44,885 research outputs found

    Controlled non uniform random generation of decomposable structures

    Get PDF
    Consider a class of decomposable combinatorial structures, using different types of atoms \Atoms = \{\At_1,\ldots ,\At_{|{\Atoms}|}\}. We address the random generation of such structures with respect to a size nn and a targeted distribution in kk of its \emph{distinguished} atoms. We consider two variations on this problem. In the first alternative, the targeted distribution is given by kk real numbers \TargFreq_1, \ldots, \TargFreq_k such that 0 < \TargFreq_i < 1 for all ii and \TargFreq_1+\cdots+\TargFreq_k \leq 1. We aim to generate random structures among the whole set of structures of a given size nn, in such a way that the {\em expected} frequency of any distinguished atom \At_i equals \TargFreq_i. We address this problem by weighting the atoms with a kk-tuple \Weights of real-valued weights, inducing a weighted distribution over the set of structures of size nn. We first adapt the classical recursive random generation scheme into an algorithm taking \bigO{n^{1+o(1)}+mn\log{n}} arithmetic operations to draw mm structures from the \Weights-weighted distribution. Secondly, we address the analytical computation of weights such that the targeted frequencies are achieved asymptotically, i. e. for large values of nn. We derive systems of functional equations whose resolution gives an explicit relationship between \Weights and \TargFreq_1, \ldots, \TargFreq_k. Lastly, we give an algorithm in \bigO{k n^4} for the inverse problem, {\it i.e.} computing the frequencies associated with a given kk-tuple \Weights of weights, and an optimized version in \bigO{k n^2} in the case of context-free languages. This allows for a heuristic resolution of the weights/frequencies relationship suitable for complex specifications. In the second alternative, the targeted distribution is given by a kk natural numbers n1,…,nkn_1, \ldots, n_k such that n1+⋯+nk+r=nn_1+\cdots+n_k+r=n where r≥0r \geq 0 is the number of undistinguished atoms. The structures must be generated uniformly among the set of structures of size nn that contain {\em exactly} nin_i atoms \At_i (1≤i≤k1 \leq i \leq k). We give a \bigO{r^2\prod_{i=1}^k n_i^2 +m n k \log n} algorithm for generating mm structures, which simplifies into a \bigO{r\prod_{i=1}^k n_i +m n} for regular specifications

    Interpolation in Valiant's theory

    Get PDF
    We investigate the following question: if a polynomial can be evaluated at rational points by a polynomial-time boolean algorithm, does it have a polynomial-size arithmetic circuit? We argue that this question is certainly difficult. Answering it negatively would indeed imply that the constant-free versions of the algebraic complexity classes VP and VNP defined by Valiant are different. Answering this question positively would imply a transfer theorem from boolean to algebraic complexity. Our proof method relies on Lagrange interpolation and on recent results connecting the (boolean) counting hierarchy to algebraic complexity classes. As a byproduct we obtain two additional results: (i) The constant-free, degree-unbounded version of Valiant's hypothesis that VP and VNP differ implies the degree-bounded version. This result was previously known to hold for fields of positive characteristic only. (ii) If exponential sums of easy to compute polynomials can be computed efficiently, then the same is true of exponential products. We point out an application of this result to the P=NP problem in the Blum-Shub-Smale model of computation over the field of complex numbers.Comment: 13 page

    Algebraic properties of structured context-free languages: old approaches and novel developments

    Full text link
    The historical research line on the algebraic properties of structured CF languages initiated by McNaughton's Parenthesis Languages has recently attracted much renewed interest with the Balanced Languages, the Visibly Pushdown Automata languages (VPDA), the Synchronized Languages, and the Height-deterministic ones. Such families preserve to a varying degree the basic algebraic properties of Regular languages: boolean closure, closure under reversal, under concatenation, and Kleene star. We prove that the VPDA family is strictly contained within the Floyd Grammars (FG) family historically known as operator precedence. Languages over the same precedence matrix are known to be closed under boolean operations, and are recognized by a machine whose pop or push operations on the stack are purely determined by terminal letters. We characterize VPDA's as the subclass of FG having a peculiarly structured set of precedence relations, and balanced grammars as a further restricted case. The non-counting invariance property of FG has a direct implication for VPDA too.Comment: Extended version of paper presented at WORDS2009, Salerno,Italy, September 200
    • …
    corecore