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Weighted Min-Cut: Sequential, Cut-Query and

Streaming Algorithms

Sagnik Mukhopadhyay ∗ Danupon Nanongkai †

Abstract

Consider the following 2-respecting min-cut problem. Given a weighted graph G and
its spanning tree T , find the minimum cut among the cuts that contain at most two
edges in T . This problem is an important subroutine in Karger’s celebrated randomized
near-linear-time min-cut algorithm [STOC’96]. We present a new approach for this
problem which can be easily implemented in many settings, leading to the following
randomized min-cut algorithms for weighted graphs.

• An O
(

m log2 n
log logn + n log6 n

)

-time sequential algorithm: This improves Karger’s

long-standing O(m log3 n) and O
(

m (log2 n) log(n2/m)
log logn + n log6 n

)

bounds when the

input graph is not extremely sparse or dense. Improvements over Karger’s bounds
were previously known only under a rather strong assumption that the input graph
is simple (unweighted without parallel edges) [Henzinger, Rao, Wang, SODA’17;
Ghaffari, Nowicki, Thorup, SODA’20]. For unweighted graphs (possibly with
parallel edges) and using bit operations, our bound can be further improved to

O
(

m log1.5 n
log logn + n log6 n

)

.

• An algorithm that requires Õ(n) cut queries to compute the min-cut of a weighted
graph: This answers an open problem by Rubinstein, Schramm, and Weinberg
[ITCS’18], who obtained a similar bound for simple graphs. Our bound is tight
up to polylogarithmic factors.

• A streaming algorithm that requires Õ(n) space and O(log n) passes to compute
the min-cut: The only previous non-trivial exact min-cut algorithm in this setting
is the 2-pass Õ(n)-space algorithm on simple graphs [Rubinstein et al., ITCS’18]
(observed by Assadi, Chen, and Khanna [STOC’19]).

Our approach exploits some cute structural properties so that it only needs to
compute the values of Õ(n) cuts corresponding to removing Õ(n) pairs of tree edges, an
operation that can be done quickly in many settings. This is in contrast to the techniques
used by Karger and Lovett-Sandlund to solve 2-respecting min-cut where information
about many more cuts is computed, stored in and accessed from sophisticated data-
structures.

∗KTH Royal Institute of technology, Sweden, sagnik@kth.se
†KTH Royal Institute of technology, Sweden, danupon@kth.se
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1 Introduction

Min-Cut. Given a weighted graph G, a cut is a set of edges whose removal disconnects
the graph. The minimum cut or min-cut is the cut with minimum total edge weight. The
min-cut problem—finding the min-cut—is a classic graph optimization problem with countless
applications. A long line of work spanning over many decades in the last century was concluded
by the STOC’95 O(m log3 n)-time randomized algorithm of Karger [Kar00]. (Throughout,
we n and m denote the number of nodes and edges respectively.) Karger’s approach remains
the only approach to solve the problem in near-linear time for general graphs. With more
tricks, he improved the running time further to O(m(log2 n) log(n2/m)/ log log n + n log6 n)),
suggesting the possibility to improve the logarithmic factors further. He also suggested a few
approaches that might improve the running time by a log n factor. Nevertheless, after more
than two decades no further improvement was known.

The only improvements over Karger’s bound known to date are under a rather strong
assumption that the input graph is simple, i.e. it is unweighted and contains no parallel
edges. The first such bound was by the O(m log2 n log log2 n)-time deterministic algorithm
of Henzinger, Rao and Wang [HRW17] (following the breakthrough O(m log12 n)-time deter-
ministic algorithm of Kawarabayashi and Thorup [KT19]). More recently Ghaffari, Nowicki
and Thorup [GNT20] improved this bound further to O(m log n) and O(m + n log3 n) with
randomized algorithms.

By restricting to simple graphs, progress has been also made in other settings: (I) In
the cut-query setting, we are allowed to query for the value of a cut specified by a set of
nodes. The goal is to compute the minimum cut value. Näıvely, one can make O(n2) cut
queries to reconstruct the graph itself. Rubinstein, Schramm and Weinberg [RSW18] showed
a randomized algorithm that only needs Õ(n) queries, but their algorithm works only on
simple graphs; here Õ hides polylogarithmic factors. (II) In the multi-pass semi-streaming
setting, an algorithm with Õ(n) space reads the input graph in multiple passes, where in each
pass it reads one edge at a time in an adversarial order. Assadi, Chen and Khanna [ACK19]
observed that the algorithm of Rubinstein et al. can be adapted to solve the problem in two
passes. When it comes to non-simple graphs, no non-trivial algorithms were known in both
settings.

2-Respecting Min-Cut. The main bottleneck in obtaining similar results on non-simple
graphs is the lack of efficient algorithms for the 2-respecting cut problem. In this problem, we
are given a spanning tree T of G and have to find the minimum cut in G among the cuts
that contain at most two edges in T (we say that such cuts 2-respect T ).

Solving this problem is a core subroutine and the bottleneck in Karger’s algorithm. Using
tree packing, Karger proved that if Trsp(m,n) is the time needed to find the 2-respecting
min-cut, then the min-cut can be found in

Tcut(m,n) = O(Trsp(m,n) log n + m + n log3 n) and

Tcut(m,n) = O

(

Trsp(m,n)
log n

δ log log n
+ n log6 n + m log1+δ n

)

(1)

time for any small δ > 0. His O(m log3 n) bound for min-cut was obtained by using a
sophisticated dynamic programming algorithm to find 2-respecting min-cut in Trsp(m,n) =

1



Reference Complexity Remark

m ≥ n log4 n

[Kar00] O(m log2 n log(n2/m)
log logn

+ n log6 n) Old record

Here,[GMW20] O(m log2 n
log logn

+ n log6 n) New record

Here O(m log3/2 n
log logn

+ n log6 n) Unweighted

m ≤ n log4 n

[Kar00] O(m log3 n) Old record

[GMW20] O(m log2 n) New record

Simple graphs (unweighted, no parallel edges)

[GNT20] O(min(m + n log3 n,m log n)) Old record

[GMW20] O(min(m + n log2 n,m log n)) New record

Table 1: Results for sequential min-cut

O(m log2 n) time. (A simplification of this algorithm is presented in [LS19].) With more tricks
he showed that Trsp(m,n) = O(m(log n) log(n2/m)), leading to the bound of Tcut(m,n) =

O
(

m log2 n log(n2/m)
δ log logn

+ n log6 n + m log1+δ n
)

. 1 Using efficient cut sparsifier algorithms that

exist in the cut-query and streaming setting (e.g. [AGM12b, AGM12a, GKP12, RSW18]), it
is also not hard to adapt Karger’s arguments to the cut-query and streaming settings, leaving
the 2-respecting min-cut as the main bottleneck.

Our Results. We show a new way to solve the 2-respecting min-cut problem which can be
turned into efficient algorithms in many settings. In the sequential setting, our algorithm
takes Trsp(m,n) = O(m log n + n log4 n) time and is correct with high probability. For
unweighted graphs (possibly with parallel edges), our bound can be improved to Trsp(m,n) =
O(m

√
log n + n log4 n) when bit operations are allowed. Plugging this in Equation (1), we

achieve the first improvement over Karger’s bounds on general graphs.

Theorem 1.1. A min-cut can be found w.h.p. in O(m log2 n
log logn

+n log6 n) time. For unweighted

graphs (possibly with parallel edges) and with bit operations, the bound can be improved to

O(m log3/2 n
log logn

+ n log6 n).2

Independent work and comparisons: The recent independent work of Gawrychowski, Mozes,
and Weimann [GMW20] shows that the 2-respecting min-cut and global min-cut can be

1It is to be noted that Karger’s result states Tcut(m,n) = O(Trsp(m,n) log n/ log log n+n log6 n+m log2 n).

But, with a more careful analysis, the m log2 n factor in the Tcut expression can be made m log1+δ n for
arbitrarily small positive δ without severely affecting other terms of the expression. To achieve this, simply
set the threshold for α to be 1/(4 logδ n) in the proof of Lemma 9.1 of [Kar00]. It can be checked that the
tree-packing can be done in time O(n log6 n) with these new parameters.

2Recall that with high probability (w.h.p.) means with probability at least 1 − 1/nc for an arbitrarily
large constant c.
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Reference Complexity Type of graphs

Cut-query algorithm

[RSW18] Õ(n) Simple

Here Õ(n) Weighted

Dynamic streaming algorithm

[RSW18, ACK19] Õ(n)-space, 2-pass Simple

Here Õ(n)-space, O(log n)-pass Weighted

Table 2: Our results in cut-query and streaming model and comparison with other works

solved in O(m log2 n) time. This also improves the O(m + n log3 n) bound of Ghaffari et al.
[GNT20] to O(m + n log2 n). Table 1 compares Gawrychowski et al.’s result with ours and
Karger’s. For most values of m, their and our results are similar and improve Karger’s result.
For unweighted graphs, our bound can be improved further slightly. When the graph is
very sparse, Gawrychowski et al.’s bound improves Karger’s (our result does not). When
m = Ω(n2), both results do not improve Karger’s result, except for unweighted graphs where
we provide a

√
log n improvement.

It is quite easy to implement our algorithm to find a 2-respecting min-cut using Õ(n)
cut queries in the cut-query model, and O(log n) passes with Õ(n) internal memory in the
semi-streaming settings respectively. Extending these results to find a min-cut (using Karger’s
tree packing approach) does not increase any additional overhead. Note that our streaming
algorithm works even in the dynamic streaming setting where there are both edge insertions
and deletions.

Theorem 1.2. A min-cut can be found w.h.p. using Õ(n) cut queries.

Theorem 1.3. A min-cut can be found w.h.p. by an O(log n)-pass Õ(n)-space dynamic
streaming algorithm.

Rubinstein et al. [RSW18] asked whether it is possible to compute the min-cut on weighted
graphs with o(n2) cut queries. (They showed an Õ(n) bound for simple graphs (unweighted
without parallel edges).) Our cut-query bound answers their open problem positively. Using
a connection to communication complexity pointed out by Rubinstein et al. [RSW18], we can
prove an Ω̃(n) lower bound for the number of cut queries, making our result in Theorem 1.2
tight up to polylogarithmic factors. The Õ(n) space bound in Theorem 1.3 is also tight
[FKM+05]. As mentioned earlier, the only non-trivial algorithm in the streaming setting
(even with insertions only) is the Õ(n)-space 2-pass algorithm [RSW18, ACK19]. Note
that there are some (1 + ǫ)-approximation Õ(n)-space 1-pass algorithms in the literature
(e.g. [KLM+17, AGM12a, AGM12b]). Computing min-cut exactly in a single pass with Õ(n)
space is however impossible [Zel11].

