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Abstract. A homomorphism from a graph G to a graph R is locally
surjective if its restriction to the neighborhood of each vertex of G is
surjective. Such a homomorphism is also called an R-role assignment of
G. Role assignments have applications in distributed computing, social
network theory, and topological graph theory. The Role Assignment
problem has as input a pair of graphs (G,R) and asks whether G has
an R-role assignment. This problem is NP-complete already on input
pairs (G,R) where R is a path on three vertices. So far, the only known
non-trivial tractable case consists of input pairs (G,R) where G is a
tree. We present a polynomial time algorithm that solves Role Assign-
ment on all input pairs (G,R) where G is a proper interval graph. Thus
we identify the first graph class other than trees on which the prob-
lem is tractable. As a complementary result, we show that the problem
is Graph Isomorphism-hard on chordal graphs, a superclass of proper
interval graphs and trees.

1 Introduction

Graph homomorphisms form a natural generalization of graph colorings: there
is a homomorphism from a graph G to the complete graph on k vertices if and
only if G is k-colorable. A homomorphism from a graph G = (VG, EG) to a graph
R = (VR, ER) is a mapping r : VG → VR that maps adjacent vertices of G to
adjacent vertices of R, i.e., r(u)r(v) ∈ ER whenever uv ∈ EG. A homomorphism
r from G to R is locally surjective if the following is true for every vertex u of G:
for every neighbor y of r(u) in R, there is a neighbor v of u in G with r(v) = y.
We also call such an r an R-role assignment. See Figure 1 for an example.

Role assignments originate in the theory of social behavior [7, 19]. A role
graph R models roles and their relationships, and for a given society we can
ask if its individuals can be assigned roles such that relationships are preserved:
each person playing a particular role has exactly the roles prescribed by the
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Fig. 1. A graph R and a proper interval graph G with an R-role assignment.

model among its neighbors. In this way, a large network of individuals can be
compressed into a smaller network that still gives some description of the large
network. Role assignments are also useful in the area of distributed computing,
in which one of the fundamental problems is to arrive at a final configuration
where all processors have been assigned unique identities. Chalopin et al. [4]
show that, under a particular communication model, this problem can be solved
on a graph G representing the distributed system if and only if G has no R-role
assignment for a graph R with fewer vertices than G. Role assignments are useful
in topological graph theory as well, where a main question is which graphs G
allow role assignments to planar graphs R [21].

The Role Assignment problem has as input a pair of graphs (G,R) and
asks whether G has an R-role assignment. It is NP-complete on arbitrary graphs
G, even when R is any fixed connected bipartite graph on at least three ver-
tices [10]. Hence, for polynomial time solvability, our only hope is to put restric-
tions on G. So far, the only known non-trivial graph class that gives tractability
is the class of trees: Role Assignment is polynomial time solvable on input
pairs (G,R) where G is a tree and R is arbitrary [11]. Are there other graph
classes on which Role Assignment can be solved in polynomial time?

We show that Role Assignment can be solved in polynomial time on in-
put pairs (G,R) where G is a proper interval graph and R is arbitrary. Our
work is motivated by the above question and continues the research direction
of Sheng [23], who characterizes proper interval graphs that have an R-role as-
signment for some fixed role graphs R with a small number of vertices. Proper
interval graphs, also known as unit interval graphs or indifference graphs, are
widely known due to their many theoretical and practical applications [3, 14,
22]. By our result, they form the first graph class other than trees on which
Role Assignment is shown to be polynomial time solvable. To obtain our al-
gorithm we prove structural properties of clique paths of proper interval graphs
related to role assignments. This enables us to give an additional result, namely
a polynomial time algorithm for the problem of deciding whether there exists
a graph R with fewer vertices than a given proper interval graph G such that
G has an R-role assignment. Recall that this problem stems from the area of
distributed computing [4]. It is co-NP-complete in general [5]. Finally, to indicate
that Role Assignment might remain hard on larger graph classes, we show
that it is Graph Isomorphism-hard for input pairs (G,R) where G belongs
to the class of chordal graphs, a superclass of both proper interval graphs and
trees.



2 Preliminaries

All graphs considered in this paper are undirected, finite and simple, i.e., without
loops or multiple edges. A graph is denoted G = (VG, EG), where VG is the set
of vertices and EG is the set of edges. We will use the convention that n = |VG|
and m = |EG|. For a vertex u of G, NG(u) = {v | uv ∈ EG} denotes the set
of neighbors of u, also called the neighborhood of u. The degree of a vertex u is
degG(u) = |NG(u)|. A graph H = (VH , EH) is a subgraph of G if VH ⊆ VG and
EH ⊆ EG. For U ⊆ VG, the graph G[U ] = (U, {uv ∈ EG | u, v ∈ U}) is called
the subgraph of G induced by U . A graph is complete if it has an edge between
every pair of vertices. A set of vertices A ⊆ VG is a clique if G[A] is complete. A
clique is maximal if it is not a proper subset of any other clique.

