346 research outputs found

    Spanning connectivity games

    Get PDF
    The Banzhaf index, Shapley-Shubik index and other voting power indices measure the importance of a player in a coalitional game. We consider a simple coalitional game called the spanning connectivity game (SCG) based on an undirected, unweighted multigraph, where edges are players. We examine the computational complexity of computing the voting power indices of edges in the SCG. It is shown that computing Banzhaf values and Shapley-Shubik indices is #P-complete for SCGs. Interestingly, Holler indices and Deegan-Packel indices can be computed in polynomial time. Among other results, it is proved that Banzhaf indices can be computed in polynomial time for graphs with bounded treewidth. It is also shown that for any reasonable representation of a simple game, a polynomial time algorithm to compute the Shapley-Shubik indices implies a polynomial time algorithm to compute the Banzhaf indices. As a corollary, computing the Shapley value is #P-complete for simple games represented by the set of minimal winning coalitions, Threshold Network Flow Games, Vertex Connectivity Games and Coalitional Skill Games

    Measuring satisfaction in societies with opinion leaders and mediators

    Get PDF
    An opinion leader-follower model (OLF) is a two-action collective decision-making model for societies, in which three kinds of actors are considered:Preprin

    Measuring satisfaction and power in influence based decision systems

    Get PDF
    We introduce collective decision-making models associated with influence spread under the linear threshold model in social networks. We define the oblivious and the non-oblivious influence models. We also introduce the generalized opinion leader–follower model (gOLF) as an extension of the opinion leader–follower model (OLF) proposed by van den Brink et al. (2011). In our model we allow rules for the final decision different from the simple majority used in OLF. We show that gOLF models are non-oblivious influence models on a two-layered bipartite influence digraph. Together with OLF models, the satisfaction and the power measures were introduced and studied. We analyze the computational complexity of those measures for the decision models introduced in the paper. We show that the problem of computing the satisfaction or the power measure is #P-hard in all the introduced models even when the subjacent social network is a bipartite graph. Complementing this result, we provide two subfamilies of decision models in which both measures can be computed in polynomial time. We show that the collective decision functions are monotone and therefore they define an associated simple game. We relate the satisfaction and the power measures with the Rae index and the Banzhaf value of an associated simple game. This will allow the use of known approximation methods for computing the Banzhaf value, or the Rae index to their practical computation.Peer ReviewedPostprint (author's final draft

    Algorithmic and complexity aspects of simple coalitional games

    Get PDF
    Simple coalitional games are a fundamental class of cooperative games and voting games which are used to model coalition formation, resource allocation and decision making in computer science, artificial intelligence and multiagent systems. Although simple coalitional games are well studied in the domain of game theory and social choice, their algorithmic and computational complexity aspects have received less attention till recently. The computational aspects of simple coalitional games are of increased importance as these games are used by computer scientists to model distributed settings. This thesis fits in the wider setting of the interplay between economics and computer science which has led to the development of algorithmic game theory and computational social choice. A unified view of the computational aspects of simple coalitional games is presented here for the first time. Certain complexity results also apply to other coalitional games such as skill games and matching games. The following issues are given special consideration: influence of players, limit and complexity of manipulations in the coalitional games and complexity of resource allocation on networks. The complexity of comparison of influence between players in simple games is characterized. The simple games considered are represented by winning coalitions, minimal winning coalitions, weighted voting games or multiple weighted voting games. A comprehensive classification of weighted voting games which can be solved in polynomial time is presented. An efficient algorithm which uses generating functions and interpolation to compute an integer weight vector for target power indices is proposed. Voting theory, especially the Penrose Square Root Law, is used to investigate the fairness of a real life voting model. Computational complexity of manipulation in social choice protocols can determine whether manipulation is computationally feasible or not. The computational complexity and bounds of manipulation are considered from various angles including control, false-name manipulation and bribery. Moreover, the computational complexity of computing various cooperative game solutions of simple games in dierent representations is studied. Certain structural results regarding least core payos extend to the general monotone cooperative game. The thesis also studies a coalitional game called the spanning connectivity game. It is proved that whereas computing the Banzhaf values and Shapley-Shubik indices of such games is #P-complete, there is a polynomial time combinatorial algorithm to compute the nucleolus. The results have interesting significance for optimal strategies for the wiretapping game which is a noncooperative game defined on a network

    Using Cooperative Game Theory to Prune Neural Networks

    Full text link
    We show how solution concepts from cooperative game theory can be used to tackle the problem of pruning neural networks. The ever-growing size of deep neural networks (DNNs) increases their performance, but also their computational requirements. We introduce a method called Game Theory Assisted Pruning (GTAP), which reduces the neural network's size while preserving its predictive accuracy. GTAP is based on eliminating neurons in the network based on an estimation of their joint impact on the prediction quality through game theoretic solutions. Specifically, we use a power index akin to the Shapley value or Banzhaf index, tailored using a procedure similar to Dropout (commonly used to tackle overfitting problems in machine learning). Empirical evaluation of both feedforward networks and convolutional neural networks shows that this method outperforms existing approaches in the achieved tradeoff between the number of parameters and model accuracy

    Complexity of coalition structure generation

    Get PDF
    We revisit the coalition structure generation problem in which the goal is to partition the players into exhaustive and disjoint coalitions so as to maximize the social welfare. One of our key results is a general polynomial-time algorithm to solve the problem for all coalitional games provided that player types are known and the number of player types is bounded by a constant. As a corollary, we obtain a polynomial-time algorithm to compute an optimal partition for weighted voting games with a constant number of weight values and for coalitional skill games with a constant number of skills. We also consider well-studied and well-motivated coalitional games defined compactly on combinatorial domains. For these games, we characterize the complexity of computing an optimal coalition structure by presenting polynomial-time algorithms, approximation algorithms, or NP-hardness and inapproximability lower bounds.Comment: 17 page
    corecore