Updates since our work. A recent result [GMW21] shows a deterministic implementation
of our schematic algorithm for 2-respecting cut with running time Trsp(m,n) = O(m log n +
n log2 n) in the sequential model. By slightly altering the range search data-structure that
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we use in this paper (explained in the Section 1.1 and 6.1), they also obtain a runtime of

Trsp(m,n) = O(m
ε

+ n1+2ε logn
ε2

+ n log2 n).3 Below we summarize the state of the art in the
sequential model when this result is taken into account.

• When m = O(n log2 n), we have O(m log2 n) runtime [GMW20].

• When m = ω(n log2 n), we have O(m logn
ǫ

+ n1+2ε log2 n
ε2

+ n log3 n) runtime (this paper
together with [GMW21]).4

Our framework has also been implemented in the distributed and parallel settings, leading
to a near-optimal distributed algorithm in the CONGEST model [DEMN21] and the first
work-optimal parallel algorithm [LMN21].

1.1 Technical Overview

Our approach exploits some cute structural properties so that we can limit the number of
pairs of tree edges we include in our search space. This is in contrast to the techniques
used by Karger [Kar00] and Lovett-Sandlund [LS19] to solve 2-respecting min-cut where
information about many more cuts is computed—either using dynamic programming or using
heavy-light decomposition—and stored in and accessed from sophisticated data-structures
(Lovett-Sandlund additionally show that augmented binary search trees suffice, at the cost of
an extra O(log n) factor).

We now explain the main ideas behind our algorithm. Let G and T be the input graph
and spanning tree respectively. For any pair of edges e and f in T , let cut(e,f) be the
number of edges (u, v) where the unique uv-path in T contains exactly one of e and f . It is
well-known that if a 2-respecting min-cut C contains e and f , then it has weight cut(e, f).
This is because the end-vertices of e has to be in different connected components when we
remove edges in C; otherwise, we can get a smaller cut by removing e from C. (The same
applies for f .)

Our algorithm exploits the fact that cut(e, f), for a pair of tree-edges (e, f), can be
computed efficiently in many settings. For example, in the streaming setting, we only need to
make a pass over all edges using O(log n)-bit space (in addition to the space to keep T ). We
also require only one cut query since we know how nodes are partitioned (e.g. end-vertices of
e should be in the different connected components after the graph is cut). In the sequential
setting, we can use the 2-d orthogonal range counting data structure: We assign nodes
with integers based on when they are visited in a post-order traversal on T , and map each
edge to a two-dimensional point based on the numbers assigned to their end-vertices. It
is not hard to see that we can compute cut(e, f) if we know the number of points in a
few rectangles. This information can be provided by the 2-d orthogonal range counting
data structure. Using Chazelle’s semigroup range search data structure [Cha88], this takes
O(m logm) preprocessing time and O(log n) amortized time to compute each cut(e, f). With

3This needs a small change from [GMW21], where we need to store TS in [GMW21] as a compacted trie.
We thank Pawe l Gawrychowski for the clarification.

4When m = n log2(n)g(n) for some growing function g, we have m logn
ǫ

+ n1+2ε log2 n
ε2

+ n log3 n < m log2 n
by setting ǫ to c(log log(g(n))/ log n for some constant c.

4



bit operations, the pre-processing time can be improved to O(m
√

logm) using, e.g., Chan
and Patrascu’s range counting data structure [CP10].

By the above facts, we can näıvely find the 2-respecting min-cut by computing cut(e, f)
for all n2 tree-edge pairs (e, f). By exploiting some structural properties explained below, we
can reduce the number of pairs in our search space to Õ(n). Below we focus on the number
of probes—the number of tree-edge pairs (e, f) that we have to compute cut(e, f) for. Since
all other steps can be performed efficiently in all settings we consider, we obtain our results.

When T is a path. To explain the structural properties that we use, let us consider some
extreme cases. The first case is when T is a path. It is already very unclear how to solve this
case efficiently. (In fact, the starting point of this work was the belief that this case requires
Ω̃(n2) probes, which is now proven wrong.) The key insight is the structure of the special case
of the problem, where we assume that the tree-edge pair (e, f) that minimizes cut(e, f) is on
the different sides of a given node r. More precisely, assume that, in addition to the path
T , we are given a node r. For convenience, we use e′i and ei to denote the ith edges of T to
the left and right of r respectively (see the graph in Figure 1 for an example). Now consider
computing min(e′i,ej)

cut(e′i, ej). To do this, define a matrix M whose entry at the ith row and

jth column is M [i, j] = cut(e′i, ej) (see the matrix in Figure 1 for an example). Computing
min(e′i,ej)

cut(e′i, ej) becomes computing mini,j M [i, j]. The key to solve this problem is the
following property.

e1 e2 e3

e4

e5e
′

1
e
′

2
e
′

3
e
′

4

e
′

5

3 4

10

1
5

6

r

19 25

13 24 18

20

16 22

25

19 18

19 25 14 14

2019 25 14 14

L

R

0 14

17 11 11

e1 e2 e3 e4 e5

e
′

1

e
′

2

e
′

3

e
′

4

e
′

5

Figure 1: Example of when T is a path. In the graph, e1, . . . , e5, e
′
1, . . . , e

′
5 are edges in T and

have weight 0. Numbers on other edges indicate the edge weights.

Observation 1.4. Assume for simplicity that the minimum entry in each column of M is
unique. For any j, let r∗(j) = arg mini M [i, j]. Then, r∗(j) ≥ r∗(j − 1) for any j. That is,
r∗ is a non-decreasing function.

For example, the minimum entries of each column of the matrix in Figure 1 are in solid
(blue) rectangles. Observe that the positions of these entries do not move up when we scan
the columns from left to right.

We postpone proving Observation 1.4 to later. We now show how to exploit it to
develop a divide-and-conquer algorithm. Our algorithm probes all entries in the ℓ-th column,
where ℓ denote the index of the middle column of M (ℓ = 3 in Figure 1). It can then
compute r∗(ℓ). By Observation 1.4, it suffices to recurse the problem on the sub-matrices
M1 = M [1, . . . , r∗(ℓ); 1, . . . , ℓ − 1] and M2 = M [r∗(ℓ), . . . ; ℓ + 1, . . .]; i.e., entries of M1 are
those in rows i ≤ r∗(ℓ) and columns j < ℓ and entries of M2 are those in rows i ≥ r∗(ℓ) and
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columns j > ℓ (for example, the shaded (orange) areas in Figure 1). It is not hard to see
that this algorithm only probes Õ(n) values in M .

The above algorithm can be easily extended to the case where we do not have r: Pick a
middle node of the path T as r and run the algorithm above. Then, make a recursion on all
edges on the left of r and another on all edges on the right side of r. It is not hard to see
that this algorithm requires Õ(n) probes.

When T is a star-graph. Now we consider another extreme case, where T is a star-graph;
i.e., the spanning tree T has n− 1 many disjoint edges of the form ei = (r, i) where r is the
root of the tree. In this case, we exploit the fact that a cut that contains only one edge of T
is a candidate for the 2-respecting min-cut too. Let deg(u) denote the degree of node u and
C(u, v) denote the weight of edge (u, v).

Observation 1.5. Assume that no 2-respecting min-cut contains only one tree-edge. Let
(ei, ej) = arg min(ei′ ,ej′ )

cut(ei′ , ej′); i.e. the 2-respecting min-cuts have weight cut(ei, ej).
Then, d(i) < 2C(i, j) and d(j) < 2C(i, j).

Proof. Note that cut(ei, ej) = deg(i) + deg(j) − 2C(i, j). Consider the cut that separates
node i from other nodes. This cut has weight deg(i). Since this is not a 2-respecting min-cut
(by the assumption), deg(i) > cut(ei, ej) = deg(i) + deg(j)− 2C(i, j); thus, d(j) < 2C(i, j).
Similarly, d(i) < 2C(i, j).

Observation 1.5 motivates the following notion. We say that a tree-edge ei is interested
in a tree-edge ej if deg(i) < 2C(i, j). Note that each tree-edge ei can be interested in at
most one tree-edge: if ei is interested in two distinct edges ej and e′j, then the degree of
ei is at least C(i, j) + C(i, j′) > (deg(i)/2) + (deg(i)/2), a contradiction. It is not hard to
efficiently find the tree-edge that ei is interested in, for every tree-edge ei. (We only need
to consider the maximum-weight edge incident to each node.) Our algorithm is now the
following. For each edge ei, let ej be the edge that it is interested in. Compute cut(ei, ej).
Output the minimum value among (I) the values of all the computed 2-respecting cuts and
(II) the minimum degree. By Observation 1.5, if (II) does not give the 2-respecting min-cut
value, then (I) does. See Figure 2 for an example.

Handling general tree T . Since it is easy to find a 2-respecting min-cut if it contains
only one edge in T , we assume from now that all 2-respecting min-cut contains exactly two
edges in T . Let (e∗, f ∗) = arg min(e,f) cut(e, f); i.e. e∗ and f ∗ are tree-edges such that the
2-respecting min-cuts have weight cut(e∗, f ∗). For simplicity, let us assume further that e∗

and f ∗ are orthogonal in that e∗ does not lie in the unique path in T between f ∗ and the
root of T , and vice versa.

The ideas behind Observation 1.5 can be naturally extended to a general tree T as follows.
For any node u, let u↓ denote the set of nodes in the sub-tree of T rooted at u. Let deg(u↓)
be the total weight of edges between u↓ and V (G) \ u↓. For any nodes u and v, let C(u↓, v↓)
be the total weight of edges between u↓ and v↓. Consider any tree-edges (x, y) and (x′, y′),
where x (and x′) is the parent of y (and y′ respectively) in T . We say that (x, y) is interested
in (x′, y′) if

deg(y↓) < 2C(y↓, y′↓). (2)

6
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1
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Figure 2: An example where T is a star-graph. Dashed edges (in blue) are tree edges.
Numbers on edges indicate their weights. (All but bold edges have weight 1.) The dashed
curve (in red) indicates the min-cut of the graph. This min-cut contains two tree-edges,
namely e3 and e4. Observe that the following pairs of tree-edges are interested in each
other (e1, e2), (e3, e4) and (e5, e6). Our algorithm outputs the minimum among mini(deg(i)),
cut(e1, e2), cut(e3, e4) and cut(e5, e6).

It is not hard to show that the tree-edges e∗ and f ∗ defined above are interested in
each other. Thus, like in the case of star-graphs, we can find the 2-respecting min-cut by
computing cut(e, f) for all pairs of e and f that are interested in each other. However, this
does not imply that we need to compute only Õ(n) many values of cut(e, f), since an edge
can be interested in many other edges. An additional helpful property is this:

Observation 1.6. For any tree-edge e = (x, y), edges that e is interested in form a path in
T between the root and some node v.

