $1)

which is readily verified.
Rule[B-SPEC]. To simplify the notation, we omit the contexts. Suppose that Ai =

[B - SPEC] (A:, 2;) and that A; yields e(r) : [r/a]t; (r is the same since it appears in the
term and we can take the bound variable to be the same without loss of generality), thus A: yields
e : Va 5 s;. t; and E; yields r < si , (i = 1,2) . Apply the induction hypothesis to A:, A;
obtaining w, C', 0:) 05. Also by induction hypothesis,

(5) A; E [B - SPEC] ([INH] (C' , O:), Z;) , (i = 1,2).

Since w 5 Va 5 s;. ti , (i = 1,2) it follows from Remark 10 (simplified to take into account
the weakening of (FORALL)) that there must exist types u, v such that s; =_ u , a 5 s; t- v 5
ti , (i = 1,2) and w 5 Va 5 u. v are derivable. It follows that r 5 u , and, by Lemma 7, that
a < r I- v < ti , (i = 1,2) are derivable. Next, we will use the following sublemma:

Sublemrna For any derivation A yielding C, a < r t- s 5 t there exists a derivation
C yielding C t- [r/a]s < [r/a]t such that, if the translations A*, C* yield respectively

C*, a , f : a o+ r* t- P : s* c+ t* , C* t- Q : [r*/a]s* c+[r*/a]t*

then
C* t- Q = (Aa.Xf:ao-+r*. P)(rS)(I)

is provable in T A R G E T . I

The sublemma is proved by induction on the height of A and is omitted. The sublemma allows us
to obtain [r/a]v < [r/a]t; from a 5 r k v < ti , (i = 1,2) . Let O; be some derivation of
[r/a]v 5 [r/a]ti , (i = 1,2) . Let Z be some derivation of T 5 u . Let R be some derivation of
w 5 Va 5 u. v . One can readily verify that the right hand side of (5) is congruent to

[INH] ([B - SPEC] ([INH] (C', R) , z) , @;)

This implies that the statement of the lemma holds for Al, A2, with common type [r/a]v , with
C = [B - SPEC] ([INH] (Cr, R) , E) , and with O; being just O;, (i = 1,2). (Note. There is
no difficulty in dealing with (FORALL) instead of (W-FORALL) here: s; = u would be simply
replaced by s; 5 u .)

Rule[R-ELIM]. Suppose that A; z [R - ELIM] (A:) and that A; yields I' t-
elirn e : [pa,. t;/a;]t; , thus A: yields r k e : pa;. t; , (i = 1,2);. Apply the induction
hypothesis to A:, A; obtaining sf, C', Oi, Oh. Also by induction hypothesis,

A; r [R - ELIM] ([INH] (C' , 0:)) , (i = 1,2).

Since s' < pa;. t; , (i = 1,2) are derivable, it follows from Remark 10 that there must exist a , t
such that paj. t; r pa. t , (i = 1,2) and sf 5 pa. t are derivable. Let O' be any derivation of
st < pa. t . Since by Lemma 9, 0; S 0; S O' , the statement of the lemma holds with common
type [pa. t/a]t , with C E [R - ELIM] ([INH] (Cr , Of)) , and with O; = (REFL) , (i = 1,2).

Inheritance as Irnplici t Coercion 2 3

T h e o r e m 13 (Coherence) Replace (FORALL) with (W-FORALL). If Al and A2 are two
S O U R C E derivations yielding the same typing judgement then Al Ei A2 (their translations
yield provably equal terms in T A R G E T) .

Proof: Take t l z t z in Lemma 12. By Lemma 9, E Oz . It follows that Al 2 A2 . I

6 Models

So far we have not actually given a model for the language S O U R C E . In this section we correct
this omission. However, it is a central point of this paper that there is basically nothing new that
we need to do in this section, since calculi satisfying the equational theory of T A R G E T have been
thoroughly studied in the literature on the semantics of type systems. Domain-theoretic semantics
suggests natural candidates for a special class of maps with the properties needed to interpret the
operators -t and o+. Here we present list some of these semantic solutions; all of which apply
t o abstract types as well as to variants. A syntactic version could also be given by a syntactic
translation into an extension of the target calculus of section 2, which expresses the properties
mentioned above and the consistency of which is ensured by our semantic considerations.

The domain-theoretic interpretations that we have examined so far are summarized in the
following table. The necessary properties for all but the last row can be found in [TTS7, HPSgb],
[CGW89I7[ABL86], [CGW87], and [Girt371 respectively. The properties needed for the last row can
be checked in a manner similar to [Gir87].

By a bistrict map of lattices we mean a continuous map which preserves both bottom and
top elements. A separated sum of lattices L and M is the disjoint sum of L and M together
with new top and bottom elements. Note that the category of Scott domains (finitary projections,
respectively) and strict maps does have finite coproducts, given by coalesced sums of domains, and
this implies that the required equation

TYPES
Algebraic lattices

Scott domains
Finitary projections

dI domains
coherent spaces

dI domains

{VART-CRN?) P(case M of l1 + Fl, . . . ,In + Fn) = case M of 11 =i- Fl; P, . . . , In + F'; P

holds if P is a strict map (in fact, a separated sum of domains A and B is just the coalesced sum
of the lifted domains Al and B I) . Furthermore, it may be checked that strictness is preserved by
the formation of coercion maps from given ones according to the coercion rules given in section 3
and at the beginning of this section. This model satisfies also {VART-BETA)+{VART-ETA). An
important property used in the case of Scott domains (finitary projections, respectively) is that the
continuous maps from C to D are in one-to-one correspondence with the strict maps from CI to
D. Analogous remarks hold for stable maps and linear maps, with !C instead of CI (see [GirSg],
Chapter 8).

From a category-theoretic point of view, the main point is that we are dealing with two cate-
gories, one a reflective subcategory of the other, i.e. the inclusion functor has a left adjoint. The

TERMS

continuous maps

stable maps

COERCIONS
bistrict maps
strict maps

strict stable maps
linear maps

VARIANTS
sep sum of lattices

separated sums

!A@!B

Inherit an ce as Implicit Coercion 25

where s , t , u, u are type expressions and 5 is the relation of inheritance (reading s - < t as "s
inherits from t"). Note, in particular, the contravariance in the first argument of the -+ operator.
In contrast, semantic domains which solve recursive domain equations such as D = D + D are
generally constructed using a techniqueadjoint pairs to be precise-which make it possible to
"order" types using a concept of approximation based on the rule

L R where 4 = (4 , 4) and $ = ($ I ~ , I , ! I ~) are adjoint pairs and 4 -+ $ is the adjoint pair
(Af. $L o f o 4R, X f . I,!IR o f o dL). Note, for this case, the covariance in the first argument of
the +operator. Because of this difference, models such as the PER interpretation of Bruce and
Longo [BL88], which provides a semantics for inheritance and parametric polymorphism, do not
evidently extend to a semantics for recursive types. To provide for recursive types under this
interpretation M. Coppo and M. Zacchi [Cop85, CZ86] utilize an appeal to the structure of the un-
derlying universal domain, which is itself an inverse limit which solves a recursive equation. R. Ama-
dio [Ama89, Amago] and F. Cardone [Car89b] have explored this approach in considerable detail.
There has also been progress on understanding the solution of recursive equations over domains
internally to the PER model which should provide further insights [FMRS89, Fre891. On the other
hand, models such as those of Girard [Gir86] and Coquand, Gunter and Winskel [CGW87, CGW891,
which handle parametric polymorphism and recursive types, do not provide an evident interpreta-
tion for inheritance. It has been the purpose of this paper to resolve this problem by an appeal
to the paradigm of "inheritance and implicit coercion". However, this leaves open the question of
how recursive types can be treated with this technique if one is to include a more powerful set of
rules for deriving inheritance judgements between recursive types.

One complicating problem is to decide exactly what form of inheritance between recursive types
is desired. For example, it seems very reasonable that if s is a subtype o f t then the type of lists
of s's should be a subtype of lists of t's. This is not actually derivable in the inheritance system
described in this paper since there are no rules for inheritance between recursive types. But care
must be taken: if s is a subtype if t then is the solution of the equations a = a --+ s be a subtype of
the solution of a = a + t? There are several possible approaches to answering this question. The
PER interpretation provides a good guide: we can ask whether the solutions of these two equations
have the desired relation in the PER model. Concerning the coercions approach we are forced to
ask whether there is any intuitive coercion between these two types. If there is, we have not seen
it! It is reasonable to conjecture that inheritance relations derived using the following rule will be
accept able:

C , a < T o p F s 5 t
C I- pa. s 5 pa. t

where types s and t have only positive occurrences of the variable a. Unfortunately, this misses
many interesting inheritance relations that one would like to settle. Discussions of this problem
will appear in several future publications on this subject. A rather satisfactory treatment using
coercions has been described in [BGS89] by using the "Amber rule" of CardeUi [Car86].

Operational semantics. Despite its importance there is virtually no literature on theoretical issues
concerning the operational semantics of languages with inheritance polymorphism. In particular,
at the time we are writing there are no published discussions of the relationship (if any!) of the
denotational models which have been studied to the intended operational semantics of a program-
ming language based on the models. In fact, the operational semantics of no existing "practical"

Inheritance as Implicit Coercion 27

e with a field 1 of type s, we would like to modify or update the 1 field of e by replacing e.1 by f (e.1)
without losing or modifying any of the other fields of e. The development of calculi which can deal
with this form of polymorphism and the ways in which Fun and related languages can be used to
represent similar techniques are an object of considerable current investigation. One recent effort
in this direction is [CM89] but several other efforts are under way. Despite its importance we have
not explored this issue in this paper since the discussion about it is very unsettled and it will merit
independent treatment at a later date.

We believe that the "inheritance as implicit coercion" method is quite robust. For example, it
easily extends to accommodate "constant" inheritances between base types, such as int 5 real ,
as long as coherence conditions similar to the ones arising in the proofs of the relevant lemmas in
this paper hold between the the constant coercions which interpret these inheritances. Moreover,
we expect that our methods will extend to the functional part of Quest [Car89a] and to the language
described in [CM89], using the techniques of Coquand [Coq88] and Lamarche [Lam88]. Current
work on inheritance and subtyping such as [CHC9O] and [MitSO] will provide new challenges. We
do not claim that every interesting aspect of inheritance can necessarily be handIed in this way.
However, our treatment, by showing that inheritance can be uniformly eliminated in favor of
definable coercion, provides a challenge to formalisms which purport to introduce inheritance as a
fundamentally new concept. Moreover, our basic approach to the semantics of inheritance should
provide a useful contrast with other approaches.

8 Acknowledgements.

Breazu-Tannen's research was partially supported by ARO Grant DAAG29-84-K-0061 and ONR
Grant N00014-88-K-0634, Many of the results of this paper were obtained during Coquand's
visit to the University of Pennsylvania, partially sponsored by the Natural Sciences Association.
Gunter's research was partially supported by ARO Grant DAAG29-84-K-0061 and ONR Grant
N00014-88-K-0557. Scedrov's research was partially supported by NSF Grant CCR-87-05596,
by ONR Grant N00014-88-K-0635, and by the 1987 Young Scientist Award from the Natural
Sciences Association of the University of Pennsylvania.

Inheritance as Implicit Coercion

(FORALL)
C I - s < t C , a < s I - u < v

C I- Vast. u Va<s.v

For Lemmas 11 and 12, and for Theorem 13 this is replaced with the weaker

(W-FORALL)

(REFL)

(TRANS)

C I - t < t

where the free variables of t are declared in C

Variants:

C t - s l < t l ...
(VART)

C I- sp < t ,
C t- [I1: sl, . . .,Ip: s*] s [I1: tl, . . . , lp: t,, . . . , Eq: tq]

Rules for deriving typing judgements:

Fragment:

[ABSI

[APPL]

[RECD]

Inheritance as Implicit Coercion

Appendix B: The language TARGET

Type expressions:
Fragment: a l s - t l { l l : s l ,..., E,:s,)IVa.tlpa.t
Variants: I [I I : t l , . . . , E n : tn]
Coercion space: (s o - t t

where a ranges over type variables and n 2 1. For rn = 0 we get the empty record type 1 der {I.

Raw terms:
Fragment:

x I M (N) I Ax: t . M I {Il = M I , . . . , E m = M m } 1 M.1 1 Aa. M I M(t) I intro[pa. t] M I elim M

Variants:
1 [l l : t l , ..., l i=M ,..., En:tn] I c a s e M o f ll+Fl ,..., ln+Fn

Coercion-coercion combinator:
I Ls,t

Coercion combinators:

where x ranges over (term) variables and n 2 1. For m = 0 we get the empty record, for which
we will keep the notation {) . We will usually omit the cumbersome type tags on the coercion(-
coercion) combinators. We use [N I X] M for substitution.

Typing judgements, have the form T k M : t , where T is a typing context. Typing contexts
are defined recursively as follows: 8 is a context; if T is a context which does not declare a, then
Y, a is a typing context; if T is a context which does not declare x, and the free variables o f t are
declared in T , then T , x: t is a typing context.

Rules for deriving typing judgements:

Fragment:
Same as in Appendix A: [VAR] , [ABS] , [APPL] , [RECD] (in particular, for n = 0, Y I-

{) : 1 > , PEL].

[SPEC]

T , a I- M : t
T k ha . M : Va. t

Same as in Appendix A: [R-INTRO] , [R-ELIM].

Inheritance as Implicit Coercion

{ B E T A)

{RECD-BETA)

where N : s .

Ax: s. M (x) = M

where M : s + t and x not free in M .

{ l l = M 1 ~ ~ ~ ~ ~ l m = M m) ~ l ~ = Mi

where m 2 I, M1: t l , . . ., M m : t , .

{RECD-ETA} {ll=M.I1 ,..., I,=M.I,) = M

where M : {I1 : t l , . . . , E m : t,) . For m = 0, this rule gives {) = M which makes 1 into a
terminator.

{FORALL-BETA) (Aa. M) (T) = [r /a]M

{FORALL-ETA) ha. M (a) = M

where M : Va. t and a not free in M .

{R-BETA) elirn (intro[pa. t] M) = M

where M : pa. t .

{R-ETA}

where M : [pa. t / a] t .

Variants:

We omit the simple rules for congruence with respect to variant formation, and case analysis.

Inheritance as Implicit Coercion 3 5

Appendix C : The translation

We present first the remaining of the translation of the fragment discussed in section 3.

(TRANS)'

C* t- p,:s;-+t; - . . C* t- P,: $4;:

C* k R : +{El: s f , . . .,l,:s;, . . .,Iq:s~}{I1:t;,.}

de f where R = Xw: (11: s;, . . . , 1,: s;,. . . ,E,: s i } . {11: P1(w.ll),. . . , lp: PP(w.lp)}

C* I- Ax: t*. 2 : t* -+t*

where the free variables of t* are declared in C*

The rules [VAR] , [ABS] , [APPL] , [RECD] , [SEL] , [R-INTRO] , [R-ELIMJ are translated
straightforwardly, see below. Here is the translation of the only other rule left (the translations of
the other rules appears in section 3).

I?*, a, f:a-+s* I- M : t*
[B-GEN] I'* t- Aa .X f :a+s* .M: Va.((a-+s*)+t*)

In the following, we present the translation for the full calculus. As before, for any SOURCE
i t e m we will denote by item* its translation into TARGET . We begin with the types. Note the
translation of bounded generics and of Top.

def dzf a* - a (Va<s.t)* - Va.((ao+s*)-+t*)
def d ~ f Top* - 1 (pa. t)* - pa. t*
dzf d ~ f (s -+ t)* - s* --, t* [11: s l , . . . , I n : sn]* - [11: s f , . . . , ln: s;]
dzf {I1: s l , . . . , lm: sm}* - {11: S T , . . ., lm: sh}

where s x t !Sf {lef t : s , right: t) .
One shows immediately that ([s /a]t)* E [s*/a]t* . We extend this to contexts and inheritance

contexts, which translate into just typing contexts in TARGET .

Inherit an ce as Implicit Coercion 3 7

A S O U R C E derivation yielding an typing judgment I' I- e : t is translated as a tree of
T A R G E T judgments yielding I?* I- M : t* . Here are the T A R G E T rules that correspond to
the rules for deriving typing judgements in SOURCE.

The rules [VAR] , [ABS] , [APPL] , [RECD] , [SEL] , [R-INTRO] , [R-ELIM] , [VART] , [CASE]
all have direct correspondents in T A R G E T so their translation is straightforward. We ilustrate it
with two examples.

[VAR] * I?;, 2:tr , I';J I- 2 : t*

[AB S] *
r* , 2:s' t- M : t*

r* I- ~ 2 : s " . M : s*-+t*

Here is the translation of the other three rules.

[B-GEN]

Lemma 14 The rules (TOP)* - (TRANS)* and [VARI* - [INHI* are directly derivable in TAR-
G E T . I

Inheritance as Implicit Coercion 3 9

L. Cardelli. Amber. In G. Cousineau, P.-L. Curien, and B. Robinet, editors, Combina-
tors and Functional Programming Languages, pages 21-47, Lecture Notes in Computer
Science vol. 242, Springer, 1986.