An isomorphism from a graph G to a graph H is a bijective mapping f :
VG → VH such that for any two vertices u, v ∈ EG, we have uv ∈ EG if and only
if f(u)f(v) ∈ EH . We say that G is isomorphic to H and write G ' H.

Let u and v be two vertices of a graph G. Then a path between u and v is
a sequence of distinct vertices P = u1u2 · · ·up starting at u1 = u and ending at
up = v, where each pair of consecutive vertices ui, ui+1 forms an edge of G. If
uv is an edge as well we obtain a cycle. Sometimes we fix an orientation of P . In

that case we write ui
−→
P uj = uiui+1 · · ·uj and uj

←−
P ui = ujuj−1 · · ·ui to denote

the subpath from ui to uj , or from uj to ui, respectively. The length of a path or
cycle is its number of edges. The set of vertices of a path or cycle P is denoted
by VP . A graph is connected if there is a path between every pair of vertices. A
connected component of G is a maximal connected subgraph of G.

Let A1, . . . , Ap be a sequence of sets. For i = 1, . . . , p, we use shorthand
notation A≤i = A1 ∪ · · · ∪Ai and A≥i = Ai ∪ · · · ∪Ap.

2.1 Chordal, Interval, and Proper Interval Graphs

A graph isomorphic to the graph K1,3 = ({a, b1, b2, b3}, {ab1, ab2, ab3}) is called
a claw with center a and leaves b1, b2, b3. A graph is called claw-free if it does
not have a claw as an induced subgraph. An asteroidal triple (AT) in a graph G
is a set of three mutually nonadjacent vertices u1, u2, u3 such that G contains a
path Pij from ui to uj with Pij ∩NG(uk) = ∅ for all distinct i, j, k ∈ {1, 2, 3}. A
graph is called AT-free if it does not have an AT.

A graph is chordal if it contains no induced cycle of length at least 4. A graph
is an interval graph if intervals of the real line can be associated with its vertices
such that two vertices are adjacent if and only if their corresponding intervals
overlap. Interval graphs are a subclass of chordal graphs: a chordal graph is an
interval graph if and only if it is AT-free [17].

The following characterization of interval graphs is also well known. Let G
be a connected graph with maximal cliques K1, . . . ,Kp and let Kv denote the
set of maximal cliques in G containing vertex v ∈ VG. Then G is an interval
graph if and only if G has a path decomposition that is a clique path [12], i.e., a
path P = K1 · · ·Kp such that for each v ∈ VG the set Kv induces a connected
subpath in P . We say that the maximal cliques of G are the bags of P . A bag Ki



introduces a vertex u of G if u ∈ Ki for i = 1 or u ∈ Ki \Ki−1 for some i ≥ 2. In
that case, by the definition of a clique path, u is not in a bag Kh with h ≤ i− 1.
If u ∈ Ki for i = p or u ∈ Ki \Ki+1 for some i ≤ p − 1, then we say that Ki

forgets u. Note that every bag introduces at least one vertex, and forgets at least
one vertex. Because G is connected, we also observe that each bag, except K1,
contains at least one vertex from a previous bag. We denote the index of the bag
in P that introduces a vertex u (the first bag in which u appears) by fP (u) and
the index of the bag that forgets u (the last bag in which u appears) by lP (u).
We say that u transcends a vertex v in P if fP (u) < fP (v) and lP (v) < lP (u).
A clique path has at most n bags, and can be constructed in linear time (see
e.g. [12]).

An interval graph is proper interval if it has an interval representation in
which no interval is properly contained in any other interval. An interval graph
is a proper interval graph if and only if it is claw-free [22]. Equivalently, a chordal
graph is a proper interval graph if and only if it is AT-free and claw-free. Chordal
graphs, interval graphs, and proper interval graphs can all be recognized in linear
time, and have at most n maximal cliques (see e.g. [3, 14]). The following theorem
will be used heavily in our proofs.

Theorem 1 ([15]). A connected chordal graph is a proper interval graph if and
only if it has a unique clique path in which no vertex transcends any other vertex.

