12 research outputs found

    Computing the Fréchet Distance with a Retractable Leash

    Get PDF
    All known algorithms for the Fréchet distance between curves proceed in two steps: first, they construct an efficient oracle for the decision version; second, they use this oracle to find the optimum from a finite set of critical values. We present a novel approach that avoids the detour through the decision version. This gives the first quadratic time algorithm for the Fréchet distance between polygonal curves in (Formula presented.) under polyhedral distance functions (e.g., (Formula presented.) and (Formula presented.)). We also get a (Formula presented.)-approximation of the Fréchet distance under the Euclidean metric, in quadratic time for any fixed (Formula presented.). For the exact Euclidean case, our framework currently yields an algorithm with running time (Formula presented.). However, we conjecture that it may eventually lead to a faster exact algorithm

    Approximability of the Discrete {Fr\'echet} Distance

    No full text
    <p>The Fréchet distance is a popular and widespread distance measure for point sequences and for curves. About two years ago, Agarwal et al. [SIAM J. Comput. 2014] presented a new (mildly) subquadratic algorithm for the discrete version of the problem. This spawned a flurry of activity that has led to several new algorithms and lower bounds.</p><p>In this paper, we study the approximability of the discrete Fréchet distance. Building on a recent result by Bringmann [FOCS 2014], we present a new conditional lower bound showing that strongly subquadratic algorithms for the discrete Fréchet distance are unlikely to exist, even in the one-dimensional case and even if the solution may be approximated up to a factor of 1.399.</p><p>This raises the question of how well we can approximate the Fréchet distance (of two given dd-dimensional point sequences of length nn) in strongly subquadratic time. Previously, no general results were known. We present the first such algorithm by analysing the approximation ratio of a simple, linear-time greedy algorithm to be 2Θ(n)2^{\Theta(n)}. Moreover, we design an α\alpha-approximation algorithm that runs in time O(nlog⁥n+n2/α)O(n\log n + n^2/\alpha), for any α∈[1,n]\alpha\in [1, n]. Hence, an nΔn^\varepsilon-approximation of the Fréchet distance can be computed in strongly subquadratic time, for any \varepsilon > 0.</p

    Registration of histology and magnetic resonance imaging of the brain

    Get PDF
    Combining histology and non-invasive imaging has been attracting the attention of the medical imaging community for a long time, due to its potential to correlate macroscopic information with the underlying microscopic properties of tissues. Histology is an invasive procedure that disrupts the spatial arrangement of the tissue components but enables visualisation and characterisation at a cellular level. In contrast, macroscopic imaging allows non-invasive acquisition of volumetric information but does not provide any microscopic details. Through the establishment of spatial correspondences obtained via image registration, it is possible to compare micro- and macroscopic information and to recover the original histological arrangement in three dimensions. In this thesis, I present: (i) a survey of the literature relative to methods for histology reconstruction with and without the help of 3D medical imaging; (ii) a graph-theoretic method for histology volume reconstruction from sets of 2D sections, without external information; (iii) a method for multimodal 2D linear registration between histology and MRI based on partial matching of shape-informative boundaries

    Computing the Fréchet distance with a retractable leash

    No full text
    All known algorithms for the Fréchet distance between curves proceed in two steps: first, they construct an efficient oracle for the decision version; then they use this oracle to find the optimum among a finite set of critical values. We present a novel approach that avoids the detour through the decision version. We demonstrate its strength by presenting a quadratic time algorithm for the Fréchet distance between polygonal curves in R^d under polyhedral distance functions, including L_1 and L_infinity. We also get a (1+eps)-approximation of the Fréchet distance under the Euclidean metric. For the exact Euclidean case, our framework currently gives an algorithm with running time O(n^2 log^2 n). However, we conjecture that it may eventually lead to a faster exact algorithm
    corecore