L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138-
164, 1988.

L. Cardelli. Structural subtyping and the notion of power type. In J. Ferrante and
P. Mager, editors, Symposium on Principles of Programming Languages, pages 70-79,
ACM, 1988.

L. Cardelli. Typeful programming. Research Report 45, DEC Systems, Palo Alto, May
1989.

F. Cardone. Relational semantics for recursive types and bounded quantification. In
G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors, International
Colloquium on Automata, Languages and Programs, pages 164-178, Lecture Notes in
Computer Science vol. 372, Springer, July 1989.

P.-L. Curien and G. Ghelli. Coherence of subsumption. In Proceedings CAAP790, LNCS
431, 1990. Full version to appear in Mathematical Structures in Computer Science.

T. Coquand, C. A. Gunter, and Glynn Winskel. DI-domains as a model of polymor-
phism. In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical
Foundations of Programming Language Semantics, pages 344-363, Lecture Notes in
Computer Science vol. 298, Springer, April 1987.

T. Coquand, C. A. Gunter, and G. Winskel. Domain theoretic models of polymorphism.
Information and Computation., 81:123-167, 1989.

T . Coquand and G. Huet. The calculus of constructions. Information and Computation,
76:95-120, 1988.

W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In P. Hudak,
editor, Principles of Programming Languages, pages 125-135, ACM, 1990.

L. Cardelli and J. Mitchell. Operations on records. In M. Mislove, editor, Mathematical
Foundations of Programming Semantics, Lecture Notes in Computer Science, Springer,
March 1989.

M. Coppo. A completeness theorem for recursively defined types. In W. Brauer, edi-
tor, International Colloquium on Automata, Languages and Programs, pages 120-129,
Lecture Notes in Computer Science vol. 194, Springer, 1985.

T. Coquand. Categories of embeddings. In Y. Gurevich, editor, Logic in Computer
Science, pages 256-263, IEEE Computer Society, July 1988.

L. Cardelli and P. Wegner. On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys, 17(4):471-522,1985.

M. Coppo and M. Zacchi. Type inference and logical relations. In A. Meyer, editor,
Symposium on Logic in Computer Science, pages 218-226, ACM, 1986.

Inheritance as Implicit Coercion 41

[St a881

[Str88]

[Tro73]

[TT87]

F. W. Lawvere. Diagonal arguments and cartesian closed categories. In Category theory,
homology theory, and their applications II, pages 134-145, Lecture Notes in Mathemat-
ics, Vol. 92, Springer-Verlag, 1969.

S. Mac Lane and R. Pare. Coherence for bicategories and indexed categories. Journal
of Pure and Appled Algebra, 37:59-80, 1985.

P. Martin-Lof. Intutionistic Type Theory. Studies in Proof Theory, Bibliopolis, 1984.

S. Martini. Bounded quantifiers have interval models. In R. Cartwright, editor, Sym-
posium on LISP and Functional Programming, pages 164-173, ACM, 1988.

A. R. Meyer. What is a model of the lambda calculus? Information and Control,
5297-122, 1982.

J . Mitchell. Toward a typed foundation for method specialization and inheritance. In
P. Hudak, editor, Principles of Programming Languages, pages 109-124, ACM, 1990.

A. Ohori and P. Buneman. Type inference in a database programming language. In R.
Cartwright , editor, Symposium on LISP and Functional Programming, pages 174-183,
ACM, New York, 1988.

J. C. Reynolds. Using category theory t o design implicit conversions and generic oper-
ators. In N. D. Jones, editor, Semantics-Directed Compiler Generation, pages 211-258,
Lecture Notes in Computer Science vol. 94, Springer, 1980.

A. Salvesen. Polymorphism and monomorphism in Martin-Lof's Type Theory. In Logic
Colloquium '88, 1988.

D. S. Scott. Relating theories of the lambda calculus. In J. R. Hindley, editor, To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 403-450,
Academic Press, 1980.

R. Stansifer. Type inference with subtypes. In J . Ferrante and P. Mager, editors,
Symposium on Principles of Programming Languages, pages 88-97, ACM, 1988.

T. Streicher. Correctness and completeness of a categorical semantics of the Calculus
of Constructions. PhD thesis, Passau University, 1988.

A. S. Troelstra. Metamathematical Investigations of Intuitionistic Arithmetic and Anal-
ysis. Lecture Notes in Mathematics vol. 344, Springer, 1973.

T. Coquand and T. Ehrhard. An equational presentation of higher-order logic. In D. H.
Pi t t , A. Poign6, and D. E. Rydeheard, editors, Category Theory and Computer Science,
pages 40-56, Lecture Notes in Computer Science vob. 283, Springer, 1987.

M. Wand. Complete type inference for simple objects. In D. Gries, editor, Symposium
on Logic in Computer Science, pages 37-46, IEEE Computer Society Press, Ithaca, New
York, June 1987.

COMPUTING WITH COERCIONSl
(Extended Abstract)

V. Breazu- Tannen C. A. Gunter A. Scedrov

University of Pennsylvania

Abstract. This paper relates two views of the operational semantics of a language with multiple
inheritance. It is shown that the introduction of explicit coercions as an interpretation for the
implicit coercion of inheritance does not affect the evaluation of a program in an essential
way. The result is proved by semantic means using a denotational model and a computational
adequacy result to relate the operational and denotational semantics.

1 Introduction

There have been a number of efforts to understand the denotational semantics of inheritance poly-
morphism and a variety of mathematical models for languages with subtle semantic features have
been discovered. However, as far as the authors of this paper know, no one has attempted to discuss
what, if anything, these denotational models have to do with the intended execution of programs in
the languages they model. For example, all of the published denotational models of the language
Fun of Cardelli Wegner [CW85] (including the work of authors of this paper) model this language
in way that corresponds to no reasonable interpretation of its operational semantics! No functional
programming language in common use diverges when evaluating the program Ax. e, even when the
expression e may diverge. Yet the models for Fun which have been studied identify the abstrac-
tion Ax. I with the divergent program I. Besides this problem, all existing models satisfy the
unrestricted p rule, which fails to be a legitimate transformation in call-by-value languages. Since
call-by-value is the most common form of evaluation, one is led to ask whether this commitment
to ,8 was an important feature of the models concerned. In short, very little has been done to close
the gap between denotational and operational theories of inheritance. We see two basic things as
missing from the current theories: (1) a careful discussion of the structional operational semantics
of languages with inheritance type systems and (2) any account of the relationship between the
suggested models and a reasonable account of operational semantics.

Our goal in this paper is to attempt an account of problem (1) guided by an approach to (2).
We carry out this study in a simple, familiar context by using an extension of Plotkin's illustrative
language PCF [Plo77]. We develop a simple structural operational semantics for this language in
the spirit of the evaluation mechanisms of languages such as LISP and ML in which functions call
their parameters by value. Our extension, which we call PCF+, is obtained by adding record and
variant types. This language is extended to a new language, PCF++, by permitting the use of
a form of inheritance which allows more programs to be viewed as type correct. We then study
the question of the proper operational interpretation of PCF++. One possible approach is simple
to understand: after a PCF++ program is shown to be type correct, the type information in the
term is erased and the resulting term (which lives in an extended untyped lambda-calculus) is

'Appears in Conference on Lisp and Functional Programming, edited by M. Wand, Nice, France, July
1990, pp. 44-60.

Computing with Coercions 3

before executing it, it is reasonable to ask whether translation would affect the evaluation. Since
coercions remove the "junk" in a term, they may play a useful role in efficient implementation.
However, our primary interest is in the abstract specification of the language and not the details
of its efficient implementation.

Our main result relates the direct execution of a PCF++ program phrase e to the execution of
any of its PCF+ translations, e*. We prove that

e terminates if and only if e* terminates.

If both e and e* terminate, what can we say about the relationship between the results of the two
computations? Of course, we are able to show that if the type of e is ground, (integer or boolean)
then the results are the exactly the same. In this language we are also interested in computing
with more complex objects, such as records/variants of records/variants of ground data (this is
particularly consistent with the way things are viewed in object-oriented database programming
applications [OBB89] for example). We call the types of such data observable types. Now, the
philosophy of PCF++ is that the type of program phrases is part of them, i.e., user-supplied in some
sense. (This is in contrast with the approaches based on type inference; see for example [Wan89].)
At observable types, we show that the results of the two computations have the same components
in those record fields which appear in the prescribed type of the program phrase. This is the best
we can hope for, since the introduction of coercions yields computations which may remove "junk"
fields, namely the fields not occurring in the prescribed type. Moral: if you specify a type for your
program, don't expect t o observe more than what the type allows. Anyway, our conclusion is that
coercions make no essential difference to the computation.

While this result only relates our translation to the operational semantics, it can be used for
transfer of computational adequacy. Consider a denotational semantics V+ of PCF+ for which our
translation is coherent. This yields a denotational semantics Vf+ for PCF++ where a term is
interpreted by first translating it into PCF+ and then taking the D+-meaning of the translation.
Under some reasonable assumptions about V+, our main result implies that if V+ is computa-
tionally adequate (i.e. the meaning of a term e is non-bottom iff the evaluation of e terminates)
for the operational semantics of PCF+ then 2)++ is computationally adequate for the operational
semantics of PCP++.

An interesting methodological twist is that our proof of the main result actually uses a specific
denotational semantics [.I+ which is computationally adequate for PCF+ and for which this transfer
can be done! As it is, we show directly that [.]I++ is computationally adequate for PCF++ and we
derive our main result from this. We regard this as a nice example of the use of a domain-theoretic
semantics for obtaining an essentially syntactic result.

Another comment on methodology. We have chosen to focus on call-by-value operational se-
mantics since this is the most common style of implementation for the languages we are studying
and because it offers a change of pace from our earlier results [BCGS89] where we focused on models
in which the unrestricted ,O axiom holds. We expect that results such as the ones we are proving in
this paper could be formulated for a call-by-name operational semantics, although this would call
for some changes in our concept of observability.

In section 2 we begin by introducing the syntax of PCF++ as an extension of PCF+. Then we
describe the translation back, from PCF++ to PCF+. Finally we give the call-by-value operational
semantics and state our main theorem. In section 3 we give a domain-theoretic denotational
semantics of PCF+ for which our translation is coherent and for which the operational semantics
of PCF+ is sound ahd computationally adequate. We prove that the operational semantics of
PCF++ is sound and computationally adequate for the induced denotational semantics and then

Computing with Coercions

0 : num false : boo1 t r u e : boo1

H I- e : num H I- e : num H I- e : num
H I- P r e d (e) : num H I- Succ (e) : num H I- I sZero(e) : boo1

H , x : s I - e : t H t - e : s + t H I - e t : s
H , x : s , H t t - 2 : s

H I - X x : s . e : t H I- e (e t) : t

H , x : s I - e : s H k e : b o o l H t - e t : s H t e U : s
H t - , u x : s . e : s H t- if e then et e lse e" : s

H t- el : sl . - . H I- en : s, H I - e : { l l : s l , ..., En:sn}
H I- {11 = e l ? . . . , E n = en} : {11 : s l , . . . , E n = sn} H t- e.1;: s;

H I- e; : s;
H t- [E ; = e,] : [11 : s l , . . . , ln = s,]

H l - e : [l l : s 1 7 . . . 7 1 n = s n] H I - f l : s l - + s - . - H I - e , : s n + s
H t - case e o f ll + f l . . - l n * fn : S

Table 1: Typing rules for PCF+.

num < num s t < s t < t t
boo1 < boo1 s + t < s t + t t

s1 < tl . . - sn < t n
(11 : S 1 , ..., En : S n7 . . . , lm : S m) < (11 : t 1 7 . . . ? I n : t n }

s1 < tl ... sn < tn
[E l : S l , ..., In I sn] < [I l : t l , . . . , I n : t n ? . . . , I m : t m]

Table 2: Inheritance rules.

Computing with Coercions 7

0 4 0 t r u e 4 t r u e false 4 fa lse

e & Succ(c) e 4 c e 4 o e 4 Succ(c)
P r e d (e) c Succ(e) l,l Succ(c) IsZero(e) 4 t r u e IsZero(e) 4 false

e .lJ Ax : s. e" e' J. c' [cl/x]e" c
Ax : s. e .I). Ax : s. e

e(et) 4 c

e l t r u e e2 4 c el 4) false es 4 c
if el t h e n e2 e lse es 4 c if el t h e n e;! e lse es 4 c

e l & c l enUcn e 4 {El = c l , . . . ,In = c,)
{Il = el , . . . , I, = en} .lJ {11 = c ~ , . . . , ln = cn} e.1; 4 c;

e U c e 4 [Ii = c'] f;(ct) JJ c
[E = el 4 [I = c] case e o f 11 +- f l , . . . ,I; +- fi, . . .,I, +- f, 4 c

[PX. e/xIe U c
px. e 4 c

Table 3: Call-by-value evaluation.

For raw terms e and e' we write [ef/x]e for the result of substituting e' for x in e. We demand
all of the usual assumptions about the renaming of bound variables in e to avoid capturing free
variables of e'. We assume that the substitution operation associates to the right and we may write
[el,. . . , en/xl , . . . , xn]e for the simultaneous substitution of e l , . . . , en for 21,. . ., xn respectively in
e. In the event that the terms e; are closed, note that this is the same as [el/xl] . . - [e,/xn]e and,
indeed, the order of the substitutions does not matter.

It is not hard to see that if e is a closed raw term such that e c, then c is uniquely determined.
This can be proved by showing that, for a given term e, there is a t most one axiom or rule
from Table 3 which applies to it. Hence the rules define a deterministic evaluation strategy. The
evaluation of function application is call-by-value, since the argument t o the application is evaluated
before being substituted into the body of the applied procedure. There is no evaluation under a
lambda-abstraction, but note that records are eagerly evaluated. For example, the evaluation of
an expression {I = e, I' = et}.l will result in the evaluation of e' as well as e even though e' is "not
needed" in the result. Putting aside efficiency issues, this is only significant if e' diverges since, in
that case, the evaluation of {k = e, 1' = ef).1 will also diverge. Since evaluation is deterministic, we
may define a partial function & on raw terms as follows

e c if there is such a c
&(e) E

undefined otherwise

Computing with Coercions

Let s = [Il : s l , . . . ,l, : s,], then [E; = c;] =, [E j = cg] iff c; =,i c;. I

If E and E' are expressions that may be undefined, write E =, E' to mean that if one expression
exists, then so does the other and E =, El. We may now express the desired result:

Main Theorem: Suppose I- e : s is derivable in PCF++ and e* is any PCF+ term
which translates this sequent, then e 4 iff e* $. Moreover, if s is observable, then
&(e) E~ &(el). 1

It seems difficult to prove this result directly because of the recursion case. This problem is resolved
by appealing to denotational models for PCF+ and PCF++ which we now describe.

3 A comput at ionally adequate denotat ional semantics.

For technical reasons we have found that it is useful to appeal to some results relating PCF+ and
PCF++ to a specific denotational model which we will describe in this section. Although our goal
is to prove a purely syntactic result (the Main Theorem at the end of the previous section), the
semantic results which we will now establish are of independent interest.

We describe a domain-theoretic model for PCF+. The interpretation of types is as follows:

[bool] is the flat domain with three distinct elements tt, g a n d least element I.

[num]] is the flat domain consisting of the numbers 0 ,1 ,2 , . . . together with a least element
I.

[s -+ t] = (s c+ t)l, the lifted domain of strict (i.e. I-preserving) functions from [s] into [t].

[{11 : s l , . . .,En : s,}] consists of a bottom element I, together with the set of tuples
{II = dl , . . . , E n = d,) where each d; is a non-bottom element of [s;]. The ordering is defined

by
{11 = dl , . . . , En = d,} g {11 = d; , . . ., 1, = dk}

iff d; C di for each i = 1,. . . , n and 1 5 d for each record d.

[[11 : ~ 1 , . . .,En : s,]]I consists of a bottom element I, together with the set of pairs [E; = d;]
such that d; is a non-bottom element of Is;]. For two such pairs, [l; = d] C [I j = d'] iff i = j
and d E dl.

Suppose H = xl : s l , . . . xn : sn is a type context. An H-environment is a function which assigns
to each variable x; an element p(x;) of the domain is;]. The PCF+ interpretation of a sequent
H I- e : s is a function which assigns to each H-environment p a value [H t- e : in [s].

We will refrain from writing out all of the semantic equations for the sequents of PCF+. The
rules for the introduction and elimination operators for the record and variant types are straight-
forward, holding in mind that the interpretation of a record with a field which is I is itself equal
to I. Recursion is defined in the usual way using least fixed points. The function space requires
some explanation which we now provide.