Two adjacent vertices u and v of a graph G are twins if NG(u)∪{u} = NG(v)∪
{v}. Let G be a connected proper interval graph with clique path P = K1 · · ·Kp.
Note that two vertices u and v of G are twins if and only if fP (u) = fP (v) and
lP (u) = lP (v). We partition VG into sets of twins. A vertex that has no twin
appears in its twin set alone. We order the twin sets with respect to P , and label
them T1, . . . , TS , in such a way that i < j if and only if for all u ∈ Ti, v ∈ Tj ,
either fP (u) < fP (v), or fP (u) = fP (v) and lP (u) < lP (v). We call T1, . . . , Ts

the ordered twin sets of G. The following observation immediately follows from
this definition and the definition of a clique path. Hence, this observation is even
valid for interval graphs that are not proper.

Observation 1 Let G be a connected proper interval graph with clique path
P = K1 . . .Kp and ordered twin sets T1, . . . , Ts. Then for h = 1, . . . , s− 1, there
exists a bag that contains twin sets Th and Th+1. Furthermore, if a bag contains
twin sets Tb and Tc with b < c then it contains twin sets Tb+1, . . . , Tc−1 as well.

2.2 Role Assignments

If r is a homomorphism from G to R and U ⊆ VG, then we write r(U) =⋃
u∈U r(u). Recall that r is an R-role assignment of G if r(NG(u)) = NR(r(u))

for every vertex u of G. Graph R is called a role graph and its vertices are called
roles. Throughout the paper, we use n and m to refer to the number of vertices
and edges of G. We frequently make use of the following two known results.



Observation 2 ([10]) Let G be a graph and let R be a connected graph such
that G has an R-role assignment. Then each vertex x ∈ VR appears as a role of
some vertex u ∈ VG, i.e., r(u) = x. Furthermore, if |VG| = |VR| then G ' R.

Lemma 1 ([10]). Let G and R be two graphs such that G has an R-role as-
signment r, and let x, y ∈ VR be roles connected by a path z1 · · · z` in R, with
x = z1 and y = z`. Then for each u ∈ VG with r(u) = x there exists a vertex
v ∈ VG and a path t1 · · · t` in G, with u = t1 and v = t`, such that r(ti) = zi for
i = 1, . . . , `.

Our first result, given in Theorem 2, shows that chordal graphs, interval
graphs, and proper interval graphs are closed under role assignments, and it is
needed in Section 3. We postpone its proof to the journal version of this paper.
Note that, for each of the three statements in Theorem 2, the reverse implication
is not valid. In order to see this let G be the 6-cycle and R be the 3-cycle.

Theorem 2. Let G be a graph and let R be a connected graph such that G has
an R-role assignment.

(i) If G is a chordal graph then R is a chordal graph.
(ii) If G is an interval graph then R is an interval graph.

(iii) If G is a proper interval graph then R is a proper interval graph.

3 Role Assignments on Proper Interval Graphs

We start with the following key result. Note that this result is easy to verify for
paths.

Theorem 3. Let G and R be two connected proper interval graphs such that
G has an R-role assignment r. Let P and P ′ be the clique paths of G and R,
respectively. Then the bags of P and P ′ can be ordered such that P = K1 · · ·Kp

and P ′ = L1 · · ·Lq, with q ≤ p, and r(Ki) = Li, for i = 1, . . . , q.

Proof. By the definition of a role assignment, |VG| ≥ |VR| holds. Assume first
that |VG| = |VR|. Then, as a result of Observation 2, G and R are isomorphic.
By Theorem 1 the clique paths of G and R are unique. Hence the ordering of
the bags in each path is unique up to reversal. We can try each direction for one
of the paths, and the statement of the theorem holds.

For the rest of the proof, assume that |VG| > |VR|. Then at least one vertex
of R is the role of more than one vertex of G. Let x be such a role. Then there
exist vertices u and u′ in G with r(u) = r(u′) = x. Assume lP (u) = h and
fP (u′) = i, where we may assume that h < i because Kh and Ki are cliques,
and vertices with the same role can not be adjacent. Let x be chosen in such a
way that every vertex in K≤i−1 has a unique role, i.e., |r(K≤i−1)| = |K≤i−1|.

Claim 1. Every vertex of R occurs as a (unique) role of a vertex of K≤i−1.

We prove this claim by contradiction. Suppose there is a role y that does not
occur as a role of a vertex in K≤i−1. As a result of Observation 2, there exists



a vertex v in G with r(v) = y. Let fP (v) = j. Since y does not appear as a role
on K≤i−1, we find that j ≥ i. We may choose v such that there is no vertex in
K≤j−1 with role y. Because Kj is a clique, we find that v is the only vertex of
Kj with role y.

