6,233 research outputs found

    Computing Role Assignments of Proper Interval Graphs in Polynomial Time

    Get PDF
    A homomorphism from a graph G to a graph R is locally surjective if its restriction to the neighborhood of each vertex of G is surjective. Such a homomorphism is also called an R-role assignment of G. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The Role Assignment problem has as input a pair of graphs (G,R) and asks whether G has an R-role assignment. This problem is NP-complete already on input pairs (G,R) where R is a path on three vertices. So far, the only known non-trivial tractable case consists of input pairs (G,R) where G is a tree. We present a polynomial time algorithm that solves Role Assignment on all input pairs (G,R) where G is a proper interval graph. Thus we identify the first graph class other than trees on which the problem is tractable. As a complementary result, we show that the problem is Graph Isomorphism-hard on chordal graphs, a superclass of proper interval graphs and trees

    Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree.

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree

    The Complexity of Surjective Homomorphism Problems -- a Survey

    Get PDF
    We survey known results about the complexity of surjective homomorphism problems, studied in the context of related problems in the literature such as list homomorphism, retraction and compaction. In comparison with these problems, surjective homomorphism problems seem to be harder to classify and we examine especially three concrete problems that have arisen from the literature, two of which remain of open complexity

    Exploiting structure to cope with NP-hard graph problems: Polynomial and exponential time exact algorithms

    Get PDF
    An ideal algorithm for solving a particular problem always finds an optimal solution, finds such a solution for every possible instance, and finds it in polynomial time. When dealing with NP-hard problems, algorithms can only be expected to possess at most two out of these three desirable properties. All algorithms presented in this thesis are exact algorithms, which means that they always find an optimal solution. Demanding the solution to be optimal means that other concessions have to be made when designing an exact algorithm for an NP-hard problem: we either have to impose restrictions on the instances of the problem in order to achieve a polynomial time complexity, or we have to abandon the requirement that the worst-case running time has to be polynomial. In some cases, when the problem under consideration remains NP-hard on restricted input, we are even forced to do both. Most of the problems studied in this thesis deal with partitioning the vertex set of a given graph. In the other problems the task is to find certain types of paths and cycles in graphs. The problems all have in common that they are NP-hard on general graphs. We present several polynomial time algorithms for solving restrictions of these problems to specific graph classes, in particular graphs without long induced paths, chordal graphs and claw-free graphs. For problems that remain NP-hard even on restricted input we present exact exponential time algorithms. In the design of each of our algorithms, structural graph properties have been heavily exploited. Apart from using existing structural results, we prove new structural properties of certain types of graphs in order to obtain our algorithmic results

    Wireless Scheduling with Power Control

    Full text link
    We consider the scheduling of arbitrary wireless links in the physical model of interference to minimize the time for satisfying all requests. We study here the combined problem of scheduling and power control, where we seek both an assignment of power settings and a partition of the links so that each set satisfies the signal-to-interference-plus-noise (SINR) constraints. We give an algorithm that attains an approximation ratio of O(lognloglogΔ)O(\log n \cdot \log\log \Delta), where nn is the number of links and Δ\Delta is the ratio between the longest and the shortest link length. Under the natural assumption that lengths are represented in binary, this gives the first approximation ratio that is polylogarithmic in the size of the input. The algorithm has the desirable property of using an oblivious power assignment, where the power assigned to a sender depends only on the length of the link. We give evidence that this dependence on Δ\Delta is unavoidable, showing that any reasonably-behaving oblivious power assignment results in a Ω(loglogΔ)\Omega(\log\log \Delta)-approximation. These results hold also for the (weighted) capacity problem of finding a maximum (weighted) subset of links that can be scheduled in a single time slot. In addition, we obtain improved approximation for a bidirectional variant of the scheduling problem, give partial answers to questions about the utility of graphs for modeling physical interference, and generalize the setting from the standard 2-dimensional Euclidean plane to doubling metrics. Finally, we explore the utility of graph models in capturing wireless interference.Comment: Revised full versio
    corecore