The lift DL of a domain D is obtained by adding a new bottom element. There is a continuous
function up : D + DL which sends elements of D to their images in the lifted domain. This function
is not strict, since it sends the bottom of D to an element of DL which dominates the "new" bottom

Cornpu ting with Coercions 11

L e m m a 6 1. If r < s < t , then [coerce[r < t] : T -t t] = [coerce[s < t] : s + t] o [coerce[r < s] :
r -+ s]

2. If s < t , then [coerce[s < t] : s + t] (d) = I iff d = 1. I

L e m m a 7 If t- c : s is a derivable judgement of PCF++ and c is a canonical form, then [c :
s]++ # I. I

Most of the rest of this section is devoted to a proof of a kind of converse to the Soundness
Theorem which we will call computational adequacy (the term is suggested by Albert Meyer [Mey88],
although his definition includes soundness). For P C F f f , it can be stated as follows:

T h e o r e m 8 (Computational Adequacy.) Suppose e : s is derivable in PCF++. If [e : s] + f + 1
then e .& c for some canonical form c.

We focus on explaining how the methods that one uses for results such as those above are
applied to a calculus with multiple inheritance. We will look at the proof of adequacy in some
detail. The proof requires a relation between program meanings and programs sometimes called
an "inclusive predicate". We define this relationship as follows:

Definition: Define a relation 5, between elements of [s] on the left and closed raw terms of type
s on the right as follows. d 5 , e if d = I or e .& c for some c and d 5 , c where

f z , , ~ AX : r. e iff for each d E [s] and term c, d 5, c implies down(f) (d) 5t [c /x]e .

(11 = d l , . . . , ln = d,} 5{11,, l,,:,,,) (11 = e l , . . . , E m = e m) iff m 2 n and d; z,, c; for
i = l , . . .n.

[I ; = dl 5[11 ,,,,..., 1 ,,,,] [I j = c] iff i = j and d 5,; c.

tt Zbool t r u e and f f 5bo0l false.

a 0 znum 0 and if n znUm c for a number n, then n + 1 Succ(c). I

Some of the essential semantic properties of 5 are given in the following:

L e m m a 9 1. If a b 5 , e, then a 5, e.

2. If a0 5 a1 a2 . - . is an ascending chain and an 5, e for each n, then Ur=o an 5, e. I

We are now ready to sketch the proof of the primary technical lemma which is needed for the proof
of PCF++ adequacy.

t L e m m a 10 Suppose H = x l : sl . . .xn : s: and H I- et : st is derivable. If di E [s f] and di 5 t et
t

'i
t for i = 1, . . ., k , then [H I- et : st]++[dl,. . ., d k / x l , . . . , xk] 5,t [e l , . . . , e k / x l , . . . , xk]et .

Proof: Let p be the environment [d l , ..., d,/xl , ... x,] and a be the substitution
t [e l , . . . , e i / x l , . . .,x,]. Let A be a PCF++ derivation of the typing judgement H t- et : s t . We

prove that [H t- et : st]++p Zst aet by an induction on A. Assume that the Theorem is known
for proofs of lesser height. There are eleven possibilities for the last step of A. Some of the more
interesting cases (subsumption in particular) are written out fully below.

Computing with Coercions

H I - e : s s < t
Subsumption rule:

H k e : t
The proof for this case is by induction on the height of the proof that s < t. Assume that
we know that the theorem holds for H t- e : s and let H I- e* : s be any translation of this
sequent to PCF+. There are four subcases:

- Base types: These are both obvious since the coercion is the identity map.

u l < u v < v l
- Functions:

U + v < u l + v"
Suppose s - u + v and t = u' + vl. Let = down[coerce[ul < u]] and & =
down[coerce[v < v']]. Then [= down[coerce[u -t v < u' + v']] satisfies [(f) = t2 o f o t l
for f : [u] ~ [v l] . Set f = down[H I- e : snf+p. If d 5,) c, then t 2 (d) 5, c by
induction hypothesis on u' < u. Thus f (t 2 (d)) 5, (a e) (c) by induction hypothesis
on H t- e : s. We may now apply the induction hypothesis on v < v' to conclude
that [(f) = tl(f (J 2 (d))) 5,' (ae) (c) . Since [(f) = [H I- e : t] l s + ~ we conclude that
([H k e : t n f f p z t ae.

S l < t l
- Records:

sn < tn
(11 : S 1 , . . . , En : s,, . . . , 1, : 5,) < {11 : t l , . . . , En : t,) '

Let ti = down[coerce[s; < t i]] for i = 1, . . .n and let [= down[coerce[s < t]] . By
induction hypothesis, we have d = [H t- e : s]++p 5, ae. If d = I, then [(d) = [H I-
e : t]++p = I and we are done. If d # I, then d = {Il = d l , . . . , l , = d,) where
d l , . . .,dm # I and ae c for some canonical c of the form c = { I l = c17. . . , l j =
c j) such that j 2 m and di 5,; c; for i = 1,. . .m. By the induction hypothesis on
inheritance judgements, we must therefore have J;(d;) 5 t , c; for each i = 1,. . . , n. Hence
[(d) = (11 = t l (d l) , . . ., 1, = en(dn)) ; ~ t {bl = c l , . . . , l j = c j) by the definition of zt
and we are done.

sl < tl - - . - Variants: sn < tn
[11 : S 1 , . . . , I n : s,] < [E l : t 1 7 . . . , I n : t n7 . . . , I m : t,]'

Let ti = down[coerce[s; < t i]] for i = 1,. . .n and let [= down[coerce[s < t]] . By
induction hypothesis, we have d = [H t- e : s]++p 5, ae. If d = I, then ((d) =
I[H t- e : t]++p = I and we are done. If d # I, then d = [l; = di] where d; # I
and ae $ c where a e $ c and d 5, c. By the definition of z,, the term c has the form
[I ; = c;] and di 5,; c;. By induction hypothesis on s; < t ; , we know that t ; (d;) 5 t i c; so
t (d) = [E j = t i (d)] 5 t [li = ci]. I

We may now express the desired proof of Computational Adequacy for PCF++.

Proof: (of Theorem 8) By Lemma 10 we know that [e : s]++ ;Ss e . Since the value on the left is
assumed to differ from I, the Theorem follows immediately from the definition of 5,. I

The following theorem follows immediately from Soundness and Computational Adequacy for
PCF++ together with Corollary 4 of the Semantic Coherence Theorem for PCF++.

Theorem 11 (Soundness and Adequacy for PCF+) If t- e : s is derivable in PCF+, then

1. (Soundness) e .l,l c implies [e : s] = [c : s] .

2. (Computational Adequacy) [e : s]+ # 1 implies e lJ. c for some canonical form c. 1

The following lemma is needed for the proof of the Main Theorem:

Computing with Coercions 15

that our translation is denotationally coherent with respect to V f , which induces a model D++
of PCF++, and that the operational semantics of PCF++ terms is sound in Df+. Of course, by
the main theorem of this paper, we can also get transfer of computational adequacy. Therefore,
we would be able to neatly concentrate in the axiomatization of 7 all the conditions needed by a
"good" model of PCF+ in order to become a model of PCF++ in accordance to our paradigm.

An intriguing question is whether c* = c' will turn out to be more than an r.e. statement,
whether it is actually decidable? In other words, is full PCF+ computation required in order to
systematically disentangle the coercions we introduce?

Finally, we should restate that we expect that the results of this paper generalize to more
complicated type disciplines (Fun, Quest, etc.) and that analogs can be shown for call-by-name
operational semantics.

5 Acknowledgements.

We thank Albert Meyer for inspiring us t o examine operational issues surrounding calculi with mul-
tiple inheritance. We have had helpful discussions about our draft version of this paper with Hans
Boehm, Luca Cardelli, Pierre-Louis Curien, Matthias Felleisen, Dave MacQueen, Jose Meseguer,
John Mitchell and Mitch Wand.

Breazu-Tannen's research was partially supported by ONR Grant N00014-88-K-0634.
Gunter's research was partially supported by ONR Grant N00014-88-K-0557. Breazu-Tannen
and Gunter were also pa r t i dy supported by ARO Grant DAAG29-84-K-0061. Scedrov's research
was partially supported by NSF Grant CCR-87-05596, by ONR Grant N00014-88-K-0635, and
by the 1987 Young Scientist Award from the Natural Sciences Association of the University of
Pennsylvania.

References

[BCGS89] V. Breazu-Tannen, T . Coquand, C. A. Gunter, and A. Scedrov. Inheritance and ex-
plicit coercion (preliminary report). In R. Parikh, editor, Logic in Computer Science,
pages 112-134, IEEE Computer Society, June 1989.

[BCGSSO] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as implicit
coercion. University of Pennsylvania, Department of Computer and Information Sci-
ence technical report number MS-CIS-89-01. Journal version of [BCGS89] submitted to
Information and Computation.

[Car891 L. Cardelli. Typeful programming. Research Report 45, DEC Systems, Palo Alto, May
1989.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
A CM Computing Surveys, 17(4):471-522,1985.

[Mey88] A. R. Meyer. Semantical paradigms: notes for an invited lecture. In Y. Gurevich, editor,
Logic in Computer Science, pages 236-253, IEEE Computer Society, July 1988.

[Mog88] E. Moggi. The Partial Lambda-Calculus. PhD thesis, University of Edinburgh, 1988.

NETS AS TENSOR THEORIES*

Carl Gunier Vijay Gehlot 1

University of Pennsylvania

Department of Computer and Information Sciences

Philadelphia, PA 19104 U.S.A.

October 1989

Abstract

This report is intended to describe and motivate a relationship between a class of nets and
the fragment of linear logic built from the tensor connective. In this fragment of linear logic a net
may be represented as a theory and a computation on a net as a proof. A rigorous translation

is described and a soundness and completeness theorem is stated. The translation suggests

connections between concepts from concurrency such as causal dependency and concepts from

proof theory such as cut elimination. The main result of this report is a "cut reduction" theorem
which establishes that any proof of a sequent can be transformed into another proof of the same

sequent with the property that all cuts are "essential". A net-theoretic reading of this result tells
that unnecessary dependencies from a computation can be eliminated resulting in a maximally

concurrent computation. We note that it is possible to interpret proofs as arrows in the strictly
symmetric strict monoidal category freely generated by a net and establish soundness of our

proof reduction rules under this interpretation. Finally, we discuss how other linear connectives
may be related to the concepts of internal and external choice.

1 Introduction

In this paper we explore the idea of describing the operational semantics of a net (the so-called

"token game") in proof-theoretic terms. Under our approach, a net will correspond to a logical

theory, and the token games on the net will be represented as proof trees in the "logic" of the net.

This correspondence reveals an interesting relationship between concepts of proof theory (such as

cut elimination) and fundamental concepts in concurrency (such as causal dependency) as they are

'This is an extended and revised version of the preliminary report that appeared in: Application and Theory
of Petri Nets, edited by G. De Michelis, June 1989, pp. 174-191.

t~esearch of both authors is supported by Office of Naval Research Grant N00014-88-K-0557. Electronic mail
addresses for the authors are gunteralinc .cis .upenn. edu and gehlot0linc. cis.upenn. edu

Nets as tensor theories

Structural Rules

I" B7 A (Exchange) - A I- A (Identity) I ' l - A A , A I - B
I',B,A,A I- C r , A k B (cut)

Logical Rules

rl- A A I - B ~ , A , B I- c
I ' , A l - A @ B (@R) I ' , A @ B I - C (@L)

Figure 1: Structural and logical rules for a fragment of linear logic.

I' I- A is provable in T if r l- A is in Th(T). We say that r I- A is provable if it is in Th(0). Let

us say that a pair A l--I B is provable if A I- B and B t- A are both provable. It is not hard to see

from these axioms that the tensor connective is associative and commutative:

Proposition 1 For any A, B, C, the sequents A @ B t--I B @ A and (A 8 B) @ C F-I A @ (B @ C)

are provable. I

However, the tensor connective is not absorptive; for example, the sequent A@ A I- A is not provable.

It is therefore possible to think of a tensor formula as a multi-set (or "bag7') of propositional atoms.

Given a tensor formula A, let M(A) be the multi-set of propositional atoms determined by A. It

follows from the proposition that tensor formulae A and B such that M(A) = M(B) are equivalent,

i.e. A l-4 B. Moreover, sequents I' l- A and A I- A are equivalent in the sense that each can be

derived from the other if the lists l7 and A determine the same multi-set of propositions. For this

reason, we will treat sequents as pairs I' I- A where I' is a multi-set.

For the purposes of this paper, a net N is a set SN of places together with a set TN of pairs of

multi-sets over SN. A pair t = (' t , t ') E N is called a transition of the net with pm-condition ' t and

post-condition t'. Of course, this is only one of the many flavors of nets that have been studied in

the rich literature on such structures. Nets, as defined here, are similar to place/transition-systems

as defined, for example, in [15]. However, our notion of net has less structure since there are no

capacities and a transition is uniquely determined by its pre and post conditions. Moreover, a net

in our sense does not have a specified initial marking. One of the appealing characteristics of nets
is the way they lend themselves to pictorial representation. For example, the net No consisting of

the pairs ({ A) , {B, B,C)) and ({B), { A)) is pictured as a labelled graph in Figure 2.
Before we offer a technical definition of just how a net determines a theory, we will attempt to

motivate the basic idea by means of examples. Consider the net N1 pictured in Figure 3. In this
net, if we are given a token on the condition A, then it is possible to fire the event r . Firing this

event, exhausts the token on A but provides a token on B. Logically, let us read the event T as an

axiom A l- B meaning "from A i t is possible to obtain B." Similar ideas apply to the events s, t

and u which we may read as B I- D and A I- C and C I- E respectively. Now, event v requires a

Nets as tensor theories

Figure 4: A net N2 with a critical region.

pepsi and $1 to buy a coke, then I can't expect to use $1 to buy both a pepsi and a coke. Of course,

one can also write the conjunction rule as

A t - D A I - E
A,A t- D A E

but this only begs the issue, since some instance of the thinning rule:

would be used at a later step in the proof to remove the second copy of A and this rule is just as

suspect as the earlier version of the conjunction rule. To deal with this problem, one needs a logic

in which the thinning rule is omitted and the second of the conjunction rules is used for the "and"

connective that we have in mind.

The proper rules are those given in Figure 1 for the linear logic tensor connective 8. These

rules keep track of the resources as needed. In linear logic, the sequent A I- F is not provable in TI.
However, it is possible to check that A, A k F is provable in TI, as we expect it should be. There

are, in fact, several proofs of A,A t- F in TI; three of these are listed in Figure 5 (on page 7). We
will come back to these proofs later to discuss how they relate to the net token games that move a

token from the marking A, A to the marking F.
To give a slightly larger example, which we hope will suffice in giving the reader the general idea,

consider the net N2 in Figure 4. This net corresponds to the tensor theory T2 with the following

Nets as tensor theories 7

logic involves expanding our discussion to a larger fragment of the calculus. Since rules from L (N)
may be used arbitrarily often, they must be represented as linear logic propositions using the "of

coursen operator, written !A. (Given a linear proposition A, the proposition !A represents the "pure

propositional content" of A. In the current context we may think of it as an unlimited resource of

A's.) Linear propositional logic with the ! operator is not known to be decidable. The result above

suggests that the decision procedure for this calculus, if it exists, will not be easy to find.

Proof 1.

Cut

Proof 2.

A k B B , C F D @ E
8

A l - C 8 R
A . A F B R C B R C ~ - D R E @ ~ - - -

A . A k D @ E
Cut

D R E l - F -

A,Al - F
Cut

Proof 3.

A t - B B l - D A t C C t E
Cut

A l - D A l - E
Cut

A , A k D @ E D@.El-F
A , A k F

Cut

Figure 5: Three proofs that A, A I- F.

3 Proofs as Computations

Let us return now to our discussion of the net Nl in Figure 3 (on page 4). This net displays some

of the intuitive representations of concepts which have made nets an appealing model for both

theoreticians and practitioners. The events T and t "compete" for the resource A and the events s

and u are capable of running concurrently if they have the necessary resources B and C. There is

a causal dependency between T and s: if r fires then s will be enabled. A similar dependency holds

between t and u. If there is a line of computation which passes through r , s and another which

Nets as tensor theories 9

equational axioms can be eliminated. However, the "maximally concurrent" proof we desire cannot

be obtained by a straight-forward translation of these ideas. Instead, it is necessary to rely on other

intuitions about the correct forms.

4 Cut reduction.

In this section, we formalize the concepts intuitively discussed in the previous section. Our goal is

to demonstrate a set of rewrite rules for transforming a given proof into a "maximally concurrentn

proof of the same sequent. We begin by defining essential cuts and then state and prove the cut

reduction theorem. The proof is based on giving a finite set of proof reduction rules which is shown

to be strongly normalizing.

Definition 1 An instance of the cut rule in a proof is trivial if at least one of the premisses is an

axiom of the form A t- A.

Definition 2 An instance of a cut rule in a proof is called essential if it is non-trivial and has the

form

r k A A t - B
r t- B

Cut

where A is a netformula.

Theorem 4 (Cut-Reduction) Given a net N and its associated deductive system & (N) . If a
sequent I' !- A is provable in L (N) , then there is a proof of this sequent in & (N) such that all cuts

are essential.

Intuitively, essential cuts seem to capture dependencies exactly as dictated by the underlying

net. A proof is cut-reduced if all instances of cuts in it are essential.