Let Q′ = z1 · · · z`, with x = z1 and y = z`, be a shortest path between x and
y in R. By Lemma 1 we find that G contains a path Q1 = t1 · · · t` with u = t1,
such that r(ti) = zi for i = 1, . . . , `. Since Q′ is a shortest path from x to y in
R, and there is no other vertex in Kj with role y, our choice of v implies that
we may assume that v = t`.

By the same reasoning we find a path Q2 = t′1 · · · t′`, with u′ = t′1 and v = t′`,
such that r(t′i) = zi for i = 1, . . . , `. Hence Q1 and Q2 are two paths with
r(VQ1

) = r(VQ2
) = VQ′ and |VQ1

| = |VQ2
| = |VQ′ |. Consequently, u is not on Q2

and u′ is not on Q1. However, since lP (u) = h < fP (u′) = i ≤ fP (v) = j and
Ki,Kj are cliques, we find that Q1 contains a neighbor w of u′.

Suppose i = j. Then u′ and v are neighbors in G, and consequently, xy is an
edge of R. This means that u and v are neighbors in G. Hence, there is a bag in
P containing both of them. This means that h = lP (u) ≥ fP (v) = j. However,
this is not possible since h < i ≤ j.

Suppose i < j. Then w = t2 as otherwise r maps the path u′w
−→
Q1t` to a path

from x to y in R that is shorter than Q′. By the same reasoning, we find that w
is the only neighbor of u′ on Q1. Since Q1 is a shortest path and uu′ /∈ EG, this
means that G contains an induced claw with center t2 and leaves u, u′, t3, which
contradicts the assumption that G is a proper interval graph. This completes
the proof of Claim 1.

By Claim 1 we find that r(K≤i−1) = VR, and consequently, as |r(K≤i−1)| =
|K≤i−1|, we obtain |K≤i−1| = |VR|. Let r′ be the restriction of r to K≤i−1.

Claim 2. r′ is an R-role assignment of G[K≤i−1].

We prove Claim 2 as follows. Suppose r′ is not an R-role assignment of G[K≤i−1].
Because r is a homomorphism from G to R, we find that r′ is an homomorphism
from G[K≤i−1] to R. Hence, there must exist a vertex t ∈ K≤i−1 and vertices
z, z′ ∈ VR with r′(t) = r(t) = z, zz′ ∈ ER and z′ /∈ r′(NG(t)). Since r is
an R-role assignment of G, we find that z′ ∈ r(NG(t)). Hence lP (t) ≥ i + 1.
Consequently, as t ∈ K≤i−1, we find that t belongs to Ki. We proceed as follows.
Since r(K≤i−1) = VR, there exists a vertex t′ ∈ K≤i−1 with r′(t′) = r(t′) = z′.
By definition of r, we find that t′ has a neighbor s in G with r(s) = z. Because t
has no neighbor with role z′, we find that t and t′ are not adjacent in G. Hence
s 6= t holds. Since every vertex of K≤i−1 has a unique role and vertex t ∈ K≤i−1
already has role z, we find that s /∈ K≤i−1. This means that Ki does not only
contain t but also contains t′. However, since Ki is a clique, t and t′ must be
adjacent. With this contradiction we have completed the proof of Claim 2.

Due to Claim 2 and the aforementioned observation that |K≤i−1| = |VR|, we
may apply Observation 2 and obtain that G[K≤i−1] is isomorphic to R. By
Theorem 1, the clique paths of G[K≤i−1] and R are unique. Hence, i = q + 1,
and the statement of the theorem follows. ut



Note that Theorem 3 is not valid for interval graphs, which can be seen with
the following example. Let G be the path u1u2u3u4 to which we add a vertex u5

with edge u2u5 and a vertex u6 with edge u3u6. Let P = K1 · · ·K5 be a clique
path of G with K1 = {u1, u2}, K2 = {u2, u5}, K3 = {u2, u3}, K4 = {u3, u6} and
K5 = {u3, u4}. Let R be the 4-vertex path 1234. The unique clique path of R is
P ′ = L1L2L3 with L1 = {1, 2}, L2 = {2, 3} and L3 = {3, 4}. However, we find
that G has an R-role assignment r with r(u1) = r(u5) = 1, r(u2) = 2, r(u3) = 3,
and r(u4) = r(u6) = 4.

Also note that we can apply Theorem 3 twice depending on the way the bags
in the clique path of the proper interval graph G are ordered. This leads to a
rather surprising corollary that might be of independent interest.

