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INHERITANCE AS IMPLICIT COERCION 

Val Breazu- Tannen Thierry Coquand Carl A. Gunter Andre Scedrog 

Abs t r ac t .  We present a method for providing semantic interpretations for languages with a 
type system featuring inheritance polymorphism. Our approach is illustrated on an extension of 
the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended 
polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions 
which are definable in the target of the translation. Existing techniques in the theory of semantic 
domains can be then used to  interpret the extended polymorphic lambda calculus, thus providing 
many models for the original language. This technique makes it  possible to model a rich type 
discipline which includes parametric polymorphism and recursive types as well as inheritance. 

A central difficulty in providing interpretations for explicit type disciplines featuring inheritance 
in the sense discussed in this paper arises from the fact that programs can type-check in more 
than one way. Since interpretations follow the type-checking derivations, coherence theorems 
are required: that is, one must prove that the meaning of a program does not depend on the 
way it  was type-checked. The proof of such theorems for our proposed interpretation are the 
basic technical results of this paper. Interestingly, proving coherence in the presence of recursive 
types, variants, and abstract types forced us to  reexamine fundamental equational properties 
that arise in proof theory (in the form of commutative reductions) and domain theory (in the 
form of strict vs. non-strict functions). 

1 Introduction 

In this paper we will discuss an approach to the semantics of a particular form of inheritance which 
has been promoted by John Reynolds and Luca Cardelli. This inheritance system is based on the 
idea that one may axiomatize a relation < between type expressions in such a way that whenever 
the inheritance judgement s 5 t is provable for type expressions s and t ,  then an expression of type 
s can be "considered as" an expression of type t .  This property is expressed by the inheritance 
rule (sometimes also called the subsumption rule), which states that if an expression e is of type s 
and s < t ,  then e also has type t .  The consequences from a semantic point of view of the inclusion 
of this form of typing rule are significant. It is our goal in this paper to look carefully at  what we 
consider to  be a robust and intuitive approach to systems which have this form of inheritance and 
examine in some detail the semantic implications of the inclusion of inheritance judgements and 
the inheritance rule in a type discipline. 

Several attempts have been made recently to express some of the distinctive features of object- 
oriented programming, principally inheritance, in the framework of a rich type discipline which 
can accommodate strong static type-checking. This endeavor searches for a language that offers 
some of the flexibility of object-oriented programming [GR83] while maintaining the reliability, and 
sometimes increased efficiency of programs which type-check at compile-time (see [BBG88] for a 
related comparison). 

'Appears in Information and Computation vol. 93 (1991), pp. 172-221. 
'Author's addresses. Breazu-Tannen and Gunter: Department of Computer and Information Sciences, University 

of Pennsylvania, Philadelphia PA 19104, USA. Coquand: INRIA, Domaine de Voluceau, 78150 Rocquencourt, France. 
Scedrov: Department of Mathematics, University of Pennsylvania, Philadelphia PA 19104, USA. 



Inheritance as Implicit Coercion 3 

of the translation. We hope that the results in this simpler setting will help the reader get an idea 
of what our program is before we proceed to a more interesting calculus in the remainder of the 
paper. The fourth section is devoted to developing a translation for an expanded calculus which 
adds variants. Fundamental equational properties of variants lead us to develop a target language 
which has a type of coercions. The fifth section, which contains the difficult technical results of the 
paper, shows that our translation is coherent. In the sixth section we discuss mathematical models 
for the full calculus. Since most of the work has already been done, we are able t o  produce many 
models using standard domain-theoretic techniques. The concluding section makes some remarks 
about what we feel has been achieved and what new challenges still need to be confronted. 

2 Inheritance as implicit coercion. 

A simple analogy will help explain our translation-based technique. Consider how the ordinary 
untyped X-calculus is interpreted semantically in such sources as [Sco80, Mey82, Koy82, Ba1-841. One 
begins by postulating the existence of a semantic domain D and a pair of arrows a: D -t ( D  + D) 
and @: ( D  + D) -t D such that @ o Q is the identity on D + D. Certain conditions are required 
of D + D to insure that "enough" functions are present. To interpret an untyped X-term, one 
defines a translation M w M* on terms which takes an untyped term M and creates a typed term 
M*.  This operation is defined by induction: 

for a variable, x* G x: D,  

for an application, M(N)*  z @(M*)(N*) and, 

for an abstraction, (Ax. M)* ~ ( X X :  D.  M*) 

(where we use - for syntactic equality of expressions). For example, the familiar term 

translates to  

The fact that the latter term is unreadable is perhaps an indication of why we use the former 
term in which the semantic coercions are implicit.  everthe he less, this translation provides us with 
the desired semantics for the untyped term since we have converted that term into a term in a 
calculus which we know how to  interpret. Of course, this assumes that we really do know how to  
provide a semantics for the typed calculus supplemented with triples such as D ,  @, Q. Moreover, 
there are some equations we must check to  show that the translation is sound. But, at the end 
of the day, we have a simple, intuitive explanation of the interpretation of untyped X-terms based 
on our understanding of a certain simply typed X-theory. In this paper we show how a similar 
technique may be used to  provide an intuitive interpretation for inheritance, even in the presence 
of parametric polymorphism and type recursion. As mentioned earlier, our interpretation is carried 
out by translating the full calculus into a calculus without inheritance (the target calculus) whose 
semantics we already understand. However, our idea differs significantly from the interpretation 
of the untyped X-calculus as described above in at least one important respect: typically, the 
coercions (such as and !P above) which we introduce will be definable in the target calculus. 
Hence our target calculus needs to  be an extension of the ordinary polymorphic X-calculus with 
records, variants, abstract types, and recursive types. But it need not have any inheritance. 
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Although we believe that the translation just illustrated is intuitive, we need to show that it 
is coherent. In other words, we must show that the semantic function is well defined. The need 
for coherence comes from the fact that a typing judgement may have many different derivations. 
In general, it is customary to  present the semantics of typed lambda calculi as a map defined 
inductively on type-checking derivations. Such a method would therefore assign a meaning to  
each derivation tree. We do believe though, that the language consists of the derivable typing 
judgements, rather than of the derivation trees. For many calculi, such as the simply typed or the 
polymorphic lambda calculus, there is at most one derivation for any typing judgement. Therefore, 
in such calculi, giving meaning to derivations is the same as giving meaning to  derivable judgements. 
But for other calculi, such as Martin-Lof's Intuitionistic Type Theory (ITT) [Mar841 (see [Sal88]), 
and the Calculus of Constructions [CH88] (see [Str88]), and-of immediate concern to  us-Cardelti 
and Wegner's Fun, this is not so, and one must prove that derivations yielding the same judgement 
are given the same meaning. This idea has also appeared in the context of category theory and our 
use of the term "coherence" is partially inspired by its use there, where it means the uniqueness 
of certain canonical morphisms (see e.g. [KL71] and [LP85]). Although we have not attempted 
a rigorous connection in this paper, the possibility of unifying coherence results for a variety of 
different calculi offers an interesting direction of investigation. In the case of Fun, we show the 
coherence of our semantic approach by proving that translations of any two derivations of the same 
typing judgement are equated in the target calculus. 

Hence, the coherence of a given translation is a property of the equational theory of the target 
calculus. When the target calculus is the polymorphic lambda calculus extended with records and 
recursive types, the standard axiomatization of its equational theory is sufficient for the coherence 
theorem. But when we add variants, the standard axiomatization of these features, while sufficient 
for coherence, clashes with the standard axiomatization of recursive types, yielding an inconsistent 
theory (see [Law69, HP89al for variants, that is, coproducts). The solution lies in two observations: 
(1) the (too) strong axioms are only needed for "coercion terms", and (2) in the various models we 
examined these coercion terms have special interpretations (such as strict, or linearmaps), so special 
in fact, that they satisfy the corresponding restrictions of the strong axioms! Correspondingly, one 
has to  restrict the domains over which "coercion variables" can range, which leads naturally to  the 
type of coercions mentioned above. 

3 Translation for a fragment of the calculus 

For pedagogical reasons, we begin by considering a language whose type structure features function 
spaces (exponentials), record types, bounded generic types (an inheritance-generalized form of 
universal polymorphism), recursive types, and, of course, inheritance. In the next section we will 
enrich this calculus by the addition of variants. As we have mentioned before, this leads to some 
(interesting) complications which we avoid by restricting ourselves to the simpler calculus of this 
section. Since the calculus in the next section is stronger, we omit details for the proofs of results 
in this section. They resemble the proofs for the calculus with variants, but the calculations are 
simpler. Rather than generate four different names for the calculi which we shall consider in 
this section and the next we simply refer to the calculus with inheritance as S O U R C E  and the 
inheritance-free calculus into which it is translated as TARGET.  The fragment of the calculus 
which we consider in this section is fully described in the appendices to  the paper. 

We provide semantics t o  S O U R C E  via a translation into a language for which several well- 
understood semantics already exist. This "target" language, which we shall call T A R G E T ,  is an 
extension with record and recursive types of the Girard-Reynolds polymorphic lambda calculus 
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Appendix A under the heading Fragment. 
Among these proof rules, the following two illustrate the effect of inheritance on type-checking: 

[B-SPEC] 

They make use of inheritance judgements which have the form C t- s < t where C is an 
inheritance context. Inheritance contexts are contexts in which only declarations of the form a < t 
appear. If I' is a context, we denote-by teh inheritance context obtained from I' by erasing the 
declarations of the form x: t .  The proof system for deriving inheritance judgments is, with the 
exception of one rule, the same as the relevant fragment of the corresponding proof system for Fun 
(see [CW85], on page 519). In this paper we do not attempt to  enrich it with any rule deriving 
inheritances between recursive types. A discussion of this issue appears in our conclusions. The 
Appendix contains a complete list of these proof rules too. 

In comparison with Fun, we would like to strengthen the rule deriving inheritances between 
bounded generics, and we are able to  do so for some of our results. Where Fun had just 

(W-FORALL) 

we will consider 

( FORALL) 

This makes the system strictly stronger, allowing more inheritances to be derived, and thus more 
terms to  type-check. 

Originally, we believed that coherence could be proved for a system that includes variants 
and the stronger rule (FORALL) [BCGS89]. In dealing with the case construct for variant types, 
however, our coherence proof uses an order-theoretic property (see Lemma 11) which fails for the 
stronger system for deriving inheritances that uses (FORALL) (for a counterexample, see Giorgio 
Gelli's dissertation [GhegO]). Thus, we prove the coherence of the translation of variants (Theo- 
rem 13) only for the weaker system with (W-FORALL). Note, however, that we prove coherence 
in the presence of (FORALL) for the system without variants (Theorem 4) and for the system for 
deriving inheritances between types, including variant types (Lemma 9). 

Remark. Decidability of type-checking in the stronger system is a non-trivial question. The 
question whether an algorithm of Luca Cardell will decide the provability of judgements in this 
calculus has only recently been settled by Ghelli [GheSO]. 

The salient feature of bringing inheritance into a type system is that (in given contexts) terms 
will not have a unique type any more. For example, due to  the rule 

C t- t 5 Top 

where the free variables of t are declared in C, by [INH], all terms that type-check with some type 
will also type-check with type Top. This makes it possible to define ordinary generics as syntactic 

de f sugar: Va. t = Va < Top. t . 
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where n > 1, and 

{RECD-ETA). {ll=&f.ll ,..., E,=M.E,) = M 

where M : {I1: sl , . . . , In: s,} .The last rule gives, for n = 0, the equation { = 1Lf which 
makes 1 into a terminator. Under our interpretation, the type Top will be nothing like a "universal 
domain" which can be used to  interpret Type:Type [CGW89, GJ901. On the contrary, it will be 
interpreted as a one point domain in the models we list below! 

The translation. For any SOURCE item we will denote by item* its translation into TARGET. 
We begin with the types. Note the translation of bounded generics and of Top. 

d ~ f  d& 
a* - a {II: S I , .  . .,En: sn}* - {Il: s;, . . . , ln: s:} 

Top* %f 1 d ~ f  ( V a i s .  t)* - Va. ( a + s * ) - + t *  

(S + t)* dcl S* -+ t* (pa. t)* ef pa. t* 

One shows immediately that ([s/a]t)* = [s*/a]t* . We extend this to  contexts and inheritance 
contexts, which translate into just typing contexts in TARGET. 

0* d!f 0 0* %f 0 
dzf dzf (r, a F t ) *  - r*, a ,  f : a + t *  (C, a < t ) *  - C*, a,  f : a+t*  

def 
( r ,  ~ : t ) *  - r*, ~ : t *  

where f is a fresh variable for each a. 
Next we will describe how we translate the derivations of judgments of SOURCE. The transla- 

tion is defined by recursion on the structure of the derivation trees. Since these are freely generated 
by the derivation rules, it is sufficient to provide for each derivation rule of SOURCE a correspond- 
ing rule on trees of TARGET judgments. It will be a lemma (Lemma 2 to  be precise) that these 
corresponding rules are directly derivable in TARGET, therefore the translation takes derivations 
in SOURCE into derivations in TARGET. 

A SOURCE derivation yielding an inheritance judgment C I- s 5 t is translated as a tree 
of TARGET judgments yielding C* t- P : s* -+ t* . We present three of the rules here; the full 
list for the fragment appears in Appendix C. The coercion into Top is simply the constant map: 

To see how coercion works on types, assume that we are given a coercion P: s + t from s into t 
and a coercion Q: u --t v from u into v. Then it is possible to  coerce a function f :  t -+ u into a 
function from s to  v as follows. Given an argument of type s, coerce it (using P) into an argument 
of type t. Apply the function f to  get a value of type u. Now coerce this value in u into a value 
in v by applying Q. This describes a function of the desired type. More formally, we translate the 
(ARROW) rule by 

(ARROW)" 
C* l -  P : s * + t *  C* t - Q : u * + v *  

C* t- R : (t* -t u*) -+ (s* + v*) 

where R de' XZ: t* + u*. P ;  r ;  Q . (We use ; as shorthand for composition. For example, P ;  r ;  Q 
above stands for Ax: s*. Q(z(P(x))) where x is fresh.) Now, t o  translate the rule (FORALL) 
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4 Between incoherence and inconsistency: adding variants 

The calculus described so far does not deal with a crucial type constructor: variants. In particular, 
i t  is very useful to  have a combination of variant types with recursive types. On the other hand, the 
combination of these operators in the same calculus is also problematic, especially for the equational 
theory. The situation is familiar from both domain theory and proof theory. In this section we 
propose an approach which will suffice to  prove the coherence theorem which we need to  show that 
our semantic function is well-defined. 

We extend the type formation rules of S O U R C E  by adding variant type expressions: 
[Il: tl, . . .,I,: t,] where n 2 1. We also extend the term formation rule by the formation of variant 
terms [Il: t l ,  . . . , 1; = e, . . . , 1,: t,] and the case statement: 

The inheritance judgement derivation rules are extended correspondingly with the rule: 

(VART) 

Note the "duality" between this rule and the inheritance rule (RECD) for records (see Appendix 
A). While a record subtype has more fields, a variant subtype has fewer variations (summands). 

Like before, we intend to  translate this calculus into a calculus without inheritance and, nat- 
urally, we extend T A R G E T  with variants (see Appendix B). Note how the syntax of variant 
injections differs from [CW85]. This is in order for the resulting system to enjoy the property of 
having unique type derivations: the proof of Proposition 1 extends immediately to  the variant con- 
structs. Most importantly, we must extend the equational theory of T A R G E T  in a manner that 
insures the coherence of our translation. It is here that we encounter an interesting problem which 
readers who know domain theory will find familiar. The following two axioms hold in a variety of 
models: 

{VART-BETA} case injli(Mi) of El + Fl, .. . ,l,*Fn = F;(Mi) 

where Fl : tl -+t, . . . , F, : t, i t ,  Mi : t; and injli is shorthand for 
Xx:ti. [Zl:t17. - . , l i = x 7 .  ,In:tn]. 

{VART-ETA} case M of ll + injl,, . . . , 1, + injln = M 

where M : [Il: tl ,  .. .,I,: t,] . Unfortunately, these two axioms do not suffice t o  prove all the 
identifications required by the coherence of our translation! 

To see the problem, we start with an example. In SOURCE,  suppose that t 5 s is derivable 
in the context 5, and that we have a derivation A of I' I- e : [11: t l ,  12: t2] and derivations A; of 
I' t- f; : t; -+ t ,  i = 1,2. Consider then the following two S O U R C E  derivations of the typing 
judgement I' I- case e of l1 + fl, 12 * f2 : s . 

1. by A, A,, A2 and the rule [CASE], one deduces I' t- case e of ll + f1,l2 + f2 : t. Since 
I- t 5 s by hypothesis, one infers by inheritance I' I- case e of ll + fl ,  I2 + f2 : s. 

2. from ? t- t 5 s we can deduce I- (t; -. t) 5 (ti -. s). Hence, by inheritance from 
A;, one deduces I' F f; : ti -t s. Then, from A and by the rule [CASE], one deduces 
I' I- case e of l1 + f l ,  12 + f2  : S. 
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translation. Thus, the previous discussion of variants leads us to introduce a new type constructor 
s a t , the type of "coercions" from s to t. Consequently, the coercion assumptions a 5 t that 
occur in inheritance contexts must translate to variables ranging over types of coercions f:  a cw t* . 
As a consequence, the translation of bounded quantification must change: 

(Va 5 s. t)* !Ef Va. ((a a s*) 4 t*) 

In order t o  express the correct versions of {VART-CRN), we introduce a family of constants in 
TARGET 

L,,t : ( so+ t )+ ( s+ t )  

called coercion-coercion combinators. With this, we have 

{VART-CRN) ~(P)(case M of El + Fl,  . . . , 1, + Fn) = case A!! of El * Fl ;  L(P) ,  . . . , En s- F,; L(P)  

where M: [ll:tl, .  . . ,En:t,], F l : t l + t , .  . . , F,: tn-+t, P : t  a s  . 
(the complete list is in Appendix B). 
In order to  translate all inheritance judgements into coercion terms, we add a special set of con- 

stants (coercion combinators) that "compute" the translations of the rules for deriving inheritance 
judgements. To prove coherence, we axiomatize the behavior of the L-images of these combinators. 
For example, the coercion combinator for the rule (ARROW) takes a pair of coercions as arguments 
and yields a new coercion as value: 

arrow[s, t ,  U, v] : (S w t) -+ (u c+ v) 4 ((t  4 u) a ( s  + v)) 

Since (ARROW) is a rule scheme, we naturally have a family of such combinators, indexed by 
types. To simplify the notation, these types will be omitted whenever possible. The equational 
property of the arrow combinator is given in terms of the coercion coercer: 

~(arrow(P)(Q)) = Xz: t + u. (L(P));  Z ;  ( L ( Q ) )  

where P :  s a t, Q: u a v. For the rule (TRANS), we introduce 

which, of course, behaves like composition, modulo the coercion coercer: 

4trans(P)(Q)) = 4'); L(Q) 

where P: r cw s, Q: s a t. The combinator for the rule (FORALL) is the most involved: 

forall[s, t ,  a ,  u, v] : (s  cw t) +Va. ((a o+ s )  + (u 0--+ v)) --+ (Va. ( (a  a t) + U) c+ Va. ((a cw S) + v)) 

with the equational axiomatization 

~(forall(P)(W)) = Xz: (Va. (a cw t) -+ u). Aa. X f :  a c+ s. ~(W(a)(f))(z(a)(trans(f )(P))) 

where P: s c+ t ,  W: Va. (a  c-+ s )  -t (u o+ v). Of course, we have gone to  the extra inconvenience 
of introducing the type of coercions in order to provide a satisfactory account of variants. These 
require a scheme of combinators having the types: 
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5 Coherence of the translation for the full calculus 

In this section we prove first the coherence of the translation of inheritance judgements. This result 
is then used to show the coherence of the translation of typing judgements. 