We will give a collection of rewrite rules for proofs and show the existence of a normalizing

sequence. We will then strengthen this result by establishing that the set of reduction rules is

strongly normalizing . The theorem above will immediately follow from the proposition that every

normal proof is cut-reduced.

Remark: Prawitz [14] distinguishes "normal form theorem", "normalization theoremn, and

"strong normalization theorem". In his terminology then, our cut-reduction theorem is a normal

form theorem, the second theorem will be a normalization theorem, and the last one will be a

strong normalization theorem.

We begin by enumerating transformations on proofs. Assume that a proof P ends with an

inessential cut, i.e. it has the following form:

Nets as tensor theories

2.2.2 The last rule is a @R. We distinguish following two cases.

2.2.2.1 Cut formula A in upper left sequent of the last rule of PI'.

2.2.2.2 Cut formula A in upper right sequent of the last rule of P".

2.2.3 The last rule of P" is an essential cut. In this case, the cut formula cannot come from the

upper right sequent of the essential cut above. Thus we have only one case to consider.

CukA r,al 1 B B I - c
r,nl t- c CukB

Note once again that B belongs to some netaxiom in the two cases above.

3. Logical. This is the case where the cut formula is the main formula of a logical rule in both

Pr and P" and is introduced only by this instance of the rule. The transformation in this case

depends on the outermost logical symbol of the cut formula and since we only have one logical

connective, there is only one case to consider here.

Nets as tensor theories 13

The proof of the theorem then immediately follows from the above lemma by an easy induction

on the number of inessential cuts appearing in a proof. In any proof consider an inessential cut

above whose lower sequent no inessential cuts appear; thus satisfying the condition of the lemma.

According to the lemma this (sub) proof can be transformed into another (equivalent) proof which

does not contain this cut. In doing so, rest of the proof remains unchanged. We get a cut-reduced

(equivalent) proof by repeating this process until all the inessential cuts have been eliminated.

Proof: (of the main lemma) Easy induction on the number of nodes in a proof satisfying the

condition of the lemma. ' 1
The following is now immediate.

Theorem 8 Let P be a proof. Then there exists a sequence of reductions such that P ** PI, and

P' is in normal form. [

The following definition will be used in the proof of our next theorem.

Definition 4 The grade g of a formula A is the number of @ contained in A. The grade of an
inessential cut is the grade of its cut formula.

Thus, by the definition above, grade of an essential cut is 0.

T h e o r e m 9 (S t rong Normalizat ion) There is no infinite reduction sequence beginning with any

proof PI.

Proof: We define a measure on proofs and show that each one step transformation reduces this

measure.

Let the complexity of a proof be a pair (a , b), where

a = sum of the grade g of cut formulas of all inessential cuts in the proof.

b = sum of the nodes above all inessential cuts (including the premisses and conclusion of the

cut).

Clearly, a cut-reduced proof has complexity (0,O).

Now consider the three (main) classes of the transformations above. It is easy to see that

application of these transformations in each case to a proof reduces its complexity.

Axiom: Both a and b are reduced.

Permutation: b is reduced keeping a the same.

Logical: a is reduced.

Thus, all reduction sequences terminate. 1
In Appendix A we have written out how the rewriting works on Proof 1 and 2 in Figure 5.

Nets as tensor theories

11 1 l-I 2

where f : l ' - + A = I (r F A) a n d g : A @ A + B = I (A , A t - B) .

Propos i t ion 10 The proof reduction rvles are sound with respect to the interpretation above.

Proof: We just consider an illustrative case here. Consider the reduction rule 2.2.2.1. The function

I yields an arrow corresponding to the left hand side as follows. Let f : I? -r A, g : A' €4 A -+ B,
and h : A" --+ C. Then we have:

(f €4 ~ A I ~ A ~ I) 0 (9 @ h) : I' @ (A' @ A") + B €4 C
= (f €4 (;A# €4 i ~ l l)) o (g @ h)

= ((f €9 ~ A I) €4 i a ~ ~) 0 (g 8 h)
= ((f €4 i ~ ') 0 g) €4 (iAll 0 h)

= ((f 8 ial) 0 g) 8 h
= I (right hand side) 1

In view of the above proposition and the strong normalization theorem, the following is imme-

diate.

Corol lary 11 Every proof reduces to a unique normal form modulo the interpretation. 1

It has long been argued by proof theorists that a notion of equivalence of proofs based on mere

provability is too extensional and inadequate. But the question of the right notion of equivalence of

proofs still remains open. Prawitz [14], for the system of Natural Deduction and his set of reduction

rules, conjectured that two derivations represent the same proof if and only if they reduce to the

same normal form. Now in view of corollary 11 above we may say something similar for the

identification of the derivations in a tensor theory. However, it seems that such an identification

does not quite capture the intuitive sense of equivalence (based on processes) that we have in mind

for net computations and is still too extensional. For example, proof 2 and proof 3 of section 3
would be identified as the corresponding arrows are equal because -@ - is a bifunctor. However, the

process interpretation that we have in mind should not result in such an identification. Thus the

sense in which proof 3 is not equivalent to proof 2 (and in fact better) is lost in the denotational view

that we have presented in this section. We are currently looking at how to attach such intensional

interpretations to proofs in our setting. We have made some partial progress towards this, though

mostly via some ad hoc means.

6 Choice Situations

We have so far restricted attention to a rather small fragment of linear logic because this fragment

is already sufficient to illustrate several important concepts that suggest interesting relationships

Nets as tensor theories

Coke

0 p-1
Figure 7: Coca Cola implements $1 i- coke $ pepsi.

affairs with the formula (D @ C) &(A @ E) . Here is a proof of the proper statment:

It is our feeling that the direct product operator captures a form of external choice. On the other

hand, the linear disjunction captures a concept of internal choice. Given two linear propositions A
and B, one proves the linear disjunction A $ B of A and B from hypotheses I' by using one of the

following rules:

In other words, the resource A $ B can be obtained from I' just in case either A or B can be. On

the other hand, if one wishes to obtain C from r and resource A $ B, then it must be shown that

C can be obtained from both A and B. The rule is

Figure 8: Pepsi Cola implements $1 i- coke $ pepsi.

The internal/external distinction can be illustrated by a simple example which takes linear

propositions as a specification language. Let us assume that we wish to contract a vendor to build

Nets as tensor theories 19

earlier the unary operator ! which represents an unlimited resource. This operator plays a subtle

role in the theory we have exposited; work of Carolyn Brown [4] provides helpful insight. All of the

linear logic connectives seem to have their own significance in terms of computation on nets. (We

have included a list of some of the rules of linear logic in Appendix B.) Work on the exploitation

of these ideas is likely to be a profitable for the study of both concurrency and proof theory.

References

[I] A. Asperti. A logic for concurrency (extended abstract). Unpublished manuscript.

[2] A. Asperti, G. L. Ferrari, and R. Gorrieri. Implicative formulae in the "proofs as computations"

analogy. To appear P. Hudak, editor, Principles of Programming Languages, pages ??-??,

ACM, 1990.

[3] A. Avron. The semantics and proof theory of linear logic. Theoretical Computer Science,

57:161-184, 1988.

[4] C. Brown. Relating Petri nets to formulae of linear logic. Unpublished manuscript.

[5] P. Degano, J. Meseguer, and U. Montanari. Axiomatizing net computations and processes. In

R. Parikh, editor, Logic in Computer Science, pages 175-185, IEEE Computer Society, 1989.

[6] H. J. Genrich and E. Stankiewicz-Wiechno. A dictionary of some basic notions of net theory.

In W. Brauer, editor, Net Theory and Applications, pages 519-535, Lecture Notes in Computer

Science vol. 84, Springer-Verlag, 1980.

[7] J. Y. Girard. Linear logic. Theoretical Computer Science, 50:l-102, 1987

[8] J. Y. Girard. Proofs and Types. Cambridge University Press, 1989.

[9] J. Hopcroft and J. Pansiot. On the reachability problem for 5-dimensional vector addition

systems. Theoretical Computer Science, 8:135-159, 1979.

[lo] S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary version).

In Proc. 14th Annual ACM Symp. on Theory of Computing, pages 267-281, 1982.

[ll] N. ~ a r t i - 0 l i e t and J. Meseguer. From Petri nets to linear logic. Research Report SRI-CSL-

89-4, SRI International, Menlo Park, March 1989.

[12] E. W. Mayr. An algorithm for general Petri net reachability problem. In Proc. 13th Annual

ACM Symp. on Theory of Computing, pages 238-246, 1981.

Nets as tensor theories

A Sample Proof Transformation

We give some examples of cut-reduction below. At each step of the reduction, the inessential cut

to which a reduction rule is applied is denoted [I. Other choices of inessential cuts, if any, at -
a step to which a rule could have been applied are denoted Cut. Remaining inessential cuts are

denoted &t.
Example 1

B t - D
A l - B

C k E @ R

A F C @ ~ B , C l - D @ E @L
A , A l - B @ C B @ C l - D @ E

A , A l - D @ E D @ E t - F
A , A k F

Cut

. , - Cut I. -

Cut

A l - B B l - D A l - C C l - E
Cut

A t - D cut
2.2 2 2 * A , A l - D @ E

A l - E @ R
D @ E l - F

A , A l - F Cut

Example 2.

Cut

Cut

Nets as tensor theories

D l - D
A l - B I- A l - C

Cut
&- A l - D A, D I- D @ E Cut

A , A l - D @ E -
D @ E l - F

A , A l - F

A l - C
A l - B D l - D

C l - Cut

A l - D Bt- Cut A ' E @ R
A , D l - D @ E p J

A , A l - D @ E D @ E l - F
A , A l - F

A l - B
A l - D

* l-
Cut A t - C

A l - D
C l -

Cut

A , A F D @ E
A F E @ x t

D @ E l - F Cut
A , A l - F

A l - C
cut

A F B
A l - E

l- Cut

A , A l - D @ E
A l - D @ R

D @ E F F
A , A l - F

NORMAL PROCESS REPRESENTATIVES

Vijay Gehlot Carl Gunter *

University of Pennsylvania
Department of Computer and Information Sciences

Philadelphia, PA 19104 U.S.A.

October 1989

Abstract

This paper discusses the relevance of a form of cut elimination theorem for linear logic tensor
theories t o the concept of a process on a Petri net. We base our discussion on two definitions
of processes given by Best and Devillers. Their notions of process correspond to equivalence
relations on linear logic proofs. It is noted that the cut reduced proofs form a process under the
finer of these definitions. Using a strongly normalizing rewrite system and a weak Church-Rosser
theorem, we show that each class of the coarser process definition contains exactly one of these
finer classes which can therefore be viewed as a canonical or normal process representative. We
also discuss the relevance of our rewrite rules to the categorical approach of Degano, Meseguer,
and Montanari.

1 Introduction

It has often been useful to take ideas from proof theory and look at their computational significance.
One very fruitful line of investigation has been the use of the Curry-Howard correspondence-the
"propositions as types" idea-as a way of seeing proofs as programs and types as specifications.
This correspondence reveals an analogy between cut elimination in systems of natural deduction
and the reduction of lambda-terms, thus strongly connecting the study of a central proof-theoretic
idea (with a history dating back at least to the 1930's) with a central computational concept in
sequential functional programmming.

Another, more recent, line of investigation with a kinship to this sequential theory concerns the
relationship between certain kinds of proofs and concepts in concurrency. A number of authors
have discussed the idea of relating concurrent computations as represented by Petri nets to proofs
in linear logic [7] . One line of research seeks to use the fact that nets give rise to a monoid structure
and can therefore be used to model linear logic through the use of a phase semantics [6]. In this way
a net can be viewed as a model of the linear connectives in which there is a correspondence between
the truth of a linear sequent in the model and the reachability relation on the net. However, most of
the research [8, 9, 1, 41 has focused on the idea that a net may be viewed as a theory in a fragment
of linear logic (the tensor theory to be precise). In particular, when things are viewed in this way,
there is a precise correspondence between concurrent computations on a Petri net and linear logic

'Research of both authors is supported by the Office of Naval Research. Electronic mail addresses for the authors
are gunterQcis.upem. edu and gehlotQcis .upenn.edu

Normal Process Representatives

Figure 1: Net N with two processes of type A @I A' + C @ C'.

respectively. Dynamically, computations proceed by the firing of transitions. If transition r fires,
for example, then the token is removed from A and placed on its postcondition B; the transition T

is now disabled since its precondition A is no longer filled. We may also speak of the concurrent
firing of r and r' in the starting configuration of Figure I since there is no dependency between
their pre-conditions.

For formal definitions we refer the reader to recent publications in LICS [lo, 51. For this paper
we will take it as a working definition that a net (or, to be more precise, a place/transition net) is a
set of pairs of multisets over a set S of places. This is really a special case of the definition of a net
in [lo, 51 where distinct transitions with the same pre and post conditions are permitted, but the
restriction simplifies our notation since it avoids the need to label the linear sequents to preserve a
precise correspondence between nets and linear tensor theories. For this preliminary discussion, it
will be convenient to utilize their categorical treatment of nets and write transitions as arrows in
a category with a binary operator @ on its objects. In this notation, the transitions in the figure
may be viewed as arrows:

r : A + B s : B + C
t : B @ B ' + C @ C f

r': A + B s t : B + C

There are two operations on arrows. If f : X + Y and g : Y -t Z, then f ; g : X + Z is the
compositionof f andg. Iff : X + X t a n d g : Y - tYJ , then f @ g : X @ Y +Y@Y' i s the t enso r
product of f and g. Starting with the basic transitions, these operations generate a language of
computations on the net. Intuitively we read f ; g as the sequentialization of f and g: "first do f
and then do g". We read f @ g as the concurrent performance of operations f and g: "do f and g
at the same time".

Looking again at Figure 1, here are four sample computations of type A @ A' + C @I C' on the
net N:

where the idle transition (identity map) on a place X is written simply as X. Much of the research
on nets (and, indeed, concurrency as a whole) has focused on the question of when two computations
such as the ones above are "essentially the samen. In the case of the computations above, one may
well expect to distinguish between processes f and g, for example, since one of these computations

Normal Process Representatives 5

formulas of the theory T. An instance of a cut rule is said to be essential (in a proof in the theory
T) if it is non-trivial and has the form

I ' t - A A t - B
I ' k B

cut

where A is a netformula. A proof is said to be in normal form if all of its cuts are essential. IVe
will discuss normalization of proofs in the next section.

Definition 1 Let N be a net. The equivalence relation S (N) on proofs is defined as the smallest
equivalence relation satisfying the following equations between proof trees.

II TI' TI
(1) I',B,Ct- D A i - E ~ R - I ' ,B,Ct- D TI'

-

r , B , C , A t - D @ E @L ~ , B @ C F D " ~
I ' , B @ C , A t - D @ E

A k E @ R
r , B @ C , A t - D @ E

rI TI' II'
-

II"
(4) r t- A A k c g R 11" - r~ at-c

I ' , A t - A @ B I ' F A A k C B R
A k c @ R A , A F B @ C g R

I ' , A , A t - A @ B @ C r , A , A t - A @ B @ C

II TI' TI' TI"
(5) I? t- A A,At - B TI" - - II A , A k B A , B F C

Cut
I ' , A k B A , B t - C I't- A A , A , A i- C Cat

r , A , A t- C
Cut

I ' ,A,A t- C
Cut

n II' TI
r , B , C F D D t - E - - I ' ,B,CF D II '

e-cut ~ , B , c t- E ~ , B @ c c D @ ~ ~ t - E
~ , B @ c c E @ ~ ~ , B @ C F E

e-cut

Normal Process Representatives 7

depends on the outermost logical symbol of the cut formula and since we only have one logical
connective, there is only one case to consider here.

r" t- A~ F" 'A28R A l , A z , A t - B
I", I?" t- A1 8 A2 A ~ @ A ~ , A ~ - B @ ~

Cut:A1 @A2 r', ru, A t- B

rt t- A~ A,> A2, A I- B cukAl

3 r" t- A2 I", A2, A t- B
Cut:Az rrr, rt, A I- B

The following property of the rewrite rules is not difficult to check:

Proposition 1 (Soundness of Rewrite Rules) The above rewrite rules preserve the 7-
equivalence of proofs. I

We now show that the these reduction rules are strongly normalizing. We will need the following
definition in the proof of the strong normalization theorem.

Definition 2 The grade g of a formula A is the number of occurrences of 8 contained in A. The
grade of an inessential cut is the grade of its cut formula.

Thus, by the definition above, grade of an essential cut is 0.

Theorem 2 (Strong Normalization) There is no infinite reduction sequence beginning with any
proof P .

Proof: Let the complexity of a proof be a pair (a , b), where

a a = sum of the grade g of cut formulas of all inessential cuts in the proof.

a b = sum of the nodes above all inessential cuts (including the premisses and conclusion of the
cut).

Clearly, a cut-reduced proof has complexity (0,O). We now show that each step of reduction on
a proof reduces its complexity. Consider the three classes of the transformations above. It is easy
to see that application of these transformations in each case to a proof reduces its complexity.