Proof. Throughout the proof, let e′ = (x′, y′) and e′′ = (x′′, y′′) be tree-edges where x′ (and
x′′) is the parent of y′ (and y′′ respectively) in T . If e′ lies in the path between the root and
e′′ and e is interested in e′′, then e is also interested in any e′ because C(y↓, y′↓) ≥ C(y↓, y′′↓).
Now we show that if e′ and e′′ are orthogonal (i.e. y′ /∈ y′′↓ and vice versa), then e cannot be
interested in both of them. Since e′ and e′′ are orthogonal, the set of edges between y↓ and y′↓

is disjoint from the set of edges between y↓ and y′′↓. So, deg(y↓) ≥ C(y, y′↓) +C(y, y′′↓). Now,
if e is interested in both e′ and e′′, we have C(y, y′↓)+C(y, y′′↓) > deg(y↓), a contradiction.

Our last idea is to exploit the above property by decomposing a tree into paths where
each root-to-leaf path contains O(logn) decomposed paths. A tree decomposition of this
type was used in the sequential setting in Karger’s algorithm. Later Lovett and Sandlund
used the well-known heavy-light decomposition to simplify Karger’s algorithm. (The heavy-
light decomposition was also internally used in some data structures used by Karger.)
Both decompositions work equally well for our algorithms. To the best of our knowledge,
decompositions of this type have not been used before in query complexity and streaming
algorithms.

Roughly, the heavy-light decomposition partitions the tree-edges into a family P of paths,
such that every root-to-leaf path P in the tree T shares edges with at most O(log n) many
paths in P . Thus, Observation 1.6 implies that a tree-edge e is interested in edges lying in
O(log n) many paths in P . This motivates the following algorithm: We say that a tree-edge e
is interested in a path P in P if it is interested in some edge in P . For any two distinct paths
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P and Q in P , do the following. Imagine that we contract all-tree edges except those in P
that are interested in Q and those in Q that are interested in P . Suppose that we are left
with a path P ′. We execute the path algorithm on P ′. (Note that in reality we might be left
with the case where every node has degree at most two except one node whose degree is three.
This can be handled similarly. Also, when we implement this algorithm in different settings
we do not actually have to contract edges. We only have to simulate the path algorithm on
the edges in P ′.)

Recall that when we run the path algorithm on each path P ′ above we need to compute
cut(e, f) for Õ(|E(P ′)|) many pairs of tree-edges (e, f), where |E(P ′)| is the number of edges
in P ′. Moreover, each tree-edge participates in O(log n) such paths since it is interested
in O(log n) many paths in P. Thus, the total number of cut values cut(e, f) that we need
to compute for the above algorithm is Õ(n) in total. To see why the algorithm finds a
2-respecting min-cut, consider when P and Q contains e∗ and f ∗ respectively. After the
contractions e∗ and f ∗ remain in P ′ and thus the path algorithm executed on P ′ finds
cut(e∗, f ∗).

Finding paths that an edge is interested in. Most steps described above can be
implemented quite easily in all settings. The step that is sometimes tricky is finding paths
in the heavy-light decomposition P that a tree edge e is interested in. In the cut-query
and streaming settings, we can compute this from a cut sparsifier which can be computed
efficiently (e.g. [AGM12b, AGM12a, GKP12, RSW18]). Since a cut sparsifier preserves all
cuts approximately and since we are looking for (y, y′) such that C(y↓, y′↓) is large compared
to deg(y↓) (as in Equation (2)), we can use the cut sparsifier to identify (y, y′) that “might”
satisfy Equation (2). This means that for each edge e, we can identify a set of “potential”
edges such that some of these edges will actually interest e. These edges might not form a
path as in Observation 1.6, but we can show that they form only O(1) paths.

For our sequential algorithm, let us assume for simplicity that the input graph is unweighted
(possibly with parallel edges). For any node y we find y′ that might satisfy Equation (2)
by sampling Θ(log n) edges among edges between y↓ and V (G) \ y↓. For y′ that satisfies
Equation (2) there is a sampled edge between y↓ and y′↓ with high probability because
C(y↓, y′↓) > deg(y↓)/2. Thus, it suffices to check, for every O(log n) sampled edge e′ and
every path P in P that overlaps with the tree-path from the root to e, whether e is interested
in P or not. (Checking this requires computing cut(u, v) for O(1) many pairs of nodes (a, b).)
To sample the edges, we use the range sampling data structure in a way similar to how we
use the range counting data structure to compute the cut size as outlined above. We build
a range sampling data structure using the range reporting data structure by Overmars and
Chazelle [Ove88, Cha88]. We need O(m logm) pre-processing time and O(log n) amortized
time to report or sample each point (edge). (With bit operations, the preprocessing time
becomes O(m

√
logm) using [BGKS15, CP10, MNV16].)

1.2 Organization

First, we provide the preliminaries required in Section 2. In Section 3, we provide a schematic
algorithm for the minimum 2-respecting cut problem. We first provide the schematic algorithm
when the spanning tree is a path in Section 3.1. Later, we extend it the general case in
Section 3.3 with the help of notions developed in Section 3.2. We combine this algorithm
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with Karger’s greedy tree packing algorithm to give a weighted min-cut algorithm schematic
in Section 4. In Section 5, we provide the implementation of this algorithm in two models: In
Section 5.1, we provide a graph cut-query implementation (and prove Theorem 1.2), and in
Section 5.2 we provide a semi-streaming implementation (and prove Theorem 1.3). Finally, in
Section 6, we detail the sequential implementation of this algorithm and prove Theorem 1.1.

2 Preliminaries

Notation. We denote a spanning tree of a graph G by T . We also generally assume that T
is rooted, except when T is a simple path. For a rooted tree T , we denote the subtree rooted
at vertex u as u↓. If the edge e is the parent edge of u, i.e., between two vertices of e, u is
the farthest from the root node, then we sometimes denote the subtree rooted as u as e↓. If
two vertices u and v do not belong to the same root-to-leaf path of T , we denote them as
u⊥v. Similarly, if two edges e1 and e2 of T does not belong to the same root-to-leaf path,
we denote them as e1⊥e2. In a graph G, for two disjoint sets of vertices S and T , CG(S, T )
denoted the total weight of the edges each of whose one edge point belongs to S and the
other endpoint belongs to T . By CG(S, T ), we denote the set of these edges, i.e., the set of
edges going across from S to T . When the graph G is clear from the context, we drop the
subscript G and denote is as C(S, T ) and C(S, T ) respectively. We use deg(S) to denote the
total weight of the edges whose only one end-point belongs to S. To denote the set of such
edges, we use the notation C(S).

Reservoir sampling [Vit85]. We will look at a special randomized sampling technique
that will be used in this work, named the reservoir sampling. This sampling technique aims
to answer the following question:

Question 2.1. Suppose we see a(n infinite) sequence of items {a1, · · · } and we want to keep
ℓ many items in the memory with the following invariant: At any point i of the sequence, the
ℓ items in the memory are sampled uniformly at random from the set {a1, · · · , ai}. What is
a sampling technique that achieves this?

The answer to this question is to use the following sampling method.

• Store the first ℓ items in memory.

• From ℓ-th time period on wards for every i > ℓ:

– Select the i-th item with probability ℓ/i, and replace a random item from the
memory with this new item.

– Reject the i-th item with probability (1− ℓ/i).

This makes sure that every item in memory is chosen with probability ℓ/i.

3 A schematic algorithm for 2-respecting min-cut

In what follows, we first provide a schematic algorithm for finding a 2-respecting weighted
min-cut of a graph G which is oblivious to the model of implementation. We then proceed
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to complete the algorithm for finding min-cut on a weighted graph with an application
of cut-sparsification and greedy tree packing. In the subsequent sections, we discuss the
complexity of this algorithm when we implement it in different models of computation. Of
course, those models need to compute a cut-sparsifier of a given weighted graph efficiently
as well—we will show that this is indeed true. We start with a restricted case, where the
underlying tree T is a path, and devise an algorithm which handles such graphs. Subsequently
we show how we can use this algorithm as a subroutine to achieve an algorithm where there
is no assumption of the structure of the underlying spanning tree T .

3.1 When spanning tree is a path

We look at a slightly different formulation of the problem of finding a 2-respecting weighted
min-cut on a graph G where the underlying spanning tree T is a path. We denote it as the
Interval problem, which is defined below.

Interval problem. Consider n− 1 points {1, · · · , (n− 1)}, and order them on a line from
left to right. An interval I = (s, t) in I (where s ≤ t) is said to cover a point i if s ≤ v ≤ t in
the path ordering. Given the set of intervals I, the cost of a pair of point (i, j), denoted as
Cost(i, j), is the number of intervals in I which covers either i or j, but not both. The goal
is to find a pair of point (i, j) such that Cost(i, j) is minimized.

Claim 3.1. The Interval problem is equivalent to the problem of finding a 2-respecting min-cut
of G where the underlying spanning tree T is a path of length n.

1 2 3 4 5
e1 e2 e3

e4 e5

I1

I2

I3

I1

I2

I3

Figure 3: Equivalence between Interval problem and 2-respecting min-cut when the underlying
tree is a path of length n = 6. There are 5 points in the Interval problem, and 5 corresponding
edges in the path. The green edges on the RHS corresponds to intervals in the LHS. We are
interested in Cost(2, 5) (marked in red).

We defer the proof of this claim to Appendix A.

Cost matrix. The cost matrix MG of G with respect to T is defined as a matrix of dimension
(n− 1)× (n− 1) where the (i, j)-th entry of MG is the weight of a 2-respecting cut of G which
respects the i-th and the j-th edge of T . For the Interval problem, MG(i, j) = Cost(i, j). To
reiterate, the goal of the Interval problem is to find the smallest entry in the cost matrix MG.

To this end, we formulate a restricted version of the Interval problem, denoted as Bipartite
interval problem, as follows:
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Figure 4: Bipartite Interval problem and corresponding cost-matrix. The blue boxes show
the positions of the minimum entries in each column.