Corollary 1. Let G be a connected proper interval graph with clique path P =
K1 · · ·Kp. If G has an R-role assignment and R is connected, then R ' G[K≤i]
and R ' G[K≥p−i+1], for some 1 ≤ i ≤ p.

As an illustration of Corollary 1 we have indicated the two copies of R in G
with bold edges in Figure 1. Due to Theorem 2 we do not need to restrict R to
be a proper interval graph in the statement of the above corollary. Hence for any
two connected graphs G and R, where G is proper interval with |VG| > |VR|, if G
has an R-role assignment then G contains two (not necessarily vertex-disjoint)
induced subgraphs isomorphic to R.

Theorem 3 only shows what an R-role assignment r of a proper interval
graph G looks like at the beginning and end of the clique path of G. To derive
our algorithm, we need to know the behavior of r in the middle bags as well.
We therefore give the following result, which is valid when R has at least three
maximal cliques and the number of maximal cliques in G is not too small. Its
proof is postponed to the journal version of this paper. The special cases when
R has just one or two maximal cliques or G has few maximal cliques will be
dealt with separately in the proof of Theorem 4.

Lemma 2. Let G be a connected proper interval graph with clique path P =
K1 · · ·Kp. Let R be a connected proper interval graph with clique path P ′ =
L1 · · ·Lq and ordered twin sets X1, . . . , Xt. Let r be an R-role assignment of G
with r(Kq) = Lq. Let T be the subset of Kq that consists of all vertices with roles
in Xt. Then the following holds if q ≥ 3 and p ≥ 2q + 1.

(i) If there is a vertex in T not in Kq+1, then there exists an index i ≥ q+1 such
that K≥q+1 \K≤q ⊆ K≥i and the restriction of r to K≥i is an R-role assign-
ment of G[K≥i] with r(Ki) = Lq. Furthermore, if i > q+1 then r(Kh) ⊆ Xt

for h = q + 1, . . . , i− 1.

(ii) If all vertices in T are in Kq+1, then there exists an index i ≥ q + 1 such
that T = K≤i−1 ∩Ki and T ∩Ki+1 = ∅, and the restriction of r to K≥i is
an R-role assignment of G[K≥i] with r(Ki) = Lq.

Let G and R be two connected proper interval graphs with clique paths
P = K1 · · ·Kp and P ′ = L1 · · ·Lq, respectively. A mapping r : K≤i → VR for



some 1 ≤ i ≤ p is a starting R-role assignment of G[K≤i] if for all u ∈ K≤i\Ki+1

we have that r(NG(u)) = NR(r(u)), and for all u ∈ K≤i ∩ Ki+1 we have that
r(NG(u)) ⊆ NR(r(u)). Note that a starting R-role assignment of G[K≤i] is an
R-role assignment of G if and only if i = p.

Let 1 ≤ i ≤ p, and let r be a starting R-role assignment of G[K≤i]. We say
that v ∈ K≤i ∩Ki+1 is missing role x ∈ VR if x is a neighbor of r(v), and x is
not a role of a neighbor of v in K≤i. Let X1, . . . , Xt be the ordered twin sets of
R. We denote the set of missing roles of v that are in Xc by Mc(v). We say that
r can be finished by r∗ if r∗ is an R-role assignment of G with r∗(u) = r(u) for
all u ∈ K≤i.

The following lemma is important for our algorithm.

Lemma 3. Let G and R be two connected proper interval graphs. Let G have
clique path P = K1 · · ·Kp, and let R have ordered twin sets X1, . . . , Xt. Let
r : K≤i → VR be a starting R-role assignment of G[K≤i] for some 1 ≤ i ≤ p.
Then K≤i∩Ki+1 does not contain two vertices u, v such that Mc(u)\Mc(v) 6= ∅
and Mc(v) \Mc(u) 6= ∅ for some 1 ≤ c ≤ t.

Proof. In order to derive a contradiction, assume that such vertices u and v
exist. Note that u and v are adjacent, because both of them belong to bag Ki+1.
Let x ∈Mc(u) \Mc(v) and y ∈Mc(v) \Mc(u). Because u misses x and x ∈ Xc,
we find that r(u) is adjacent to all roles in Xc \{r(u)}. Hence r(u) is adjacent to
y ∈ Xc, unless r(u) = y. However, the latter case is not possible, because in that
case v, being adjacent to u, would not miss y. So, indeed r(u) and y are adjacent.
From y ∈Mc(v) \Mc(u) we then deduce that u already has a neighbor w ∈ K≤i
with role r(w) = y. Since v misses y and R contains no self-loop, we find that
r(v) 6= y, and consequently w 6= v. Since v misses y, the edge uw must be in a
bag before v got introduced. Hence, we obtain fP (u) < fP (v). Analogously, we
get fP (v) < fP (u). This is not possible, and we have proven Lemma 3. ut

We are now ready to present our main result.