Axiom: Both a and b are reduced.

Permutation: b is reduced keeping a the same.

Logical: a is reduced.

Thus, all reduction sequences terminate. I

In the following section we show that the induced reduction relation on the equivalence classes
modulo the relation S (N) on proofs enjoys the Church-Rosser property. We will then show that ev-
ery 7 - equivalence class has a unique normal process representative by showing that the equivalence
defined by the reduction relation on S-equivalence classes coincides with the relation 7. The S-
equivalence class of normal forms will then be the unique process representative of a 7-equivalence
class.

Normal Process Representatives

Now 111 can be reduced to

r , B , C k A A1,AI- D
Cut n3

I?.B,c,A'~- D A " F E

by another application of a permutation rule and similarly TI" can be reduced to

, I Ell= Cut
r , B , C , A 1 t D gL n3

I' ,B@C,A1t- D A" F E @R

~ , B @ C , A ' , A " I - D @ E

It is easy to see that C'SC" and thus the required existence of C has been shown. I

Since the reduction rules are strongly normalizing by Theorem 2, we use the Newman's Lemma
(see [2] on page 58) which says that WCR and SN implies CR to conclude that +> satisfies the
following diamond property which will be used in the proof of Theorem 4 below.

Definition 3 A normal process representative is an S-equivalence class of normal forms.

Theorem 4 (Unique Process Representative) Let N be a net. In every I-equivalence class,
there is a unique normal process representative.

Proof: Let II and II' be two S-equivalent classes. Define II JJ II' if they both reduce to same
normal form modulo the equivalence S. To prove the theorem, we only have to show that II 4 II' iff
II 7111,i.e. the two equivalences coincide. Since the only if part follows from the soundness of the
rewrite rules, we are only left with the if part. To prove the if part, we show that if two proofs are
equivalent by virtue of equation (7) in section 2, then there is a sequence of reduction +> from one
to another. We thus rewrite the left-hand side of the equation (7) to a form which is S-equivalent
to the right-hand side of the equation.

II" IIlll

1T 111 A F C B F D
r t - A A t - B @R

@R
A , B l - C @ D @L

I ' , A l - A @ B A @ B I - C @ D
I ' , A t - C @ D

Cut

Normal Process Representatives 11

In other words, this rewrite rule will give a unique "normal" S [N] arrow for each 7 [N] equivalent
class of arrows of [5]. In the rewrite above, the left-hand side is always defined whenever the right-
hand side is defined but not vice-versa. In particular, subject reduction fails drastically, so the
rewrite system must maintain the types of the terms.

References

[I] A. Asperti, G. L. Ferrari, and R. Gorrieri. Implicative formulae in the "proofs as computations"
analogy. In P. Hudak, editor, Principles of Programming Languages, pages ??-??, ACM, 1990.

[2] H. Barendregt. The Lambda Calculus: Its syntax and Semantics. Volume 103 of Studies in
Logic and the Foundations of Mathematics, Elsevier, revised edition, 1984.

[3] E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory. Theoretical
Computer Science, 55(1):87-136, November 1987.

[4] C. Brown. Relating Petri nets to formulae of linear logic. Technical Report ECS-LFCS-89-87,
University of Edinburgh, 1989.

[5] P. Degano, J. Meseguer, and U. Montanari. Axiomatizing net computations and processes. In
R. Parikh, editor, Logic in Computer Science, pages 175-185, IEEE, IEEE Computer Society,
June 1989.

[6] U. Engberg and G. Winskel. On linear logic and Petri nets. Unpublished manuscript.

[7] J . Y. Girard. Linear logic. Theoretical Computer Science, 50:l-102, 1987.

[8] C. A. Gunter and V. Gehlot. Nets as tensor theories. (preliminary report). In G. De Michelis,
editor, Applications of Petri Nets, pages 174-191, 1989. Also University of Pennsylvania, Logic
and Computation Report Number 17.

[9] N. ~ a r t i - 0 l i e t and J. Meseguer. From Petri nets to linear logic. Research Report SRI-CSL-89-4,
SRI International, Menlo Park, March 1989.

[lo] J. Meseguer and U. Montanari. Petri Nets Are Monoids. Research Report SRI-CSL-88-3, SRI
International, Menlo Park, January 1988.

Reference Counting as a Computational
Interpretation of Linear Logic

(To appear in: Journal of Functional programming.)

Jawahar Chirimar Carl A. Gunter Jon G. Riecke
Department of CIS AT&T Bell Laboratories AT&T Bell Laboratories

University of Pennsylvania 600 Mountain Avenue 600 Mountain Avenue
Philadelphia, PA 19104 Murray Hill, NJ 07974 Murray Hill, NJ 07974

April 1995

Abst rac t

We develop formal methods for reasoning about memory usage at a level of abstraction
suitable for establishing or refuting claims about the potential applications of linear logic for
static analysis. In particular, we demonstrate a precise relationship between type correctness for
a language based on linear logic and the correctness of a reference-counting interpretation of the
primitives that the language draws from the rules for the 'of course' operation. Our semantics
is 'low-level' enough to express sharing and copying while still being 'high-level' enough to
abstract away from details of memory layout. This enables the formulation and proof of a result
describing the possible run-time reference counts of values of linear type.

Contents

1 Introduction

2 Operational Semantics with Memory

3 A Programming Language Based on Linear Logic

4 Semantics

5 Properties of the Semantics

6 Linear Logic and Memory

7 Discussion

A Proofs of the Main Theorems

Introduction

Table 1 : Translating to a Linear-Logic- Based Language.

l e t fun add x y =

l e t fun add x y =
i f x = O
then y
e l s e add (x-1) (y+l)

i n add 2 1
end

share w,z a s x i n
i f f e t c h w = 0
then dispose z, add before y
e l s e (f e t ch add)

(s t o r e ((f e t ch z) -1))
(y+l)

i n add (s t o r e 2) 1
end

to the variable z. These two variables share the value to which x is bound. The dispose primitive
indicates that one of these sharing variables, z , is not used in the first branch of the conditional. The
primitive s t o r e creates a sharable value and f e t c h obtains a shared value. In our interpretation,
the LL-specific operations share and dispose explicitly manage reference counts of the share'able
and dispose7able objects that are created and consulted by being s tore 'd and f etch'ed. For the
example in Table 1, the occurence of share indicates that two pointers are needed for the value
associated with x (so the reference count of the associated value is incremented), but in the then
branch of the conditional, one of the pointers is no longer needed (so the reference count of the
associated value is decremented).

Analogs to the s t o r e and f e t c h operations are the delay and force operations that appear in
many functional programming languages. In such languages, the delay primitive postpones the
evaluation of a term until it is supplied to the force primitive as an argument. When this happens,
the value of the delayed term is computed, returned, and memoized for any other applications of
force. Abramsky [Abr] has argued that this is a natural way to view the operational semantics of
the s t o r e and f e t c h operations of LL; we will follow this approach as well. The dispose primitive
has an analog (and namesake) in several programming languages. Typically, an object is disposed
by being deallocated; this operation is unsafe because it can lead to dangling pointers. In our LL
language the primitive dispose will only deallocate memory if this is safe since its semantics will be
to decrement a reference count; deallocation only happens when this count falls to zero. The share
command is unique to LL, and its name accurately reflects the way in which it will be interpreted.

One of our primary goals in this paper is to offer an approach for rigorously expressing and
proving optimizations obtained by analyzing an LL-based language. In particular, there is an
adage that 'linear values have only one pointer to them' or 'linear values can be updated in place7.
Wadler [Wad901 has informally observed that these claims must be stated with some care: a
reference count of one can be maintained by copying, but this would negate the advantage of in-
place updating. Our operational semantics allows us to check the claim rigorously: in particular,
we show that linear variables may fail to have a count of one in our reference-counting operational
semantics, which uses sharing heavily; when this is the case, a linear variable does not have a
unique pointer to it and cannot safely be updated in place. The problem arises when a Linear
variable falls within the scope of an abstraction over a non-linear variable. We express a theorem
asserting precisely when the value of a linear variable does indeed maintain a reference count of at

Operational Semantics with Memory

2 Operational Semantics with Memory

Here we give a preview of the operational semantics of the LL-based language by describing the
familiar operational semantics of a simple functional language with s tore (delay) and f e t ch (force)
operations. We base this preliminary discussion on a language with the grammar

M ::= x I (Ax. M) I (M M) 1
n I true I false ((succ M) I (pred M) I (zero? M) I
(if M then M else M) I (fix M) (
(store M) I (fetch M)

where x and n are from primitive syntax classes of variables and numerals respectively. This is a
variant of PCF [Sco, Plo77, BGSSO] augmented by primitive operations for forcing and delaying
evaluations. The expression (fix M) is used for recursive definitions.

The key to providing a semantics for this language is to represent the memoization used in
computing the f e t ch primitive so that certain recomputation is avioded. We aim to provide a
semantics a t a fairly high level of abstraction using what is sometimes known as a natural seman-
tics [Des86, Kah871. Such a semantics has been described in [PS91] using explicit substitution and
in [Lau93] through the use of an intermediate representation in which all function applications have
variables as arguments. Both of these approaches are appealingly simple but slightly more abstract
than we would like for our purposes in this paper. Our own approach, first described in [CGR92],
is based on a distinction between an environment which is an association of variables with loca-
tions and a store which is an association of values with locations. Sharing of computation results
is achieved through creating multiple references to a location that holds a delayed computation
called a thunk. When the value delayed in the thunk is needed, it is calculated and memoized for
future reference. To define this precisely we must begin with some notation and basic operations
for environments, stores, and memory allocation.

Fix an infinite set of locations Loc, with the letter I denoting elements of this set. Let us say
that a partial function is finite just in case its domain of definition is finite.

An envi ronment is a finite partial function from variables t o locations; p denotes an envi-
ronment, and Env denotes the set of all environments. The notation p(x) returns the location
associated with variable x in p, and to update an environment, we use the notation

1 i f x = y
il)(y) = p(y) otherwise.

The symbol 0 denotes the empty environment; we also use [x tt I] as shorthand for 0[x I+ I].

A value is a

- numeral k,

- boolean b,

- pointer susp(1) or rec(E, f) , or

- closure closure(Ax. M , p) or recclosure(Ax. M,p).

The letter V denotes a value, and Value denotes the set of values.

Operational Semantics with Memory

Figure I: Structure generated by (store $1)

meminterp((fetch M) , p , a) =
l e t (lo , U O) = meminterp(M, p , a)
i n case uo(lo) of susp(l1) =>

case ao(ll)
of thunk(N, p') =>

l e t (12, u l) = meminterp(N, p', ao)
i n (12, U I [~ C I ++ S U S P (~ Z) I)

I - => (1 1 , 6 0)

Note that there is no clause for the case when ao(lo) is not a suspension. In this case, we assume
that the behavior of the interpreter on (fetch M) is undefined. This assumption simplifies the rules,
and allows us to ignore what are, in effect, run-time type errors. Our other rules will also ignore
run- time type errors.

There is another approach we might have taken to modelling memoization. The interpretation
of (store M) allocates a location lo that holds a thunk, and returns a location l1 that holds a pointer
susp(lo) to this location. Could we instead have returned lo as the value? That is, the rule could
read

meminterpl((store M) , p, u) = new(thunk(M, p) , a)

The answer to this question is instructive, since it relates to the way in which we will represent the
distinction between copying and sharing in our model. If we choose to return the location holding
the thunk as the value of the store (as opposed to returning a location holding the pointer to this
thunk), then this would require a change in the fetch command. In particular, when the location
l z is obtained there, it would be essential to put the value 4 1 2) in the location where the value of
the thunk may be sought later:

meminterpl((fetch M) , p, a) =
l e t (l o , uo) = meminterpl(M, p l , a)
i n case ao(lo)

of thunk(N, p') =>
l e t (1 2 , a l) = meminterpl(N, p', go)

i n (1 0 , a1[10 ++a1(12)1)
I - => (l o , 6 0)

Note that in the second line from the bottom of the program, the values of lo and l2 in the store
are the same and we will say that the value of the thunk has been copied from location l2 to l o . In
the case that ul(lz) is a 'small' value, like an integer that occupies only a word of storage, there is

Operational Semantics with Memory

Figure 2: Structure generated by (fix A f. Ax. M)

which creates the circular structure in Figure 2. For this language we could create a single cell
holding the recclosure that looped back to itself; we use two cells, though, since the additional
cell holding rec will be used in the semantics of the LL-based language to facilitate connections
with the type system. We also need here to change the semantics of applications so that if the
operator evaluates to a rec, the pointer is traced to a recclosure; in turn, if the operator evaluates
to a recclosure, the operator is used in the same way as a closure.

In the implementation of actual functional programming languages, a single recursion such as
the one above would probably make its recursive c d s through a jump instruction. This would
be quite difficult to formalize with the source-code-based approach we are using to describe the
interpreter. The important thing, for our purposes, is that recursive calls to f do not allocate
further memory for the recursive closure. This means that, as far as memory is concerned, there
is little difference between implementing the recursion with the jump and implementing it with a
circular structure. The cycle created in this way introduces extra complexity into the structure of
memory, of course, but the cycles introduced in this way must have precisely the form pictured in
Figure 2.

It is easy to provide a clean type system for the language described above. One technical
convenience is t o tag certain bindings with types (such as the binding occurence in an abstraction
Ax : s. M) to ensure that a given program has a unique type derivation. When it is not important for
the discussion at hand, we will often drop the tags on bound variables t o reduce clutter. The types
for the language include ground types Nat and Bool for numbers and booleans respectively, higher
types (s -, t) for functions between s and t , and a unary operation !s for the delayed programs of
type s. The typing rules for store and fetch are introduction and elimination operations respectively:

M : s M : !s

(store M) : !s (fetch M) : s '

These operations will also be found in our LL-based language with essentially the same types.

A Programming Language Based on Linear Logic

Table 2: Natural deduction rules and term assignment for linear logic.

r t- M : ! S A t- ~ : t r t - M : ! S ~ , x : ! s , y : ! s t - ~ : t
I?, A t- (dispose M before N) : t I?, A t- (share x, y as M in N) : t

F M : s . . . I?, t- M, : !s, XI : !sl , . . . ,a, : !s, t- N : t
r l , . . . , rn t- (store N where x1 = M I , . . . , x, = M,) : !t

r t- (fetch M) : s

binds the variables x and y in N . The notation for store can be somewhat unwieldy when writing
programs, but most programs involving store bind the variables in the where clause to other vari-
ables. Thus, if the free variables of M are X I , . . . , x,, then (store M) is shorthand for the expression
(store M where XI = X I , . . . , x, = x,).

The typing rules for the language appear in Table 2, where the symbols I' and A denote type
assignments , which are lists of pairs $1 : s l , . . . , x, : s,, where each xi is a distinct variable and
each s; is a type. Each of the rules is built on the assumption that all left-hand sides of the I-
symbol are legal type assignments, e.g., in the rule for typing applications, the type assignments
I? and A, which appear concatenated together in the conclusion of the rule, must have disjoint
variables. Each type-checking rule corresponds to a proof rule in the ND presentation of linear
logic. For instance, the rules for share and dispose essentially correspond to the proof rules generally
called contraction and weakening respectively, while those for store and fetch correspond to the
LL rules called promotion and dereliction. Due to the presence of explicit rules for weakening and
contraction-the rules for type-checking dispose and share-one can easily see that the free variables
of a well-typed term are exactly those contained in the type assignment. A particular note should
be taken of the form of the rule for store; this operation puts the value of its body with bindings
for its free variables in a location that can be shared by different terms during reduction-the type
changes correspondingly from t to !t. The construct (fetch M) corresponds t o reading the stored
value-the type changes from !t to t.

There may be other ND presentations of LL on which one could base a type system. It is our
belief that results in this paper are robust with respect to the exact choice of term assignment and
type-checking rules. All of the results in this paper-including negative results that say that values
of linear type may have more than one pointer to them-hold in the system described in [CGR92],
and we expect that they are true for the languages described in [LM92] and [Macgl].

A Programming Language Based on Linear Logic 13

The typing rules for our language are given by combining Tables 2 and 3. Two of these rules
deserve special explanation. First, the rule for checking the expression if L then M else N checks
both branches in the same type assignment, i.e., the terms M and N must contain the same free
variables. This is the only type-checking rule that allows variables to appear multiple times; it does
not, however, violate the intuition that variables are used once, since only one branch will be taken
during the execution of the program. Second, the slightly mysterious form of the typing rule for
recursions is related to the idea that the formal parameter of a recursive definition must be share'd
and dispose7d if there is to be anything interesting about it. Consider, for example, the rendering
of the program of Table 1 into our language:

(fix (store A add : !(!Nat-oNat+Nat). Xx : !Nat. Xy : Nat.
share w, z as x in

if zero? (fetch w)
then dispose z before dispose add before y
else (fetch add) (store (pred (fetch z))) (succ y)))

(store 2) 1

(where some liberties have been taken in dropping a few of the parentheses to improve readability).
The recursive function add being defined gets used only in one of the branches; thus, the recursive
call must have a non-linear type.