The main cause for having distinct derivations of the same inheritance judgements is the rule 
(TRANS). Our strategy is to show that the usage of (TRANS) can be coherently postponed to the 
end of derivations  emma ma 6), and then to prove the coherence of the translation of (TRANS)- 
postponed derivations (Lemma 8). 

We introduce some convenient notations for the rest of this section. For any derivation A 
in S O U R C E ,  let A* be the T A R G E T  derivation into which it is translated. We will write 
C I- ro < - < r ,  instead of C I- TO < rl ,..., C I- r,-1 5 r ,  . The composition of 
coercions given by trans occurs so often that we will write P @ Q instead of trans(P)(Q) . It is 
easy to see, making essential use of the rule {IOTA-INJ), that @ is provably associative. We will 
take advantage of this to unclutter the notation. We will also write I instead of ref1 . Again it is 
easy to see that I is provably an identity for O , that is, I O M = M O I = M is provable in 
T A R G E T .  

Lemma 6 For any S O U R C E  derivation A yielding the inheritance judgement C I- s < t , 
there exist types T O , .  . . , rn such that s E ro , r ,  = t ,  and (TRANS)-free derivations Al, .  . . ,A, 
yielding respectively 

C I- ro < ... 5 rn 

Moreover, if the translations A*, A;, . . . , A: yield respectively the (coercion) terms C* I- 
P :  s*o+ t* ,  C* F PI : rzo+r; ,..., C* I- Pn : T ; - ~  o+ri then 

is provable in  T A R G E T .  

Proof: By induction on the height of the derivation A. The base is trivial since derivations 
consisting of instances of (TOP), (VAR), or (REFL) are already (TRANS)-free. We present the 
more interesting cases of the induction step. 

Suppose A ends with an application of (ARROW). By induction hypothesis there are (TRANS)- 
free derivations for 

s G ro < - - .  < r, _= t and u wo 5 < w, = v 

(for simplicity, we omit the context). From these, using (REFL) and (ARROW) we get (TRANS)- 
free derivations for 

(This is not most economical: one can get a derivation requiring only max(m, n ) ,  rather than 
m + n, steps of (TRANS) at the end.) Proving the equality of the corresponding translations uses 
the associativity of @ and the fact that I acts like an identity, as well as 

which can be verified, in view of {IOTA-INJ), by applying L to both sides, resulting in a simple 
{BETA)-conversion. 
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Proof: By induction on the height of 0 .  I 

Lemma 8 Let Al,  . . . ,A, be (TRANS)-free derivations in SOURCE yielding respectively C t- 
so 5 - 5 s, and 01,  . . . ,On be (TRA NS)-free derivations yielding respectively C t- to 5 
. . . 5 tn . Let the translations A;, . . . , A;, 0;, . . . ,0; yield respectively the (coercion) terms 

C* t- P I :  S ~ W S ;  ,..., C* I- P,: S ~ - ~ W S ~ ,  C* t- Q1:  t:o+t; ,..., C* t- Q,: t E - l ~ t z  . 

If SO = to and s, - t, then 

is provable in TARGET. 

Proof: We begin with the following remarks: 

r If one of SO,. . . , s,, to, .  . . , tn is Top then the desired equality holds. Indeed, then s, = 
Top r tn and the equality follows from the identity 

P < top 

which is verified by applying L to both sides (recall that 1 is a terminator). 

r Those derivations among Al,  . . . , A,, 01, . . . ,0, which consist entirely of one application of 
(REFL) can be eliminated without loss of generality. Indeed, the corresponding coercion term 
is I which acts as an identity for 0. 

If none of the derivations among Al ,  . . .,A,, 0 1 , .  . ., 0, consists of just (TOP), then those 
derivations which consist of just (VAR) can also be eliminated without loss of generality. 
Indeed, once we have eliminated the (REFL)'s, the (VAR)'s must form an initial segment of 
both A,, . . . , A, and 01, . . . ,0, because whenever s 5 a is derivable, s must also be a 

- type variable. Let's say that so - ao, . . . , s, = a,-1 , (p 5 m), where Al ,  . . . ,A, are all the 
derivations consisting of just (VAR), and also that to r bo, . . . , t q  G bq-1 , (q  5 n), where 
e l ,  . . . ,0, are all the derivations consisting of just of (VAR). Then, a0 < a l ,  . . . , a,-1 5 s, as 
well as bo 5 bl, . . . , bq-1 S t ,  must all occur in C. But a0 5 so to = bo so by the uniqueness 
of declarations in contexts, a1 = bl,. . . , etc. Suppose p < q. Then, s, = b, is a variable. Since 
A,+, can't be just a (REFL) or a (TOP) is must be a (VAR) contradicting the maximality 
of p. Thus p = q and s, t, and the (VAR)'s can be eliminated. 

We proceed to prove the lemma by induction on the maximum of the heights of the derivations 
A,, . . . , A,, 01 , .  . . ,on. The basis of the induction is an immediate consequence of the remarks 
above . 

For the induction step, in the view of the remarks above, we can assume without loss 
of generality that none of the derivations is just a (TOP), (VAR), or (REFL). Consequently, 
A,, . . . , A m ,  o l , .  . . , o n  must all end with the same rule, depending on the type construction used 
in s o  = to . 

If all derivations end in (ARROW), the desired equality follows from the induction hypothesis, 
the associativity of 8 and the equation (1). Similarly for (VART) using the equation (3). The 
desired equality in the case (FORALL) follows from the induction hypothesis using Lemma 7, from 
the associativity of @ and from the equation (2). The remaining cases are straight-forward. 1 
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C t- tl n t 2  5 t; , ( i  = 1,2) and 

for any s such that C k s < t; , ( i  = 1,2) we have C k s 5 tl n t2 . 1 

2. There is a type tl U t2 such that 

c t- ti < tl u t2 , (i  = 1,2) and . for any s such that C t- t; I s , ( i  = 1,2) we have (7 I- t i  lJ t2 < 3 .  l 

Proof: Because of the contravariance property of the first argument of the function space operator 
manifest in the rule (ARROW), we will prove items 1 and 2 simultaneously. In view of Lemma 6, it 
is sufficient t o  work with proofs where all instances of (TRANS) appear at the end. Since moreover 
any two types have a common upper bound, Top, the statement of the lemma is equivalent to  the 
following formulation: 

For any Al ,  . . . , A,, (TRANS)-free derivations in SOURCE yielding respectively C k uo < 
... 5 urn and any G1, . . . , On, (TRA NS)-free derivations yielding respectively C I- vo < 
" ' <  v , ,  

1. if uo z vo, and let tl = urn and t2 E v,, then there is a type t l  n t2 having the properties in 
item 1 of the Eemma; 

2. if urn z vn, and let tl = uo and t2 = vo, then there is a type t l  U t2 having the properties in 
item 2 of the Eemma. 

This is shown by induction on the maximum of m , n  and of the heights of 
A,, . . .,A,, @,, . .  . ,on. To be able to apply the induction hypothesis, a case analysis is per- 
formed, depending on the structure of tl and t ~ .  We will only look at  a few illustrative cases. 
The facts listed in Remark 10 and the reasoning that produced these facts as well as the remarks 
opening the proof of Lemma 8 are used throughout. 

For example, if tl is a type variable in item 1, then u; is also a type variable for each i, and 
u; - l < u ; ~ C , i = l , . . . ,  n .  Then,oneof C I- uo < < u, or C t- vo < . - .  < v, , 
must be an initial segment of the other, so tl and tz are comparable and tl n t2 can be taken as 
the smaller among them. For item 2, if tl is a type variable, then uo 5 ul E C and, by induction 
hypothesis (m decreases), tl U t2  can be taken to be ul LJ t2. 

As another example, suppose that in item 1 tl has the form Va 5 s. r l .  If u0 G vo is a 
type variable, then uo 5 ul E C and vo 5 vl E C hence ul - vl and we can apply the 
induction hypothesis by eliminating A1, 01. Assume that uo vo is not a type variable. By 
Remark 10 (simplified to take into account the weakening of (FORALL)), it must have the form 
Va < s. T. Again by Remark 10 t2 is either Top or has the form Va < s. r2. If t2 Top then 
tl n t2 can be taken to  be tl. Otherwise, there are (TRANS)-free derivations A:, . . .,A:, yielding 
C , a < s  I- ub 5 < u:, and@',, ..., 0Lyieldingrespectively C , a < u  I- vb 5 < vh 
where ub - vh and u h  = TI and vh = 7-2, and where each of these derivations has strictly smaller 
height than the corresponding one among A1,. . .,A,, 01,. . . ,On. By induction hypothesis we get 
a type rl Tl r2, and we can then take tl n t2 to be Va 5 s. rl Tl  rg. This calculation makes clear where 
our proof breaks down if we were to  use the more general rule (FORALL) instead of (W-FORALL). 
Indeed, if the bounds on the type variables were allowed to  differ, as in the more general case, we 
would be unable to  apply the induction hypothesis since the two contexts would differ between the 
0's and the A's. 

We omit the remaining cases, which use similar ideas. 1 
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This implies that the statement of the lemma holds for Al ,  A2, with common type s + r , with 
C = [ABS] ( C') , and with Oi z (ARROW) ( (REFL) , O:), (i = 1,2). The congruence claim 
follows from 

Ax: s .  L(P)(M) = ~(arrow(l)(P)(Xx: s. $1) 

which is readily verified. 
Rule[B-SPEC]. To simplify the notation, we omit the contexts. Suppose that Ai = 

[B - SPEC] (A:, 2;) and that A; yields e(r)  : [r/a]t; ( r  is the same since it appears in the 
term and we can take the bound variable to be the same without loss of generality), thus A: yields 
e : Va 5 s;. t; and E; yields r < si , (i  = 1,2) . Apply the induction hypothesis to  A:, A; 
obtaining w, C', 0:) 05. Also by induction hypothesis, 

(5) A; E [B - SPEC] ( [INH] (C' ,  O:), Z;) , (i = 1,2). 

Since w 5 Va 5 s;. ti , ( i  = 1,2)  it follows from Remark 10 (simplified to take into account 
the weakening of (FORALL)) that there must exist types u, v such that s; =_ u , a 5 s; t- v 5 
ti , (i = 1,2)  and w 5 Va 5 u. v are derivable. It follows that r 5 u , and, by Lemma 7, that 
a <  r I- v < ti , ( i  = 1,2) are derivable. Next, we will use the following sublemma: 

Sublemrna For any derivation A yielding C, a < r t- s 5 t there exists a derivation 
C yielding C t- [r/a]s < [r/a]t such that, if the translations A*, C* yield respectively 

C*, a ,  f :  a o+ r* t- P : s* c+ t* , C* t- Q : [r*/a]s* c+[r*/a]t* 

then 
C* t- Q = (Aa.Xf:ao-+r*. P)(rS)(I)  

is provable in T A R G E T .  I 

The sublemma is proved by induction on the height of A and is omitted. The sublemma allows us 
to  obtain [r/a]v < [r/a]t; from a 5 r k v < ti , (i = 1,2) . Let O; be some derivation of 
[r/a]v 5 [r/a]ti , ( i  = 1,2) . Let Z be some derivation of T 5 u . Let R be some derivation of 
w 5 Va 5 u. v . One can readily verify that the right hand side of (5) is congruent to  

[INH] ( [B - SPEC] ( [INH] ( C', R) , z) , @;) 

This implies that the statement of the lemma holds for Al, A2, with common type [r/a]v , with 
C = [B - SPEC] ( [INH] ( Cr,  R) , E) , and with O; being just O;, (i = 1,2). (Note. There is 
no difficulty in dealing with (FORALL) instead of (W-FORALL) here: s; = u would be simply 
replaced by s; 5 u .) 

Rule[R-ELIM]. Suppose that A; z [R - ELIM] (A:) and that A; yields I' t- 
elirn e : [pa,. t;/a;]t; , thus A: yields r k e : pa;. t; , (i = 1,2);. Apply the induction 
hypothesis to  A:, A; obtaining sf, C', Oi, Oh. Also by induction hypothesis, 

A; r [R - ELIM] ( [INH] ( C' , 0:) ) , (i = 1,2). 

Since s' < pa;. t; , ( i  = 1,2) are derivable, it follows from Remark 10 that there must exist a ,  t 
such that paj. t; r pa. t , (i  = 1,2) and sf 5 pa. t are derivable. Let O' be any derivation of 
st < pa. t . Since by Lemma 9, 0; S 0; S O' , the statement of the lemma holds with common 
type [pa. t/a]t , with C E [R - ELIM] ( [INH] ( Cr , Of) ) , and with O; = (REFL) , (i  = 1,2). 
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T h e o r e m  13 (Coherence)  Replace (FORALL) with (W-FORALL). If Al and A2 are two 
S O U R C E  derivations yielding the same typing judgement then Al Ei A2 (their translations 
yield provably equal terms in T A R G E T ) .  

Proof:  Take t l  z t z  in Lemma 12. By Lemma 9, E Oz . It follows that Al 2 A2 . I 

6 Models 

So far we have not actually given a model for the language S O U R C E .  In this section we correct 
this omission. However, it is a central point of this paper that there is basically nothing new that 
we need to do in  this section, since calculi satisfying the equational theory of T A R G E T  have been 
thoroughly studied in the literature on the semantics of type systems. Domain-theoretic semantics 
suggests natural candidates for a special class of maps with the properties needed to  interpret the 
operators -t and o+. Here we present list some of these semantic solutions; all of which apply 
t o  abstract types as well as to  variants. A syntactic version could also be given by a syntactic 
translation into an extension of the target calculus of section 2, which expresses the properties 
mentioned above and the consistency of which is ensured by our semantic considerations. 

The domain-theoretic interpretations that we have examined so far are summarized in the 
following table. The necessary properties for all but the last row can be found in [TTS7, HPSgb], 
[CGW89I7[ABL86], [CGW87], and [Girt371 respectively. The properties needed for the last row can 
be checked in a manner similar to  [Gir87]. 

By a bistrict map of lattices we mean a continuous map which preserves both bottom and 
top elements. A separated sum of lattices L and M is the disjoint sum of L and M together 
with new top and bottom elements. Note that the category of Scott domains (finitary projections, 
respectively) and strict maps does have finite coproducts, given by coalesced sums of domains, and 
this implies that the required equation 

TYPES 
Algebraic lattices 

Scott domains 
Finitary projections 

dI domains 
coherent spaces 

dI domains 

{VART-CRN?) P(case M of l1 + Fl, . . . ,In + Fn) = case M of 11 =i- Fl; P, . . . , In + F'; P 

holds if P is a strict map (in fact, a separated sum of domains A and B is just the coalesced sum 
of the lifted domains Al and B I ) .  Furthermore, it may be checked that strictness is preserved by 
the formation of coercion maps from given ones according to  the coercion rules given in section 3 
and at the beginning of this section. This model satisfies also {VART-BETA)+{VART-ETA). An 
important property used in the case of Scott domains (finitary projections, respectively) is that the 
continuous maps from C to D are in one-to-one correspondence with the strict maps from CI to  
D. Analogous remarks hold for stable maps and linear maps, with !C instead of CI (see [GirSg], 
Chapter 8). 

From a category-theoretic point of view, the main point is that we are dealing with two cate- 
gories, one a reflective subcategory of the other, i.e. the inclusion functor has a left adjoint. The 

TERMS 

continuous maps 

stable maps 

COERCIONS 
bistrict maps 
strict maps 

strict stable maps 
linear maps 

VARIANTS 
sep sum of lattices 

separated sums 

!A@!B 
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where s ,  t ,  u, u are type expressions and 5 is the relation of inheritance (reading s - < t as "s 
inherits from t"). Note, in particular, the contravariance in the first argument of the -+ operator. 
In contrast, semantic domains which solve recursive domain equations such as D = D + D are 
generally constructed using a techniqueadjoint pairs to be precise-which make it possible to  
"order" types using a concept of approximation based on the rule 

L R where 4 = (4 , 4  ) and $ = ( $ I ~ , I , ! I ~ )  are adjoint pairs and 4 -+ $ is the adjoint pair 
(Af. $L o f o 4R, X f .  I,!IR o f o dL). Note, for this case, the covariance in the first argument of 
the +operator. Because of this difference, models such as the PER interpretation of Bruce and 
Longo [BL88], which provides a semantics for inheritance and parametric polymorphism, do not 
evidently extend to  a semantics for recursive types. To provide for recursive types under this 
interpretation M. Coppo and M. Zacchi [Cop85, CZ86] utilize an appeal to  the structure of the un- 
derlying universal domain, which is itself an inverse limit which solves a recursive equation. R. Ama- 
dio [Ama89, Amago] and F. Cardone [Car89b] have explored this approach in considerable detail. 
There has also been progress on understanding the solution of recursive equations over domains 
internally to  the PER model which should provide further insights [FMRS89, Fre891. On the other 
hand, models such as those of Girard [Gir86] and Coquand, Gunter and Winskel [CGW87, CGW891, 
which handle parametric polymorphism and recursive types, do not provide an evident interpreta- 
tion for inheritance. It has been the purpose of this paper to  resolve this problem by an appeal 
to the paradigm of "inheritance and implicit coercion". However, this leaves open the question of 
how recursive types can be treated with this technique if one is to  include a more powerful set of 
rules for deriving inheritance judgements between recursive types. 

One complicating problem is to  decide exactly what form of inheritance between recursive types 
is desired. For example, it seems very reasonable that if s is a subtype o f t  then the type of lists 
of s's should be a subtype of lists of t's. This is not actually derivable in the inheritance system 
described in this paper since there are no rules for inheritance between recursive types. But care 
must be taken: if s is a subtype if t then is the solution of the equations a = a --+ s be a subtype of 
the solution of a = a + t? There are several possible approaches to  answering this question. The 
PER interpretation provides a good guide: we can ask whether the solutions of these two equations 
have the desired relation in the PER model. Concerning the coercions approach we are forced to 
ask whether there is any intuitive coercion between these two types. If there is, we have not seen 
it! It is reasonable to conjecture that inheritance relations derived using the following rule will be 
accept able: 

C , a < T o p  F s 5 t 
C I- pa. s 5 pa. t 

where types s and t have only positive occurrences of the variable a. Unfortunately, this misses 
many interesting inheritance relations that one would like to  settle. Discussions of this problem 
will appear in several future publications on this subject. A rather satisfactory treatment using 
coercions has been described in [BGS89] by using the "Amber rule" of CardeUi [Car86]. 

Operational semantics. Despite its importance there is virtually no literature on theoretical issues 
concerning the operational semantics of languages with inheritance polymorphism. In particular, 
at the time we are writing there are no published discussions of the relationship (if any!) of the 
denotational models which have been studied to  the intended operational semantics of a program- 
ming language based on the models. In fact, the operational semantics of no existing "practical" 
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e with a field 1 of type s, we would like to modify or update the 1 field of e by replacing e.1 by f (e.1) 
without losing or modifying any of the other fields of e. The development of calculi which can deal 
with this form of polymorphism and the ways in which Fun and related languages can be used to  
represent similar techniques are an object of considerable current investigation. One recent effort 
in this direction is [CM89] but several other efforts are under way. Despite its importance we have 
not explored this issue in this paper since the discussion about it is very unsettled and it will merit 
independent treatment at a later date. 