Theorem 4. Role Assignment can be solved in polynomial time on input
pairs (G,R) where G is a proper interval graph and R is an arbitrary graph.

Proof. First we give an algorithm with running time O(n3) that takes as input a
connected proper interval graph G and a connected graph R, and decides whether
G has an R-role assignment.

If |VR| > n or R is not a proper interval graph, then we know by respectively
Observation 2 and Theorem 2 that the answer is NO. These conditions can be
checked in linear time, as explained in the preliminaries. Thus we assume that
|VR| ≤ n and R is a proper interval graph.

Let G have clique path P = K1 · · ·Kp. Recall that P can be constructed
in linear time. Let R have clique path P ′ = L1 · · ·Lq and ordered twin sets
X1, . . . , Xt. Because |VR| ≤ n, we find that q ≤ p and that we can compute
P ′ and the ordered twin sets in O(|VR| + |ER|) = O(n2) time. Since Lemma 2
applies only when q ≥ 3, we distinguish between the cases where q = 1, q = 2,
and q ≥ 3.



Case 1. q = 1. Then R is a complete graph. By Theorem 3, we find that
|K1| = |L1| must hold, and we give each vertex in K1 a different role. This
yields a starting R-role assignment r of G[K1].

Suppose i ≥ 1 and that we have extended r to a starting R-role assignment
of G[K≤i]. By Lemma 3 we can order the vertices in Ki ∩ Ki+1 as u1, . . . , ub

such that M1(ua) ⊆ M1(ua+1) for a = 1, . . . , b − 1. We assign different roles to
the vertices of Ki+1 \Ki, where we first use the roles of M1(ua) before using any
roles of M1(ua+1) for a = 1, . . . , b− 1. If we have used all the roles and there are
still vertices in Ki+1 with no role yet, we output NO. Otherwise we must verify if
the resulting mapping is a starting R-role assignment of G[K≤i+1] by checking
if all vertices in Ki+1\Ki+2 have neighbors with all the required roles. If this
is not the case, we output NO, because any R-role assignment is a starting role
assignment of G[K≤i+1]. If this is the case, we stop if i+1 = p, because a starting
R-role assignment of G[K≤p] = G is an R-role assignment of G; otherwise we
repeat the above procedure with i := i + 1.

It is clear that this algorithm is correct. It runs in O(n3) time, because
ordering the vertices in Ki ∩Ki+1 takes O(n2) time and there are O(n) bags.

Case 2. q = 2. The algorithm for this case uses similar arguments as above (but
in a more advanced way). Due to space restrictions we postpone its proof.

Case 3. q ≥ 3. First suppose p ≤ 2q. By Theorem 3, both G[K≤q] and
G[K≥p−q+1] must be isomorphic to R and have an R-role assignment, in case G
has an R-role assignment. Because p ≤ 2q, every vertex of G is in K≤q∪K≥p−q+1.
Hence, there are just four possibilities of assigning roles to vertices of G, namely
two possibilities for K≤q combined with two possibilities for K≥p−q+1. We check
if one of them leads to an R-role assignment of G. Verifying whether a mapping
VG → VR is an R-role assignment of G can be done in O(n3) time by considering
each vertex and checking if it has the desired roles occurring in its neighborhood.

Suppose p ≥ 2q + 1. We first check if G[K≤q] is isomorphic to R. This can
be done in linear time [18]. If G[K≤q] is not isomorphic to R then we output NO
due to Theorem 3. Suppose G[K≤q] ' R and that without loss of generality we
have a starting R-role assignment r of G[K≤q] with r(Ki) = Li for i = 1, . . . , q.
We now check whether we are in situation (i) or (ii) of Lemma 2. Then in both
situations we can determine in O(n) time the desired index i and afterwards we
continue with the graph G[K≥i] unless we found no starting R-role assignment
of G[K≤i]; in that case we output NO. The total running time of this procedure
is O(n3).