The definition of the addition function is a prototypical example of how one programs recursive
functions in this language. In fact, both the high-level and low-level semantics will only interpret
recursions (fix M) where M has the form

(store (A f : !s + t. Ax : s. M) where X I = MI, . . . , x, = M,).

This restriction is closely connected to the restriction on interpreting recursion mentioned in the
previous section; the only difference here is the occurrence of the store. As before, this restric-
tion is not essential, but it does simplify the semantic clause for the recursion somewhat without
compromising the way programs are generally written.

Natural semantics.

Tables 4 and 5 give a high-level description of an interpreter for our language, written using natural
semantics. A natural semantics describes a partial function 4 via proof trees. The notation M 8 c,
read 'the term M halts a t the final result c7, is used when there is a proof from the rules with the
conclusion being M J j c. The terms at which the interpreter function halts are called canonical
forms; it is easy to see from the form of the rules that the canonical forms are n, true, false,
(Ax. M), and (store M).

The natural semantics in Tables 4 and 5 describes a call-by-value evaluation strategy. That is,
operands in applications are evaluated to canonical form before the substitution takes place. A
basic property of the semantics is that types are preserved under evaluation:

Theorem 2 Suppose t- M : s and M 4 c, then I- c : s.

The proof can be carried out by an easy induction on the height of the proof tree of M .l,l. c.

Sernan tics

4 Semantics

The high-level natural semantics is useful as a specification for an intepreter for our language,
and for proving facts like Theorem 2. One would not want to implement the semantics directly,
however: explicit substitution into terms can be expensive, and one would therefore use some
standard representation of terms like closures or graphs in order to perform substitution more
efficiently. But there is another problem with the high-level semantics: it does not go very far in
providing a computational intuition for the LL primitives in the language. For example, the dispose
operation is treated essentially as 'no-op'. As such, there is no apparent relationship between these
connectives and memory; indeed, the semantics entirely suppresses the concept of memory.

In order to understand what the constructs of linear logic have to do with memory, we construct
a semantics that relates the LL primitives to reference counting. In this semantics, the linear logic
primitives dispose and share maintain reference counts. The basic structure of the reference-counting
interpreter is the same as the one outlined in Section 3. Environments, values, and storable objects
have the same definition as before. Because we now want to maintain reference counts, however,
the definition of stores must change. A store is now a function

a : Loc -+ (N x Storable),

where the left part of the returned pair denotes a reference count. Abusing notation, we use a(1) to
denote the storable object associated with location I, and a[/ - S] to denote a new store which is
the same as a except at location I, which now holds the storable object S with the reference count
of 1 left unaffected. The reference count of a cell is denoted by refcount(1, a) . The domain of a
store a is the set

dom(a) = {I E Loc : refcount(1, a) > 1).
The change in the definition of 'store' forces an adjustment in the definition of 'allocation relation'.
A subset R of the product (Storable x Store) x (Loc x Store) is an allocation relation if, for any
store a and storable object S, there is an I' and a' where (S, a) R (l', a') and

a I' 6 dom(a) and dom(a1) = dom(a) U {I1);

a for all locations 1 E dom(a), a(1) = ~ ' (1) and refcount(1, a) = refcount(1, a'); and

a a'(If) = S and refcount(ll, a') = 1.

The basic structure underlying a store may be captured abstractly by a graph. Formally, a
graph is a tuple (V, E, s, t) where V and E are sets of vertices and edges respectively and s, t are
functions from E to V called the source and target functions respectively. (Note that there may
be more than one edge with the same source and target; such 'multiple edge' graphs are sometimes
called multigraphs.) Given v E V, the in-degree of v is the number of elements e E E such that
t(e) = v. A vertex v is reachable from a vertex v' if v = v' or there is a path between them, that
is, there is a list of edges e l , . . . , en such that v = s(el), v' = t(en) and t(ei) = ~ (e ; + ~) .

A memory graph G is a tuple (V, E, s , t , [pl,. . . , p,]) where (V, E, s , t) is a graph together
with a list of functions p; such that each p; is a function with a finite domain and with V as its
codomain. The functions pi are called the root set of the memory graph. Given v E V and p;,

Semantics 17

Definition 5 A state S = (i7p, a) is called regular, written %(S), provided the following condi-
tions hold:

X1 S is count-correct.

X2 dom(a) is finite.

8 3 For each 1 E dom(a), if a(1) = thunk(M,p), then refcount(1,a) = 1.

%4 A cycle in the memory graph induced by S arises only in the form of a rec and recclosure
as in Figure 2: that is, it has two nodes lo and ll such that a(ko) = rec(ll, f) and a(El) =
recclosure(Xx. M, p[f H l o]) for some f , x, M , and p.

%5 For each 1 E dom(a), if a(1) = thunk(M,p), then the domain of p is the set of free variables of
A!!, and &l is typeable. Similarly, if a(1) = closure(Ax. a!, p) or recclosure(Xx. M , p), then the
domain of p is the set of free variables of Ax. Dl, and Ax. M is typeable.

Here, a term M is said to be typeable if there is some type context r and type t such that
I ' l - M : t .

It is convenient to abuse notation slightly in denoting states by writing locations, environments,
and store without grouping them as in the official definition. For example, (Il, 12, p, a, 6 p) should
be read as (Il :: l2 :: i, p :: p, a) (where :: is the 'cons7 operation that puts a datum at the head of
a list). There is no chance of confusion so long as the lexical conventions distinguish the parts of
the tuple, and the locations and environments are properly ordered from left t o right. However,
the order of these lists is irrelevant for regularity: if %(i, p, a) and if, p' are permutations of i and p
respectively, then %(1', p', a) . We will use this fact without explicit mention.

Basic reference-counting operations.

Our interpreter will need four auxiliary functions t o manipulate reference counts. Two of these func-
tions, inc and dec, increment and decrement reference counts. More formally, inc(1, a) increments
the reference count of 1 and returns the resultant store, while dec(1,a) decrements the reference . .

count of 1 and returns the resultant store. The other two operations, inc-env(p, a) and dec-ptrs(1, a) ,
increment or decrement the reference counts of multiple cells. The formal definition of the first of
these is

a , where the domain of p is {xl,. . . , xn), and
01 = inc(p(x1), a)

inc-env(p, a) =

In words, inc-env(p, a) increments the reference counts of the locations in the range of p and returns
the resultant store. Note that a location's reference count may be incremented more than once by
this operation, since two variables xi, x j may map to the same location 1 according to p.

The operation dec-ptrs(1, a) , which also returns an updated store, first decrements the reference
count of location 1. If the reference count falls to zero, it then recursively decrements the reference
counts of all cells pointed to by I . The formal definition appears in Table 6; an example appears
in Figure 4 where the left side of Figure 4 (assumed to be part of the graph of the store a) is
transformed into the right side by calling dec-ptrs(1, a) . The operation dec-ptrs(1, a) is the single

Semantics 19

most complex operation used in the interpreter. Other operations are 'local' to parts of the memory
graph and do not require a recursive definition. A key characteristic of our semantics is the fact
that dec-ptrs(1, a) is only used in the rule for evaluating (dispose M before N).

The basic laws that capture the relationships maintained by the reference-counting, allocation,
and update operations on states are given in Table 7. Most of the laws are proven in the appendix,
but we give the proof for the Attenuation Law A1 here to show how the proofs go. Suppose
%(l, i, p, a) , refcount(1, a) = 1 and a(1) = closure(Ax. N,p) , recclosure(Ax. N , p), or thunk(N, P).
Note first that the state S' = (r, p, p, dec(1, a)) is count-correct: the environment p has been placed in
the root set, accounting for the edges coming out of the closure or thunk which has now disappeared
from the memory graph. Thus, property 81 holds of state Sf. Since dorn(a) > dorn(dec(1, a)) , each
of the properties R2-%5 follow directly from the hypothesis. Thus, R(S1). The property is called
an "attenuation law" because pointers previously held inside the store are drawn out to the root
set.

The next goal is to define an interpreter for the LL-based programming language. To understand
the interpreter it is essential t o appreciate how the invariants influence its design. We therefore
describe the theorem that the interpreter is expected to satisfy, and mingle the proof of the theorem
with the definition of the interpreter itself. The interpreter is a function i n t e r p which takes as its
arguments a term M , an environment p, and a store a. It is assumed that the domain of p is the
set of free variables in M and that the image of p is contained in the domain of a. The result of
i n t e rp (M, p, a) is a pair (It, a') where a' is a store and I' is a location in the domain of a' such
that a1(l') is a value, which can be viewed as the result of the computation. We use a binary infix
63 for appending two lists. The theorem is stated as follows:

Theorem 6 Let S = (p, a, f,p) be a state and suppose M is a typeable term. If 8 (S) and
in te rp(M, p, a) = (It, a'), then %(1', a', f,p).

Moreover, if p = pl@p2, I = il@f2 and 1 E dorn(a) is not reachable from p :: pl or fl in the
memory graph induced by S , then the contents and reference count of 1 remain unchanged and 1 is
not reachable from pl or 1' :: fl in the memory graph induced by (I t , a', r, p).

The first part of the theorem says that regularity is preserved under execution of typeable terms.
The second part of the theorem expresses what we will call the reachability property. The
special case of interest says that the evaluation of a program M in environment p and store a does
not affect locations in dom(a) that are not reachable from p. The extra complexity of the statement
is required to maintain a usable induction hypothesis in the proof of the property. A simplified
version of Theorem 6 can be expressed as follows:

Corollary 7 Suppose M is a closed, typeable term. If in te rp(M, 0,0) = (I t , a'), then %(l1, a').

The assumption that M is typeable is crucial in the proof of the theorem, because untypeable
terms may not maintain reference counts correctly. For instance, the term

(Ax. (dispose x before x)) (store 1)

would cause a run-time error in the maintenance of reference counts-after the dispose, we would try
to access a portion of memory with reference count zero and get a 'dangling pointer7 error. This
example shows that untypeable terms may cause premature deallocations. Another untypeable
term

(Ax. (share y, z as x in (dispose y before 2))) (store 1)

Semantics 2 1

causes a 'space leak', i.e., the reference count of the cell holding (store 1) is still greater than zero
even though it is garbage at the end of the execution.

Interpreting the linear core.

The proof of Theorem 6 is by induction on the number of calls to the interpreter. The proof
proceeds by considering each case for the program to be evaluated.

The interpretation of a variable is obtained by looking up the variable in the environment:

That the store (p(x), a', b, p) is regular is a consequence of the Environment Law E because of the
assumption that the domain of p is {x). The reachability condition is clearly satisfied, since the
output store is the same as the input store.

To evaluate an abstraction we create a new closure, place it in a new cell, and return the location
together with the updated store:

(2) in terp(Xx. P , p, a) = new(closure(Xx. PI p), a)

To prove that regularity of the state is preserved, suppose that (It, a') = new(closure(Xx. P, p), a) ,
then %(If, a', 7, p) by Allocation Law N2. The reachability condition is satisfied because the output
store differs from the input store only by extending it.

Given a term P and an environment p whose domain includes the free variables of P , let p (P
be the restriction of the environment p to the free variables of P. The evaluation of an application
is given as follows:

(3) i n t e r p ((P Q) , P , a) =
l e t (lo , aO) = i n t e r p (P , p 1 P, a)

(1 1 , 8 1) = i n t e r p (9 , P l Q , go)

i n case a l (l o) o f closure(Xx. N , p') o r recclosure(Xx. N , p') =>
if refcount(lo, o l) = 1
then i n t e r p (N , pt[x H I l l , dec(10, a l))

e l s e i n t e r p (N , p'[x H I l l , inc-env(pt, dec(l0, ~ 1)))

The reader may compare this rule to the rule for application given in Section 3. The key difference in
the semantic clauses is the manipulation of reference counts: in the rule here, a conditional breaks
the evaluation of the function body into two cases based on the reference count of the location
that holds the value of the operator, and each branch of the conditional performs some reference-
counting arithmetic. The resulting semantics clause looks similar to a denotational semantics such
as that given in [Hud87] where information about reference counts is included in the semantics
clauses. Note that the environment p has been split between the two subterms P and Q. The fact
that (P Q) is typeable implies that p = (p I P) U (p I Q). In various forms this sort of property will
be used repeatedly in the semantic clauses below.

To prove the preservation of regularity of the state for application, we start with the as-
sumption that R(p, a, ?, p). This is equivalent to %(p I P, p (Q, a, b, p). Now %(lo, p I Q, ao,b, p) and
% (E l , ko,al,i,p) both hold by induction hypothesis (let us abbreviate 'induction hypothesis' as
'IH'). Now, there are two possibilities for the reference count of lo in 01, either it is equal to
one or it is more than one. If refcount(lo,al) = 1, then the first Attenuation Law, Al , says that
%(El, pt , dec(lo, a l) , 1, p) . By the Environment Law, E, this implies that %(pl[x H E l] , dec(lo, a l) , i, p)

Semantics 23

By IH, we have %(lo,uo,i,p). Suppose ao(10) = susp(l1) and ao(ll) = thunk(RTpl). If
refcount(lo, go) = 1, then %(p', dec(ll, dec(Eo, go)), 7, p) by A1 and A2 so we are done by IH. Sup-
pose, on the other hand, that refcount(lo, 00) # 1. By U2, %(p', dec(l1, dec(lo, uo[lo H O])), 1, p) so
%(12, inc(12, ol[lo H susp(12)]), 1, p) by IH and U1; the reachability property is used to ensure the
applicability of U1. More specifically, in a,, the location lo is not reachable from p'; thus, it is not
reachable from l2 in 01 either, and so ul[lo H susp(12)] does not create an illegal loop in the memory
graph. The cases when ao(ll) is a value or uo(Eo) = rec(ll, f) are left to the reader.

The share command increments the reference count of a location:

(6) interp((share x, y as P in Q) , p , a) =
l e t (lo, ao) = interp(P, p 1 P, a)
i n interp(Q, (p l Q)[x , Y - l o] , inc(lo, (T O))

%(lo, p I Q, 00, 1, P) by IH, so %(lo, lo, p 1 Q, inc(lo, go), r, p) by 11. Thus it follows from the Environ-
ment Law E that %((p I Q)[x, y H lo], inc(10, (TO), 1, p), so the result follows from IH.

The dispose command decrements the reference count of a location. The requires calculating
the consequences of possibly removing a node from the memory graph if its reference count of the
disposed node falls to 0.

(7) interp((disp0s.e P before Q) , p, a) =
l e t (lo , go) = i n t erp(P, p 1 P, a)
i n interp(Q, p 1 Q , dec-ptrs(l0, ao))

Now, %(lo, p 1 Q, go, f7 p) by IH, so %(p I Q, dec-ptrs(lo, go), p) by D3. The result therefore follows
from IH.

Interpreting PCF extensions.

The interpreter evaluates a constant simply by creating a cell holding the value of the constant.

(8) i n t erp(n, P , a) = new(n, a)

That regularity is preserved for these cases follows immediately from N1.
The rules for the arithmetic and boolean operations of PCF mimic the rules of the high-level

operational semantics.

(11) interp((succ P) , p , a) =
l e t (lo, ao) = in terp(P, p, a)
i n new(ao(lo) + 1, dec(lo, go))

(12) interp((pred P) , p , a) =
l e t (lo , ao) = interp(P, p, a)

n = ao(l0)
i n i f n = 0

then new(0, dec(lo, ao))
e l se new(n - 1, dec(lo, no))

Properties of the Semantics

5 Properties of the Semantics

In order for the reference-counting interpreter to make sense, it must satisfy a number of invariants
and correctness criteria. In this section we describe these precisely.

No space leaks.

As a short example of the kind of property one expects the semantics to satisfy, let us consider
how the idea that 'there are no space leaks' can be expressed in our formalism. Given a state
S = (r, p, a) , we say that a location 1 is reachable from (1, p) if it is reachable in G(S) from some
I ; E or from some pj E p. The desired property can now be expressed as follows:

Theorem 8 Suppose (p, a,i ,p) is a regular state such that each 1 E dom(a) is reachable from
(p, i, p). If M is typeable and in te rp(M, p, a) = (l', a'), then every 1 E dorn(al) is reachable from

(lf, i, P).

The theorem is proved by induction on the number of calls to the interpreter.

Invariance under different allocation relations.

If the design of the interpreter is correct, the exact memory usage pattern should be unimportant
to the final answers returned by the interpreter. Since the allocation relation new completely
determines memory usage-i.e., which cell (with reference count 0) will be filled next-it should
not matter which allocation relation is used. We set this up formally as follows: if f is an allocation
relation, let in te rpf be the partial interpreter function defined by using f in the place of new. Recall
that the environment and store with empty domains are denoted by 0. Then we would like to prove
something like the following statement by induction on the number of calls to i n t erp f :

Suppose f and g are allocation relations. If in te rpf (M, 0,0) = (If, of) , then
interp,(M, 0,0) = (l,, ag). Moreover, if af (l f) = n, true, or false, then af (lf) = ag(Eg).