Bipartite Interval problem. Divide [n− 1] in two equal parts L = {1, · · · , ⌈n−1
2
⌉} and

R = {⌈n−1
2
⌉+ 1, · · · , n− 1}. We are interested in finding the pair (i, j) ∈ L× R such that

Cost(u, v) is minimum among such pairs. For solving this problem, we provide a schematic
algorithm as follows. The model specific implementations are discussed in subsequent sections.
In the algorithm, we assume a slightly unusual ordering on L for simplicity of exposition:
Restrict the cost matrix M to L × R (Denoted by ML×R). The first row corresponds to
⌈n−1

2
⌉-th point in L, the second row is (⌈n−1

2
⌉ − 1)-th point, and so on till the ⌈n−1

2
⌉}-th

row which is the first point of L. The columns are ordered normally in an increasing order
from the set {⌈n−1

2
⌉+ 1, · · · , n− 1}. The algorithm is recursive: it is instructive to view the

execution of the algorithm as a binary tree of depth O(log n) where (i) each nodes denotes a
recursive call, and (ii) a parent node makes two calls corresponding to two of its children
on disjoint sub-problems (or submatrices). In any node v, the algorithm reads the middle
column (mid) of the associated sub-matrix MLv×Rv . The minimum value of this column can
occur at many rows in this column. Let us denote by ivs to be the row with the smallest row
index where the minimum occurs, and ivt to be the row with the largest row index where the
minimum occurs. The node v then issues two recursive calls: The left child u is issued with
the submatrix MLu×Vu and the right child u′ is issued with the submatrix MLu′×Vu′

. Here
Lu is a prefix of Lv of size ivs (i.e., the initial rows of Lv including the row ivs) and Lu′ is the
suffix of Lv of size |Lv| − ivt + 1 (i.e., the last few rows of Lv including the row ivt . Also, Ru is
a prefix of Rv of size mid− 1 (i.e., the initial columns of Rv not including the column mid)
and Ru′ is the suffix of Rv of size mid − 1 (i.e., the last few columns of Rv not including
the column mid. At the leaf nodes, when either Lv (or Rv) is a singleton set, the algorithm
read the whole row (or column), and outputs the minimum. Note that, in each depth of the
recursion tree, the number of entries of the matrix ML×R is read is at most n + 1—this will
be important in the analysis of the complexity of the algorithm.
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Algorithm 3.2 Schematic algorithm for Bipartite interval problem

1: procedure Bipartite-interval(L,R)
2: if |L| > 1 and |R| > 1 then
3: Let mid be the middle column of R.
4: Find the is, it ∈ L such that Cost(is,mid) = Cost(it,mid) is

minimum in column mid, and is is the first and it is the last such row.
⊲ Read the mid column of ML×R

5: Let L1 be the prefix of L of length is, and L2 be the suffix of L
of length it − 1.

6: Let R1 be the prefix of R of length mid− 1, and R2 be the suffix
of R of length mid− 1.

7: Run Bipartite-interval(L1, R1) and Bipartite-

interval(L2, R2).
8: else
9: Read the entire ML×R and record the minimum.

⊲ Requires reading at most 1 column or 1 row of matrix M
10: end if
11: Read all recorded minimums and output the smallest.
12: end procedure

Before providing correctness of Algorithm 3.2, we show how, given Algorithm 3.2, we can
solve the Interval problem.

Algorithm 3.3 Schematic algorithm for Interval problem

1: Set L = {1, · · · , ⌈n−1
2
⌉}, R = {⌈n−1

2
⌉, · · · , n− 1}.

2: procedure Interval(L,R)
3: if |L| > 1 and |R| > 1 then
4: Run Bipartite-interval(L,R) and record the output.

⊲ Requires reading matrix M
5: Divide L = L1 ∪ L2 in two equal parts where L1 is the prefix

of L and L2 is the suffix of L, both of length |L|/2. Similarly, divide
R = R1 ∪R2.

6: Run Interval(L1, R1) and Interval(L2, R2).
7: else
8: Read the entire ML×R and record the minimum.

⊲ Requires reading constant many entries of M
9: end if

10: Read all recorded outputs and output the smallest.
11: end procedure

Correctness of Algorithm 3.3. This follows follows from the observation that, for any
(i, j) ∈ [n− 1]× [n− 1], there is a call to the Interval procedure where i ∈ L and j ∈ R.
At the ℓ-th level of the recursion tree, the division of L = L1 ∪ L2 and R = R1 ∪R2 happens
depending on the ℓ-th most significant bit in the binary representation of i and j. This means
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that i and j will be separated at the ℓ-th level of recursion (i.e., depth ℓ in the associated
recursion tree) if the most significant bit where i and j differs is the ℓ-th bit.

At this point, we make a general claim about the complexity of Algorithm 3.3. This claim will
be used later to compute the complexity of Algorithm 3.3 in different models of computation.

Claim 3.4. Let the complexity of finding is and it in Line 4 of Algorithm 3.2 on n points be
Õ(n) in some measure of complexity. Then the complexity of Procedure Interval is Õ(n).

Proof. Let us denote the complexity of Procedure Bipartite-interval on input L and R
where |L| = ℓ, |R| = r be T (ℓ, r). Then, we can write the following recursion:

T (n, n) = Õ(n) + T (n0, n/2) + T (n1, n/2),

where n0 + n1 ≤ n + 1 and T (1, r) = O(r) and T (ℓ, 1) = O(ℓ). At the beginning, n0 = is and
n1 = n− it + 1. Solving this recursion, we get T (n, n) = Õ(n).

Now let us denote the complexity of Interval on n points by C(n). Then we have

C(n) = T (n/2, n/2) + 2C(n/2),

with C(1) = O(1). Solving this recursion and putting the value of T (n/2, n/2), we get
C(n) = Õ(n).

3.1.1 Correctness of Algorithm 3.2

First, we note an important property of the cost-matrix M of the Interval problemon n− 1
points. Given M , we define n− 2 vectors ∆1, · · · ,∆n−2, each of dimension n− 1 as follows:
∆j(i) = M(i, j)−M(i, j + 1).

Claim 3.5. For each j, the vector ∆j is monotonically increasing.

Given Claim 3.5, we can observe the following property of the cost matrix.5 Suppose we
are interested in finding the minimum entry in each column.

Claim 3.6. Consider column j and let is be the first row and it(≥ is) be the last row where
minimum occurs in the column j. Then, for any column j′ < j, a minimum entry of column
j′ will occur at rows in the set {1, · · · , is}, and for any column j′′ > j, a minimum of column
j′′ will occur at rows in the set {it, · · · , n}.

Given Claim 3.6, it is clear that Algorithm 3.2 records minimum entry of each column
of the cost matrix. In the end, the algorithm outputs the smallest among these minimum
entries, which is the minimum entry of the whole cost-matrix. Next we prove Claim 3.5 and
3.6.

5In literature, such a matrix is referred to as a Monge matrix [BKR96]. A few algorithms are known
for finding column minima of a Monge matrix, most notably the SMAWK algorithm [AKM+87]. We use a
divide and conquer approach because it gives better handle for adapting the schematic algorithm in different
computational models.
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Proof of Claim 3.5. We denote any interval which goes from L to R as crossing interval.
We also denote any interval contained in L as L-interval and any interval contained in R
as R-interval. We start with an empty cost-matrix (every entry is 0) and will introduce
each interval one by one. Fix any j. To start with, the ∆j is an all-0 vector and hence
monotonically increasing. We show that ∆j will maintain this property when we introduce
any of the three kinds of intervals. Figure 5 shows the contribution of different types of
intervals in the cost-matrix.

I1 I2

I3

I1
I2

I3

I3

ii′ j j′

i

i′

j j′

i

j

Figure 5: Contribution of each type of Interval (L,R, Crossing) in the cost matrix M .

L-interval. This type of interval does not increase any entries of ∆j as they increase both
M(i, j) and M(i, j + 1) by the same amount.

R-interval. If neither of j and j + 1 is covered by the interval, or both of them are covered
by the interval, then ∆j does not change. Else, assume that j is covered by the interval. This
means M(i, j) is increased by the same value for all i. So, if ∆j was monotonically increasing
before introducing this interval, then ∆j remains monotonically increasing. The case where
j + 1 is covered by the interval can be handled similarly.

Crossing interval. Let us assume that the interval starts from p ∈ L and end on q ∈ R. If
q 6= j + 1, then this can be handled similar to L-interval on R-interval. When q = j + 1, then
M(i, j + 1) increases for all i ≤ p, M(i, j) increases for all i ≥ p, and all these increments are
by the same amount (i.e., by the weight of the interval). This operation also does not violate
the necessary property of ∆j.

Proof of Claim 3.6. First we show that, for any column j′ < j, a minimum entry of column
j′ will occur at rows up to is. The other case will follow by a similar argument. Let us
denote ∆j′,j to be a vector where ∆j′,j = M(i, j′) − M(i, j). It is not hard to see that
∆j′,j(i) = ∆j′ + · · ·+ ∆j−1, and hence is also monotonically increasing (Claim 3.5).

Now, for the sake of contradiction, assume that there is no minimum entry in the column
j′ in any row in the set {1, · · · , is}. Let the minimum entry at column j′ occurs at row
i > is, i.e., M(i, j′) < M(is, j

′). We have M(i, j′) = M(i, j) + ∆j′,j(i) ≥M(is, j) + ∆j′,j(i) ≥
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M(is, j) + ∆j′,j(is). Here the first inequality follows from the fact that, for column j, M(is, j)
is a minimum entry; and the second inequality follows from the fact that ∆j′,j is monotonically
increasing. This gives us the necessary contradiction.

3.2 Interesting edges and paths

This section deals with the notion of interesting edges which we will need later to design an
algorithm for the general case. From this point onward, we will make connections between
edges of a spanning tree T and vertices of T . We will follow the labeling below unless stated
otherwise: For vertices u, v, v′, we denote the edges of T which are parents of these vertices
as e, e′, e′′ respectively.

Definition 3.7 (Cross-interesting edge). Given an edge e ∈ T , we denote an edge e′ ∈ T

(e⊥e′) to be cross-interesting with respect to e if C(u↓, v↓) > deg(u↓)
2

where e is the parent edge
of u and e′ is the parent edge of v.

Definition 3.8 (Down-interesting edge). Given an edge e, we denote an edge e′ ∈ u↓ to be

down-interesting with respect to e if C(v↓, V − u↓) > deg(u↓)
2

where e is the parent edge of u
and e′ is the parent edge of v.

If two edges e and e′ are cross-interesting to each other, or if e is down-interesting to e′,
then we denote the pair (e, e′) as candidate exact-2-respecting cut. The reason for denoting
so will be clear in the analysis of correctness of Algorithm 3.13. Next we make the following
observation about cross and down-interesting edges which we justify subsequently.

Observation 3.9. Given an edge e, there cannot be two edges e′ and e′′ such that e′⊥e′′ and
both e′ and e′′ are cross-interesting or down-interesting with respect to e.

To recall, e is the parent edge of u, e′ is the parent edge of v and e′′ is the parent edge of v′.

• Cross-interesting . C(u↓, v↓) and C(u↓, v′↓) are disjoint for e′⊥e′′, and hence deg(u↓) ≤
C(u↓, v↓) + C(u↓, v′↓). If both v and v′ are interesting with respect to u, then
C(u↓, v↓) + C(u↓, v′↓) > deg(u↓) which is a contradiction.

• Down-interesting . C(v↓, V − u↓) and C(v′↓, V − u↓) are disjoint for e′⊥e′′ as well,
and hence a similar argument goes through.

This means that the set of edges which are cross-interesting w.r.t. e belongs to a root-
to-leaf path, and the set of edges which are down-interesting w.r.t. e belongs to a u-to-leaf
path.