We believe that the "inheritance as implicit coercion" method is quite robust. For example, it 
easily extends to  accommodate "constant" inheritances between base types, such as int 5 real , 
as long as coherence conditions similar to the ones arising in the proofs of the relevant lemmas in 
this paper hold between the the constant coercions which interpret these inheritances. Moreover, 
we expect that our methods will extend to the functional part of Quest [Car89a] and to  the language 
described in [CM89], using the techniques of Coquand [Coq88] and Lamarche [Lam88]. Current 
work on inheritance and subtyping such as [CHC9O] and [MitSO] will provide new challenges. We 
do not claim that every interesting aspect of inheritance can necessarily be handIed in this way. 
However, our treatment, by showing that inheritance can be uniformly eliminated in favor of 
definable coercion, provides a challenge to formalisms which purport to introduce inheritance as a 
fundamentally new concept. Moreover, our basic approach to the semantics of inheritance should 
provide a useful contrast with other approaches. 
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(FORALL) 
C I - s < t  C , a < s I - u < v  

C I- Vast. u Va<s.v 

For Lemmas 11 and 12, and for Theorem 13 this is replaced with the weaker 

(W-FORALL) 

(REFL) 

(TRANS) 

C I - t < t  

where the free variables of t are declared in C 

Variants: 

C t - s l  < t l  ... 
(VART) 

C I- sp < t ,  
C t- [I1: sl, .  . .,Ip: s*] s [I1: tl, . . . , lp: t,, . . . , Eq: tq] 

Rules for deriving typing judgements: 

Fragment: 

[ABSI 

[APPL] 

[RECD] 
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Appendix B: The language TARGET 

Type expressions: 
Fragment: a l s - t  l { l l : s l  ,..., E,:s,)IVa.tlpa.t 
Variants: I [ I I :  t l ,  . . . , E n :  tn]  
Coercion space: ( s o - t t  

where a ranges over type variables and n 2 1. For rn = 0 we get the empty record type 1 der {I. 

Raw terms: 
Fragment: 

x I M ( N )  I Ax: t .  M I {Il = M I , .  . . , E m =  M m }  1 M.1 1 Aa. M I M(t) I intro[pa. t ] M  I elim M 

Variants: 
1 [ l l : t l ,  ..., l i=M ,..., En:tn] I c a s e M o f  ll+Fl ,..., ln+Fn 

Coercion-coercion combinator: 
I Ls,t 

Coercion combinators: 

where x ranges over (term) variables and n 2 1. For m = 0 we get the empty record, for which 
we will keep the notation {) . We will usually omit the cumbersome type tags on the coercion(- 
coercion) combinators. We use [ N I X ]  M for substitution. 

Typing judgements, have the form T k M : t , where T is a typing context. Typing contexts 
are defined recursively as follows: 8 is a context; if T is a context which does not declare a, then 
Y, a is a typing context; if T is a context which does not declare x, and the free variables o f t  are 
declared in T ,  then T ,  x: t is a typing context. 

Rules for deriving typing judgements: 

Fragment: 
Same as in Appendix A: [VAR] , [ABS] , [APPL] , [RECD] (in particular, for n = 0,  Y I- 

{) : 1 > , PEL]. 

[SPEC] 

T , a  I- M :  t 
T k ha .  M : Va. t 

Same as in Appendix A: [R-INTRO] , [R-ELIM]. 
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{ B E T A )  

{RECD-BETA) 

where N : s . 

Ax: s. M ( x )  = M 

where M : s + t  and x not free in M .  

{ l l = M 1 ~ ~ ~ ~ ~ l m = M m ) ~ l ~  = Mi 

where m 2 I, M1: t l , .  . ., M m : t ,  . 

{RECD-ETA} {ll=M.I1 ,..., I,=M.I,) = M 

where M : {I1 : t l  , . . . , E m :  t,) . For m = 0, this rule gives {) = M which makes 1 into a 
terminator. 

{FORALL-BETA) (Aa.  M ) ( T )  = [ r /a ]M 

{FORALL-ETA) ha.  M ( a )  = M 

where M : Va. t and a not free in M .  

{R-BETA)  elirn (intro[pa. t ] M )  = M 

where M : pa. t . 

{R-ETA}  

where M : [pa. t / a ] t  . 

Variants: 

We omit the simple rules for congruence with respect to variant formation, and case analysis. 
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Appendix C :  The translation 

We present first the remaining of the translation of the fragment discussed in section 3. 

(TRANS)'  

C* t- p,:s;-+t;  - . .  C* t- P,: $4;: 

C* k R : +{El: s f , .  . .,l,:s;, . . .,Iq:s~}{I1:t;,.} 

de f where R = Xw: (11: s;, . . . , 1,: s;,. . . ,E,: s i } .  {11: P1(w.ll),.  . . , lp: PP(w.lp)} 

C* I- Ax: t*. 2 : t* -+t* 

where the free variables of t* are declared in C* 

The rules [VAR] , [ABS] , [APPL] , [RECD] , [SEL] , [R-INTRO] , [R-ELIMJ are translated 
straightforwardly, see below. Here is the translation of the only other rule left (the translations of 
the other rules appears in section 3). 

I?*, a, f:a-+s* I- M : t* 
[B-GEN] I'* t- Aa .X f :a+s* .M:  Va.((a-+s*)+t*) 

In the following, we present the translation for the full calculus. As before, for any SOURCE 
i t e m  we will denote by item* its translation into TARGET . We begin with the types. Note the 
translation of bounded generics and of Top. 

def dzf a* - a (Va<s.t)* - Va.((ao+s*)-+t*) 
def d ~ f  Top* - 1 (pa.  t)* - pa. t* 
dzf d ~ f  ( s  -+ t)* - s* --, t* [11: s l ,  . . . , I n :  sn]* - [11: s f ,  . . . , ln: s;] 
dzf {I1: s l , .  . . , lm: sm}* - {11: S T , .  . ., lm: sh}  

where s x t  !Sf {lef t :  s ,  right: t ) .  
One shows immediately that ([s /a]t )*  E [s*/a]t* . We extend this to contexts and inheritance 

contexts, which translate into just typing contexts in TARGET . 
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A S O U R C E  derivation yielding an typing judgment I' I- e : t is translated as a tree of 
T A R G E T  judgments yielding I?* I- M : t* . Here are the T A R G E T  rules that correspond to 
the rules for deriving typing judgements in SOURCE.  

The rules [VAR] , [ABS] , [APPL] , [RECD] , [SEL] , [R-INTRO] , [R-ELIM] , [VART] , [CASE] 
all have direct correspondents in T A R G E T  so their translation is straightforward. We ilustrate it 
with two examples. 

[VAR] * I?;, 2:tr ,  I';J I- 2 :  t* 

[AB S] * 
r* ,  2:s' t- M : t* 

r* I- ~ 2 : s " .  M : s*-+t* 

Here is the translation of the other three rules. 

[B-GEN] 

Lemma 14 The rules (TOP)* - (TRANS)* and [VARI* - [INHI* are directly derivable in TAR-  
G E T  . I 
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COMPUTING WITH COERCIONSl 
(Extended Abstract) 

V. Breazu- Tannen C. A.  Gunter A. Scedrov 

University of Pennsylvania 

Abstract. This paper relates two views of the operational semantics of a language with multiple 
inheritance. It is shown that the introduction of explicit coercions as an interpretation for the 
implicit coercion of inheritance does not affect the evaluation of a program in an essential 
way. The result is proved by semantic means using a denotational model and a computational 
adequacy result to relate the operational and denotational semantics. 

1 Introduction 

There have been a number of efforts to understand the denotational semantics of inheritance poly- 
morphism and a variety of mathematical models for languages with subtle semantic features have 
been discovered. However, as far as the authors of this paper know, no one has attempted to discuss 
what, if anything, these denotational models have to do with the intended execution of programs in 
the languages they model. For example, all of the published denotational models of the language 
Fun of Cardelli Wegner [CW85] (including the work of authors of this paper) model this language 
in way that corresponds to no reasonable interpretation of its operational semantics! No functional 
programming language in common use diverges when evaluating the program Ax. e, even when the 
expression e may diverge. Yet the models for Fun which have been studied identify the abstrac- 
tion Ax. I with the divergent program I. Besides this problem, all existing models satisfy the 
unrestricted p rule, which fails to  be a legitimate transformation in call-by-value languages. Since 
call-by-value is the most common form of evaluation, one is led to ask whether this commitment 
to ,8 was an important feature of the models concerned. In short, very little has been done to close 
the gap between denotational and operational theories of inheritance. We see two basic things as 
missing from the current theories: (1) a careful discussion of the structional operational semantics 
of languages with inheritance type systems and (2) any account of the relationship between the 
suggested models and a reasonable account of operational semantics. 

Our goal in this paper is to attempt an account of problem (1) guided by an approach to (2). 
We carry out this study in a simple, familiar context by using an extension of Plotkin's illustrative 
language PCF [Plo77]. We develop a simple structural operational semantics for this language in 
the spirit of the evaluation mechanisms of languages such as LISP and ML in which functions call 
their parameters by value. Our extension, which we call PCF+, is obtained by adding record and 
variant types. This language is extended to a new language, PCF++, by permitting the use of 
a form of inheritance which allows more programs to be viewed as type correct. We then study 
the question of the proper operational interpretation of PCF++. One possible approach is simple 
to  understand: after a PCF++ program is shown to be type correct, the type information in the 
term is erased and the resulting term (which lives in an extended untyped lambda-calculus) is 

'Appears in Conference on Lisp and Functional Programming, edited by M.  Wand, Nice, France, July 
1990, pp. 44-60. 
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before executing it, it is reasonable to  ask whether translation would affect the evaluation. Since 
coercions remove the "junk" in a term, they may play a useful role in efficient implementation. 
However, our primary interest is in the abstract specification of the language and not the details 
of its efficient implementation. 

Our main result relates the direct execution of a PCF++ program phrase e to the execution of 
any of its PCF+ translations, e*.  We prove that 

e terminates if and only if e* terminates. 

If both e and e* terminate, what can we say about the relationship between the results of the two 
computations? Of course, we are able to show that if the type of e is ground, (integer or boolean) 
then the results are the exactly the same. In this language we are also interested in computing 
with more complex objects, such as records/variants of records/variants of ground data (this is 
particularly consistent with the way things are viewed in object-oriented database programming 
applications [OBB89] for example). We call the types of such data observable types. Now, the 
philosophy of PCF++ is that the type of program phrases is part of them, i.e., user-supplied in some 
sense. (This is in contrast with the approaches based on type inference; see for example [Wan89].) 
At observable types, we show that the results of the two computations have the same components 
in those record fields which appear in the prescribed type of the program phrase. This is the best 
we can hope for, since the introduction of coercions yields computations which may remove "junk" 
fields, namely the fields not occurring in the prescribed type. Moral: if you specify a type for your 
program, don't expect t o  observe more than what the type allows. Anyway, our conclusion is that 
coercions make no essential difference to  the computation. 

While this result only relates our translation to  the operational semantics, it can be used for 
transfer of computational adequacy. Consider a denotational semantics V+ of PCF+ for which our 
translation is coherent. This yields a denotational semantics Vf+ for PCF++ where a term is 
interpreted by first translating it into PCF+ and then taking the D+-meaning of the translation. 
Under some reasonable assumptions about V+, our main result implies that if V+ is computa- 
tionally adequate (i.e. the meaning of a term e is non-bottom iff the evaluation of e terminates) 
for the operational semantics of PCF+ then 2)++ is computationally adequate for the operational 
semantics of PCP++. 

An interesting methodological twist is that our proof of the main result actually uses a specific 
denotational semantics [.I+ which is computationally adequate for PCF+ and for which this transfer 
can be done! As it is, we show directly that [.]I++ is computationally adequate for PCF++ and we 
derive our main result from this. We regard this as a nice example of the use of a domain-theoretic 
semantics for obtaining an essentially syntactic result. 

Another comment on methodology. We have chosen to  focus on call-by-value operational se- 
mantics since this is the most common style of implementation for the languages we are studying 
and because it offers a change of pace from our earlier results [BCGS89] where we focused on models 
in which the unrestricted ,O axiom holds. We expect that results such as the ones we are proving in 
this paper could be formulated for a call-by-name operational semantics, although this would call 
for some changes in our concept of observability. 

In section 2 we begin by introducing the syntax of PCF++ as an extension of PCF+. Then we 
describe the translation back, from PCF++ to PCF+. Finally we give the call-by-value operational 
semantics and state our main theorem. In section 3 we give a domain-theoretic denotational 
semantics of PCF+ for which our translation is coherent and for which the operational semantics 
of PCF+ is sound ahd computationally adequate. We prove that the operational semantics of 
PCF++ is sound and computationally adequate for the induced denotational semantics and then 
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0 : num false : boo1 t r u e  : boo1 

H  I- e  : num H  I- e  : num H  I- e  : num 
H  I- P r e d ( e )  : num H I- Succ (e )  : num H  I- I sZero(e )  : boo1 

H ,  x : s I - e : t  H t - e : s + t  H I - e t : s  
H ,  x : s ,  H t t - 2 : s  

H I - X x : s . e : t  H  I- e (e t )  : t  

H ,  x : s I - e : s  H k e : b o o l  H t - e t : s  H t e U : s  
H t - , u x : s . e : s  H  t- if e  then et e lse  e" : s  

H t- el : sl . - .  H  I- en : s, H  I - e : { l l  : s l ,  ..., En:sn}  
H I- {11 = e l ? .  . . , E n  = en} : {11 : s l , .  . . , E n  = sn} H  t- e.1;: s; 

H  I- e; : s; 
H  t- [ E ;  = e,] : [11 : s l ,  . . . , ln = s,] 

H l - e : [ l l : s 1 7 . . . 7 1 n = s n ]  H I -  f l : s l - + s  - . -  H I - e , : s n + s  
H  t - case  e o f  ll + f l . . - l n  * fn : S  

Table 1: Typing rules for PCF+. 

num < num s t < s  t < t t  
boo1 < boo1 s + t < s t + t t  

s1 < tl . . -  sn < t n  
(11 : S 1 ,  ..., En : S  n7 . . . , lm  : S m )  < (11 : t 1 7 . . . ? I n  : t n }  

s1 < tl ... sn < tn 
[ E l  : S l ,  ..., In  I sn]  < [ I l  : t l , . . . , I n  : t n ? . . . , I m  : t m ]  

Table 2: Inheritance rules. 
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0 4 0 t r u e  4 t r u e  false 4 fa lse  

e & Succ(c) e 4 c e 4 o  e 4 Succ(c) 
P r e d ( e )  c Succ(e) l,l Succ(c) IsZero(e) 4 t r u e  IsZero(e) 4 false 

e .lJ Ax : s. e" e' J. c' [cl/x]e" c 
Ax : s. e .I). Ax : s. e 

e(et) 4 c 

e l  t r u e  e2 4 c el  4) false es 4 c 
if el t h e n  e2 e lse  es 4 c if el  t h e n  e;! e lse  es 4 c 

e l & c l  enUcn e 4 {El = c l , .  . . ,In = c,) 
{Il = el  , . . . , I, = en} .lJ {11 = c ~ ,  . . . , ln = cn} e.1; 4 c; 

e U c  e 4 [Ii = c'] f;(ct) JJ c 
[ E  = el 4 [I = c] case  e o f  11 +- f l , . .  . ,I;  +- fi, . . .,I, +- f, 4 c 

[PX. e/xIe U c 
px. e 4  c 

Table 3: Call-by-value evaluation. 

For raw terms e and e' we write [ef/x]e for the result of substituting e' for x in e. We demand 
all of the usual assumptions about the renaming of bound variables in e to  avoid capturing free 
variables of e'. We assume that the substitution operation associates to  the right and we may write 
[el,. . . , en/xl , . .  . , xn]e for the simultaneous substitution of e l , .  . . , en  for 21,. . ., xn respectively in 
e. In the event that the terms e; are closed, note that this is the same as [el/xl] . . - [e,/xn]e and, 
indeed, the order of the substitutions does not matter. 

It is not hard to  see that if e is a closed raw term such that e c, then c is uniquely determined. 
This can be proved by showing that, for a given term e, there is a t  most one axiom or rule 
from Table 3 which applies to it. Hence the rules define a deterministic evaluation strategy. The 
evaluation of function application is call-by-value, since the argument t o  the application is evaluated 
before being substituted into the body of the applied procedure. There is no evaluation under a 
lambda-abstraction, but note that records are eagerly evaluated. For example, the evaluation of 
an expression {I = e, I' = et}.l will result in the evaluation of e' as well as e even though e' is "not 
needed" in the result. Putting aside efficiency issues, this is only significant if e' diverges since, in 
that case, the evaluation of {k = e, 1' = ef).1 will also diverge. Since evaluation is deterministic, we 
may define a partial function & on raw terms as follows 

e c if there is such a c 
&(e) E 

undefined otherwise 
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Let s = [Il : s l , .  . . ,l, : s,], then [E; = c;] =, [ E j  = cg] iff c; =,i c;. I 

If E and E' are expressions that may be undefined, write E =, E' to mean that if one expression 
exists, then so does the other and E =, El. We may now express the desired result: 

Main Theorem:  Suppose I- e : s is derivable in PCF++ and e* is any PCF+ term 
which translates this sequent, then e 4 iff e* $. Moreover, if s is observable, then 
&(e) E~ &(el). 1 

It seems difficult to prove this result directly because of the recursion case. This problem is resolved 
by appealing to denotational models for PCF+ and PCF++ which we now describe. 

3 A comput at ionally adequate denotat ional semantics. 

For technical reasons we have found that it is useful to appeal to some results relating PCF+ and 
PCF++ to a specific denotational model which we will describe in this section. Although our goal 
is to prove a purely syntactic result (the Main Theorem at the end of the previous section), the 
semantic results which we will now establish are of independent interest. 

We describe a domain-theoretic model for PCF+. The interpretation of types is as follows: 

[bool] is the flat domain with three distinct elements tt, g a n d  least element I. 

[num]] is the flat domain consisting of the numbers 0 ,1 ,2 , .  . . together with a least element 
I. 

[s -+ t] = (s c+ t)l, the lifted domain of strict (i.e. I-preserving) functions from [s] into [t]. 

[ {11 : s l , .  . .,En : s,} ] consists of a bottom element I, together with the set of tuples 
{II = dl , .  . . , E n  = d,) where each d; is a non-bottom element of [s;]. The ordering is defined 

by 
{11 = dl , . . . , En = d,} g {11 = d; , . . ., 1, = dk} 

iff d; C di for each i = 1,. . . , n and 1 5 d for each record d. 

[ [11 : ~ 1 , .  . .,En : s,] ]I consists of a bottom element I, together with the set of pairs [E; = d;] 
such that d; is a non-bottom element of Is;]. For two such pairs, [l; = d] C [ I j  = d'] iff i = j 
and d E dl. 

Suppose H = xl : s l ,  . . . xn : sn is a type context. An H-environment is a function which assigns 
to each variable x; an element p(x;) of the domain is;]. The PCF+ interpretation of a sequent 
H I- e : s is a function which assigns to each H-environment p a value [H t- e : in [s]. 

We will refrain from writing out all of the semantic equations for the sequents of PCF+. The 
rules for the introduction and elimination operators for the record and variant types are straight- 
forward, holding in mind that the interpretation of a record with a field which is I is itself equal 
to I. Recursion is defined in the usual way using least fixed points. The function space requires 
some explanation which we now provide. 