We have thus presented and proved the correctness of an algorithm with
running time O(n3) for testing whether a connected proper interval graph G has
an R-role assignment for a connected graph R. If G is disconnected then we run
the algorithm on each connected component separately. The total running time
is still O(n3). It remains to study the case when R is disconnected. In this case we
cannot assume that |VR| ≤ |VG|. Let cR be the number of connected components
of R. By the definition of a role assignment, G has an R-role assignment if and
only if each connected component of G has an R′-role assignment for some



connected component R′ of R. Hence we can run our algorithm on every pair of
connected components of G and R. This gives a total running time O(n3 · cR),
which is clearly polynomial. ut

Recall that the problem of testing if a graph G has an R-role assignment for
some smaller graph R is co-NP-complete in general [5]. Theorem 4 together with
Corollary 1 has the following consequence.

Corollary 2. There exists a polynomial time algorithm that has as input a
proper interval graph G and that tests whether there exists a graph R with
|VR| < |VG| such that G has an R-role assignment.

Proof. Let G be a proper interval graph on n vertices. First assume that G is
connected. Let P = K1 . . .Kp be the clique path of G. Recall that p ≤ n. By
Corollary 1 we find that G only has an R-role assignment if R ' G[K≤i] for
some 1 ≤ i ≤ p. This means that we need to apply the O(n3) time algorithm
for connected proper interval graphs of Theorem 4 at most p ≤ n times. Hence
we find that testing whether G has an R-role assignment for some graph R with
|VR| < |VG| takes O(n4) time.

Now assume that G is disconnected. Let G1, . . . , Ga with a ≥ 2 be the con-
nected components of G. For j = 1, . . . , a we define nj = |VGj

|. As long as
j ≤ a − 1 we do as follows. We consider Gj and check if Gj has an Rj-role
assignment for some role graph Rj with |VRj | ≤ nj . If so, then we replace
connected component Gj by connected component Rj in G, i.e., we output
R = G1 ⊕ . . . Gj−1 ⊕ Rj ⊕ Gj ⊕ . . . ⊕ Ga, where ⊕ denotes the disjoint union
operation on graphs. Suppose not. Then we consider Gj+1. If j = a and we did
not find a suitable role graph R in this way, then we output NO. Because we need
O(n4

j ) time for each Gj and n = n1 + . . . + na, the total running time of this

algorithm is O(n4), which is polynomial, as desired. ut

As a consequence, we have in fact a stronger result: given a proper interval
graph G, we can list in polynomial time all graphs R (up to isomorphism) with
|VR| < n such that G has an R-role assignment.

4 Complementary Results and an Open Question

A homomorphism r from a graph G to a graph R is locally injective if |r(NG(u))| =
|NG(u))| for every u ∈ VG, and r is locally bijective if r(NG(u)) = NR(r(u)) and
|r(NG(u))| = |NG(u))| for every u ∈ VG. Locally injective homomorphisms,
also called partial coverings, have applications in frequency assignment [8] and
telecommunication [9]. Locally bijective homomorphisms are also called cover-
ings and have applications in topological graph theory [20] and distributed com-
puting [1, 2]. The corresponding decision problems, called Partial Cover and
Cover respectively, are NP-complete for arbitrary G even when R is fixed to be
the complete graph on four vertices [9, 16].

In this section, to give a complete picture, we study the computational com-
plexity of all three locally constrained homomorphisms on chordal, interval, and



proper interval graphs. Our findings can be summarized in the table below, where
the three problems have input (G,R) and the left column indicates the graph
class that G belongs to. In the table, R is assumed to be an arbitrary graph.

Partial Cover Cover Role Assignment

Chordal NP-complete GI-complete GI-hard

Interval NP-complete Polynomial ?

Proper Interval NP-complete Polynomial Polynomial

We start with the following result, which allows us to conclude several of the
entries in the above table, and which can be viewed as interesting on its own.

Theorem 5. Let G be a chordal graph and let R be a connected graph. Then
there exists a locally bijective homomorphism from G to R if and only if every
connected component of G is isomorphic to R.

Proof. If G is disconnected then we consider each connected component of G
separately. Assume that G is connected. If G is isomorphic to R, then the identity
mapping from G to R is our desired locally bijective homomorphism.

For the reverse implication, suppose that there exists a locally bijective ho-
momorphism r from G to R. Because any locally bijective homomorphism is also
locally surjective, we can apply Theorem 2 in order to find that R is chordal. For
the same reason we can apply Observation 2 in order to find that each vertex in
R appears as a role of at least one vertex in G. We claim that each vertex in R
appears as a role of exactly one vertex in G. In order to derive a contradiction,
suppose there exists a vertex x ∈ VR such that r−1(x) has size at least two.

