14,376 research outputs found

    Computing Exact Minimum Cuts Without Knowing the Graph

    Get PDF
    We give query-efficient algorithms for the global min-cut and the s-t cut problem in unweighted, undirected graphs. Our oracle model is inspired by the submodular function minimization problem: on query S subset V, the oracle returns the size of the cut between S and V S. We provide algorithms computing an exact minimum ss-tt cut in GG with ~{O}(n^{5/3}) queries, and computing an exact global minimum cut of G with only ~{O}(n) queries (while learning the graph requires ~{Theta}(n^2) queries)

    Weighted Min-Cut: Sequential, Cut-Query and Streaming Algorithms

    Get PDF
    Consider the following 2-respecting min-cut problem. Given a weighted graph GG and its spanning tree TT, find the minimum cut among the cuts that contain at most two edges in TT. This problem is an important subroutine in Karger's celebrated randomized near-linear-time min-cut algorithm [STOC'96]. We present a new approach for this problem which can be easily implemented in many settings, leading to the following randomized min-cut algorithms for weighted graphs. * An O(mlog2nloglogn+nlog6n)O(m\frac{\log^2 n}{\log\log n} + n\log^6 n)-time sequential algorithm: This improves Karger's O(mlog3n)O(m \log^3 n) and O(m(log2n)log(n2/m)loglogn+nlog6n)O(m\frac{(\log^2 n)\log (n^2/m)}{\log\log n} + n\log^6 n) bounds when the input graph is not extremely sparse or dense. Improvements over Karger's bounds were previously known only under a rather strong assumption that the input graph is simple [Henzinger et al. SODA'17; Ghaffari et al. SODA'20]. For unweighted graphs with parallel edges, our bound can be improved to O(mlog1.5nloglogn+nlog6n)O(m\frac{\log^{1.5} n}{\log\log n} + n\log^6 n). * An algorithm requiring O~(n)\tilde O(n) cut queries to compute the min-cut of a weighted graph: This answers an open problem by Rubinstein et al. ITCS'18, who obtained a similar bound for simple graphs. * A streaming algorithm that requires O~(n)\tilde O(n) space and O(logn)O(\log n) passes to compute the min-cut: The only previous non-trivial exact min-cut algorithm in this setting is the 2-pass O~(n)\tilde O(n)-space algorithm on simple graphs [Rubinstein et al., ITCS'18] (observed by Assadi et al. STOC'19). In contrast to Karger's 2-respecting min-cut algorithm which deploys sophisticated dynamic programming techniques, our approach exploits some cute structural properties so that it only needs to compute the values of O~(n)\tilde O(n) cuts corresponding to removing O~(n)\tilde O(n) pairs of tree edges, an operation that can be done quickly in many settings.Comment: Updates on this version: (1) Minor corrections in Section 5.1, 5.2; (2) Reference to newer results by GMW SOSA21 (arXiv:2008.02060v2), DEMN STOC21 (arXiv:2004.09129v2) and LMN 21 (arXiv:2102.06565v1

    Integrality gaps of semidefinite programs for Vertex Cover and relations to 1\ell_1 embeddability of Negative Type metrics

    Get PDF
    We study various SDP formulations for {\sc Vertex Cover} by adding different constraints to the standard formulation. We show that {\sc Vertex Cover} cannot be approximated better than 2o(1)2-o(1) even when we add the so called pentagonal inequality constraints to the standard SDP formulation, en route answering an open question of Karakostas~\cite{Karakostas}. We further show the surprising fact that by strengthening the SDP with the (intractable) requirement that the metric interpretation of the solution is an 1\ell_1 metric, we get an exact relaxation (integrality gap is 1), and on the other hand if the solution is arbitrarily close to being 1\ell_1 embeddable, the integrality gap may be as big as 2o(1)2-o(1). Finally, inspired by the above findings, we use ideas from the integrality gap construction of Charikar \cite{Char02} to provide a family of simple examples for negative type metrics that cannot be embedded into 1\ell_1 with distortion better than 8/7-\eps. To this end we prove a new isoperimetric inequality for the hypercube.Comment: A more complete version. Changed order of results. A complete proof of (current) Theorem

    Minimum Sparsity of Unobservable Power Network Attacks

    Full text link
    Physical security of power networks under power injection attacks that alter generation and loads is studied. The system operator employs Phasor Measurement Units (PMUs) for detecting such attacks, while attackers devise attacks that are unobservable by such PMU networks. It is shown that, given the PMU locations, the solution to finding the sparsest unobservable attacks has a simple form with probability one, namely, κ(GM)+1\kappa(G^M) + 1, where κ(GM)\kappa(G^M) is defined as the vulnerable vertex connectivity of an augmented graph. The constructive proof allows one to find the entire set of the sparsest unobservable attacks in polynomial time. Furthermore, a notion of the potential impact of unobservable attacks is introduced. With optimized PMU deployment, the sparsest unobservable attacks and their potential impact as functions of the number of PMUs are evaluated numerically for the IEEE 30, 57, 118 and 300-bus systems and the Polish 2383, 2737 and 3012-bus systems. It is observed that, as more PMUs are added, the maximum potential impact among all the sparsest unobservable attacks drops quickly until it reaches the minimum sparsity.Comment: submitted to IEEE Transactions on Automatic Contro

    Learning and Testing Variable Partitions

    Get PDF
    Let FF be a multivariate function from a product set Σn\Sigma^n to an Abelian group GG. A kk-partition of FF with cost δ\delta is a partition of the set of variables V\mathbf{V} into kk non-empty subsets (X1,,Xk)(\mathbf{X}_1, \dots, \mathbf{X}_k) such that F(V)F(\mathbf{V}) is δ\delta-close to F1(X1)++Fk(Xk)F_1(\mathbf{X}_1)+\dots+F_k(\mathbf{X}_k) for some F1,,FkF_1, \dots, F_k with respect to a given error metric. We study algorithms for agnostically learning kk partitions and testing kk-partitionability over various groups and error metrics given query access to FF. In particular we show that 1.1. Given a function that has a kk-partition of cost δ\delta, a partition of cost O(kn2)(δ+ϵ)\mathcal{O}(k n^2)(\delta + \epsilon) can be learned in time O~(n2poly(1/ϵ))\tilde{\mathcal{O}}(n^2 \mathrm{poly} (1/\epsilon)) for any ϵ>0\epsilon > 0. In contrast, for k=2k = 2 and n=3n = 3 learning a partition of cost δ+ϵ\delta + \epsilon is NP-hard. 2.2. When FF is real-valued and the error metric is the 2-norm, a 2-partition of cost δ2+ϵ\sqrt{\delta^2 + \epsilon} can be learned in time O~(n5/ϵ2)\tilde{\mathcal{O}}(n^5/\epsilon^2). 3.3. When FF is Zq\mathbb{Z}_q-valued and the error metric is Hamming weight, kk-partitionability is testable with one-sided error and O(kn3/ϵ)\mathcal{O}(kn^3/\epsilon) non-adaptive queries. We also show that even two-sided testers require Ω(n)\Omega(n) queries when k=2k = 2. This work was motivated by reinforcement learning control tasks in which the set of control variables can be partitioned. The partitioning reduces the task into multiple lower-dimensional ones that are relatively easier to learn. Our second algorithm empirically increases the scores attained over previous heuristic partitioning methods applied in this context.Comment: Innovations in Theoretical Computer Science (ITCS) 202
    corecore