The lift DL of a domain D is obtained by adding a new bottom element. There is a continuous 
function up : D + DL which sends elements of D to their images in the lifted domain. This function 
is not strict, since it sends the bottom of D to an element of DL which dominates the "new" bottom 



Cornpu ting with Coercions 11 

L e m m a  6 1. If r < s < t ,  then [coerce[r < t]  : T -t t ]  = [coerce[s < t ]  : s + t ]  o [coerce[r < s] : 
r -+ s ]  

2. If s < t ,  then [coerce[s < t ]  : s + t ] ( d )  = I iff d = 1. I 

L e m m a  7 If t- c : s is a derivable judgement of PCF++ and c is a canonical form, then [c : 
s]++ # I. I 

Most of the rest of this section is devoted to  a proof of a kind of converse to  the Soundness 
Theorem which we will call computational adequacy (the term is suggested by Albert Meyer [Mey88], 
although his definition includes soundness). For P C F f f ,  it can be stated as follows: 

T h e o r e m  8 (Computational Adequacy.) Suppose e : s is derivable in  PCF++. If [e : s ] + f  + 1 
then e .& c for some canonical form c. 

We focus on explaining how the methods that one uses for results such as those above are 
applied to a calculus with multiple inheritance. We will look at the proof of adequacy in some 
detail. The proof requires a relation between program meanings and programs sometimes called 
an "inclusive predicate". We define this relationship as follows: 

Definition: Define a relation 5,  between elements of [ s ]  on the left and closed raw terms of type 
s on the right as follows. d 5 ,  e if d = I or e .& c for some c and d 5 ,  c where 

f z , , ~  AX : r. e iff for each d E [ s ]  and term c, d 5, c implies down( f ) (d )  5t [c /x]e .  

(11 = d l , .  . . , ln = d,} 5{11,, l,,:,,,) (11 = e l , .  . . , E m  = e m )  iff m 2 n and d; z,, c; for 
i = l , . .  .n. 

[ I ;  = dl 5[11 ,,,,..., 1 ,,,, ] [ I j  = c] iff i = j and d 5,; c. 

tt Zbool t r u e  and f f  5bo0l false. 

a 0 znum 0 and if n znUm c for a number n, then n + 1 Succ(c). I 

Some of the essential semantic properties of 5 are given in the following: 

L e m m a  9 1. If a b 5 ,  e,  then a 5,  e. 

2. If a0 5 a1 a2 . - .  is an ascending chain and an 5, e for each n, then Ur=o an 5, e. I 

We are now ready to  sketch the proof of the primary technical lemma which is needed for the proof 
of PCF++ adequacy. 

t L e m m a  10 Suppose H = x l  : sl . . .xn : s: and H I- et : st is derivable. If  di E [ s f ]  and di 5 t et 
t 

'i 
t for i = 1, .  . ., k ,  then [ H  I- et : st]++[dl,.  . ., d k / x l , .  . . , xk]  5,t [e l , .  . . , e k / x l , .  . . , xk]et .  

Proof: Let p be the environment [d l ,  ..., d,/xl ,  ... x,] and a be the substitution 
t [e l , .  . . , e i / x l , .  . .,x,]. Let A be a PCF++ derivation of the typing judgement H t- et : s t .  We 

prove that [H t- et : st]++p Zst aet  by an induction on A. Assume that the Theorem is known 
for proofs of lesser height. There are eleven possibilities for the last step of A. Some of the more 
interesting cases (subsumption in particular) are written out fully below. 
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H I - e : s  s < t  
Subsumption rule: 

H k e : t  
The proof for this case is by induction on the height of the proof that s < t. Assume that 
we know that the theorem holds for H t- e : s and let H I- e* : s be any translation of this 
sequent to  PCF+. There are four subcases: 

- Base types: These are both obvious since the coercion is the identity map. 

u l < u  v < v l  
- Functions: 

U + v < u l +  v" 
Suppose s - u + v and t = u' + vl. Let = down[coerce[ul < u ] ]  and & = 
down[coerce[v < v']].  Then [ = down[coerce[u -t v < u' + v']] satisfies [(f) = t2 o f  o t l  
for f : [u]  ~ [ v l ] .  Set f = down[H I- e : snf+p. If d 5,) c, then t 2 ( d )  5, c by 
induction hypothesis on u' < u. Thus f ( t 2 ( d ) )  5, ( a e ) ( c )  by induction hypothesis 
on H t- e : s. We may now apply the induction hypothesis on v < v' to  conclude 
that [( f )  = tl( f ( J 2 ( d ) ) )  5,' (ae ) (c ) .  Since [( f )  = [H I- e : t ] l s + ~  we conclude that 
([H k e : t n f f p z t  ae.  

S l < t l  
- Records: 

sn < tn 
(11 : S 1 ,  . . . , En : s,, . . . , 1, : 5,) < {11  : t l ,  . . . , En : t,) ' 

Let ti = down[coerce[s; < t i ] ]  for i = 1, .  . .n and let [ = down[coerce[s < t ] ] .  By 
induction hypothesis, we have d = [H t- e : s]++p 5, ae. If d = I, then [ ( d )  = [ H  I- 
e : t]++p = I and we are done. If d # I, then d = {Il = d l , .  . . , l ,  = d,) where 
d l , .  . .,dm # I and ae c for some canonical c of the form c = { I l  = c17. .  . , l j  = 
c j )  such that j 2 m and di 5,; c; for i = 1,.  . .m. By the induction hypothesis on 
inheritance judgements, we must therefore have J;(d;) 5 t ,  c; for each i = 1,. . . , n. Hence 
[ ( d )  = (11 = t l ( d l ) ,  . . ., 1, = en(dn))  ; ~ t  {bl = c l , .  . . , l j  = c j )  by the definition of zt 
and we are done. 

sl < tl - - .  - Variants: sn < tn 
[11 : S 1 , .  . . , I n  : s,] < [ E l  : t 1 7 . .  . , I n  : t n7 . .  . , I m  : t,]' 

Let ti = down[coerce[s; < t i]] for i = 1,. . .n and let [ = down[coerce[s < t ]] .  By 
induction hypothesis, we have d = [H t- e : s]++p 5, ae.  If d = I, then ( ( d )  = 
I[H t- e : t]++p = I and we are done. If d # I, then d = [l; = di] where d; # I 
and ae $ c where a e  $ c and d 5, c. By the definition of z,, the term c has the form 
[ I ;  = c;] and di 5,; c;. By induction hypothesis on s; < t ; ,  we know that t ; (d;)  5 t i  c; so 
t ( d )  = [ E j  = t i ( d ) ]  5 t  [li = ci]. I 

We may now express the desired proof of Computational Adequacy for PCF++. 

Proof: (of Theorem 8) By Lemma 10 we know that [e : s]++ ;Ss e .  Since the value on the left is 
assumed to differ from I, the Theorem follows immediately from the definition of 5,. I 

The following theorem follows immediately from Soundness and Computational Adequacy for 
PCF++ together with Corollary 4 of the Semantic Coherence Theorem for PCF++. 

Theorem 11 (Soundness and Adequacy for PCF+) If t- e : s is derivable in PCF+, then 

1. (Soundness) e .l,l c implies [ e  : s]  = [c : s] .  

2. (Computational Adequacy) [e : s]+ # 1 implies e lJ. c for some canonical form c. 1 

The following lemma is needed for the proof of the Main Theorem: 
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that our translation is denotationally coherent with respect to  V f ,  which induces a model D++ 
of PCF++, and that the operational semantics of PCF++ terms is sound in Df+. Of course, by 
the main theorem of this paper, we can also get transfer of computational adequacy. Therefore, 
we would be able to  neatly concentrate in the axiomatization of 7 all the conditions needed by a 
"good" model of PCF+ in order to  become a model of PCF++ in accordance to  our paradigm. 

An intriguing question is whether c* = c' will turn out to be more than an r.e. statement, 
whether it is actually decidable? In other words, is full PCF+ computation required in order to 
systematically disentangle the coercions we introduce? 

Finally, we should restate that we expect that the results of this paper generalize to more 
complicated type disciplines (Fun, Quest, etc.) and that analogs can be shown for call-by-name 
operational semantics. 
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Abstract  

This report is intended to  describe and motivate a relationship between a class of nets and 
the fragment of linear logic built from the tensor connective. In this fragment of linear logic a net 
may be represented as a theory and a computation on a net as a proof. A rigorous translation 

is described and a soundness and completeness theorem is stated. The translation suggests 

connections between concepts from concurrency such as causal dependency and concepts from 

proof theory such as cut elimination. The main result of this report is a "cut reduction" theorem 
which establishes that any proof of a sequent can be transformed into another proof of the same 

sequent with the property that all cuts are "essential". A net-theoretic reading of this result tells 
that unnecessary dependencies from a computation can be eliminated resulting in a maximally 

concurrent computation. We note that it is possible to interpret proofs as arrows in the strictly 
symmetric strict monoidal category freely generated by a net and establish soundness of our 

proof reduction rules under this interpretation. Finally, we discuss how other linear connectives 
may be related to the concepts of internal and external choice. 

1 Introduction 

In this paper we explore the idea of describing the operational semantics of a net (the so-called 

"token game") in proof-theoretic terms. Under our approach, a net will correspond to a logical 

theory, and the token games on the net will be represented as proof trees in the "logic" of the net. 

This correspondence reveals an interesting relationship between concepts of proof theory (such as 

cut elimination) and fundamental concepts in concurrency (such as causal dependency) as they are 

'This is an extended and revised version of the preliminary report that appeared in: Application and Theory 
of Petri Nets, edited by G. De Michelis, June 1989, pp. 174-191. 

t~esearch of both authors is supported by Office of Naval Research Grant N00014-88-K-0557. Electronic mail 
addresses for the authors are gunteralinc .cis .upenn. edu and gehlot0linc. cis.upenn. edu 
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Structural Rules 

I" B7 A (Exchange) - A I- A (Identity) I ' l - A  A , A I - B  
I',B,A,A I- C r , A k  B (cut )  

Logical Rules 

rl- A A I - B  ~ , A , B  I- c 
I ' , A l - A @ B  (@R) I ' , A @ B I - C  (@L) 

Figure 1: Structural and logical rules for a fragment of linear logic. 

I' I- A is provable in T if r l- A is in Th(T). We say that r I- A is provable if it is in Th(0). Let 

us say that a pair A l--I B is provable if A I- B and B t- A are both provable. It is not hard to see 

from these axioms that the tensor connective is associative and commutative: 

Proposition 1 For any A, B, C, the sequents A @ B t--I B @ A and (A 8 B) @ C F-I A @ ( B  @ C )  

are provable. I 

However, the tensor connective is not absorptive; for example, the sequent A@ A I- A is not provable. 

It is therefore possible to think of a tensor formula as a multi-set (or "bag7') of propositional atoms. 

Given a tensor formula A, let M(A) be the multi-set of propositional atoms determined by A. It  

follows from the proposition that tensor formulae A and B such that M(A) = M(B) are equivalent, 

i.e. A l-4 B. Moreover, sequents I' l- A and A I- A are equivalent in the sense that each can be 

derived from the other if the lists l7 and A determine the same multi-set of propositions. For this 

reason, we will treat sequents as pairs I' I- A where I' is a multi-set. 

For the purposes of this paper, a net N is a set SN of places together with a set TN of pairs of 

multi-sets over SN.  A pair t = ( ' t , t ' )  E N is called a transition of the net with pm-condition ' t  and 

post-condition t'. Of course, this is only one of the many flavors of nets that have been studied in 

the rich literature on such structures. Nets, as defined here, are similar to place/transition-systems 

as defined, for example, in [15]. However, our notion of net has less structure since there are no 

capacities and a transition is uniquely determined by its pre and post conditions. Moreover, a net 

in our sense does not have a specified initial marking. One of the appealing characteristics of nets 
is the way they lend themselves to  pictorial representation. For example, the net No consisting of 

the pairs ( { A ) ,  {B, B,C))  and ({B), { A ) )  is pictured as a labelled graph in Figure 2. 
Before we offer a technical definition of just how a net determines a theory, we will attempt to 

motivate the basic idea by means of examples. Consider the net N1 pictured in Figure 3. In this 
net, if we are given a token on the condition A, then it is possible to fire the event r .  Firing this 

event, exhausts the token on A but provides a token on B. Logically, let us read the event T as an 

axiom A l- B meaning "from A i t  is possible to obtain B." Similar ideas apply to the events s,  t 

and u which we may read as B I- D and A I- C and C I- E respectively. Now, event v requires a 
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Figure 4: A net N2 with a critical region. 

pepsi and $1 to buy a coke, then I can't expect to use $1 to buy both a pepsi and a coke. Of course, 

one can also write the conjunction rule as 

A t - D  A I - E  
A,A t- D A E 

but this only begs the issue, since some instance of the thinning rule: 

would be used at a later step in the proof to remove the second copy of A and this rule is just as 

suspect as the earlier version of the conjunction rule. To deal with this problem, one needs a logic 

in which the thinning rule is omitted and the second of the conjunction rules is used for the "and" 

connective that we have in mind. 

The proper rules are those given in Figure 1 for the linear logic tensor connective 8. These 

rules keep track of the resources as needed. In linear logic, the sequent A I- F is not provable in TI. 
However, it is possible to check that A, A k F is provable in TI, as  we expect it should be. There 

are, in fact, several proofs of A,A t- F in TI;  three of these are listed in Figure 5 (on page 7). We 
will come back to these proofs later to discuss how they relate to the net token games that move a 

token from the marking A, A to  the marking F. 
To give a slightly larger example, which we hope will suffice in giving the reader the general idea, 

consider the net N2 in Figure 4. This net corresponds to the tensor theory T2 with the following 
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logic involves expanding our discussion to a larger fragment of the calculus. Since rules from L ( N )  
may be used arbitrarily often, they must be represented as linear logic propositions using the "of 

coursen operator, written !A. (Given a linear proposition A, the proposition !A represents the "pure 

propositional content" of A. In the current context we may think of it as an unlimited resource of 

A's.) Linear propositional logic with the ! operator is not known to be decidable. The result above 

suggests that the decision procedure for this calculus, if it exists, will not be easy to find. 

Proof 1. 

Cut 

Proof 2. 

A k B  B , C F D @ E  
8 

A l - C 8 R  
A . A F  B R C  B R C ~ - D R E @ ~  - - - 

A . A k D @ E  
Cut 

D R E l - F  - 

A,Al -  F 
Cut 

Proof 3. 

A t - B  B l - D  A t C  C t E  
Cut 

A l - D  A l - E  
Cut 

A , A k D @ E  D@.El-F 
A , A k  F 

Cut 

Figure 5: Three proofs that A, A I- F. 

3 Proofs as Computations 

Let us return now to our discussion of the net Nl in Figure 3 (on page 4). This net displays some 

of the intuitive representations of concepts which have made nets an appealing model for both 

theoreticians and practitioners. The events T and t "compete" for the resource A and the events s 

and u are capable of running concurrently if they have the necessary resources B and C. There is 

a causal dependency between T and s: if r fires then s will be enabled. A similar dependency holds 

between t and u. If there is a line of computation which passes through r , s  and another which 
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equational axioms can be eliminated. However, the "maximally concurrent" proof we desire cannot 

be obtained by a straight-forward translation of these ideas. Instead, it is necessary to  rely on other 

intuitions about the correct forms. 

4 Cut reduction. 

In this section, we formalize the concepts intuitively discussed in the previous section. Our goal is 

to demonstrate a set of rewrite rules for transforming a given proof into a "maximally concurrentn 

proof of the same sequent. We begin by defining essential cuts and then state and prove the cut 

reduction theorem. The proof is based on giving a finite set of proof reduction rules which is shown 

to  be strongly normalizing. 

Definition 1 An instance of the cut rule in a proof is trivial if at  least one of the premisses is an 

axiom of the form A t- A. 

Definition 2 An instance of a cut rule in a proof is called essential if it is non-trivial and has the 

form 

r k A  A t - B  
r t- B 

Cut 

where A is a netformula. 

Theorem 4 (Cut-Reduction) Given a net N and its associated deductive system & ( N ) .  If a 
sequent I' !- A is provable in  L ( N ) ,  then there is a proof of this sequent in  & ( N )  such that all cuts 

are essential. 

Intuitively, essential cuts seem to capture dependencies exactly as dictated by the underlying 

net. A proof is cut-reduced if all instances of cuts in it are essential. 

We will give a collection of rewrite rules for proofs and show the existence of a normalizing 

sequence. We will then strengthen this result by establishing that the set of reduction rules is 

strongly normalizing . The theorem above will immediately follow from the proposition that every 

normal proof is cut-reduced. 

Remark: Prawitz [14] distinguishes "normal form theorem", "normalization theoremn, and 

"strong normalization theorem". In his terminology then, our cut-reduction theorem is a normal 

form theorem, the second theorem will be a normalization theorem, and the last one will be a 

strong normalization theorem. 

We begin by enumerating transformations on proofs. Assume that a proof P ends with an 

inessential cut, i.e. it has the following form: 
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2.2.2 The last rule is a @R. We distinguish following two cases. 

2.2.2.1 Cut formula A in upper left sequent of the last rule of PI'. 

2.2.2.2 Cut formula A in upper right sequent of the last rule of P". 

2.2.3 The last rule of P" is an essential cut. In this case, the cut formula cannot come from the 

upper right sequent of the essential cut above. Thus we have only one case to consider. 

CukA r,al 1 B B I - c  
r,nl t- c CukB 

Note once again that B belongs to some netaxiom in the two cases above. 

3. Logical. This is the case where the cut formula is the main formula of a logical rule in both 

Pr and P" and is introduced only by this instance of the rule. The transformation in this case 

depends on the outermost logical symbol of the cut formula and since we only have one logical 

connective, there is only one case to consider here. 
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The proof of the theorem then immediately follows from the above lemma by an easy induction 

on the number of inessential cuts appearing in a proof. In any proof consider an inessential cut 

above whose lower sequent no inessential cuts appear; thus satisfying the condition of the lemma. 

According to the lemma this (sub) proof can be transformed into another (equivalent) proof which 

does not contain this cut. In doing so, rest of the proof remains unchanged. We get a cut-reduced 

(equivalent) proof by repeating this process until all the inessential cuts have been eliminated. 

Proof: (of the main lemma) Easy induction on the number of nodes in a proof satisfying the 

condition of the lemma. ' 1 
The following is now immediate. 

Theorem 8 Let P be a proof. Then there exists a sequence of reductions such that P ** PI, and 

P' is in normal form. [ 

The following definition will be used in the proof of our next theorem. 

Definition 4 The grade g of a formula A is the number of @ contained in A. The grade of an 
inessential cut is the grade of its cut formula. 

Thus, by the definition above, grade of an essential cut is 0. 

T h e o r e m  9 (S t rong  Normalizat ion)  There is no infinite reduction sequence beginning with any 

proof PI. 

Proof: We define a measure on proofs and show that each one step transformation reduces this 

measure. 

Let the complexity of a proof be a pair ( a ,  b), where 

a = sum of the grade g of cut formulas of all inessential cuts in the proof. 

b = sum of the nodes above all inessential cuts (including the premisses and conclusion of the 

cut). 

Clearly, a cut-reduced proof has complexity (0,O). 

Now consider the three (main) classes of the transformations above. It is easy to see that 

application of these transformations in each case to a proof reduces its complexity. 

Axiom: Both a and b are reduced. 

Permutation: b is reduced keeping a the same. 

Logical: a is reduced. 

Thus, all reduction sequences terminate. 1 
In Appendix A we have written out how the rewriting works on Proof 1 and 2 in Figure 5. 
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11 1 l-I 2 

where f : l ' - + A = I ( r F A ) a n d g : A @ A +  B = I ( A , A t - B ) .  