Let v and v′ be two different vertices of G belonging to r−1(x). Let P be a
shortest path from v to v′ in G. Because P is shortest, P is an induced path. From
the definition of a locally bijective homomorphism we deduce the following two
statements. Firstly, because two vertices with the same role cannot be adjacent,
we find that |VP | 6= 2. Secondly, because a vertex has no two neighbors with the
same role, we find that |VP | 6= 3. Hence, P is an induced path with |VP | ≥ 4.
This, together with r(v) = r(v′) = x, means that r(P ) forms an induced cycle
D in R with |VD| = |VP | − 1. Because R is chordal, D must consist of three
vertices, say D = xyzx. Consequently, |VP | = 4 holds.

Let C be the connected component of G[r−1(x)∪ r−1(y)∪ r−1(z)] that con-
tains v and v′. By definition of a locally bijective homomorphism, every vertex is
of degree two in D. This means that D is an induced cycle in G. Because every
vertex of P belongs to D, and |VP | = 4, we find that |VD| ≥ 4. This contradicts
our assumption that G is chordal. We conclude that indeed each vertex in R ap-
pears as a role of exactly one vertex in G. This means that r is an isomorphism
between G and R, and we find that G ' R, as desired. ut

It is known that Graph Isomorphism is Graph Isomorphism-complete
even for pairs (G,R) where G and R are chordal graphs [18]. This implies to-
gether with Theorem 5 that Cover is Graph Isomorphism-complete for pairs



(G,R) where G and R are chordal graphs. On the other hand, Cover is polyno-
mial time solvable on interval graphs, and hence also on proper interval graphs,
since isomorphism between two interval graphs can be checked in polynomial
time [18]. Because every locally bijective homomorphism is locally surjective, we
can use Theorem 2 to deduce that these three results stay valid for input pairs
(G,R) where only G is required to be chordal and R may be an arbitrary graph.
This explains the three corresponding entries in the table.

Unfortunately, as indicated in the table, the problem Partial Cover re-
mains NP-complete even on pairs (G,R) where G is a proper interval graph (and
R is an arbitrary graph). To see this, observe that a complete graph G allows
a locally injective homomorphism to an arbitrary graph R if and only if R con-
tains G as a subgraph. This gives a reduction from the well-known NP-complete
problem Clique (cf. [13]).

We present one more complexity result on the Role Assignment problem.
This result explains a corresponding entry in the table after applying Theorem 2.
It shows that, unless Graph Isomorphism is polynomial time solvable, we do
not have hope of solving Role Assignment in polynomial time on chordal
graphs.

Theorem 6. Role Assignment is Graph Isomorphism-hard on input pairs
(G,R) where G and R are chordal graphs.

Proof. As we argued above, Cover is Graph Isomorphism-complete on input
pairs (G,R) where both G and R are chordal graphs. It is not hard to see that
we may also assume that G and R are connected and have the same number of
vertices. We give a polynomial time reduction from Cover to Role Assign-
ment. Let G and R be two connected role graphs with |VG| = |VR|. We claim
that G allows a locally bijective homomorphism to R if and only if G allows a
locally surjective homomorphism to R.

Suppose G allows a locally bijective homomorphism r to R. Because any
locally bijective homomorphism is locally surjective by definition, r is a locally
surjective homomorphism from G to R. To prove the reverse implication, suppose
G allows a locally surjective homomorphism to R. Recall that |VG| = |VR|. Then
we use Observation 2 to deduce that G ' R. Hence, G allows a locally bijective
homomorphism to R, namely the identity mapping. This completes the reduction
and the proof. ut

Just as for Role Assignment, we denote the problems Cover and Partial
Cover as R-Cover and R-Partial Cover, respectively, if R is fixed, i.e., not
a part of the input. In that case we obtain the following result.

Proposition 1. For any fixed R, the problems R-Role Assignment, R-Cover,
and R-Partial Cover can be solved in linear time on chordal graphs.

Proof. We first observe that a homomorphism from G to R maps the vertices in
a clique of G to different vertices of R. Hence, in order to get a YES answer, a
largest clique in G can have at most |VR| vertices. We compute the number of



vertices in a largest clique of G in linear time. If this number is greater than |VR|,
we output NO. Otherwise, because the treewidth of a chordal graph is equal to
the number of vertices in a largest clique minus 1, we find that G has treewidth
bounded by |VR|, which is a constant, as R is fixed. Since all three problems are
expressible in monadic second order logic, linear time solvability follows from a
well-known result of Courcelle [6]. ut

We conclude with the following two open questions resulting from the table.

1. Is Role Assignment NP-complete on input pairs (G,R) when G is a
chordal graph?

2. What is the computational complexity of Role Assignment on input pairs
(G,R) when G is an interval graph?
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