Note that if v′′ is the parent of v, C(u↓, v′′↓) ≥ C(u↓, v↓) and C(v′′↓, V −u↓) ≥ C(v↓, V −u↓).
So we can make the following observation:

Observation 3.10. Given an edge e, if an edge e′ is cross-interesting w.r.t e, then all
ancestors of e′ are interesting w.r.t e. Similarly, if an edge e′′ is down-interesting w.r.t. e,
then all ancestors of e′′ (up to but not including e) are down-interesting w.r.t e.

Because of Observation 3.10, we extend Definition 3.8 and 3.7 to the following:
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Definition 3.11 (Interesting path). Given an edge e, we denote a path p ∈ T to be cross-
interesting (or down-interesting ) with respect to e if there is an edge e′ ∈ p such that e′ is
cross-interesting (or down-interesting ) with respect to e. Given two paths p1 and p2, we
denote p1 to be cross-interesting (or down-interesting ) w.r.t. p2 is there is an edge e in p2
such that p1 is cross-interesting (or down-interesting ) w.r.t. e.

3.3 Handling general spanning tree

We use the heavy-light decomposition from [ST83]. Given any rooted tree T , the heavy-light
decomposition splits T into a set P of edge-disjoint paths such that any root-to-leaf path in
T can be expressed as a concatenation of at most log n sub-paths of paths in P .

Theorem 3.12 ([ST83]). For any vertex v, the number of paths in P that starts from v
or any ancestor of v is at most log n. In other words, the number of paths from P which
edge-intersects any root-to-leaf path is at most log n.

Next, we describe the algorithm for finding a 2-respecting min-cut; the pseudo-code is
provided subsequently. We assume that, in all models of computations that we are interested
in, the spanning tree T is known (i.e., stored in local memory).

The näıve algorithm will go over all possible 2-respecting cuts to find out the smallest
among them—we want to minimize such exhaustive search. Note that, we assume, it is rather
efficient to check the minimum among 1-respecting cuts. But the number of 2-respecting
cuts is Ω(n2) and hence we cannot afford to go over all possible 2-respecting cuts to find the
minimum if we want to be efficient. To this end, we will examine only those 2-respecting cuts
which have the potential to be the smallest. We describe the process of finding such potential
2-respecting cuts next. The algorithm consists of 5 steps.

Step 1. Finding 1-respecting min-cut (Line 1 to 3): The algorithm iterates over ev-
ery edge e of the spanning tree T , and considers the cut which respects e. The algorithm
records the value of the smallest such cut.

Step 2. Heavy-light path decomposition (Line 4): The algorithm uses heavy-light de-
composition on T (viz. Theorem 3.12) to obtain a set of edge-disjoint paths P . Each
root-to-leaf path of T can be split into at most log n many subpaths from P .

Step 3 (Line 5 to 8): In this step, we consider 2-respecting cuts which respects 2 edges
of a path p ∈ P. For each path p, we collapse all other edges of T to the vertices of
p: The collapse operation contracts all other edges of T to form super-vertices, and
all edges of G which are incident on any vertex which takes part in a super-vertex
will now be considered incident on the super-vertex. This operation does not change
the 2-respecting cut value that we are interested in for the following trivial reason: A
2-respecting cut which respects the edges of the path p will not cut any other edge of T .
Next we run Algorithm 3.3 on this collapsed (residual) graph to find out the minimum
cut which 2-respects p.

Step 4. Finding interesting edge-pairs (Line 9 to 12): In this step, we find potential
edge-pairs—a pair of edges which, if respected by a cut, will yield a smaller cut value
than the cuts which respects only one edge from the pair. In Step 3, the algorithm may
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already have taken care a few of them, especially those pairs of edges which fall on the
same path in P . We are now interested in pairs which fall on different paths of P . We
have already introduced necessary notations: for a candidate pair of edges (e, e′), we
call e is interesting w.r.t to e′ and vice versa. To enumerate the set of candidate pairs,
the algorithm iterates over each edge e of T , and finds a set of other edges which can
form a candidate pair with e (interesting w.r.t e). By Observation 3.10, all such edges
fall on a single root-to-leaf path. We check only the top (closest to the root) edges of
P (also because of Observation 3.10—if there is an edge in a path which is interesting
w.r.t e, then the edge in the path which is closest to the root is also interesting w.r.t.
e); and if any of those edges is interesting w.r.t e, we declare the path to be interesting
.6 By Theorem 3.12, there can be at most log n many paths in P which are interesting
w.r.t e. We also label e with this interesting set of paths. At the end of this step, we
have the following: Consider any pair of paths, p1 and p2, in P . For each edge e ∈ p1,
for which there is an interesting edge in p2, e is labelled with p2. Similarly, for each
edge e′ ∈ p2, for which there is an interesting edge in p1, e

′ is labelled with p1.

Step 5. Pairing (Line 13 to 26): In this step, we pair up paths from P and look at
exact-2-respecting candidate cuts which respects one edge form each path of the pair.
Consider a pair (p1, p2): If there is no edge in p1 which is marked by p2, or vice versa,
or both, we discard this pair. Otherwise, we mark the edges in p1 which are interested
in p2, and mark the edges in p2 which are interested in p1 as well. We collapse (as in
Step 3) every other edge of T so that we are left with a residual graph with edge going
across only the marked edges of p1 and p2—this does not change the cut value as we are
interested in 2-respecting cuts which implies that no other edge of T takes part in the
cut. We run Algorithm 3.3 on the residual graph and record the smallest 2-respecting
cut which respects one edge in p1 and another edge in p2.

At the end, we compare the recorded cuts from Step 1, 3 and 5, and output the minimum
among them.

6In all models of implementation in this work, for every edge e, we will have a few root-to-leaf paths from
the previous steps with the guarantee that the actual root-to-leaf which contains all interesting edges w.r.t. e
is one of those. At this step, we will verify these paths to figure out which one (if any) is the interesting one.
See Lemma 5.5 for example.
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Algorithm 3.13 Schematic algorithm for 2-respecting min-cut

1: for every edge e ∈ T do ⊲ Finding 1-respecting min-cut
2: Find out the value of the cut which respects only e and record it.
3: end for
4: Use heavy-light decomposition on T to obtain disjoint set of paths P .

⊲ Theorem 3.12
5: for every p ∈ P do ⊲ Finding cuts respecting 2

edges in a single p ∈ P
6: Collapse all edges in T which are not in p and run Algorithm 3.3

on the residual graph. ⊲ Algorithm 3.3 finds mini-
mum exact-2-respecting cut
when T is a path

7: Record the outputs.
8: end for
9: for each edge e ∈ T do ⊲ Finding the set of interesting

paths for each edge in T , See
Definition 3.11

10: Find out the set Pcross
e ⊆ P which are cross-interesting w.r.t. e.

11: Find out the set Pdown
e ⊆ P which are down-interesting w.r.t. e.

12: end for
13: for every distinct pair (p1, p2) ∈ P × P do ⊲

Finding cuts which respects
edges in different paths in P

14: if p1 and p2 are cross-interested in each other then
15: In p1, mark edges which are cross-interested in p2.
16: In p2, mark edges which are cross-interested in p1.
17: Collapse unmarked edges of T and run Algorithm 3.3 on the

residual graph.
⊲ Algorithm 3.3 finds mini-

mum exact-2-respecting cut
when T is a path

18: Record the output.
19: end if
20: if p1 is down-interested in p2 then
21: In p1, mark edges which are down-interested in p2.
22: In p2, mark all edges.
23: Collapse all unmarked edges of T and run Algorithm 3.3 on

the residual graph.
⊲ Algorithm 3.3 finds mini-

mum exact-2-respecting cut
when T is a path

24: Record the output.
25: end if
26: end for
27: Output the smallest of the recorded minimums.
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Claim 3.14. Each edge in T takes part in at most O(log n) many calls to Algorithm 3.3
inside Algorithm 3.13.

Proof. For an edge e, the set of edges which are cross-interesting falls on a root-to-leaf path.
By Theorem 3.12, there can be at most log n many paths which are cross-interesting to e.

When e′ ∈ u↓ where e is the parent of u, the set of edges which are down-interesting to e
falls to a u-to-leaf path, and by Theorem 3.12 there can be at most log n many paths which
are down-interesting to e. For e′, however, the argument is simpler: The set of e which are
down-interested in e′ are, by definition, falls on the root-to-e′ path—they are all ancestors of
e′ in T . Hence, the number of paths which can pair up with the path containing e′ in calls to
Algorithm 3.3 is at most log n (by Theorem 3.12).

3.3.1 Correctness of Algorithm 3.13

First we make the following simple observation:

Observation 3.15. Consider two vertices u and v such that u⊥v. The 2-respecting cut which
respects the parent edges of u and v is a candidate for exact-2-respecting min-cut (i.e., has cut
value smaller than any 1-respecting cut) if C(u↓, v↓) > 1

2
max{deg(u↓), deg(v↓)}. Similarly,

when v ∈ u↓, the 2-respecting cut which respects the parent edges of u and v is a candidate
for 2-respecting min-cut if C(v↓, V − u↓) > 1

2
deg(u↓).

This follows from the fact that, for the 2-respecting cut which respects the parent edges
of u and v, when u⊥v, to be candidate for 2-respecting min-cut, it needs to happen that
deg(u↓)+deg(v↓)−2C(u↓, v↓) < min{deg(u↓), deg(v↓)} where the right-hand side of the strict
inequality represents the value corresponding 1-respecting cuts which respects the parent edges
of u and v respectively. Similarly, when v ∈ u↓, clearly, min{deg(u↓), deg(v↓)} = deg(v↓).
Hence, it needs to happen that deg(u↓) + deg(v↓)− 2C(v↓, V − u↓) < deg(v↓).

Claim 3.16. All candidate exact-2-respecting cuts are considered in Algorithm 3.13.

Proof. First, note that, any pair of edges e and e′ such that (i) e is cross-interesting to e′ and
vice versa, or (ii) e′ is down-interesting to e are considered. For any edge e, all e′⊥e which
are candidates are also cross-interesting to e (by Definition 3.7). Any e′ ∈ u↓ (e is the parent
edge of u) which is a candidate is also down-interesting to e (be Definition 3.8).

4 Karger’s tree packing

Here we first define the notion of greedy tree packing and cut-sparsification. This exposition
is based on [Tho07] to which readers are advised to refer for a more detailed description.

Definition 4.1 ((Greedy) tree packing). A tree packing T of G is a multi-set of spanning
trees of G. T loads each edge e ∈ E(G) with the number of trees in T that contains that edge
e.

A tree packing T = (T1, · · · , Tk) is greedy if each Ti is a minimal spanning tree with
respect to the loads introduced by {T1, · · · , Ti−1}.
Lemma 4.2 ([Kar00]). Let C be any cut with at most 1.1λ many edges and T be a greedy
tree packing with λ lnm many trees. Then C 2-respects at least 1/3 fraction of trees in T .