Propos i t ion  10 The proof reduction rvles are sound with respect to the interpretation above. 

Proof: We just consider an illustrative case here. Consider the reduction rule 2.2.2.1. The function 

I yields an arrow corresponding to  the left hand side as follows. Let f : I? -r A, g : A' €4 A -+ B, 
and h : A" --+ C. Then we have: 

( f  €4 ~ A I ~ A ~ I )  0 (9 @ h) : I' @ (A' @ A") + B €4 C 
= ( f  €4 (;A# €4 i ~ l l ) )  o (g @ h) 

= ((f €9 ~ A I )  €4 i a ~ ~ )  0 (g 8 h) 
= ((f €4 i ~ ' )  0 g) €4 (iAll 0 h) 

= ((f  8 ial)  0 g) 8 h 
= I (right hand side) 1 

In view of the above proposition and the strong normalization theorem, the following is imme- 

diate. 

Corol lary 11 Every proof reduces to a unique normal form modulo the interpretation. 1 

It  has long been argued by proof theorists that a notion of equivalence of proofs based on mere 

provability is too extensional and inadequate. But the question of the right notion of equivalence of 

proofs still remains open. Prawitz [14], for the system of Natural Deduction and his set of reduction 

rules, conjectured that two derivations represent the same proof if and only if they reduce to the 

same normal form. Now in view of corollary 11 above we may say something similar for the 

identification of the derivations in a tensor theory. However, it seems that such an identification 

does not quite capture the intuitive sense of equivalence (based on processes) that we have in mind 

for net computations and is still too extensional. For example, proof 2 and proof 3 of section 3 
would be identified as the corresponding arrows are equal because -@ - is a bifunctor. However, the 

process interpretation that we have in mind should not result in such an identification. Thus the 

sense in which proof 3 is not equivalent to proof 2 (and in fact better) is lost in the denotational view 

that we have presented in this section. We are currently looking at how to attach such intensional 

interpretations to proofs in our setting. We have made some partial progress towards this, though 

mostly via some ad hoc means. 

6 Choice Situations 

We have so far restricted attention to  a rather small fragment of linear logic because this fragment 

is already sufficient to illustrate several important concepts that suggest interesting relationships 
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Coke 

0 p-1 
Figure 7: Coca Cola implements $1 i- coke $ pepsi. 

affairs with the formula (D @ C )  &(A @ E) .  Here is a proof of the proper statment: 

It is our feeling that the direct product operator captures a form of external choice. On the other 

hand, the linear disjunction captures a concept of internal choice. Given two linear propositions A 
and B, one proves the linear disjunction A $ B of A and B from hypotheses I' by using one of the 

following rules: 

In other words, the resource A $ B can be obtained from I' just in case either A or B can be. On 

the other hand, if one wishes to  obtain C from r and resource A $ B, then it must be shown that 

C can be obtained from both A and B. The rule is 

Figure 8: Pepsi Cola implements $1 i- coke $ pepsi. 

The internal/external distinction can be illustrated by a simple example which takes linear 

propositions as a specification language. Let us assume that we wish to contract a vendor to build 
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earlier the unary operator ! which represents an unlimited resource. This operator plays a subtle 

role in the theory we have exposited; work of Carolyn Brown [4] provides helpful insight. All of the 

linear logic connectives seem to have their own significance in terms of computation on nets. (We 

have included a list of some of the rules of linear logic in Appendix B.) Work on the exploitation 

of these ideas is likely to be a profitable for the study of both concurrency and proof theory. 
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A Sample Proof Transformation 

We give some examples of cut-reduction below. At each step of the reduction, the inessential cut 

to which a reduction rule is applied is denoted [I. Other choices of inessential cuts, if any, at - 
a step to which a rule could have been applied are denoted Cut. Remaining inessential cuts are 

denoted &t. 
Example 1 

B t - D  
A l - B  

C k E @ R  

A F C @ ~  B , C l - D @ E  @L 
A , A l - B @ C  B @ C l -  D @ E  

A , A l -  D @ E  D @ E t - F  
A , A k  F 

Cut 

. ,  - Cut I. - 

Cut 

A l - B  B l - D  A l - C  C l - E  
Cut 

A t - D  cut 
2.2 2 2 * A , A l -  D @ E  

A l - E @ R  
D @ E l - F  

A , A l -  F Cut 

Example 2. 

Cut 

Cut 
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D l -  D  
A l - B  I- A l - C  

Cut 
&- A l - D  A, D  I- D  @ E  Cut 

A , A l -  D @ E  - 
D @ E l - F  

A , A l -  F 

A l - C  
A l -  B  D l - D  

C l -  Cut 

A l - D  Bt- Cut A ' E @ R  
A , D l - D @ E p J  

A , A l -  D @ E  D @ E l - F  
A , A l -  F 

A l - B  
A l - D  

* l- 
Cut A t - C  

A l - D  
C l -  

Cut 

A , A F D @ E  
A F E @ x t  

D @ E l - F  Cut 
A , A l -  F 

A l - C  
cut  

A F B  
A l - E  

l- Cut 

A , A l - D @ E  
A l - D @ R  

D @ E F  F 
A , A l -  F  
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Abstract 

This paper discusses the relevance of a form of cut elimination theorem for linear logic tensor 
theories t o  the concept of a process on a Petri net. We base our discussion on two definitions 
of processes given by Best and Devillers. Their notions of process correspond to equivalence 
relations on linear logic proofs. It is noted that the cut reduced proofs form a process under the 
finer of these definitions. Using a strongly normalizing rewrite system and a weak Church-Rosser 
theorem, we show that each class of the coarser process definition contains exactly one of these 
finer classes which can therefore be viewed as a canonical or normal process representative. We 
also discuss the relevance of our rewrite rules to  the categorical approach of Degano, Meseguer, 
and Montanari. 

1 Introduction 

It has often been useful to take ideas from proof theory and look at their computational significance. 
One very fruitful line of investigation has been the use of the Curry-Howard correspondence-the 
"propositions as types" idea-as a way of seeing proofs as programs and types as specifications. 
This correspondence reveals an analogy between cut elimination in systems of natural deduction 
and the reduction of lambda-terms, thus strongly connecting the study of a central proof-theoretic 
idea (with a history dating back at least to the 1930's) with a central computational concept in 
sequential functional programmming. 

Another, more recent, line of investigation with a kinship to this sequential theory concerns the 
relationship between certain kinds of proofs and concepts in concurrency. A number of authors 
have discussed the idea of relating concurrent computations as represented by Petri nets to proofs 
in linear logic [7] .  One line of research seeks to use the fact that nets give rise to a monoid structure 
and can therefore be used to model linear logic through the use of a phase semantics [6]. In this way 
a net can be viewed as a model of the linear connectives in which there is a correspondence between 
the truth of a linear sequent in the model and the reachability relation on the net. However, most of 
the research [8, 9, 1, 41 has focused on the idea that a net may be viewed as a theory in a fragment 
of linear logic (the tensor theory to be precise). In particular, when things are viewed in this way, 
there is a precise correspondence between concurrent computations on a Petri net and linear logic 

'Research of both authors is supported by the Office of Naval Research. Electronic mail addresses for the authors 
are gunterQcis.upem. edu and gehlotQcis .upenn.edu 
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Figure 1: Net N with two processes of type A @I A' + C @ C'. 

respectively. Dynamically, computations proceed by the firing of transitions. If transition r fires, 
for example, then the token is removed from A and placed on its postcondition B;  the transition T 

is now disabled since its precondition A is no longer filled. We may also speak of the concurrent 
firing of r and r' in the starting configuration of Figure I since there is no dependency between 
their pre-conditions. 

For formal definitions we refer the reader to recent publications in LICS [lo, 51. For this paper 
we will take it as a working definition that a net (or, to be more precise, a place/transition net) is a 
set of pairs of multisets over a set S of places. This is really a special case of the definition of a net 
in [lo, 51 where distinct transitions with the same pre and post conditions are permitted, but the 
restriction simplifies our notation since it avoids the need to label the linear sequents to preserve a 
precise correspondence between nets and linear tensor theories. For this preliminary discussion, it 
will be convenient to utilize their categorical treatment of nets and write transitions as arrows in 
a category with a binary operator @ on its objects. In this notation, the transitions in the figure 
may be viewed as arrows: 

r : A + B  s : B + C  
t : B @ B ' + C @ C f  

r': A +  B s t : B + C  

There are two operations on arrows. If f : X + Y and g : Y -t Z, then f ; g  : X + Z is the 
compositionof f andg.  Iff  : X + X t a n d g : Y  - tYJ , then  f @ g : X @ Y  +Y@Y' i s the t enso r  
product of f and g. Starting with the basic transitions, these operations generate a language of 
computations on the net. Intuitively we read f ;  g as the sequentialization of f and g: "first do f 
and then do g". We read f @ g as the concurrent performance of operations f and g: "do f and g 
at the same time". 

Looking again at  Figure 1, here are four sample computations of type A  @ A' + C @I C' on the 
net N: 

where the idle transition (identity map) on a place X is written simply as X. Much of the research 
on nets (and, indeed, concurrency as a whole) has focused on the question of when two computations 
such as the ones above are "essentially the samen. In the case of the computations above, one may 
well expect to distinguish between processes f and g, for example, since one of these computations 
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formulas of the theory T. An instance of a cut rule is said to  be essential (in a proof in the theory 
T) if it is non-trivial and has the form 

I ' t -  A  A t - B  
I ' k B  

cut 

where A  is a netformula. A proof is said to be in normal form if all of its cuts are essential. IVe 
will discuss normalization of proofs in the next section. 

Definition 1 Let N be a net. The equivalence relation S ( N )  on proofs is defined as the smallest 
equivalence relation satisfying the following equations between proof trees. 

II TI' TI 
(1) I',B,Ct- D  A i - E ~ R  - I ' ,B,Ct- D  TI' 

- 

r , B , C , A t - D @  E  @L ~ , B @ C F  D " ~  
I ' , B @ C , A t -  D @ E  

A k E @ R  
r , B @ C , A t - D @ E  

rI TI' II' 
- 

II" 
(4) r t- A A k c g R  11" - r~ at-c 

I ' , A t - A @ B  I ' F A  A k C B R  
A k c @ R  A , A F B @ C g R  

I ' , A , A t - A @ B @ C  r , A , A t - A @ B @ C  

II TI' TI' TI" 
( 5 )  I? t- A  A,At -  B  TI" - - II A , A k B  A , B F C  

Cut 
I ' , A k B  A , B t - C  I't- A  A , A , A  i- C  Cat 

r , A , A  t- C  
Cut 

I ' ,A,A t- C 
Cut 

n II' TI 
r , B , C F  D  D t - E  - - I ' ,B,CF D  II ' 

e-cut ~ , B , c  t- E ~ , B @ c c D @ ~  ~ t - E  
~ , B @ c c E @ ~  ~ , B @ C F E  

e-cut 
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depends on the outermost logical symbol of the cut formula and since we only have one logical 
connective, there is only one case to consider here. 

r" t- A~ F" 'A28R A l , A z , A t - B  
I", I?" t- A1 8 A2 A ~ @ A ~ , A ~ - B @ ~  

Cut:A1 @A2 r', ru, A t- B 

rt t- A~ A,> A2, A I- B cukAl 

3 r" t- A2 I", A2, A t- B 
Cut:Az rrr, rt, A I- B 

The following property of the rewrite rules is not difficult to  check: 

Proposition 1 (Soundness of Rewrite Rules) The above rewrite rules preserve the 7- 
equivalence of proofs. I 

We now show that the these reduction rules are strongly normalizing. We will need the following 
definition in the proof of the strong normalization theorem. 

Definition 2 The grade g of a formula A is the number of occurrences of 8 contained in A. The 
grade of an inessential cut is the grade of its cut formula. 

Thus, by the definition above, grade of an essential cut is 0. 

Theorem 2 (Strong Normalization) There is no infinite reduction sequence beginning with any 
proof P . 

Proof: Let the complexity of a proof be a pair ( a ,  b), where 

a a = sum of the grade g of cut formulas of all inessential cuts in the proof. 

a b = sum of the nodes above all inessential cuts (including the premisses and conclusion of the 
cut). 

Clearly, a cut-reduced proof has complexity (0,O). We now show that each step of reduction on 
a proof reduces its complexity. Consider the three classes of the transformations above. It is easy 
to  see that application of these transformations in each case to  a proof reduces its complexity. 

Axiom: Both a and b are reduced. 

Permutation: b is reduced keeping a the same. 

Logical: a is reduced. 

Thus, all reduction sequences terminate. I 

In the following section we show that the induced reduction relation on the equivalence classes 
modulo the relation S ( N )  on proofs enjoys the Church-Rosser property. We will then show that ev- 
ery 7 -  equivalence class has a unique normal process representative by showing that the equivalence 
defined by the reduction relation on S-equivalence classes coincides with the relation 7.  The S- 
equivalence class of normal forms will then be the unique process representative of a 7-equivalence 
class. 
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Now 111 can be reduced to 

r , B , C k A  A1,AI- D 
Cut n3 

I?.B,c,A'~- D A " F E  

by another application of a permutation rule and similarly TI" can be reduced to 

, I  Ell= Cut 
r , B , C , A 1 t  D gL n3 

I' ,B@C,A1t- D A" F E @R 

~ , B @ C , A ' , A " I -  D @  E 

It is easy to see that C'SC" and thus the required existence of C has been shown. I 

Since the reduction rules are strongly normalizing by Theorem 2, we use the Newman's Lemma 
(see [2] on page 58) which says that WCR and SN implies CR to conclude that +> satisfies the 
following diamond property which will be used in the proof of Theorem 4 below. 

Definition 3 A normal process representative is an S-equivalence class of normal forms. 

Theorem 4 (Unique Process Representative) Let N be a net. In every I-equivalence class, 
there is a unique normal process representative. 

Proof: Let II and II' be two S-equivalent classes. Define II JJ II' if they both reduce to same 
normal form modulo the equivalence S. To prove the theorem, we only have to show that II 4 II' iff 
II 7111,i.e. the two equivalences coincide. Since the only if part follows from the soundness of the 
rewrite rules, we are only left with the if part. To prove the if part, we show that if two proofs are 
equivalent by virtue of equation (7) in section 2, then there is a sequence of reduction +> from one 
to  another. We thus rewrite the left-hand side of the equation (7) to a form which is S-equivalent 
to the right-hand side of the equation. 

II" IIlll 

1T 111 A F C  B F D  
r t - A  A t - B  @R 

@R 
A , B l - C @ D  @L 

I ' , A l - A @ B  A @ B I - C @ D  
I ' , A t - C @ D  

Cut 
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In other words, this rewrite rule will give a unique "normal" S [ N ]  arrow for each 7 [ N ]  equivalent 
class of arrows of [5]. In the rewrite above, the left-hand side is always defined whenever the right- 
hand side is defined but not vice-versa. In particular, subject reduction fails drastically, so the 
rewrite system must maintain the types of the terms. 
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Abst rac t  

We develop formal methods for reasoning about memory usage at a level of abstraction 
suitable for establishing or refuting claims about the potential applications of linear logic for 
static analysis. In particular, we demonstrate a precise relationship between type correctness for 
a language based on linear logic and the correctness of a reference-counting interpretation of the 
primitives that the language draws from the rules for the 'of course' operation. Our semantics 
is 'low-level' enough to express sharing and copying while still being 'high-level' enough to 
abstract away from details of memory layout. This enables the formulation and proof of a result 
describing the possible run-time reference counts of values of linear type. 
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Introduction 

Table 1 : Translating to a Linear-Logic- Based Language. 

l e t  fun add x y = 

l e t  fun  add x y = 
i f x = O  
then  y 
e l s e  add (x-1) (y+l )  

i n  add 2 1 
end 

share w,z a s  x i n  
i f  f e t c h  w = 0 
then dispose z, add before  y 
e l s e  ( f e t ch  add) 

( s t o r e  ( ( f e t ch  z )  -1) ) 
(y+l )  

i n  add ( s t o r e  2) 1 
end 

to the variable z.  These two variables share the value to which x is bound. The dispose primitive 
indicates that one of these sharing variables, z ,  is not used in the first branch of the conditional. The 
primitive s t o r e  creates a sharable value and f e t c h  obtains a shared value. In our interpretation, 
the LL-specific operations share and dispose explicitly manage reference counts of the share'able 
and dispose7able objects that are created and consulted by being s tore 'd  and f  etch'ed. For the 
example in Table 1, the occurence of share indicates that two pointers are needed for the value 
associated with x (so the reference count of the associated value is incremented), but in the then  
branch of the conditional, one of the pointers is no longer needed (so the reference count of the 
associated value is decremented). 

Analogs to the s t o r e  and f e t c h  operations are the delay and force operations that appear in 
many functional programming languages. In such languages, the delay primitive postpones the 
evaluation of a term until it is supplied to the force primitive as an argument. When this happens, 
the value of the delayed term is computed, returned, and memoized for any other applications of 
force. Abramsky [Abr] has argued that this is a natural way to view the operational semantics of 
the s t o r e  and f e t c h  operations of LL; we will follow this approach as well. The dispose primitive 
has an analog (and namesake) in several programming languages. Typically, an object is disposed 
by being deallocated; this operation is unsafe because it can lead to dangling pointers. In our LL 
language the primitive dispose will only deallocate memory if this is safe since its semantics will be 
to  decrement a reference count; deallocation only happens when this count falls to  zero. The share  
command is unique to LL, and its name accurately reflects the way in which it will be interpreted. 

One of our primary goals in this paper is to offer an approach for rigorously expressing and 
proving optimizations obtained by analyzing an LL-based language. In particular, there is an 
adage that 'linear values have only one pointer to  them' or 'linear values can be updated in place7. 
Wadler [Wad901 has informally observed that these claims must be stated with some care: a 
reference count of one can be maintained by copying, but this would negate the advantage of in- 
place updating. Our operational semantics allows us to check the claim rigorously: in particular, 
we show that linear variables may fail to have a count of one in our reference-counting operational 
semantics, which uses sharing heavily; when this is the case, a linear variable does not have a 
unique pointer to  it and cannot safely be updated in place. The problem arises when a Linear 
variable falls within the scope of an abstraction over a non-linear variable. We express a theorem 
asserting precisely when the value of a linear variable does indeed maintain a reference count of at  
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2 Operational Semantics with Memory 

Here we give a preview of the operational semantics of the LL-based language by describing the 
familiar operational semantics of a simple functional language with s tore  (delay) and f e t ch  (force) 
operations. We base this preliminary discussion on a language with the grammar 

M ::= x I (Ax. M )  I ( M  M )  1 
n I true I false ( (succ M )  I (pred M )  I (zero? M )  I 
(if M then M else M )  I (fix M )  ( 
(store M) I (fetch M )  

where x and n are from primitive syntax classes of variables and numerals respectively. This is a 
variant of PCF [Sco, Plo77, BGSSO] augmented by primitive operations for forcing and delaying 
evaluations. The expression (fix M )  is used for recursive definitions. 

The key to  providing a semantics for this language is to  represent the memoization used in 
computing the f e t ch  primitive so that certain recomputation is avioded. We aim to provide a 
semantics a t  a fairly high level of abstraction using what is sometimes known as a natural seman- 
tics [Des86, Kah871. Such a semantics has been described in [PS91] using explicit substitution and 
in [Lau93] through the use of an intermediate representation in which all function applications have 
variables as arguments. Both of these approaches are appealingly simple but slightly more abstract 
than we would like for our purposes in this paper. Our own approach, first described in [CGR92], 
is based on a distinction between an environment which is an association of variables with loca- 
tions and a store which is an association of values with locations. Sharing of computation results 
is achieved through creating multiple references to a location that holds a delayed computation 
called a thunk. When the value delayed in the thunk is needed, it is calculated and memoized for 
future reference. To define this precisely we must begin with some notation and basic operations 
for environments, stores, and memory allocation. 