A naive induction runs afoul, though, since the interpreter can return intermediate results that
are neither numbers nor booleans. We therefore need to strengthen the induction hypothesis. If
in te rpf returns a closure or suspension, the result returned by interpg may not literally be the
same: for instance, in te rpf may return a location holding susp(lo) and interp, may return a
location holding susp(ll). Nevertheless, these values should be the same up to a renaming of the
locations in the domain of the returned store a;.

Formalizing the notion of when two stores are 'equivalent' up to renaming of their locations
can be done using the underlying graphs. Two stores are 'equivalent' if their underlying graph
representations are isomorphic via some function h, and the values held at the cells are 'equivalent'
under h. More formally,

Definition 9 Two states S = (i, p, a) and S' = (p, 2, a') are congruent if there is an isomorphism
h : G(u) + G(a') such that for any 2 E dom(a), refcount(1,a) = refcount(h(l),af) and for any
l E dom(a),

1. For all i, h(li) = l:;

2. For all i , dorn(p;) = dom(p:) and for all x E dorn(p;), h(p;(x)) = p:(x);

Properties of the Semantics

closure(Xh. Xy. (share hl, ha as h in hl(hz y)), 0)

closure(Af. ((9 f) 4, [s 4 7 2 1x1)

susp(lk)

thunk((f true), [f H El])

closure(Xx. x, 0)

Figure 5: Store for Example of the valofcell Operation.

key definition missing here is the definition of 'related values'. One might attempt to extend the
statement of the theorem directly-that is, for closed terms, M !$ c iff in te rp(M, 0,0) = (I1, a')
and valofcell(ll, a') = c. While this statement holds for basic values, it does not hold for values of
other types. The problem arises because the reference-counting interpreter memoizes the results of
evaluating under store's whereas the natural semantics does not. For instance, evaluating the term

(Ax. (share y, z as x in if (zero? (fetch y)) then z else z)) (store (succ 5))

in the natural semantics returns the value (store (succ 5)), whereas evaluating the expression in the
reference-counting semantics returns the value (after unwinding) (store 6). The proof thus requires
relating terms that are 'less evaluated' to terms that are 'more evaluated'.

Definition 12 M > N, read ' N requires less evaluation than M', iff M = CIM1], N = C[c], M'
is closed, and M1 !$ c.

where C[] denotes a term with a missing subterm and C[M1] the term resulting from using M' for
that subterm. Let >* be the reflexive, transitive closure of >. This relation is necessary in order
to express the desired property:

Theorem 13 Suppose M is typeable, dom(p) = FV(M), M' is closed, and M' L* valof(M,p,a).
Suppose also that R(1', p, p', a) .

1. If M1 JJ c, then in te rp(M, p , a) = (l' , a') and c >* valofcell(l', crl).

2. If in t e rp (M, p, a) = (I1, a'), then M' IJ c >* valofcell(ll, a').

The extra assumptions about the state (I ' , p, p', a)-namely that it satisfies the invariants above-
are used in constructing an execution in the reference-counting interpreter. The proof is deferred
to the appendix.

Linear Logic and Memory 29

There is some help on this point to be found in the proof theory of linear logic. Note, that the
problem with term M in (I) relies on having a term N of type Nat-o!Nat. From the stand-point
of linear logic and its translation under the Curry-Howard correspondence, this is a suspicious
assumption, however. The proposition A+!A is not provable in LL, and the situation illustrated
by M runs contrary to proof-theoretic facts about what propositions are moved through 'boxes'
in a proof net during cut elimination [Gir87]. This does not directly prove that a static property
exists for the LL-based programming language, but it does suggest that there is hope.

To assert the desired property precisely, we will need some more terminology. Let us say that
a storable object is l inear if it is a numeral, boolean, closure, or recclosure and say that it is non-
l inear if it has the form susp(l), rec(1, f) , or thunk(M,p). We say that a location 1 is non-linear
i n s t o r e a if a(1) is a non-linear object; similarly, a location 1 is l inear in s to re a if a (l) is a
linear object. The key property concerns the nature of the path in the memory graph between a
location and the root set.

Definition 14 Suppose S = (I, a, f , ~) is a regular state and i E dorn(a). The location i is said to
be linear f rom l i n S if there is a path p from l to i in G(S) such that each 1' on p satisfies the
following two properties:

1. a(ll) is linear and

Note that the two conditions satisfied by the path p could only be satisfied by a unique path from 1
to i; if there were more than one such path, condition (2) could not be satisfied. It will be convenient
to say that a path satisfying these conditions is linear. Given a regular state S = (p, a,i ,p), we
also say that i is linear from p in S if there is an x in the domain of p such that there is a (unique)
linear path from p(z) to i.

To prove the desired property we will need to know some basic facts about types and evaluation.
For the high-level semantics we already expressed the Subject Reduction Theorem 2 for the LL-
based programming language. In conjuction with the Correctness Theorem 13 we have a version
of the result for the low-level semantics as well:

L e m m a 15 Suppose S = (I , a, 1, p) is a regular state, dorn(~) = F V (M) , I- v a l o f (~ , P, a) : t , and
in te rp(M, p , a) = (l ' , a'). Then I- valofcell(lf, a') : t.

The theorem we wish to express says that if a program is evaluated in an environment from
which a location i is linear, then the value at the location is either used and deallocated or not used
and linear from the location returned as the result of the evaluation. This statement is intended
to formally capture the idea that a location that is linear from an environment is used once or left
untouched with a reference count of one. Unfortunately, the assertion contains the term 'deallocate',
which needs to be made precise. If we assert instead that the reference count of the location is 0
or linear from the result at the end of the computation, then there is a problem in the case where
reference count falls to 0 because the allocation relation might reallocate the location i to hold a
value that is unrelated to the one placed there originally. This would make it impossible to assert
anything interesting about the outcome of the computation. To resolve this worry, we can make a
restriction on the allocation relation insisting that i is not in its range. This assumption is harmless
in a sense made precise by Theorem 10. The result of interest can now be asserted precisely as
follows:

Linear Logic and Memory 31

i. refcount(i, ol) = 0. By assumption [is never reallocated by new, so refcount(i, a t) = o
as needed.

ii. refcount(i,ol) = 1, In this case, the IH implies that there is a linear path from
l1 to i. There are now two subcases to consider: either refcount(lo,ao) = 1 or
refcount(lo, go) > 1. We consider only the second and leave the iirst to the reader.
By laws D2,12, and E, we know that the state

is regular and it is hot hard to check that i is linear from pf[x H Ill in Sf. Since we
must have

in te rp(N, pl[x H Ill, inc-env(pf, dec(l0, 01))) = (El, a')

we are done by IH.

2. M = (store N where x1 = MI,. . . ,xn = M,). In this case, 1 is reachable from exactly one of
the environments p 1 Mi. In the evaluation of M , we have

By IH, there are two possibilities for the regular state

arising after the evaluation of Mi. Either the reference count of i is zero in a; or it is one
and there is a linear path from I ; to i. If the first case holds, then we are done, since i is not
reallocated in the remainder of the computation, and therefore the conclusion of the theorem
is satisfied. On the other hand, the second case is impossible: by Lemma 15, valofcell(l;, ai)
has type !t and aa(l;) is a value, so it has the form susp(lff) or rec(lff, f). This contradicts the
assumption that i is linear from 1;. Therefore reference count of i must be 0 in a; and hence
we are done, since new never reallocates i.

3. M = (share x,y as P in Q). In the evaluation of M we compute

Now i is reachable for exactly one of the environments p 1 P or p I Q. We consider the two
cases separately.

(a) i is reachable from p I P. For the same reasons discussed in the case for store above, IH
implies that refcount(i, ao) = 0, and thus we are done since new never reallocates i.

(b) i is reachable from p I Q. Then there is a linear path from p) Q to i which, by Theorem 6,
is unaffected by the evaluation of P. In particular, i is not reachable from lo, so it is
linear from p I Q in the regular state ((p I Q)[x, y H lo], inc(lo, ao), 7, p) so we are done by
IH .

Discussion

7 Discussion

For this paper we have chosen a particular natural deduction presentation of linear logic. Oth-
ers have proposed different formulations of linear logic, and it would be interesting to carry out
similar investigations for those formulations. For instance, Abramsky [Abr] has used the sequent
formulation of linear logic. His system satisfies substitutivity because this is essentially a rule of
the sequent presentation (the cut rule to be precise), but there is no clear means of doing type
inference for his language. Others [Macgl, LM921 have attempted to reconcile the problems of type
inference and substitutivity by proposing restricted forms of these properties. Another approach
has been to modify linear logic by adding new assumptions. For instance, [WadSla] and [07H91]
propose taking !!A to be isomorphic to !A; from the perspective of this paper, such an identification
would collapse two levels of indirection and suspension into one and hence fundamentally change
the character of the language. Other approaches to the presentation of LL seem to have compatible
explanations within our framework, but might yield slightly different results. For example, there
is a way to present LL using judgements of the form I?; A t. s where I' is a set of 'intuitionistic
assumptions7 (types of non-linear variables) and A is a multi-set of 'linear assumptions7 (types of
linear variables). This approach might suit the results of Section 6 better than the presentation we
used in this paper because it singles out the linear variables more clearly and provides what might
be a simpler term language. On the other hand, the connection with reference counts is less clear
for that formulation.

It is also possible to fold reference-counting operations into the interpretation of a garden variety
functional programming language (that is, one based on intuitionistic logic). The ways in which the
result differs from the semantics we have given for an LL-based language are illuminating. First of
all, there are several choices about how to do this. One approach is to maintain the invariant that
interp is evaluated on triples (M,p, a) where the domain of p is exactly the set of free variables
of M . When evaluating an application M - (P Q), for example, it is essential to account for the
possibility that some of the free variables of M are shared between P and Q. This means that
when P is interpreted, the reference counts of variables they have in common must be incremented
(otherwise they may be deallocated before the evaluation of Q begins):

i n t e r p ((P Q) , P, a) =
l e t (lo , ao) = in terp(P, p 1 PI inc-env(p 1 P fl p 1 Q , a))

(1 1 , p i) = in terp(Q, P l Q , no)
in case a l (l o) o f closure(Xx. N , pl) or recclosure(Xz. N , p') =>

i f refcount(lo, a l) = 1
t h e n i n t e r p (N , p/[x H 1 1] , dec(lo, u l))
e l s e i n t e r p (N , pl[x tt 11] , inc-env(pl, dec(lo, u l)))

The deallocation of variables is driven by the requirement that only the free variables of M can lie
in the domain of p; this arises particularly in the semantics for the conditional:

in terp(i f N then P else Q , p, a) =
l e t (lo, ao) = i n t e r p (N , p 1 N , inc-env(p1N fl (p (P U plQ), u))
i n i f ao(lo) = true

t h e n in t e rp (P , p l P, dec(10, dec-ptrs-env((p1P) - (plQ), a o)))
e l s e i n t e rp (Q , P l Q , dec(lo, dec-ptrs-env((plQ) - (PIP), g o)))

An alternative approach to providing a reference-counting semantics for an intuitionistic language
would be to delay the deallocation of variables until 'the last minute7 and permit the application

Discussion 3 5

suite in [Gab85]. This problem is addressed by the technique of strictness analysis [AH87]: with
strictness analysis the translation can be made more efficient or the translated program can be
optimized. There are several techniques known for translating intuitionistic logic into linear logic.
To illustrate, consider the combinator S (here written in ML syntax):

When we apply Girard's translation, the result (using a syntax similar to the one in Table 1) is the
following program:

f n x => f n y => f n z =>
share z1,z2 as z i n

((fe tch x) (s to re (fetch zl)))
(s to re ((fe tch y) (s tore (fetch 22))))

However, another program having S as its 'erasure' is

f n x => f n y => f n z =>
share z1,22 as z i n (x zl)(y 22)

which is evidently a much simpler and more efficient program. An analog of strictness analysis that
applies t o the LL translation is clearly needed if an LL intermediate language is to be of practical
significance in analyzing 'intuitionistic' programs.

Our reference-counting interpreter and the associated invariance properties can easily be ex-
tended to the linear connectives &, @, and $ (although it is unclear how to handle the 'classical'
connectives). Extending the results to dynamic allocation of references and arrays is not difficult
if such structures do not create cycles. For instance, it can be assumed that only integers and
booleans are assignable to mutable reference cells. To see this in a little more detail, if we assume
that o is Nat or Bool, then typing rules can be given as follows:

To create a reference cell initialized with the value of a term M , the term M is evaluated and its
value is copied into a new cell:

(1 6) i n t e rp (re f (M) , p , a) =
l e t (l o , go) = i n t e r p (M , p 1 M I a)
i n new(ao(lo), dec(lo , go))

The location lo holds the immutable value of M ; a new mutable cell must be created with the value
of M as its initial value. Assignment mutates the value associated with such a cell:

(17) i n t e r p (M := N , p, a) =
l e t (lo, ao) = i n t e r p (M , p j M , a)

(1 1 , a l) = i n t e r p (N , P l N , a l)
i n (l o , dec(l1, al[lo H ~ l (l 1) l))

To obtain the value held in a mutable cell denoted by M , the contents of the cell must be copied
to a new immutable cell:

Proofs of the Main Theorems

A Proofs of the Main Theorems

Verification of the Basic Laws in Table 7

Proposition 17 Each of the laws A l , A2, Dl, 0 2 given in Section 4 hold.

Proof: The proof of A1 may be found in Section 4, and the proof of A2 is similar. We thus need
only to verify D l and D2.

D l Suppose S = (1, f, p, a) , X(S) holds, a(1) is a numeral or boolean, and S' = (i, p, dec(1, a)) .
Note that there are no outgoing edges from 1 in the memory graph induced by S ; thus, even
if 1 9 dom(dec(1, a)) , the state S1 is count-correct. Since dom(a) 2 dom(dec(1, a)) , each of the
properties 92-85 follow directly from the hypothesis. Thus, 9(SJ).

D2 Suppose 9 (l , f,p, a) and refcount(1, a) # 1, and let S' = (I , p , p, dec(1, a)). By hypothesis, it
follows that refcount(1, a) > 1 since 1 is in the root set. Thus, refcount(1, dec(1, a)) 2 1 and
hence S' is count-correct, satisfying 81. Since dom(a) = dom(dec(1, a)) , each of the properties
92-85 follow directly from the hypothesis. Thus, 8(S1).

This completes the verification of each part. .
Proposition 18 Law 03 holds; more generally,

1. If %(I, f, p, a) , then 8(i , p, dec-ptrs(1, a)) .

2. If 8 (i , p, p, a) , then 8(f , p, dec-ptrs-env(p, a)) .

Proof: By induction on the total number of calls to dec-ptrs and dec-ptrs-env. In the basis, suppose
the number of calls is one; there are two cases:

1. dec-ptrs is called. Then there are three subcases:

(a) a(1) = n, true, or false. Then dec-ptrs(1, a) = dec(1, a) . By D l , %(i, p, dec-ptrs(1, a)) .

(b) a(1) = susp(ll), thunk(M,p), or closure(Xx. M , p) , and refcount(1,a) > 1. Then
dec-ptrs(1, a) = dec(1, a) , and hence by D2, 8(i , p , dec-ptrs(1, a)).

(c) a(1) = rec(ll, f) or recclosure(Xx. N, p), and refcount(1, a) > 2. Then dec-ptrs(1, a) =
dec(1, a) , and hence by D2, 8(i , p, dec-ptrs(1, a)).

2. dec-ptrs-env is called. Then since dec-ptrs is not called, dorn(p) must be the empty set. Thus,
dec-ptrs-env(p, a) = a and hence %(i, p, dec-ptrs-env(p, a)) .

For the induction hypothesis, suppose the total number of calls to dec-ptrs and dec-ptrs-env is
greater than one. There are again two main cases:

1. dec-ptrs is called. There are five subcases depending on the reference count and the value
stored at I.

(a) a(1) = susp(ll) and refcount(1, a) = 1. Then dec-ptrs(1, a) = dec-ptrs(kl, dec(1, a)) .
By A2, 9(11, i7 p, dec(1, a)) and so by induction, 8(1, p, de~-~t rs (l ' , dec(1, a))). Thus,
%(I, p, dec-ptrs(1, a)) .

Proofs of the Main Theorems 39

N2 Suppose 8(f , p, p, a) , (I1, a') = new(closure(N, p), a) or new(thunk(N, p), a) , F V (N) = d o m (~) ,
and N is typeable, and let St = (l', i, p, a'). Since new is an allocation relation, refcount([', a) =
0, refcount(l1, a') = 1, and for any location 1 # It, a(1) = ~ (1 ') and refcount(1, a) =
refcount(1, a'). To see that property 81-namely count-correctness-holds of St, note that all
of the pointers from p are accounted for in the closure or thunk stored in l', and that I' only
has reference count 1. To see 82 , dorn(d) = dorn(a) U (1') is finite because dom(a) is. If I'
is a thunk, then refcount(l1, a') = 1, which together with the hypothesis guarantees property
83 . No cycles are created in the induced memory graph by new, so 8 4 holds. Finally, 8 5
holds by hypothesis. Thus, %(Sf).