19



Definition 4.3 (Cut sparsifier). Given a graph G = (V,E) with weight function w : E → R,
a sparsifier H = (V,E ′) of G is graph on the same set of vertices V and weight function
w′ : E ′ → R with the following properties:

1. H has Õ(n) edges,

2. For every cut S, CH(S) ∈ (1± ε)CG(S).

Now we are ready to provide the complete algorithm for finding min-cut in a weighted
graph G. There are two phases: (i) tree-packing phase, where we compute a cut-sparsifier
and pack appropriately many spanning trees, and (ii) cut-finding phase, where we find a
2-respecting min-cut which respects a randomly sampled tree from the first phase. The
schematic description of the algorithm is given below.

Algorithm 4.4 Schematic algorithm for weighted min-cut

1: Compute a cut-sparsifier H for G.
2: Pack O(λ lnm) many spanning trees T by greedy tree packing in H.
3: Pick a spanning tree T ∈ T uniformly at random and run Algorithm

3.13.

The correctness follows from the fact that, by Definition 4.3 in H, min-cut λ′ ∈ (1± ε)λ.
Hence, by Lemma 4.2, if we greedily pack O(λ lnm) many trees, the min-cut of H (and hence
the min-cut of G) will 2-respect at least 1/3 fraction of the packed trees. So, if we pick a tree
uniformly at random, the sampled tree will be 2-respected by the min-cut with probability at
least 1/3.

In all three models that we describe subsequently, we will compute the cut-sparsifier H
efficiently and store it locally. The greedy packing of spanning trees will be performed also
locally, and then we will run an algorithm for finding a 2-respecting min-cut (aka model
specific implementation of Algorithm 3.13) on a randomly sampled tree from the set of packed
trees.

In order to reducing the value of the min-cut of a graph (and, thereby, reducing the
number of trees that are needed to be packed by a greedy tree packing algorithm), we use
the following skeleton construction due to Karger [Kar00].

Theorem 4.5 ([Kar00], Theorem 4.1). Given a weighted graph G, we can construct a skeleton
graph H of G such that

1. H has m′ = O(nε−2 log n) edges,

2. The minimum cut of H is O(ε−2 log n),

3. The minimum cut in G corresponds (under the same vertex partition) to a (1 + ε)-times
minimum cut of H.

Thus, a set of O(log n) spanning trees can be packing in G (by performing greedy tree packing
on H) such such that the minimum cut of G 2-respects 1/3 of them with high probability.

Note that Theorem 4.5 is useful only when the value of min-cut is ω(log n). Otherwise, we
can greedily pack trees in G (or its sparsifier) itself to obtain a set of O(log n) spanning trees.
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5 Cut-query & streaming algorithms

In this section, we provide model-specific implementation of Algorithm 4.4 in two models:
In Section 5.1 we look at graph-query model, and, in Section 5.2, we provide an algorithm
in the dynamic streaming model. In all these sections, the arguments follow the following
general pattern.

• We first show that the randomized reduction from finding a weighted min-cut to finding
a 2-respecting min-cut w.r.t to a given spanning tree can be implemented efficiently
(Line 1 to 2 of Algorithm 4.4).[Theorem 5.2 and Claim 5.8]

• Next we show that we can implement Algorithm 3.3 efficiently. This algorithm will be
called many times in Algorithm 3.13, and hence we want to make sure that this step is
efficient. [Claim 5.4, and Claim 5.10]

• Then we show that each edge e ∈ T can find the sets Pcross
e and Pdown

e efficiently. This
is a crucial step because this reduces the search space of 2-respecting cuts, and we want
to make sure that this step can be done as quickly as possible. [Lemma 5.5, and Claim
5.11]

• Lastly, we analyse the other steps of Algorithm 3.13 to conclude that the algorithm is
efficient. [Lemma 5.6, and 5.12]

5.1 Graph cut-query upper bound

In the graph cut-query model, we have oracle access to G in the following way: We can send
a partition (S, S̄) of the vertex set V of G to the oracle and the oracle will reply with the
value of the cut corresponding to the given partition. The goal is to minimize the number of
such accesses to compute weighted min-cut. Graph cut-queries can be quite powerful as the
following claim suggests. Most of these are stated in [RSW18] and are fairly easy to verify.

Claim 5.1. In O(log n) cut-queries we can

1. learn one neighbor of a vertex u ∈ V or a set of vertices U ⊂ V ,

2. sample a random neighbor of a vertex u ∈ V or a set of vertices U ⊂ V and

3. after performing n initial queries, sample a random edge e ∈ E.

And in 3 cut-queries, we can find out the total weight of all edges going between two disjoint
set of vertices.

Now, we state a result of [RSW18] regarding computing a cut-sparsifier efficiently. Note
that, such a sparsifier is computed by using all of the above powers of cut-queries.

Theorem 5.2 ([RSW18]). Fix any ε > 0. By using at most Õ(n/ε2) cut-queries, we can
produce a sparsifier H of G such that:

1. H has O(n lnn/ε2) edges,

2. Every cut in H is within a (1± ε)-factor of its value in G.
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At this point, we can perform greedy tree packing in H and can sample a random spanning
tree from the packed set of trees. We are left with the job of finding a min-cut which 2-respects
the sampled tree7. Now we turn towards implementing Algorithm 3.13 in the cut-query
model. At first we show that Algorithm 3.3 is efficient. As noted in Claim 3.1, any efficient
query protocol for the Interval problem immediately implies an efficient query protocol for the
2-respecting min-cut problem where the underlying spanning tree is a path. In the Interval
problem, we have oracle access to the entries of the cost-matrix M : This is because, given any
pair of edges ei and ej of the spanning tree, we can find out the value of the 2-respecting cut
which respects ei and ej by a single cut-query—this is the value of Cost(i, j) in the Interval
problem. But, even if we want to check all 2-respecting cuts, we need Ω(n2) queries which we
cannot afford. The following observation follows from the discussion so far.

Observation 5.3. Any entry of the cost-matrix M associated with the Interval problem can
be known in a single cut-query.

This immediately implies that we can execute Line 4 of Algorithm 3.2 with O(n) cut-
queries. So, using Claim 3.4, we can claim the following:

Claim 5.4. The cut-query complexity of Algorithm 3.3 on a n vertex graph is O(n).

Now we come to the implementation of Algorithm 3.13. We make the following claim
next.

Lemma 5.5. We can find out Pcross
e and Pdown

e for all e ∈ T with O(n) cut-queries.

Proof. Let C denote the set of cut queries we are interested in which are (i) C(u↓) for all
u ∈ V , (ii) C(u↓, v↓) for all pairs of distinct u, v such that u⊥v, and (iii) C(v↓, V − u↓) for all
pairs of u, v such that v ∈ u↓. We can assume that

1. we have made n many initial cut-queries to find out deg(u↓) for each u ∈ V , and

2. we also know the edges of the sparsifier H from the tree-packing phase (Line 1 to 2 of
Algorithm 4.4).

Consider an edge e′ which is cross-interesting to e, i.e., deg(u↓) < 2C(u↓, v↓) where e is the
parent edge of u and e′ is the parent edge of v. Now, by Theorem 5.2, we know that in H,
degH(u↓) ≤ (1 + ε) degG(u↓) < 2(1 + ε)CG(u↓, v↓).

To connect CG with CH , we have work a bit more: Let us partition the vertex set V of G
in three parts: u↓, v↓ and R = V − (u↓ ∪ v↓). Now, we know that 2CG(u↓, v↓) > degG(u↓) =
CG(u↓, v↓) + CG(u↓, R). Similarly, 2CG(u↓, v↓) > CG(u↓, v↓) + CG(u↓, R). Combining, we get
2CG(u↓, v↓) > CG(u↓, R) + CG(v↓, R). Now, let us look at the sparsifier H. We have the

7Note that we have find 2-respecting min-cut for O(log n) many sampled trees from the packed set of tress
in order to attain very high success probability.
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following:

2CH(u↓, v↓)

≥
︸︷︷︸

(∗)

(1− ε)(CG(u↓, v↓) + CG(u↓, R)) + (1− ε)(CG(u↓, v↓) + CG(v↓, R))− (1 + ε)(CG(v↓, R) + CG(u↓, R))

= 2(1− ε)CG(u↓, v↓)− 2ε(CG(u↓, R) + CG(v↓, R))

>
︸︷︷︸

(∗∗)

2(1− ε)CG(u↓, v↓)− 4εCG(u↓, v↓)

= 2CG(u↓, v↓)(1− 3ε),

where (∗) follows from the sparsifier guarantee, and (∗∗) follows from what we observed
before. Hence, we have

degH(u↓) < 2(1 + ε)CG(u↓, v↓) < 2
1 + ε

1− 3ε
CH(u↓, v↓).

For small enough ε, we have degH(u↓) < 3CH(u↓, v↓).
Hence, to find out which edges are cross-interesting w.r.t. e in G, we need to check

whether CH(u↓, v↓) > degH(u↓)/3 in H. Extending Definition 3.7, let us call the edge e′

which is parent of v to be H-cross-interesting w.r.t. e if CH(u↓, v↓) > degH(u↓)/3. Note
that the set of H-cross-interesting edges w.r.t e is superset of the set of edges which are
cross-interesting w.r.t. e. By a similar argument as that of Observation 3.9, we know that
there can be at most 2 root-to-leaf paths (none of which contains e) in H which can contain
edges that are H-cross-interesting to e. There two root-to-leaf path will intersect with at
most 2 log n paths from P, and hence we need to check C(u↓, v↓) for at most 2 log n many
vertices v⊥u to find out which paths are actually cross-interesting to e. We can make 6 log n
cut queries—3 queries for each path p ∈ P which intersects these two root-to-leaf paths—in
the original graph to figure out which paths in P are interesting w.r.t. e, i.e., the set Pcross

e .
A similar argument can be made for the set Pdown

u .

Now we analyze, as before, the cut-query complexity of Algorithm 3.13

Lemma 5.6. The cut-query complexity of finding a 2-respecting weighted min-cut is Õ(n).

Proof. We count the numner of cut-queries required at each line of Algorithm 3.13.

Line 1 to 3: This requires n− 1 many cut-queries, one for each edge e.

Line 5 to 8: By Claim 5.4, each call to Algorithm 3.3 requires size of the path many cut-
queries. The paths in P are disjoint, and hence each edge takes part in exactly 1 path
in P . Hence, the total number of queries required is n− 1.

Line 9 to 12: This requires the knowledge of the sparsifier graph H, which we can assume
to possess because of the tree packing steps. This also requires the knowledge of deg(u↓)
for every u. We already know this from Line 1 to 3. By Lemma 5.5, this step can be
executed with Õ(n) many queries.

Line 13 to 26: As before, we can use Claim 3.14 and 5.4 to conclude that this step requires
Õ(n) many cut-queries.