Fix an infinite set of locations Loc, with the letter I denoting elements of this set. Let us say 
that a partial function is finite just in case its domain of definition is finite. 

An envi ronment  is a finite partial function from variables t o  locations; p denotes an envi- 
ronment, and Env denotes the set of all environments. The notation p(x) returns the location 
associated with variable x in p, and to update an environment, we use the notation 

1 i f x = y  
il)(y) = p(y) otherwise. 

The symbol 0 denotes the empty environment; we also use [x tt I] as shorthand for 0[x I+ I]. 

A value is a 

- numeral k, 

- boolean b, 

- pointer susp(1) or rec(E, f ) ,  or 

- closure closure(Ax. M , p )  or recclosure(Ax. M,p).  

The letter V denotes a value, and Value denotes the set of values. 
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Figure I: Structure generated by (store $1) 

meminterp((fetch M ) ,  p ,  a )  = 
l e t  ( lo ,  U O )  = meminterp(M, p ,  a )  
i n  case uo(lo) of susp(l1) => 

case ao(ll) 
of thunk(N, p') => 

l e t  (12,  u l )  = meminterp(N, p', ao) 
i n  (12,  U I [ ~ C I  ++ S U S P ( ~ Z ) I )  

I - => ( 1 1 ,  6 0 )  

Note that there is no clause for the case when ao(lo) is not a suspension. In this case, we assume 
that the behavior of the interpreter on (fetch M )  is undefined. This assumption simplifies the rules, 
and allows us to ignore what are, in effect, run-time type errors. Our other rules will also ignore 
run- time type errors. 

There is another approach we might have taken to modelling memoization. The interpretation 
of (store M )  allocates a location lo that holds a thunk, and returns a location l1 that holds a pointer 
susp(lo) to this location. Could we instead have returned lo as the value? That is, the rule could 
read 

meminterpl((store M ) ,  p, u )  = new(thunk(M, p ) ,  a )  

The answer to this question is instructive, since it relates to the way in which we will represent the 
distinction between copying and sharing in our model. If we choose to  return the location holding 
the thunk as the value of the store (as opposed to returning a location holding the pointer to this 
thunk), then this would require a change in the fetch command. In particular, when the location 
l z  is obtained there, it would be essential to put the value 4 1 2 )  in the location where the value of 
the thunk may be sought later: 

meminterpl((fetch M ) ,  p, a )  = 
l e t  ( l o ,  uo) = meminterpl(M, p l ,  a )  
i n  case ao(lo) 

of thunk(N, p') => 
l e t  ( 1 2 ,  a l )  = meminterpl(N, p', go)  

i n  ( 1 0 ,  a1[10 ++a1(12)1) 
I - => ( l o ,  6 0 )  

Note that in the second line from the bottom of the program, the values of lo and l2 in the store 
are the same and we will say that the value of the thunk has been copied from location l2 to l o .  In 
the case that ul( lz)  is a 'small' value, like an integer that occupies only a word of storage, there is 
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Figure 2: Structure generated by (fix A f. Ax. M )  

which creates the circular structure in Figure 2. For this language we could create a single cell 
holding the recclosure that looped back to  itself; we use two cells, though, since the additional 
cell holding rec will be used in the semantics of the LL-based language to  facilitate connections 
with the type system. We also need here to change the semantics of applications so that if the 
operator evaluates to  a rec, the pointer is traced to  a recclosure; in turn, if the operator evaluates 
to  a recclosure, the operator is used in the same way as a closure. 

In the implementation of actual functional programming languages, a single recursion such as 
the one above would probably make its recursive c d s  through a jump instruction. This would 
be quite difficult to  formalize with the source-code-based approach we are using to  describe the 
interpreter. The important thing, for our purposes, is that recursive calls to  f do not allocate 
further memory for the recursive closure. This means that, as far as memory is concerned, there 
is little difference between implementing the recursion with the jump and implementing it with a 
circular structure. The cycle created in this way introduces extra complexity into the structure of 
memory, of course, but the cycles introduced in this way must have precisely the form pictured in 
Figure 2. 

It is easy to  provide a clean type system for the language described above. One technical 
convenience is t o  tag certain bindings with types (such as the binding occurence in an abstraction 
Ax : s. M )  to  ensure that a given program has a unique type derivation. When it is not important for 
the discussion at  hand, we will often drop the tags on bound variables t o  reduce clutter. The types 
for the language include ground types Nat and Bool for numbers and booleans respectively, higher 
types ( s  -, t )  for functions between s  and t ,  and a unary operation !s for the delayed programs of 
type s. The typing rules for store and fetch are introduction and elimination operations respectively: 

M : s  M : !s 

(store M) : !s (fetch M )  : s ' 

These operations will also be found in our LL-based language with essentially the same types. 
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Table 2: Natural deduction rules and term assignment for linear logic. 

r t- M : ! S  A t- ~ : t  r t - M : ! S  ~ , x : ! s , y : ! s t - ~ : t  
I?, A t- (dispose M before N )  : t I?, A t- (share x, y as M in N )  : t 

F M : s . . . I?, t- M, : !s, XI : !sl , .  . . ,a,  : !s, t- N : t 
r l ,  . . . , rn t- (store N where x1 = M I , .  . . , x, = M,) : !t 

r t- (fetch M) : s 

binds the variables x and y in N .  The notation for store can be somewhat unwieldy when writing 
programs, but most programs involving store bind the variables in the where clause to  other vari- 
ables. Thus, if the free variables of M are X I ,  . . . , x,, then (store M )  is shorthand for the expression 
(store M  where XI = X I , .  . . , x, = x,). 

The typing rules for the language appear in Table 2, where the symbols I' and A denote type 
assignments ,  which are lists of pairs $1 : s l ,  . . . , x, : s,, where each xi is a distinct variable and 
each s; is a type. Each of the rules is built on the assumption that all left-hand sides of the I- 
symbol are legal type assignments, e.g., in the rule for typing applications, the type assignments 
I? and A, which appear concatenated together in the conclusion of the rule, must have disjoint 
variables. Each type-checking rule corresponds to a proof rule in the ND presentation of linear 
logic. For instance, the rules for share and dispose essentially correspond to  the proof rules generally 
called contraction and weakening respectively, while those for store and fetch correspond to  the 
LL rules called promotion and dereliction. Due to  the presence of explicit rules for weakening and 
contraction-the rules for type-checking dispose and share-one can easily see that the free variables 
of a well-typed term are exactly those contained in the type assignment. A particular note should 
be taken of the form of the rule for store; this operation puts the value of its body with bindings 
for its free variables in a location that can be shared by different terms during reduction-the type 
changes correspondingly from t to  !t. The construct (fetch M )  corresponds t o  reading the stored 
value-the type changes from !t to t. 

There may be other ND presentations of LL on which one could base a type system. It is our 
belief that results in this paper are robust with respect to  the exact choice of term assignment and 
type-checking rules. All of the results in this paper-including negative results that say that values 
of linear type may have more than one pointer to  them-hold in the system described in [CGR92], 
and we expect that they are true for the languages described in [LM92] and [Macgl]. 
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The typing rules for our language are given by combining Tables 2 and 3. Two of these rules 
deserve special explanation. First, the rule for checking the expression if L then M else N checks 
both branches in the same type assignment, i.e., the terms M and N must contain the same free 
variables. This is the only type-checking rule that allows variables to  appear multiple times; it does 
not, however, violate the intuition that variables are used once, since only one branch will be taken 
during the execution of the program. Second, the slightly mysterious form of the typing rule for 
recursions is related to the idea that the formal parameter of a recursive definition must be share'd 
and dispose7d if there is to  be anything interesting about it. Consider, for example, the rendering 
of the program of Table 1 into our language: 

(fix (store A add : !(!Nat-oNat+Nat). Xx : !Nat. Xy : Nat. 
share w, z as x in 

if zero? (fetch w) 
then dispose z before dispose add before y 
else (fetch add) (store (pred (fetch z))) (succ y))) 

(store 2) 1 

(where some liberties have been taken in dropping a few of the parentheses to  improve readability). 
The recursive function add being defined gets used only in one of the branches; thus, the recursive 
call must have a non-linear type. 

The definition of the addition function is a prototypical example of how one programs recursive 
functions in this language. In fact, both the high-level and low-level semantics will only interpret 
recursions (fix M) where M has the form 

(store ( A  f : !s + t. Ax : s. M )  where X I  = MI, .  . . , x, = M,). 

This restriction is closely connected to the restriction on interpreting recursion mentioned in the 
previous section; the only difference here is the occurrence of the store. As before, this restric- 
tion is not essential, but it does simplify the semantic clause for the recursion somewhat without 
compromising the way programs are generally written. 

Natural semantics. 

Tables 4 and 5 give a high-level description of an interpreter for our language, written using natural 
semantics. A natural semantics describes a partial function 4 via proof trees. The notation M 8 c, 
read 'the term M halts a t  the final result c7, is used when there is a proof from the rules with the 
conclusion being M J j  c. The terms at which the interpreter function halts are called canonical 
forms; it is easy to see from the form of the rules that the canonical forms are n, true, false, 
(Ax. M), and (store M). 

The natural semantics in Tables 4 and 5 describes a call-by-value evaluation strategy. That is, 
operands in applications are evaluated to  canonical form before the substitution takes place. A 
basic property of the semantics is that types are preserved under evaluation: 

Theorem 2 Suppose t- M : s and M 4 c, then I- c : s. 

The proof can be carried out by an easy induction on the height of the proof tree of M .l,l. c. 
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4 Semantics 

The high-level natural semantics is useful as a specification for an intepreter for our language, 
and for proving facts like Theorem 2. One would not want to implement the semantics directly, 
however: explicit substitution into terms can be expensive, and one would therefore use some 
standard representation of terms like closures or graphs in order to  perform substitution more 
efficiently. But there is another problem with the high-level semantics: it does not go very far in 
providing a computational intuition for the LL primitives in the language. For example, the dispose 
operation is treated essentially as 'no-op'. As such, there is no apparent relationship between these 
connectives and memory; indeed, the semantics entirely suppresses the concept of memory. 

In order to  understand what the constructs of linear logic have to  do with memory, we construct 
a semantics that relates the LL primitives to reference counting. In this semantics, the linear logic 
primitives dispose and share maintain reference counts. The basic structure of the reference-counting 
interpreter is the same as the one outlined in Section 3. Environments, values, and storable objects 
have the same definition as before. Because we now want to  maintain reference counts, however, 
the definition of stores must change. A store is now a function 

a : Loc -+ (N x Storable), 

where the left part of the returned pair denotes a reference count. Abusing notation, we use a(1) to  
denote the storable object associated with location I, and a[ /  - S] to denote a new store which is 
the same as a except at location I, which now holds the storable object S with the reference count 
of 1 left unaffected. The reference count of a cell is denoted by refcount(1, a) .  The domain of a 
store a is the set 

dom(a) = {I E Loc : refcount(1, a )  > 1). 
The change in the definition of 'store' forces an adjustment in the definition of 'allocation relation'. 
A subset R of the product (Storable x Store) x (Loc x Store) is an allocation relation if, for any 
store a and storable object S, there is an I' and a' where (S, a )  R (l', a') and 

a I' 6 dom(a) and dom(a1) = dom(a) U {I1); 

a for all locations 1 E dom(a), a(1) = ~ ' ( 1 )  and refcount(1, a )  = refcount(1, a'); and 

a a'(If) = S and refcount(ll, a') = 1. 

The basic structure underlying a store may be captured abstractly by a graph. Formally, a 
graph is a tuple (V, E, s, t )  where V and E are sets of vertices and edges respectively and s, t are 
functions from E to V called the source and target functions respectively. (Note that there may 
be more than one edge with the same source and target; such 'multiple edge' graphs are sometimes 
called multigraphs.) Given v E V, the in-degree of v is the number of elements e E E such that 
t(e) = v. A vertex v is reachable from a vertex v' if v = v' or there is a path between them, that 
is, there is a list of edges e l , .  . . , en such that v = s(el), v' = t(en) and t(ei) = ~ ( e ; + ~ ) .  

A memory graph G is a tuple (V, E, s , t ,  [pl,. . . , p,]) where (V, E, s ,  t) is a graph together 
with a list of functions p; such that each p; is a function with a finite domain and with V as its 
codomain. The functions pi are called the root set of the memory graph. Given v E V and p;, 
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Definition 5 A state S = (i7p, a )  is called regular,  written %(S), provided the following condi- 
tions hold: 

X1 S is count-correct. 

X2 dom(a) is finite. 

8 3  For each 1 E dom(a), if a(1) = thunk(M,p), then refcount(1,a) = 1. 

%4 A cycle in the memory graph induced by S arises only in the form of a rec and recclosure 
as in Figure 2: that is, it has two nodes lo and ll such that a(ko) = rec(ll, f )  and a(El) = 
recclosure(Xx. M, p[ f H l o ] )  for some f ,  x, M ,  and p. 

%5 For each 1 E dom(a), if a(1) = thunk(M,p), then the domain of p is the set of free variables of 
A!!, and &l is typeable. Similarly, if a(1) = closure(Ax. a!, p) or recclosure(Xx. M ,  p), then the 
domain of p is the set of free variables of Ax. Dl, and Ax. M is typeable. 

Here, a term M is said to  be typeable  if there is some type context r and type t such that 
I ' l - M : t .  

It is convenient to abuse notation slightly in denoting states by writing locations, environments, 
and store without grouping them as in the official definition. For example, (Il, 12, p, a, 6 p) should 
be read as (Il :: l2 :: i, p :: p, a )  (where :: is the 'cons7 operation that puts a datum at the head of 
a list). There is no chance of confusion so long as the lexical conventions distinguish the parts of 
the tuple, and the locations and environments are properly ordered from left t o  right. However, 
the order of these lists is irrelevant for regularity: if %(i, p, a )  and if, p' are permutations of i and p 
respectively, then %(1', p', a) .  We will use this fact without explicit mention. 

Basic reference-counting operations. 

Our interpreter will need four auxiliary functions t o  manipulate reference counts. Two of these func- 
tions, inc and dec, increment and decrement reference counts. More formally, inc(1, a )  increments 
the reference count of 1 and returns the resultant store, while dec(1,a) decrements the reference . . 

count of 1 and returns the resultant store. The other two operations, inc-env(p, a )  and dec-ptrs(1, a ) ,  
increment or decrement the reference counts of multiple cells. The formal definition of the first of 
these is 

a ,  where the domain of p is {xl,. . . , xn), and 
01 = inc(p(x1), a) 

inc-env(p, a )  = 

In words, inc-env(p, a) increments the reference counts of the locations in the range of p and returns 
the resultant store. Note that a location's reference count may be incremented more than once by 
this operation, since two variables xi, x j  may map to  the same location 1 according to  p. 

The operation dec-ptrs(1, a ) ,  which also returns an updated store, first decrements the reference 
count of location 1. If the reference count falls to zero, it then recursively decrements the reference 
counts of all cells pointed to  by I .  The formal definition appears in Table 6; an example appears 
in Figure 4 where the left side of Figure 4 (assumed to be part of the graph of the store a )  is 
transformed into the right side by calling dec-ptrs(1, a ) .  The operation dec-ptrs(1, a )  is the single 
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most complex operation used in the interpreter. Other operations are 'local' to  parts of the memory 
graph and do not require a recursive definition. A key characteristic of our semantics is the fact 
that dec-ptrs(1, a )  is only used in the rule for evaluating (dispose M before N).  

The basic laws that capture the relationships maintained by the reference-counting, allocation, 
and update operations on states are given in Table 7. Most of the laws are proven in the appendix, 
but we give the proof for the Attenuation Law A1 here to  show how the proofs go. Suppose 
%(l, i, p, a ) ,  refcount(1, a )  = 1 and a(1) = closure(Ax. N,p) ,  recclosure(Ax. N ,  p), or thunk(N, P). 
Note first that the state S' = (r, p, p, dec(1, a ) )  is count-correct: the environment p has been placed in 
the root set, accounting for the edges coming out of the closure or thunk which has now disappeared 
from the memory graph. Thus, property 81 holds of state Sf. Since dorn(a) > dorn(dec(1, a ) ) ,  each 
of the properties R2-%5 follow directly from the hypothesis. Thus, R(S1). The property is called 
an "attenuation law" because pointers previously held inside the store are drawn out to  the root 
set. 

The next goal is to  define an interpreter for the LL-based programming language. To understand 
the interpreter it is essential t o  appreciate how the invariants influence its design. We therefore 
describe the theorem that the interpreter is expected to satisfy, and mingle the proof of the theorem 
with the definition of the interpreter itself. The interpreter is a function i n t e r p  which takes as its 
arguments a term M ,  an environment p, and a store a. It is assumed that the domain of p is the 
set of free variables in M and that the image of p is contained in the domain of a. The result of 
i n t e rp (M,  p, a )  is a pair (It, a') where a' is a store and I' is a location in the domain of a' such 
that a1(l') is a value, which can be viewed as the result of the computation. We use a binary infix 
63 for appending two lists. The theorem is stated as follows: 

Theorem 6 Let S = (p, a, f,p) be a state and suppose M is a typeable term. If 8 ( S )  and 
in te rp(M,  p, a )  = (It, a'), then %(1', a', f,p). 

Moreover, if p = pl@p2, I = il@f2 and 1 E dorn(a) is not reachable from p :: pl or fl in the 
memory graph induced by S ,  then the contents and reference count of 1 remain unchanged and 1 is 
not reachable from pl or 1' :: fl in  the memory graph induced by ( I t ,  a', r, p). 

The first part of the theorem says that regularity is preserved under execution of typeable terms. 
The second part of the theorem expresses what we will call the reachability property. The 
special case of interest says that the evaluation of a program M in environment p and store a does 
not affect locations in dom(a) that are not reachable from p. The extra complexity of the statement 
is required to  maintain a usable induction hypothesis in the proof of the property. A simplified 
version of Theorem 6 can be expressed as follows: 

Corollary 7 Suppose M is a closed, typeable term. If in te rp(M,  0,0) = ( I t ,  a'), then %(l1, a'). 

The assumption that M is typeable is crucial in the proof of the theorem, because untypeable 
terms may not maintain reference counts correctly. For instance, the term 

(Ax. (dispose x before x)) (store 1) 

would cause a run-time error in the maintenance of reference counts-after the dispose, we would try 
to  access a portion of memory with reference count zero and get a 'dangling pointer7 error. This 
example shows that untypeable terms may cause premature deallocations. Another untypeable 
term 

(Ax. (share y, z as x in  (dispose y before 2))) (store 1) 
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causes a 'space leak', i.e., the reference count of the cell holding (store 1) is still greater than zero 
even though it is garbage at the end of the execution. 

Interpreting the linear core. 

The proof of Theorem 6 is by induction on the number of calls to  the interpreter. The proof 
proceeds by considering each case for the program to be evaluated. 

The interpretation of a variable is obtained by looking up the variable in the environment: 

That the store (p(x), a', b, p) is regular is a consequence of the Environment Law E because of the 
assumption that the domain of p is {x). The reachability condition is clearly satisfied, since the 
output store is the same as the input store. 