N3 Suppose 8 (l , f7 p, a) and (I1, a') = new(susp(l), a) or new(rec(1, f) , a) . Then 8(11, 7, p, a') fol-
lows in a manner similar to the previous case.

U1 Suppose S = (i, p , a) and 3(S) , a(1) is a constant. We prove the first statement of U1 only;
the first follows similarly. So suppose 1' E dom(a), and 1 is not reachable from I' in the
memory graph induced by S , and let S' = (r,p, inc(lr, a[l - susp(ll)])). In S' the in-degree of
I' is now one greater than in S ; the in-degree of all other nodes remains the same. Thus, St
satisfies property 81 . Since dorn(a) = dorn(at), the domain of a' is finite, satisfying property
32. No new thunks are created, so property 8 3 holds of Sf. Since 1 is not reachable from I'
in S, there is no cycle through 1 in Sf . Thus, S' satisfies property 84 . Finally, property 8 5
holds since no thunks or closures are added to a. Thus, %(St).

U2 Suppose S = (l,f,pla) and P(S) , refcount(l,o) # 1, o(1) = susp(i'), and o(1') = thunk(N,p),
and let S' = (p, 1, p, dec(ll, dec(1, a[l I+ c]))). To verify property 31, note first that
refcount(lt, a) = 1 by hypothesis. Thus, since the pointers from all are mentioned in the
root set of Sf , it follows that S' is count-correct. It is also clear that each of the properties
82-85 hold of St. Thus, %(St).

This completes the verification of each part. H

Proof of Lemma 10

Lemma 10 Suppose (f', , 3, a j) and (l?', $', a,) are congruent. If i n t erpj(M, pi, ~ f) =
(I;, a;), then interp,(M, p,, a,) = (l ; , a:) and the resultant states (I ; , i', 3, a;) and (I ; , I", p", a;)
are congruent.

Proof: By induction on the number of calls to in te rp . We cover the four cases in the core language
and leave the other cases t o the reader. To make the cases easier to read, let h be the isomorphism
from G(af) t o G(ag) that makes the above states congruent.

1. M = x. Then in t e rp f (M, pf , a j) = (pf(x), of). Then also interp,(M, p,, a,) = (pg(x), a,),
and the resultant states (pj(x), I', $,a;) and (pg(x), p',?, a;) are congruent via h.

2. M = (Ax. P). Then in t e rp f (M, pj , o f) = new(closure(Ax. P, p f) , a j) = (l;, a;). Since f is
an allocation relation,

a 1; $ dom(af) and dorn(a;) = dom(af) U (1;);

a for all locations 1 E dom(af), af (1) = a;(E) and refcount(1, o f) = refcount(l1, a;); and

Proofs o f the Main Theorems 41

4. M = (fetch P) . Then interpL(P, pf , o f) = (If,o, af,o). By induction, interpg(P, p,, a,) =

(lgjO, and the states (I f , ~ , l', p', af,o) and (lg,o, P, 3, ag,o) are congruent. Now there are
two main cases: either a f , ~ (l f , ~) = susp(lftl) or af,o(lf,o) = rec(lf,l, x). We leave the second
case to the reader since it is relatively straightforward and consider only the first case.

Suppose af,o(lf,o) = susp(lftl). By the definition of congruence, a,,~(l,,o) = ~usp(l , ,~) . Now
there are two subcases depending on the object held at Iftl :

(a) = thunk(R,p;). Then by congruence, o,,o(l,,l) = thunk(R,p;). There are two
subcases depending on the reference count of IfTo:

i. refcount(1 ,o, of = 1. Since the above tuples are congruent, refco~nt(l,,~, = 1.
Note that the states

(a, p;, 3, dec(lf,l, dec(lf,oaf,o, 1))
(P I , p;, p", dec(lg,l, dec(l,,o~,,o7 1))

are congruent since p; and p; must have the same domain and must match
via the multigraph isomorphism h on their domains. Thus, by induction,
i n t erpg(R, pb, dec(lgTl, d e ~ (l , , ~ a ~ , ~ ~))) = (I;, a;) and the states (I;, T', 2 , g;) and
(I;, p7 p", a;) are congruent. Putting all the steps together, we also see that
interpg(M, P,, 0,) = (I ; , 0;)

ii. r e f c ~ u n t (l ~ , ~ , u ~ , ~) # 0. Similar to the previous case.

(b) af,o(kf,l) # thunk(R,p;). Then again there are two cases depending on the reference
count of lfVo:

i. r e f c o ~ n t (l ~ , ~ , afYo) = 1; then refc~unt(l,,~, a , , ~) = 1. Thus,

and the states (Ef,l, p , 2, dec(lf,o, uf,o)) and (l,,~, p', p", dec(lg,o, u, ,~)) are congruent.
ii. r e f c o ~ n t (l ~ , ~ , # 1. Similar to the previous case.

This completes the induction and hence the proof.

Proof of Theorem 13

Recall from Section 5 that, in order to prove a correctness theorem, we needed a definition of how
to unwind a term from a store. The definition of two mutually-recursive functions for performing
this task, valof and valofcell, appears in Table 8. It is obvious from the definitions that only the
reachable cells affect the value returned by valof and valofcell. For instance, if I' is not reachable
from I in store a and a' = dec(ll,a), then valofcell(l,a) = valofcell(1,a'). We will use this fact
throughout the arguments that follow.

Also essential to the proof of Theorem 13 is a notion of when one term is 'more evaluated7 than
another. Section 5 defines a relation >* between terms which expresses this relationship. We can
prove three lemmas about the relationship of > and canonical forms.

Lemma 20 If c > P and c is a canonical form, then P is a canonical form. Moreover, c and P
have the same shape, i .e. , if c is a numeral or boolean, then c = P; if c = Ax. Q, then P = Ax. Q';
and if c = (store Q), then P = (store Q').

Proofs of the Main Theorems 43

Proof: There are two cases to consider: either c .V P, or c = C[M], P = C[N], C[.] is nontrivial,
and M JJ N. In the first case, since c is canonical, c = P , and hence P is canonical. In the second
case, for c to be canonical it must be the case that C[-] = n, true, false, Ax. D[.], or (store C[.]).
Thus, P must be canonical as well, and must have the same shape as c. I

Lemma 21 If c is a canonical form and M > c, then M J. d 2 c.

Proof: By the definition of M 2 c, we know that M = C[Mt], c = C[d], and M' 4). d. In order for
c to be canonical, it must be the case that either C[-] = [-I, n, true, false, Ax. D[.], or (store D[.]).
In the first case, M' = M and d = c, so M 4 c > c. For the other cases, M JJ. M 2 c. .
Lemma 22 If c is a canonical form and M L* c, then M JJ. d 2' c.

Proof: An easy induction on the length of M = MI > . . . 2 Mk > c using Lemma 20. .
We need a similar definition of one state in the reference-counting interpreter being 'more

evaluated' than another. Basically, one state is more evaluated than another if, tracing from the
root set, the storable objects held at nodes are identical or thunks have been replaced by more
evaluated forms. Formally,

Definition 23 We say (i, p, a) 2' (i, p, a') if for all 1 reachable from the root set, 1 E dorn(a) n
dom(at) and

1. a(1) = n, true, false, closure(Ax. N,p) , or recclosure()tx. N,p), and a(E) = a'(1) and (p , a) 2'
(P, a');

2. ~ (b) = susp(lo) or rec(l0, f) , a(10) is not a thunk, a'(l) = susp(lo) and (lo, 0) >* (lo, a'); or

3. a(1) = susp(lo), a(lo) = thunk(R,p) and either

(a) ~ ' (1) = susp(lo), a'(l0) = thunk(R,p), and (p, a) 2" (p,at); or

(b) a'(1) = susp(l'), a'(1') is not a thunk, interp(R, p, a) = (I f , a"), and (It, a") >' (El , a')

where (p, a) L* (p, a') if for every x E dom(p), (p(x), a) >* (p(x), a').

It is not difficult to prove that >* is reflexive and transitive on states. It is also not difficult to
prove the following two lemmas:

Lemma 24 Suppose %(i, p, p, a) and interp(M, p, a) = (Z', a'). Then (f, p, a) >* (I, p, a').

Lemma 25 If Q' L* valof(Q, p, a) and (t', p, p', a) 2* (I ' , p, p', a'), then Q' 2' valof(Q, p, a').

The proof of the first is an easy induction on the number of calls to i n t e rp ; the proof of the second
is an easy induction on the definition of valof.

We now have enough machinery to prove the main correctness theorem.

Theorem 13 Suppose M is typeable, dorn(p) = FV(M), M' is closed, and M' >* valof(M, p, a) .
Suppose also that ~ (l / , p, p', a) .

1. If M' IJ c, then in te rp(M, p, a) = (If, a') and c L* valofcell(l', a').

Proofs of the Main Theorems 45

2. M' = (store N' where x1 = Mi, . . . ,xn = MA), c = (store N1[xl,. . .,x, := dl,. . .,d,]), and
M,! .l,l d;. We only need to consider the case when M = (store N where x1 = MI, . . ., xn =
M,), where N' L* valof(N, 0, a) and M;' >* valof(M,, p I Mi, a) . Since M is typeable, the free
variables of each M; are disjoint. Since Mi >* valof(M1, p 1 MI, a) , by induction

where dl >* valofcell(ll, al). By Lemma 24,

and by Theorem 6, R(I~,E',~~M~,...,~~M~,U~). Since M i >* valof(M2,pJMz,a), by
Lemma 25, &I; >* valof(M2, p 1 M2, 01). Using similar repeated applications of the induc-
tion hypothesis,

i n t erp(M;, pi, a;-1) = (E;, a;)

where d; >* valofcell(l;, a;), and by Lemma 24,

Finally, let

Then using Lemma 25, we find that (store N1[xl, . . . , x, := dl, . . . , d,]) >* valofcell(l', a') as
desired.

3. M' = (fetch N'), where N' J,L (store Q') and Q' J,L c. Then the only case to consider is
M = (fetch N) where N' >* valof(N, p, a) . By induction,

where (store Q') >* valofcell(lo,ao). By Theorem 6, R(lo,l',?, ao). Since (store Q') 2*
valofcell(Zo, ao) and ao(lo) must be a value, it follows from Lemma 20 that ao(lo) = susp(ll)
or rec(ll, f) and Q' L* valofcell(ll, 00). We consider only the case when ao(10) is susp(ll) and
leave the other case to the reader. There are two subcases:

(a) ao(El) = thunk(R,p1). There are two subcases:

i. refcount(Eo, ao) = 1. First, note that neither lo nor ll is reachable from pl--if either
were, the state S = (lo, i l , p ' , ao) would have a cycle that was not composed solely
of a rec and a recclosure-and this contradicts the regularity of the state S. Thus,

By laws A1 and A2, %(F, p', p', dec(Zl, dec(lo, 00))). Thus, it follows by induction
that interp(R, p', dec(ll , dec(lo, go))) = (El, a') and c L* valofcell(l', a') as desired.

Proofs of the Main Theorems

3. M = (P Q). Since in te rp(M, p, a) = (l', a'), it follows that

in te rp(P , p 1 P, 0) = (lo, 00)
interp(Q, P l Q, 00) = (11,ai)
al (lo) = closure(Ax . N, p') or recclosure(Xx. N , p')

Since M' >* valof(M, p, a) , it must be that M' = (PI 4') for some closed P' and Q', where
P' >* valof(P, p, a) and Q' >* valof(Q, p, a). By induction,

By Lemmas 24 and 25, d' >* valofcell(lo, 01). Since al(lo) is a closure, valofcell(lo, a l) must
be a A-abstraction, and so by Lemma 20 it follows that d' = (Ax. N') for some N'. If
refcount(lo, a l) = 1, then N'[x := d] >* valof(N',p1[x H 111, dec(lo, 01)). If, on the other
hand, refcount(lo, a l) > 1, then N'[z := d] >* valof(Nf, pf[x H 111, inc-env(pr, dec(lo, 01))). In
either case, it follows by the induction hypothesis that

N'[x := d] l). c >* valofcell(b', a').

Thus, we conclude M' 4 c L* valofcell(l', a').

4. M = (store N where xl = MI,. . ., x, = M,). Since M evaluates,

Since M' 2* valof(M, p, a) , it follows that M' = (store Nf where x l = M i , . . . , x, = MA) and
N' >* valof(N, 0, a) and M;/ L* valof(M;, p I Mi, a). By induction, MI JJ cl 2* valofcell(ll, al).
To evaluate the next term in the sequence, note that

so by induction M; l). c2 >* valofcell(12, a2). Extending the induction hypothesis further yields
that Mi l). ci >* valofcell(l;,a;). Note also that by Lemmas 24 and 25, N' >* valof(N,O,an);
it follows that

(store Nt[zl , . . . , x, := cl, . . . , c,]) = c >* v a l ~ f (N , ~ ' , a,) = valofcell(l', a').

Thus Mi .(l c; and so M' 4 c 2* valofcell(l', a') as desired.

5. M = (fetch P) . Since M evaluates, interp(P,p, a) = (lo, ao) and by Theorem 6,
%(lo, if, p', go). Since M' >* valof(Mlp, a) , it follows that M' = (fetch PI) for some P'
and P' >* valof(P, p, a). By induction,

References 49

References

[Abrl Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science. To appear.

[AH871 S. Abramsky and C. Hankin, editors. Abstract Interpretation of Declarative Languages.
Ellis Horwood, 1987.

[App92] A. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[Bak88] H. G. Baker. List processing in real time on a serial computer. Communications of the
ACM, 21(7):11-20, 1988.

[BBdH92] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Term assignment for intuitionistic
linear logic. Announced on the Types electronic mailing list, 1992.

[BGSSO] V. Breazu-Tannen, C. Gunter, and A. Scedrov. Computing with coercions. In M. Wand,
editor, Lisp and Functional Programming, pages 44-60. ACM, 1990.

[BHY88] A. Bloss, P. Hudak, and J. Young. An optimizing compiler for a modern functional
programming language. Computer Journal, 31(6), 1988.

[CGR92] Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Proving memory manage-
ment invariants for a language based on linear logic. In Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, pages 139-150. ACM, 1992.

[Co160] G. E. Collins. A method for overlapping and erasure of lists. Communications of the
ACM, 3(12):655-657,1960.

[DB76] L. P. Deutsch and D. G. Bobrow. An efficient, incremental, automatic garbage collector.
Communications of the ACM, 19(9):522-526, 1976.

[Des86] Joelle Despeyroux. Proof of translation in natural semantics. In Proceedings, Sympo-
sium on Logic in Computer Science. IEEE, 1986.

[Fe191] A. Felty. A logic program for transforming sequent proofs t o natural deduction proofs.
In P. Schroeder-Heister, editor, Extensions of Logic Programming, Lecture Notes in
Artificial Intelligence, pages 157-178, Berlin, 1991. Springer-Verlag.

[Gab851 R. P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press, 1985.

[GG92] B. Goldberg and M. Gloger. Polymorphic type reconstruction for garbage collection
without tags. In W. Clinger, editor, Lisp and Functional Programming, pages 53-65.
ACM, 1992.

[GH90] Juan C. Guzmiin and Paul Hudak. Single-threaded polymorphic lambda calculus.
In Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, pages
333-343,1990.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Sci., 50:l-102, 1987.

References 5 1

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Com-
puter Sci., 1:125-159, 1975.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer
Sci., 5:223-257, 1977.

[Pot771 Garrel Pottinger. Normalization as a homomorphic image of cut-elimination. Annals
of hfathematical Logic, 12(3):223-357, 1977.

[PS91] S. Purushothaman and J. Seaman. An adequate operational semantics of sharing in
lazy evaluation. Technical Report PSU-CS-91-18, Pennsylvania State University, 1991.

[Sco] D. S. Scott. A type theoretical alternative to CUCH, ISWIM, OWHY. Unpublished
manuscript, 1969.

[Wadgo] P. Wadler. Linear types can change the world! In M. Broy and C. B. Jones, editors,
Programming Concepts and Methods. North Holland, 1990.

[Wadgla] P. Wadler. There is no substitute for linear logic. Manuscript, 1991.

[Wadglb] Philip Wadler. Is there a use for linear logic? In Proceedings of the Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, pages 255-273. ACM,
1991.

[WHH092] D. S. Wise, C. Hess, W. Hunt, and E. Ost. Uniprocessor performance of reference-
counting hardware heap. Unpublished manuscript, 1992.

[Win931 G. Winskel. The Formal Semantics of Programming Languages. Foundations of Com-
puting. The MIT Press, 1993.

[W092] M. Wand and D. P. Oliva. Proving the correctness of storage representations. In
W. Clinger, editor, Lisp and Functional Programming, pages 151-160. ACM, 1992.

[Zuc74] J. I. Zucker. Cut-elimination and normalization. Annals of Mathematical Logic, l(1):l-
112, 1974.

	Proof Theoretic Concepts for the Semantics of Types and Concurrency
	Recommended Citation

	Proof Theoretic Concepts for the Semantics of Types and Concurrency
	Abstract
	Comments

	tmp.1187186270.pdf.zF6sq