Hence, in total, Õ(n) many cut-queries are required.
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5.2 Streaming upper bound

In the dynamic streaming model, we assume that the algorithm knows the vertex set V of
G and has access to a stream of edge-insertion and edge-deletion instructions: each such
instruction declares a pair of vertices of the graph and an optional weight, and mentions
whether an edge of the corresponding weight needs to be inserted between the two vertices,
or if the edge which is already present between those two vertices should be removed. First
we state a result of [KLM+17] regarding efficient computability of sparsifier.

Theorem 5.7 ([KLM+17]). There exists an algorithm that processes a list of edge insertions
and deletions for a weighted graph G in a single pass and maintains a set of linear sketches of
this input in Õ(n) space. From these sketches, it is possible to recover, with high probability,
a (spectral 8) sparsifier H with Õ(n) edges.

Claim 5.8. A dynamic streaming algorithm can perform the randomized reduction from
weighted min-cut problem to a 2-respecting weighted min-cut problem in a single pass with
Õ(n) amount of total memory.

Proof. Given a weighted graph G, the algorithm first uses Theorem 5.7 to construct a
sparsifier H of size Õ(n) in a single pass. Next, the algorithm locally constructs a skeleton
graph H ′ of H such that the value of the min-cut in H ′ becomes O(log n). To this this,
the algorithm uses Theorem 4.5 by setting ε to be a very small constant less than 1 (say
ε = 1/100). Now, the algorithm can perform greedy tree packing on H ′ locally. Let us denote,
as before, the greedy tree packing by T = {T1, · · · , Tk}. Because of the skeleton construction,
k = O(log n) and the algorithms can store the set T in its internal memory.9 The algorithm
does reservoir sampling [Vit85] to pick a random tree T from T : This way the algorithm
can sample a tree T uniformly at random from T with Õ(n) memory. By Lemma 4.2, the
min-cut 2-respects T with constant probability.

Now we turn towards implementing Algorithm 3.13 in the dynamic streaming model.
We first note the following: For a given cut, we can find the value of the cut in a dynamic
stream with just O(log n) bits of memory—we maintain a counter and whenever the stream
inserts (or deletes) an edge in (or from) the cut, we increase (or decrease) the counter. So
the following observation is immediate.

Observation 5.9. Any given Õ(n) cut queries can be answered by a dynamic streaming
algorithm in a single pass with Õ(n) space.

As before, by Claim 3.1, this means that the streaming algorithm can find Õ(n) entries of
the cost-matrix corresponding to the Interval problem in a single pass and Õ(n) space. We
prove that this is enough to implement Algorithm 3.3 efficiently.

Claim 5.10. A dynamic streaming algorithm can perform Algorithm 3.3 on an n vertex
graph in O(log n) pass with Õ(n) bits of memory.

8A stronger notion than that of cut-sparsifier.
9The skeleton construction was not necessary in the case of the cut-query model because of its assumption

of unbounded internal computational power.
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Proof. We first look at the pass and memory requirement for performing Algorithm 3.2. Note
that we can use Claim 3.4 where we assume that a streaming algorithm can find is and
it in Line 4 of Algorithm 3.2 can be done in a single pass with Õ(n) bits of memory (by
Observation 5.9). Hence, by a similar calculation, it is easy to see that Algorithm 3.2 can be
performed in O(log n) passes and with Õ(n) memory.

For Algorithm 3.3, we can run O(log n) many occurrences of previous algorithm simulta-
neously, one for each level of recursion: The i-th algorithm will run 2i−1 many instances of
Bipartite-interval, each one on a path (or line) with n/2i−1 edges (or points). Clearly,
each algorithm can run in O(log n) passes with Õ(n) memory, and hence the complexity of
the combined algorithm is O(log n) passes with Õ(n) memory as well.

Now, as in the graph cut-query model, we turn towards the implementation of Algo-
rithm 3.13. We make the following claim.

Claim 5.11. A dynamic streaming algorithm can find Pcross
e and Pdown

e for all e ∈ T in two
passes and Õ(n) memory.

Proof. The proof is similar to Lemma 5.5. As noted in Theorem 5.7, the algorithm can
compute a sparsifier H of G in a single pass with Õ(n) memory. Once done, by a similar
argument as that of Lemma 5.5, each edge e ∈ T needs to check O(log n) paths from P to
figure out which paths are cross (down)-interesting w.r.t. e in the original graph G. This
requires checking cut-values of Õ(n) many cuts in total. This, by Observation 5.9, can be
done in a single pass with Õ(n) bits of memory.

Now we analyze, as before, the streaming complexity of Algorithm 3.13.

Lemma 5.12. There exists an algorithm that processes a list of edge insertions and deletions
for a weighted graph G on n vertices can perform Algorithm 3.13 in O(log n) passes and with
total memory of Õ(n) bits.

Line 1 to 3: There are n− 1 cuts to check, and hence, by Observation 5.9, it can be done
in a single pass with Õ(n) bits of memory.

Line 5 to 8: We know, by Claim 5.10, that the interval problem on ℓ many points can be
performed in O(log ℓ) passes and Õ(ℓ) bits of memory. As the set P is edge-disjoint, we
can run |P| many streaming algorithm in parallel, all of which read the same dynamic
stream. This needs O(log n) passes and Õ(n) memory.

Line 9 to 12: By Claim 5.11, this can be done in 2 passes and with Õ(n) memory. Note
that, the first pass of Claim 5.11 is dedicated to finding a sparsifier H, which will be
done in the tree-packing phase (Line 1) of Algorithm 4.4 (See proof of Claim 5.8). So,
while implementing Algorithm 4.4, these lines can be executed in a single pass instead
of two passes.

Line 13 to 26: We will run one instance of the dynamic streaming algorithm for each call to
Algorithm 3.3 in parallel, all of which reads the same stream. This needs O(log n) many
passes. For the memory bound, Claim 3.14 guarantees that each edge is going to be
used by at most O(log n) many such algorithms. As stated before, any such algorithm
solving Interval problem on ℓ many points can be performed in O(log ℓ) passes and Õ(ℓ)
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bits of memory. So these steps can be performed in O(log n) passes and Õ(n) total
memory.

Hence, Algorithm 3.13 can be implemented by a dynamic streaming algorithm in O(log n)
passes and Õ(n) memory.

6 Sequential algorithm for 2-respecting min-cut

In the following section, we provide a randomized algorithm for the problem of finding
minimum 2-respecting min-cut. The error probability of this algorithm is polynomially small,
i.e., n−c for any large enough constant c—we denote this as with high probability. Our main
result is the following.

Theorem 6.1. There is a randomized algorithm that, given a spanning tree T of an n-
node m-edge (weighted) graph G, can find the 2-respect min-cut with high probability in
O(m log n + n log4 n) time. If the graph is unweighted (but can have multiple edges between a
pair of vertices), then the 2-respecting min-cut can be found in O(m

√
log n + n log4 n).

Theorem 6.1 relies on a certain 2-d range-counting and sampling data-structure that
we state in the following section. For the 2-d range counting data-structure and all other
necessary data-strucures introduced in Section 6.2, we will also look at the time complexity
averaged out over a sequence of data-structure operations, i.e., we are interested in amortized
time complexity of data-structure operations.

6.1 Range counting, sampling & searching

We start this section by introducing data-structure for 2-d orthognal range counting/sampling.
We later introduce data-structure for 2-d semigroup range searching.

Definition 6.2 (2-d Orthogonal Range Counting/Sampling). An (online) range counting
data structure is an algorithm that take m points in the plane to pre-process in time tp and
support a sequence of the following query operations:

1. given an axes-aligned rectangle, the algorithm outputs the number of points in the
rectangle in time tc (range counting),

2. given an axes-aligned rectangle and an integer k = O(logm), the algorithm outputs k′

distinct random points in R (k ≤ k′ = O(k)) with high probability in time (k′ + 1)ts
(range sampling).

We denote such a data-structure by (tp, tc, ts)-data-structure. We will also be interested in
amortized range reporting time tr: given an axes-aligned rectangle and an integer k = O(logm),
the algorithm outputs k′ distinct points in R (k ≤ k′ = O(k)) in time (k′ + 1)tr.

Below we present two (tp, tc, ts)-data-structures—one where we do not allow bit operations
and one where we allow it—with their corresponding pre-processing, counting and sampling
time.
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Theorem 6.3. There are (tp, tc, ts)-data-structures when given m points in a 2-d plane to
pre-process have the following complexities:

(Amortized)
time

without bit-
operations

with bit-
operations

tp(m) O(m logm) O(m
√

logm)

tc(m) O(logm) O
(

logm
log logm

)

ts(m) O(logm) O
(

logm
log logm

)

For proving Theorem 6.3, when bit-operations are not allowed, we use the following result by
[Cha88].

Theorem 6.4 ([Cha88]). There is a 2-d range count/report data-structure which can pre-
process m points in time O(m logm) and answers range count/report query in O(logm)
amortized time which does not require bit operations.

Remark 6.5. Chazelle [Cha88] proved an even stronger result where he showed that reporting
k many points takes time O(k + logm). Also, as we will see in Section 6.2, it is enough
for these data-structures to work on 2-d grid (instead of 2-d plane). For this special case,
Overmars [Ove88] has shown the existence of a data-structure with tp(m) = O(m logm) and
reporting k points take time O(k +

√
logm) (given that the grid is of size m×m).

When we allow bit operations, we can do better. We use the following 1-d range rank/select
query data-structure from [BGKS15]: A range rank/select query data-structure, given m
numbers in an array A[1, · · · ,m] to pre-process, can support the following types of queries:

1. a rank query is associated with two indices i, j ∈ [m] and an integer I, and outputs the
number of integers in A[i · · · , j] that are smaller than an integer I,

2. a select query is associated with two indices i, j ∈ [m] and a number k, and outputs
the k-th smallest number in A[i, · · · , j].

The following two theorems are stated for data-structure where bit operations are allowed.

Theorem 6.6 ([BGKS15]). There is a 1-d range rank/select query data-structure which
can pre-process m points in time O(m

√
logm) and answers range rank/select query in time

O( logm
log logm

).

Theorem 6.7 ([CP10]). There is a 2-d orthogonal range counting data-structure which can
pre-process m points in time O(m

√
logm) and answers range count query in time O( logm

log logm
).

Proof of Theorem 6.3. First we show how to construct such a data-structure when bit-
operations are not allowed. The main idea is to show how to construct a range-sampling
data-structure from a range-reporting data-structure from Theorem 6.4. Subsequently, we
show how to construct a more efficient range-reporting data-structure when bit-operations
are allowed. We will show how to construct an efficient range-reporting data-structure from
Theorem 6.6 and 6.7.
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Without bit-operations. We show the proof by constructing the (randomized) data-
structure and analysing its correctness. We create a data-structure D as in Theorem 6.4.
The time required for pre-processing m points is tp(m) = O(m logm) and the time required
for range counting is tc(m) = O(logm). The rest of the proof is to show ts(m) = O(logm) as
well.