To evaluate an abstraction we create a new closure, place it in a new cell, and return the location 
together with the updated store: 

(2) in terp(Xx.  P ,  p, a) = new(closure(Xx. PI p),  a)  

To prove that regularity of the state is preserved, suppose that (It, a') = new(closure(Xx. P, p), a ) ,  
then %(If, a', 7, p) by Allocation Law N2. The reachability condition is satisfied because the output 
store differs from the input store only by extending it. 

Given a term P and an environment p whose domain includes the free variables of P ,  let p ( P 
be the restriction of the environment p to the free variables of P. The evaluation of an application 
is given as follows: 

(3) i n t e r p ( ( P  Q ) ,  P ,  a )  = 
l e t  ( lo ,  aO) = i n t e r p ( P ,  p 1 P, a )  

( 1 1 ,  8 1 )  = i n t e r p ( 9 ,  P l Q ,  go) 

i n  case a l ( l o )  o f  closure(Xx. N ,  p') o r  recclosure(Xx. N ,  p') => 
if refcount(lo, o l )  = 1 
then  i n t e r p ( N ,  pt[x H I l l ,  dec(10, a l ) )  

e l s e  i n t e r p ( N ,  p'[x H I l l ,  inc-env(pt, dec(l0, ~ 1 ) ) )  

The reader may compare this rule to the rule for application given in Section 3. The key difference in 
the semantic clauses is the manipulation of reference counts: in the rule here, a conditional breaks 
the evaluation of the function body into two cases based on the reference count of the location 
that holds the value of the operator, and each branch of the conditional performs some reference- 
counting arithmetic. The resulting semantics clause looks similar to a denotational semantics such 
as that given in [Hud87] where information about reference counts is included in the semantics 
clauses. Note that the environment p has been split between the two subterms P and Q. The fact 
that ( P  Q) is typeable implies that p = (p I P )  U (p I Q). In various forms this sort of property will 
be used repeatedly in the semantic clauses below. 

To prove the preservation of regularity of the state for application, we start with the as- 
sumption that R(p, a, ?, p). This is equivalent to %(p I P, p ( Q, a, b, p). Now %(lo, p I Q, ao,b, p) and 
% ( E l ,  ko,al,i,p) both hold by induction hypothesis (let us abbreviate 'induction hypothesis' as 
'IH'). Now, there are two possibilities for the reference count of lo in 01, either it is equal to 
one or it is more than one. If refcount(lo,al) = 1, then the first Attenuation Law, Al ,  says that 
%(El, pt ,  dec(lo, a l ) ,  1, p) .  By the Environment Law, E, this implies that %(pl[x H E l ] ,  dec(lo, a l ) ,  i, p) 
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By IH, we have %(lo,uo,i,p). Suppose ao(10) = susp(l1) and ao(ll) = thunk(RTpl). If 
refcount(lo, go) = 1, then %(p', dec(ll, dec(Eo, go)), 7, p) by A1 and A2 so we are done by IH. Sup- 
pose, on the other hand, that refcount(lo, 00) # 1. By U2, %(p', dec(l1, dec(lo, uo[lo H O])), 1, p)  so 
%(12, inc(12, ol[lo H susp(12)]), 1, p) by IH and U1; the reachability property is used to ensure the 
applicability of U1. More specifically, in a,, the location lo is not reachable from p'; thus, it is not 
reachable from l2 in 01 either, and so ul[lo H susp(12)] does not create an illegal loop in the memory 
graph. The cases when ao(ll) is a value or uo(Eo) = rec(ll, f )  are left to the reader. 

The share command increments the reference count of a location: 

(6) interp((share x, y as P in Q) ,  p ,  a )  = 
l e t  (lo, ao) = interp(P, p 1 P, a )  
i n  interp(Q, ( p  l Q)[x ,  Y - l o ] ,  inc(lo, ( T O ) )  

%(lo, p I Q, 00, 1, P )  by IH, so %(lo, lo, p 1 Q, inc(lo, go), r, p) by 11. Thus it follows from the Environ- 
ment Law E that %((p I Q)[x, y H lo], inc(10, (TO), 1, p), so the result follows from IH. 

The dispose command decrements the reference count of a location. The requires calculating 
the consequences of possibly removing a node from the memory graph if its reference count of the 
disposed node falls to 0. 

(7)  interp((disp0s.e P before Q ) ,  p,  a )  = 
l e t  ( lo ,  go)  = i n t  erp(P, p 1 P, a )  
i n  interp(Q, p 1 Q ,  dec-ptrs(l0, ao)) 

Now, %(lo, p 1 Q, go, f7 p) by IH, so %(p I Q, dec-ptrs(lo, go), p) by D3. The result therefore follows 
from IH. 

Interpreting PCF extensions. 

The interpreter evaluates a constant simply by creating a cell holding the value of the constant. 

(8) i n t  erp(n,  P ,  a )  = new(n, a )  

That regularity is preserved for these cases follows immediately from N1. 
The rules for the arithmetic and boolean operations of PCF mimic the rules of the high-level 

operational semantics. 

(11) interp((succ P ) ,  p ,  a )  = 
l e t  (lo, ao) = in terp(P,  p,  a )  
i n  new(ao(lo) + 1, dec(lo, go))  

(12) interp((pred P ) ,  p ,  a )  = 
l e t  ( lo ,  ao)  = interp(P, p,  a )  

n = ao(l0) 
i n  i f  n = 0 

then new(0, dec(lo, ao) )  
e l se  new(n - 1, dec(lo, no))  
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5 Properties of the Semantics 

In order for the reference-counting interpreter to make sense, it must satisfy a number of invariants 
and correctness criteria. In this section we describe these precisely. 

No space leaks. 

As a short example of the kind of property one expects the semantics to satisfy, let us consider 
how the idea that 'there are no space leaks' can be expressed in our formalism. Given a state 
S = (r, p, a ) ,  we say that a location 1 is reachable from (1, p) if it is reachable in G(S) from some 
I ;  E or from some pj E p. The desired property can now be expressed as follows: 

Theorem 8 Suppose (p, a,i ,p) is a regular state such that each 1 E dom(a) is reachable from 
(p, i, p). If M is typeable and in te rp(M,  p, a )  = (l', a'), then every 1 E dorn(al) is reachable from 

(lf, i, P). 

The theorem is proved by induction on the number of calls to the interpreter. 

Invariance under different allocation relations. 

If the design of the interpreter is correct, the exact memory usage pattern should be unimportant 
to the final answers returned by the interpreter. Since the allocation relation new completely 
determines memory usage-i.e., which cell (with reference count 0) will be filled next-it should 
not matter which allocation relation is used. We set this up formally as follows: if f is an allocation 
relation, let in te rpf  be the partial interpreter function defined by using f in the place of new. Recall 
that the environment and store with empty domains are denoted by 0. Then we would like to prove 
something like the following statement by induction on the number of calls to i n t  erp f :  

Suppose f and g are allocation relations. If in te rpf (M,  0,0) = (If, of) ,  then 
interp,(M, 0,0) = (l,, ag). Moreover, if af ( l  f )  = n, true, or false, then af (lf) = ag(Eg). 

A naive induction runs afoul, though, since the interpreter can return intermediate results that 
are neither numbers nor booleans. We therefore need to strengthen the induction hypothesis. If 
in te rpf  returns a closure or suspension, the result returned by interpg may not literally be the 
same: for instance, in te rpf  may return a location holding susp(lo) and interp, may return a 
location holding susp(ll). Nevertheless, these values should be the same up to a renaming of the 
locations in the domain of the returned store a;. 

Formalizing the notion of when two stores are 'equivalent' up to renaming of their locations 
can be done using the underlying graphs. Two stores are 'equivalent' if their underlying graph 
representations are isomorphic via some function h, and the values held at  the cells are 'equivalent' 
under h. More formally, 

Definition 9 Two states S = (i, p, a )  and S' = (p, 2, a') are congruent if there is an isomorphism 
h : G(u) + G(a') such that for any 2 E dom(a), refcount(1,a) = refcount(h(l),af) and for any 
l E dom(a), 

1. For all i, h(li) = l:; 

2. For all i ,  dorn(p;) = dom(p:) and for all x E dorn(p;), h(p;(x)) = p:(x); 
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closure(Xh. Xy. (share hl, ha as h in hl(hz y)), 0) 

closure(Af. ((9 f )  4, [s 4 7  2 1x1) 

susp(lk) 

thunk((f true), [f H El]) 

closure(Xx. x, 0) 

Figure 5: Store for Example of the valofcell Operation. 

key definition missing here is the definition of 'related values'. One might attempt to extend the 
statement of the theorem directly-that is, for closed terms, M !$ c iff in te rp(M,  0,0) = (I1, a') 
and valofcell(ll, a') = c. While this statement holds for basic values, it does not hold for values of 
other types. The problem arises because the reference-counting interpreter memoizes the results of 
evaluating under store's whereas the natural semantics does not. For instance, evaluating the term 

(Ax. (share y, z as x in if (zero? (fetch y)) then z else z ) )  (store (succ 5)) 

in the natural semantics returns the value (store (succ 5)), whereas evaluating the expression in the 
reference-counting semantics returns the value (after unwinding) (store 6). The proof thus requires 
relating terms that are 'less evaluated' to terms that are 'more evaluated'. 

Definition 12 M > N, read ' N  requires less evaluation than M', iff M = CIM1], N = C[c], M' 
is closed, and M1 !$ c. 

where C[ ] denotes a term with a missing subterm and C[M1] the term resulting from using M' for 
that subterm. Let >* be the reflexive, transitive closure of >. This relation is necessary in order 
to  express the desired property: 

Theorem 13 Suppose M is typeable, dom(p) = FV(M),  M' is closed, and M' L* valof(M,p,a). 
Suppose also that R(1', p, p', a ) .  

1. If M1 JJ c, then in te rp(M,  p ,  a )  = (l' ,  a') and c >* valofcell(l', crl). 

2. If in t e rp (M,  p, a )  = (I1, a'), then M' IJ c >* valofcell(ll, a'). 

The extra assumptions about the state ( I ' ,  p, p', a)-namely that it satisfies the invariants above- 
are used in constructing an execution in the reference-counting interpreter. The proof is deferred 
to the appendix. 
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There is some help on this point to be found in the proof theory of linear logic. Note, that the 
problem with term M in ( I )  relies on having a term N of type Nat-o!Nat. From the stand-point 
of linear logic and its translation under the Curry-Howard correspondence, this is a suspicious 
assumption, however. The proposition A+!A is not provable in LL, and the situation illustrated 
by M runs contrary to proof-theoretic facts about what propositions are moved through 'boxes' 
in a proof net during cut elimination [Gir87]. This does not directly prove that a static property 
exists for the LL-based programming language, but it does suggest that there is hope. 

To assert the desired property precisely, we will need some more terminology. Let us say that 
a storable object is l inear if it is a numeral, boolean, closure, or recclosure and say that it is non- 
l inear if it has the form susp(l), rec(1, f ) ,  or thunk(M,p). We say that a location 1 is non-linear 
i n  s t o r e  a if a(1) is a non-linear object; similarly, a location 1 is l inear in  s to re  a if a ( l )  is a 
linear object. The key property concerns the nature of the path in the memory graph between a 
location and the root set. 

Definition 14 Suppose S = (I, a, f , ~ )  is a regular state and i E dorn(a). The location i is said to 
be linear f rom l i n  S if there is a path p from l to i in G(S) such that each 1' on p satisfies the 
following two properties: 

1. a(ll) is linear and 

Note that the two conditions satisfied by the path p could only be satisfied by a unique path from 1 
to i; if there were more than one such path, condition (2) could not be satisfied. It will be convenient 
to say that a path satisfying these conditions is linear. Given a regular state S = (p, a,i ,p),  we 
also say that i is linear from p in S if there is an x in the domain of p such that there is a (unique) 
linear path from p(z) to i. 

To prove the desired property we will need to know some basic facts about types and evaluation. 
For the high-level semantics we already expressed the Subject Reduction Theorem 2 for the LL- 
based programming language. In conjuction with the Correctness Theorem 13 we have a version 
of the result for the low-level semantics as well: 

L e m m a  15 Suppose S = ( I ,  a, 1, p) is a regular state, dorn(~)  = F V ( M ) ,  I- v a l o f ( ~ ,  P, a )  : t ,  and 
in te rp(M,  p ,  a )  = ( l ' ,  a'). Then I- valofcell(lf, a') : t. 

The theorem we wish to  express says that if a program is evaluated in an environment from 
which a location i is linear, then the value at  the location is either used and deallocated or not used 
and linear from the location returned as the result of the evaluation. This statement is intended 
to  formally capture the idea that a location that is linear from an environment is used once or left 
untouched with a reference count of one. Unfortunately, the assertion contains the term 'deallocate', 
which needs to  be made precise. If we assert instead that the reference count of the location is 0 
or linear from the result at  the end of the computation, then there is a problem in the case where 
reference count falls to 0 because the allocation relation might reallocate the location i to hold a 
value that is unrelated to the one placed there originally. This would make it impossible to  assert 
anything interesting about the outcome of the computation. To resolve this worry, we can make a 
restriction on the allocation relation insisting that i is not in its range. This assumption is harmless 
in a sense made precise by Theorem 10. The result of interest can now be asserted precisely as 
follows: 
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i. refcount(i, ol)  = 0. By assumption [is never reallocated by new, so refcount(i, a t )  = o 
as needed. 

ii. refcount(i,ol) = 1, In this case, the IH implies that there is a linear path from 
l1 to i. There are now two subcases to consider: either refcount(lo,ao) = 1 or 
refcount(lo, go) > 1. We consider only the second and leave the iirst to the reader. 
By laws D2,12, and E, we know that the state 

is regular and it is hot hard to check that i is linear from pf[x H Ill in Sf. Since we 
must have 

in te rp(N,  pl[x H Ill, inc-env(pf, dec(l0, 01))) = (El, a') 

we are done by IH. 

2. M = (store N where x1 = MI,.  . . ,xn = M,). In this case, 1 is reachable from exactly one of 
the environments p 1 Mi. In the evaluation of M ,  we have 

By IH, there are two possibilities for the regular state 

arising after the evaluation of Mi. Either the reference count of i is zero in a; or it is one 
and there is a linear path from I ;  to i. If the first case holds, then we are done, since i is not 
reallocated in the remainder of the computation, and therefore the conclusion of the theorem 
is satisfied. On the other hand, the second case is impossible: by Lemma 15, valofcell(l;, ai) 
has type !t and aa(l;) is a value, so it has the form susp(lff) or rec(lff, f). This contradicts the 
assumption that i is linear from 1;. Therefore reference count of i must be 0 in a; and hence 
we are done, since new never reallocates i. 

3. M = (share x,y as P in Q). In the evaluation of M we compute 

Now i is reachable for exactly one of the environments p 1 P or p I Q. We consider the two 
cases separately. 

(a) i is reachable from p I P. For the same reasons discussed in the case for store above, IH 
implies that refcount(i, ao) = 0, and thus we are done since new never reallocates i. 

(b) i is reachable from p I Q. Then there is a linear path from p ) Q to i which, by Theorem 6, 
is unaffected by the evaluation of P. In particular, i is not reachable from lo, so it is 
linear from p I Q in the regular state ((p I Q)[x, y H lo], inc(lo, ao), 7, p )  so we are done by 
IH . 
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7 Discussion 

For this paper we have chosen a particular natural deduction presentation of linear logic. Oth- 
ers have proposed different formulations of linear logic, and it would be interesting to  carry out 
similar investigations for those formulations. For instance, Abramsky [Abr] has used the sequent 
formulation of linear logic. His system satisfies substitutivity because this is essentially a rule of 
the sequent presentation (the cut rule to  be precise), but there is no clear means of doing type 
inference for his language. Others [Macgl, LM921 have attempted to  reconcile the problems of type 
inference and substitutivity by proposing restricted forms of these properties. Another approach 
has been to  modify linear logic by adding new assumptions. For instance, [WadSla] and [07H91] 
propose taking !!A to  be isomorphic to  !A;  from the perspective of this paper, such an identification 
would collapse two levels of indirection and suspension into one and hence fundamentally change 
the character of the language. Other approaches to  the presentation of LL seem to have compatible 
explanations within our framework, but might yield slightly different results. For example, there 
is a way to  present LL using judgements of the form I?; A t. s where I' is a set of 'intuitionistic 
assumptions7 (types of non-linear variables) and A is a multi-set of 'linear assumptions7 (types of 
linear variables). This approach might suit the results of Section 6 better than the presentation we 
used in this paper because it singles out the linear variables more clearly and provides what might 
be a simpler term language. On the other hand, the connection with reference counts is less clear 
for that formulation. 

It is also possible to  fold reference-counting operations into the interpretation of a garden variety 
functional programming language (that is, one based on intuitionistic logic). The ways in which the 
result differs from the semantics we have given for an LL-based language are illuminating. First of 
all, there are several choices about how to do this. One approach is to  maintain the invariant that 
interp is evaluated on triples (M,p, a )  where the domain of p is exactly the set of free variables 
of M .  When evaluating an application M - ( P  Q), for example, it is essential to  account for the 
possibility that some of the free variables of M are shared between P and Q. This means that 
when P is interpreted, the reference counts of variables they have in common must be incremented 
(otherwise they may be deallocated before the evaluation of Q begins): 

i n t e r p ( ( P  Q ) ,  P,  a )  = 
l e t  ( lo ,  ao) = in terp(P,  p 1 PI inc-env(p 1 P fl p 1 Q ,  a ) )  

( 1 1 ,  p i )  = in terp(Q,  P l Q ,  no) 
in case a l ( l o )  o f  closure(Xx. N ,  pl)  or recclosure(Xz. N ,  p') => 

i f  refcount(lo, a l )  = 1 
t h e n  i n t e r p ( N ,  p/[x H 1 1 ] ,  dec(lo, u l ) )  
e l s e  i n t e r p ( N ,  pl[x tt 11] ,  inc-env(pl, dec(lo, u l ) ) )  

The deallocation of variables is driven by the requirement that only the free variables of M can lie 
in the domain of p; this arises particularly in the semantics for the conditional: 

in terp( i f  N then P else Q ,  p,  a )  = 
l e t  (lo, ao) = i n t e r p ( N ,  p 1 N ,  inc-env(p1N fl ( p ( P  U plQ), u ) )  
i n  i f  ao(lo)  = true 

t h e n  in t e rp (P ,  p l  P, dec(10, dec-ptrs-env((p1P) - (plQ), a o ) ) )  
e l s e  i n t e rp (Q ,  P l Q ,  dec(lo, dec-ptrs-env((plQ) - (PIP),  g o ) ) )  

An alternative approach to  providing a reference-counting semantics for an intuitionistic language 
would be to  delay the deallocation of variables until 'the last minute7 and permit the application 
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suite in [Gab85]. This problem is addressed by the technique of strictness analysis [AH87]: with 
strictness analysis the translation can be made more efficient or the translated program can be 
optimized. There are several techniques known for translating intuitionistic logic into linear logic. 
To illustrate, consider the combinator S (here written in ML syntax): 

When we apply Girard's translation, the result (using a syntax similar to  the one in Table 1) is the 
following program: 

f n  x => f n  y => f n  z => 
share z1,z2 as z i n  

( ( fe tch  x) ( s to re  (fetch zl))) 
( s to re  ( ( fe tch  y) (s tore  (fetch 22)))) 

However, another program having S as its 'erasure' is 

f n  x => f n  y => f n  z => 
share z1,22 as z i n  (x zl)(y 22) 

which is evidently a much simpler and more efficient program. An analog of strictness analysis that 
applies t o  the LL translation is clearly needed if an LL intermediate language is to be of practical 
significance in analyzing 'intuitionistic' programs. 

Our reference-counting interpreter and the associated invariance properties can easily be ex- 
tended to  the linear connectives &, @, and $ (although it is unclear how to handle the 'classical' 
connectives). Extending the results to dynamic allocation of references and arrays is not difficult 
if such structures do not create cycles. For instance, it can be assumed that only integers and 
booleans are assignable to mutable reference cells. To see this in a little more detail, if we assume 
that o is Nat or Bool, then typing rules can be given as follows: 

To create a reference cell initialized with the value of a term M ,  the term M is evaluated and its 
value is copied into a new cell: 

( 1 6 )  i n t e rp ( re f (M) ,  p ,  a )  = 
l e t  ( l o ,  go)  = i n t e r p ( M ,  p 1 M I  a )  
i n  new(ao(lo), dec(lo , go))  

The location lo holds the immutable value of M ;  a new mutable cell must be created with the value 
of M as its initial value. Assignment mutates the value associated with such a cell: 

(17) i n t e r p ( M  := N ,  p, a)  = 
l e t  (lo, ao)  = i n t e r p ( M ,  p j M ,  a )  

( 1 1 ,  a l )  = i n t e r p ( N ,  P l N ,  a l )  
i n  ( l o ,  dec(l1, al[lo H ~ l ( l 1 ) l ) )  

To obtain the value held in a mutable cell denoted by M ,  the contents of the cell must be copied 
to  a new immutable cell: 
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A Proofs of the Main Theorems 

Verification of the Basic Laws in Table 7 

Proposition 17 Each of the laws A l ,  A2, Dl, 0 2  given in Section 4 hold. 

Proof: The proof of A1 may be found in Section 4, and the proof of A2 is similar. We thus need 
only to  verify D l  and D2. 

D l  Suppose S = (1, f, p, a ) ,  X(S) holds, a(1) is a numeral or boolean, and S' = (i, p, dec(1, a ) ) .  
Note that there are no outgoing edges from 1 in the memory graph induced by S ;  thus, even 
if 1 9 dom(dec(1, a)) ,  the state S1 is count-correct. Since dom(a) 2 dom(dec(1, a ) ) ,  each of the 
properties 92-85 follow directly from the hypothesis. Thus, 9(SJ).  

D2 Suppose 9 ( l ,  f,p, a )  and refcount(1, a )  # 1, and let S' = ( I ,  p ,  p, dec(1, a)). By hypothesis, it 
follows that refcount(1, a )  > 1 since 1 is in the root set. Thus, refcount(1, dec(1, a ) )  2 1 and 
hence S' is count-correct, satisfying 81. Since dom(a) = dom(dec(1, a ) ) ,  each of the properties 
92-85 follow directly from the hypothesis. Thus, 8(S1). 

This completes the verification of each part. . 
Proposition 18 Law 03 holds; more generally, 

1. If %(I, f, p, a ) ,  then 8( i ,  p, dec-ptrs(1, a ) ) .  

2. If 8 ( i ,  p, p, a ) ,  then 8(f ,  p, dec-ptrs-env(p, a)) .  

Proof: By induction on the total number of calls to dec-ptrs and dec-ptrs-env. In the basis, suppose 
the number of calls is one; there are two cases: 

1. dec-ptrs is called. Then there are three subcases: 

(a) a(1) = n, true, or false. Then dec-ptrs(1, a )  = dec(1, a ) .  By D l ,  %(i, p, dec-ptrs(1, a)) .  

(b) a(1) = susp(ll), thunk(M,p), or closure(Xx. M , p ) ,  and refcount(1,a) > 1. Then 
dec-ptrs(1, a )  = dec(1, a ) ,  and hence by D2, 8( i ,  p ,  dec-ptrs(1, a)). 

(c) a(1) = rec(ll, f )  or recclosure(Xx. N, p), and refcount(1, a )  > 2. Then dec-ptrs(1, a) = 
dec(1, a ) ,  and hence by D2, 8( i ,  p, dec-ptrs(1, a)). 

2. dec-ptrs-env is called. Then since dec-ptrs is not called, dorn(p) must be the empty set. Thus, 
dec-ptrs-env(p, a )  = a and hence %(i, p, dec-ptrs-env(p, a ) ) .  

For the induction hypothesis, suppose the total number of calls to  dec-ptrs and dec-ptrs-env is 
greater than one. There are again two main cases: 

1. dec-ptrs is called. There are five subcases depending on the reference count and the value 
stored at  I. 

(a) a(1) = susp(ll) and refcount(1, a) = 1. Then dec-ptrs(1, a )  = dec-ptrs(kl, dec(1, a)) .  
By A2, 9(11, i7 p, dec(1, a ) )  and so by induction, 8(1, p, de~-~t rs ( l ' ,  dec(1, a))). Thus, 
%(I, p,  dec-ptrs(1, a ) ) .  
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N2 Suppose 8(f ,  p, p, a ) ,  (I1, a') = new(closure(N, p), a )  or new(thunk(N, p), a ) ,  F V ( N )  = d o m ( ~ ) ,  
and N is typeable, and let St = (l', i, p, a'). Since new is an allocation relation, refcount([', a )  = 
0, refcount(l1, a') = 1, and for any location 1 # It, a(1) = ~ ( 1 ' )  and refcount(1, a )  = 
refcount(1, a'). To see that property 81-namely count-correctness-holds of St, note that all 
of the pointers from p are accounted for in the closure or thunk stored in l', and that I' only 
has reference count 1. To see 82 ,  dorn(d) = dorn(a) U (1') is finite because dom(a) is. If I' 
is a thunk, then refcount(l1, a') = 1, which together with the hypothesis guarantees property 
83 .  No cycles are created in the induced memory graph by new, so 8 4  holds. Finally, 8 5  
holds by hypothesis. Thus, %(Sf). 

N3 Suppose 8 ( l ,  f7 p, a )  and (I1, a') = new(susp(l), a )  or new(rec(1, f ) ,  a ) .  Then 8(11, 7, p, a') fol- 
lows in a manner similar to  the previous case. 

U1 Suppose S = (i, p ,  a )  and 3(S) ,  a(1) is a constant. We prove the first statement of U1 only; 
the first follows similarly. So suppose 1' E dom(a), and 1 is not reachable from I' in the 
memory graph induced by S ,  and let S' = (r,p, inc(lr, a[ l  - susp(ll)])). In S' the in-degree of 
I' is now one greater than in S ;  the in-degree of all other nodes remains the same. Thus, St 
satisfies property 81 .  Since dorn(a) = dorn(at), the domain of a' is finite, satisfying property 
32. No new thunks are created, so property 8 3  holds of Sf. Since 1 is not reachable from I' 
in S, there is no cycle through 1 in Sf .  Thus, S' satisfies property 84 .  Finally, property 8 5  
holds since no thunks or closures are added to a. Thus, %(St). 

U2 Suppose S = (l,f,pla) and P(S) ,  refcount(l,o) # 1, o(1) = susp(i'), and o(1') = thunk(N,p), 
and let S' = (p, 1, p, dec(ll, dec(1, a[l I+ c]))). To verify property 31, note first that 
refcount(lt, a )  = 1 by hypothesis. Thus, since the pointers from all are mentioned in the 
root set of Sf ,  it follows that S' is count-correct. It is also clear that each of the properties 
82-85 hold of St. Thus, %(St). 

This completes the verification of each part. H 

Proof of Lemma 10 

Lemma 10 Suppose (f', , 3, a j )  and (l?', $', a,) are congruent. If i n t  erpj(M, pi, ~ f )  = 
(I;, a;), then interp,(M, p,, a,) = ( l ; ,  a:) and the resultant states ( I ; ,  i', 3, a;) and ( I ; ,  I", p", a;) 
are congruent. 

Proof: By induction on the number of calls to  in te rp .  We cover the four cases in the core language 
and leave the other cases t o  the reader. To make the cases easier to read, let h be the isomorphism 
from G(af) t o  G(ag) that makes the above states congruent. 

1. M = x. Then in t e rp f (M,  pf ,  a j )  = (pf(x), of).  Then also interp,(M, p,, a,) = (pg(x), a,), 
and the resultant states (pj(x), I', $,a;) and (pg(x), p',?, a;) are congruent via h. 

2. M = (Ax. P). Then in t e rp f  (M, pj ,  o f )  = new(closure(Ax. P, p f ) ,  a j )  = (l;, a;). Since f is 
an allocation relation, 

a 1; $ dom(af) and dorn(a;) = dom(af) U (1;); 

a for all locations 1 E dom(af), af (1) = a;(E) and refcount(1, o f )  = refcount(l1, a;); and 
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4. M = (fetch P) .  Then interpL(P, pf ,  o f )  = (If,o, af,o). By induction, interpg(P,  p,, a,) = 

(lgjO, and the states (I f , ~ ,  l', p', af,o) and (lg,o, P, 3, ag,o) are congruent. Now there are 
two main cases: either a f , ~ ( l f , ~ )  = susp(lftl) or af,o(lf,o) = rec(lf,l, x). We leave the second 
case to the reader since it is relatively straightforward and consider only the first case. 

Suppose af,o(lf,o) = susp(lftl). By the definition of congruence, a,,~(l,,o) = ~usp(l , ,~) .  Now 
there are two subcases depending on the object held at  Iftl :  

(a) = thunk(R,p;). Then by congruence, o,,o(l,,l) = thunk(R,p;). There are two 
subcases depending on the reference count of IfTo: 

i. refcount(1 ,o, of = 1. Since the above tuples are congruent, refco~nt(l,,~, = 1. 
Note that the states 

(a, p;, 3, dec(lf,l, dec(lf,oaf,o, 1)) 
( P I ,  p;, p", dec(lg,l, dec(l,,o~,,o7 1)) 

are congruent since p; and p; must have the same domain and must match 
via the multigraph isomorphism h on their domains. Thus, by induction, 
i n t  erpg(R, pb, dec(lgTl, d e ~ ( l , , ~ a ~ , ~ ~  ))) = (I;, a;) and the states (I;, T', 2 ,  g;) and 
(I;, p7 p", a;) are congruent. Putting all the steps together, we also see that 
interpg(M, P,, 0,) = ( I ; ,  0;) 

ii. r e f c ~ u n t ( l ~ , ~ ,  u ~ , ~ )  # 0. Similar to the previous case. 

(b) af,o(kf,l) # thunk(R,p;). Then again there are two cases depending on the reference 
count of lfVo: 

i. r e f c o ~ n t ( l ~ , ~ ,  afYo) = 1; then refc~unt(l,,~, a , , ~ )  = 1. Thus, 

and the states (Ef,l, p ,  2, dec(lf,o, uf,o)) and (l,,~, p', p", dec(lg,o, u, ,~)) are congruent. 
ii. r e f c o ~ n t ( l ~ , ~ ,  # 1. Similar to the previous case. 

This completes the induction and hence the proof. 

Proof of Theorem 13 

Recall from Section 5 that, in order to prove a correctness theorem, we needed a definition of how 
to unwind a term from a store. The definition of two mutually-recursive functions for performing 
this task, valof and valofcell, appears in Table 8. It is obvious from the definitions that only the 
reachable cells affect the value returned by valof and valofcell. For instance, if I' is not reachable 
from I in store a and a' = dec(ll,a), then valofcell(l,a) = valofcell(1,a'). We will use this fact 
throughout the arguments that follow. 

Also essential to the proof of Theorem 13 is a notion of when one term is 'more evaluated7 than 
another. Section 5 defines a relation >* between terms which expresses this relationship. We can 
prove three lemmas about the relationship of > and canonical forms. 

Lemma 20 If c > P and c is  a canonical form, then P is a canonical form. Moreover, c and P 
have the same shape, i .e. ,  if c is a numeral or boolean, then c = P; if c = Ax. Q, then P = Ax. Q'; 
and if c = (store Q), then P = (store Q'). 
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Proof: There are two cases to consider: either c .V P, or c = C[M], P = C[N], C[.] is nontrivial, 
and M JJ N. In the first case, since c is canonical, c = P ,  and hence P is canonical. In the second 
case, for c to  be canonical it must be the case that C[-] = n, true, false, Ax. D[.], or (store C[.]). 
Thus, P must be canonical as well, and must have the same shape as c. I 

Lemma 21 If c is a canonical form and M > c, then M J. d 2 c. 

Proof: By the definition of M 2 c, we know that M = C[Mt], c = C[d], and M' 4). d. In order for 
c to be canonical, it must be the case that either C[-] = [-I, n, true, false, Ax. D[.], or (store D[.]). 
In the first case, M' = M and d = c, so M 4 c > c. For the other cases, M JJ. M 2 c. . 
Lemma 22 If c is a canonical form and M L* c, then M JJ. d 2' c. 

Proof: An easy induction on the length of M = MI > . . . 2 Mk > c using Lemma 20. . 
We need a similar definition of one state in the reference-counting interpreter being 'more 

evaluated' than another. Basically, one state is more evaluated than another if, tracing from the 
root set, the storable objects held at nodes are identical or thunks have been replaced by more 
evaluated forms. Formally, 

Definition 23 We say (i, p, a )  2' (i, p, a') if for all 1 reachable from the root set, 1 E dorn(a) n 
dom(at) and 

1. a(1) = n, true, false, closure(Ax. N,p) ,  or recclosure()tx. N,p),  and a(E) = a'(1) and (p , a )  2' 
(P, a'); 

2. ~ ( b )  = susp(lo) or rec(l0, f) ,  a(10) is not a thunk, a'(l) = susp(lo) and (lo, 0) >* (lo, a'); or 

3. a(1) = susp(lo), a(lo) = thunk(R,p) and either 

(a) ~ ' ( 1 )  = susp(lo), a'(l0) = thunk(R,p), and (p, a )  2" (p,at);  or 

(b) a'(1) = susp(l'), a'(1') is not a thunk, interp(R,  p, a )  = ( I f ,  a"), and (It, a") >' (El ,  a') 

where (p, a )  L* (p, a') if for every x E dom(p), (p(x), a )  >* (p(x), a'). 

It is not difficult to prove that >* is reflexive and transitive on states. It is also not difficult to 
prove the following two lemmas: 

Lemma 24 Suppose %(i, p, p, a) and interp(M, p, a )  = (Z', a'). Then (f, p, a )  >* (I, p, a'). 

Lemma 25 If Q' L* valof(Q, p, a) and (t', p, p', a )  2* ( I ' ,  p, p', a'), then Q' 2' valof(Q, p, a'). 

The proof of the first is an easy induction on the number of calls to i n t e rp ;  the proof of the second 
is an easy induction on the definition of valof. 

We now have enough machinery to prove the main correctness theorem. 

Theorem 13 Suppose M is typeable, dorn(p) = FV(M),  M' is closed, and M' >* valof(M, p, a ) .  
Suppose also that ~ ( l / ,  p, p', a) .  

1. If M' IJ c, then in te rp(M,  p, a )  = (If, a') and c L* valofcell(l', a'). 
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2. M' = (store N' where x1 = Mi, .  . . ,xn  = MA), c = (store N1[xl,. . .,x, := dl,.  . .,d,]), and 
M,! .l,l d;. We only need to  consider the case when M = (store N where x1 = MI, .  . ., xn = 
M,), where N' L* valof(N, 0, a )  and M;' >* valof(M,, p I Mi, a) .  Since M is typeable, the free 
variables of each M; are disjoint. Since Mi >* valof(M1, p 1 MI, a ) ,  by induction 

where dl >* valofcell(ll, al). By Lemma 24, 

and by Theorem 6, R(I~,E',~~M~,...,~~M~,U~). Since M i  >* valof(M2,pJMz,a),  by 
Lemma 25, &I; >* valof(M2, p 1 M2, 01). Using similar repeated applications of the induc- 
tion hypothesis, 

i n t  erp(M;, pi, a;-1) = (E;, a;) 

where d; >* valofcell(l;, a;), and by Lemma 24, 

Finally, let 

Then using Lemma 25, we find that (store N1[xl, . . . , x, := dl, . . . , d,]) >* valofcell(l', a') as 
desired. 

3. M' = (fetch N'), where N' J,L (store Q') and Q' J,L c. Then the only case to consider is 
M = (fetch N)  where N' >* valof(N, p, a) .  By induction, 

where (store Q') >* valofcell(lo,ao). By Theorem 6, R(lo,l',?, ao). Since (store Q') 2* 
valofcell(Zo, ao) and ao(lo) must be a value, it follows from Lemma 20 that ao(lo) = susp(ll) 
or rec(ll, f )  and Q' L* valofcell(ll, 00). We consider only the case when ao(10) is susp(ll) and 
leave the other case to  the reader. There are two subcases: 

(a) ao(El) = thunk(R,p1). There are two subcases: 

i. refcount(Eo, ao) = 1. First, note that neither lo nor ll is reachable from pl--if either 
were, the state S = (lo, i l , p ' ,  ao) would have a cycle that was not composed solely 
of a rec and a recclosure-and this contradicts the regularity of the state S. Thus, 

By laws A1 and A2, %(F, p', p', dec(Zl, dec(lo, 00))). Thus, it follows by induction 
that interp(R,  p', dec(ll , dec(lo, go))) = (El, a') and c L* valofcell(l', a') as desired. 
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3. M = (P Q). Since in te rp(M,  p, a )  = (l', a'), it follows that 

in te rp(P ,  p 1 P, 0) = (lo, 00) 
interp(Q,  P l Q, 00) = (11,ai) 
al (lo) = closure(Ax . N,  p') or recclosure(Xx. N ,  p') 

Since M' >* valof(M, p, a ) ,  it must be that M' = (PI 4')  for some closed P' and Q', where 
P' >* valof(P, p, a )  and Q' >* valof(Q, p, a).  By induction, 

By Lemmas 24 and 25, d' >* valofcell(lo, 01). Since al(lo) is a closure, valofcell(lo, a l )  must 
be a A-abstraction, and so by Lemma 20 it follows that d' = (Ax. N') for some N'. If 
refcount(lo, a l )  = 1, then N'[x := d] >* valof(N',p1[x H 111, dec(lo, 01)). If, on the other 
hand, refcount(lo, a l )  > 1, then N'[z := d] >* valof(Nf, pf[x H 111, inc-env(pr, dec(lo, 01))). In 
either case, it follows by the induction hypothesis that 

N'[x := d] l). c >* valofcell(b', a'). 

Thus, we conclude M' 4 c L* valofcell(l', a'). 

4. M = (store N where xl = MI,.  . ., x, = M,). Since M evaluates, 

Since M' 2* valof(M, p, a ) ,  it follows that M' = (store Nf  where x l  = M i , .  . . , x, = MA) and 
N' >* valof(N, 0, a )  and M;/ L* valof(M;, p I Mi, a).  By induction, MI JJ cl 2* valofcell(ll, al). 
To evaluate the next term in the sequence, note that 

so by induction M; l). c2 >* valofcell(12, a2). Extending the induction hypothesis further yields 
that Mi l). ci >* valofcell(l;,a;). Note also that by Lemmas 24 and 25, N' >* valof(N,O,an); 
it follows that 

(store Nt[zl , .  . . , x, := cl, . . . , c,]) = c >* v a l ~ f ( N , ~ ' ,  a,) = valofcell(l', a'). 

Thus Mi .(l c; and so M'  4 c 2* valofcell(l', a') as desired. 

5. M = (fetch P ) .  Since M evaluates, interp(P,p,  a )  = (lo, ao) and by Theorem 6, 
%(lo, if, p', go). Since M' >* valof(Mlp, a ) ,  it follows that M' = (fetch PI) for some P' 
and P' >* valof(P, p, a). By induction, 
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