To this end, we show that, given a 2-d range-reporting data-structure with pre-processing
time tp(m) = O(m logm) and range-reporting time tr, we can construct a range-sampling
data-structure with pre-processing time tp(m) = O(m logm) and ts = tr. The proof then
concludes by observing that tr(m) = O(logm) for D by Theorem 6.4. The reduction is
described as follows:

• Pre-processing: We define the following set of points S0, S1, . . . , Sk, where k = logm
in the following way: Let S0 = S. For i starting from 1 to k, we define Si ⊆ Si−1 by
copying each point of Si−1 to Si with probability 1/2. For every 0 ≤ i ≤ k, we also do
the following: We build a 2-d range reporting data structure Di for each point set Si.
This takes time

∑k
i=0 tp(|Si|) where tp is the pre-processing time of the range reporting

data structure. This sums up to
∑k

i=0 O(|Si| log |Si|) = O(m logm).

• Query(R, k): Let i = k. We query the range reporting data structure Di for points
in R ∩ Si and output the reported points. If less than c log n points were reported so
far, we repeat with i← i− 1. We stop when all points in R are reported (when i = 0).
Di reports each point in tr(|Si|) = O(log |Si|) amortized time. Note that even when R
contains no point, we need an extra O(logm) time to iterate over all values of i. (This
can be avoided using the range counting data structure, but this refinement does not
affect our overall running time so we do not include it here.)

Analysis: For any i ≤ k, let S≥i =
⋃

j≥i Sj. Observe that, for every i, every point is in S≥i

with probability 1/2i. Since we answer the query by reporting all points in S≥i for some i,
every point is output with the same probability. Now we bound the number of points we
output. Let m′ be the number of points in R in total. Let c ≥ 2 be a large enough constant
whose value is independent from the input size. Let i′ be such that m′/2i′ ∈ (ck, 2ck]. The
expected number of points in R that is in S≥i′ is E[|R ∩ S≥i′ |] = m′/2i′ ≥ ck ≥ c logm; so
by the standard Chernoff’s bound we have that |R ∩ S≥i′ | ∈ [ck/2, 4ck] with (very) high
probability. If this is the case, the query algorithm will stop when it reports points in R∩S≥i′

at the latest, implying that it reports at most |R ∩ S≥i′ | = O(k) points. The proof follows
by noting tr(m) = maxi O(log |Si|) = O(logm).

With bit-operations. Similar to what we did previously, we show the proof by constructing
the (randomized) data-structure and analysing its correctness. We will create a data-structure
D as in Theorem 6.6 and another data-structure D′ as in Theorem 6.7. The time required
for pre-processing for both D and D′ is O(m

√
logm). This immediately gives tp(m) =

O(m
√

logm). Also, for range counting, we use D′. By Theorem 6.7, tc(m) = O( logm
log logm

).
Previously, we have seen that, given a range-reporting data-structure with reporting time tr,
we can design a range-sampling data-structure with sampling time ts = tr. A similar argument
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also holds here as well10. Hence, the rest of the proof is to show that tr(m) = O
(

logm
log logm

)

.

Concretely, we show how to construct a range-reporting data-structure with pre-processing
time tp(m) = O(m

√
logm) and range-reporting time tr = O( logm

log logm
) from D and D′. Note

that D is a 1-d data-structure. Hence we need to map the points 2-d orthogonal plane to
a single dimension before D can pre-process it. For this, we create an array A of size m.
For points e = (e(x), e(y)) in the 2-d plane, where e(x) and e(y) are the x and y coordinates of
e, we order them with respect to the x-coordinate, and for points with same x-coordinate,
we order them by y-coordinate. Given this ordering, we have a one-to-one correspondence
between m points in the 2-d plane and the entries of A: The entry A[i] corresponds to an

unique point ei in the 2-d plane. We store the y-coordinate of ei in A[i], i.e., A[i] = e
(y)
i .

Now we demonstrate how to report one point in a given axes-aligned rectangle R. Let
us denote the columns of R by {R1, · · · , Rt} where Ri resides in the column Ci of the 2-d
plane. We also consider two more (related) axes-aligned rectangles, and for that we need to
introduce the following notion of dominance. A point e in the 2-d plane dominates another
point e′ if e(x) ≥ e′(x) and e(y) ≥ e′(y). Extending this notion, a rectangle R1 dominates a
disjoint rectangle R2 if each point in R1 dominates all points in R2. The two other rectangles
we consider are as follows: (i) Let R̃ be the ambient rectangle formed by taking union of
columns {C1, · · · , Ck}, and (ii) R̄ to be the biggest sub-rectangle of R̃ which is dominated
by and disjoint from R. The following two observations are immediate: (i) The points in
the rectangle R̃ corresponds to a contiguous range in A, and (ii) w.r.t. the ordering of A,
the entries in A corresponding to the points of R̄ are less than that of R, i.e., A[i] < A[j] if
ei ∈ R̄ and ej ∈ R.

1. We query D′ to find the count of points in R̄. Let the number of such points is c.

2. We also query D′ to find the count of points in R∪ R̄. Let this count be c′. This means
that c′ − c many points reside in R. If c′ − c = 0, we give up and return 0.

3. Otherwise, we query D in the range corresponding to R̃ to select the smallest (c+ j)-th
entry of R̃ for all j ≤ c′ − c. Note that these points must belong inside R if c′ − c 6= 0.
Finding the range corresponding to R̃ can be achieved by making 2 count-queries to D′:
one to find out the number of points on the left side of R̃ which gives us the starting
point of the range; and the other to find out the number of points on the right side of
R̃ which gives us the ending point of the range.

Hence, to report k points in R, the total query time is O
(

(k + 4) logm
log logm

)

. This gives

an amortized query time of tr(m) = O( logm
log logm

) as required. This completes the proof of
Theorem 6.3.

Remark 6.8. Even though the above proof of Theorem 6.3 can deal with multiple points in a
single coordinate of the 2-d plane, we do not need such strong guarantee in our work. In
what follows, we will have at most a single point in a single coordinate of the 2-d plane.

Next we introduce semigroup range searching data-structure. This is an extension of
range counting data-structure where we can assume that each point in the 2-d plane has a

10One has to be careful about pre-processing time which is now
∑

i O(|Si|
√

log |Si|) = O(m
√

logm) as
√

log(x) is an increasing function w.r.t. x.
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weight associated with it, and given an axes-aligned rectangle we want to know that total
weight of the points inside the rectangle (instead of counting just the number of points inside
it).

Definition 6.9 (2-d Semigroup Range Searching). Consider a function f from points on
a 2-d plane to a commutative semi-group (G,+). An (online) semi-group range searching
data structure is an algorithm that take m points in the plane to pre-process in time tsgp and
support a sequence of the following query operation:

• given an axes-aligned rectangle R, the algorithm outputs
∑

e∈R f(e) where the summation
is the semigroup operation.

We denote the query time as tsgc , and call such a data-structure as (tsgp , t
sg

c )-data-structure.

We will make use of the following (tsgp , t
sg

c )-data-structure (for handling weighted graph).
This data-structure does not require bit operations.

Theorem 6.10 ([Cha88]). There is a (tsgp , t
sg

c )-data-structure in which can pre-process m

points in time tsgp (m) = O(m logm) and answers range search query in tsgc (m) = O(log2 m)
amortized time.

6.2 Main algorithm: Proof of Theorem 6.1

In this section, we will assume the existence of a (tp, tc, ts)-data-structure as in Theorem 6.3
and a (tsgp , t

sg

c )-data-structure as in Theorem 6.10, and will prove Theorem 6.1. First, we show
a few operations we can perform on a graph which are immediate from such data-structures.

Lemma 6.11. For any spanning tree T of an n-node m-edge unweighted graph G, there is an
algorithm that, after a tp(m)-time pre-processing, can answer the following queries in tc(m)
amortized time:

1. for any vertex v, deg(v↓),

2. for any two vertices u and v, C(u↓, v↓), and

3. for any two vertices u and v, C(u↓, V − v↓).

When G is weighted, then these operations need tsgp (m)-time for pre-processing and tsgc (m)-time
to answer.

Proof. We sequentialize the vertices in V by the trace of a post-order traversal of T . Let us
denote this order by ≺. We will also use this notation to define S ≺ T for set of vertices S
and T if all vertices in S occur before any vertex of T in the ordering. A post-order traversal
order has the following property: For any vertex v with children u1 ≺ · · · ≺ uk, the ordering
guarantees that u↓

1 ≺ · · · ≺ u↓

k. This immediately implies that

1. for all u ∈ V , u↓ is a continuous range in the ordering, and

2. for all v ∈ V , V − v↓ comprises of two continuous ranges in the ordering.
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So we plot V in this order along both axes, and, for all edge e in the graph G, put the weight
of the edge e = (u, v) at the coordinate (u, v) on the plane. (We need to account for e only
once between coordinates (u, v) and (v, u).) By formulating deg(v↓) = C(v↓, V − v↓), we see
that each of the cut-queries in the claim can be answered by at most 2 range-count queries
to the (tp, tc, ts)-data-structure if the edges have weight 1 each, or at most 2 queries to the
(tsgp , t

sg

c )-data-structure if the edges are weighted.

Now we look at Algorithm 3.2 and 3.3, and see how they can be implemented efficiently
if we have a (tp, tc, ts)-data-structure. We start with the following lemma.

Lemma 6.12. The exists an algorithm that supports the following operations.

• Pre-process(T,G): The algorithm is given a spanning tree T of an n-node m-edge
unweighted graph G to pre-process.

• Query(A, B): The algorithm is given two disjoint lists (arrays) of edges in T , denoted
by A = {a1, . . . , ax} and B = {b1, . . . , by}, where a1, . . . , ax (respectively b1, . . . , by)
appear in a path in T in order; i.e. a1 appears first in the path and ax appears last.
(Note that, for any i, ai might not be adjacent to ai+1.) The algorithm then outputs
min(ai,bj)∈A×B Cost(a, b).

After tp pre-processing time, the algorithm takes O(ℓ log ℓ · tc(m)) amortized time to answer
each query, where ℓ = |A|+ |B|. For weighted graph, the pre-processing time is tsgp , and query
time is O(ℓ log ℓ · tsgc (m)).

Proof. The algorithm follows the schematic of Algorithm 3.2. The only difference is that the
set A and B are not contiguous sequence of edges. But we can pretend the edges which does
not take part in A or B as collapsed. We first look at the case where the graph is unweighted.

1. The algorithm prepares the data-structure from Lemma 6.11,

2. Given any query (A,B), the algorithm runs Algorithm 3.2. In line 4 of Algorithm 3.2,
it needs to issue a total of O(x) many 2-respecting cut queries (i.e., queries of the form
C(u↓, v↓)) in each level of recursion. From Theorem 6.11, such queries can be answered
in tc(m) amortized time. Hence, in each level of recursion, the algorithm needs time
O(x · tc(m)). There are at most log x levels of recursion, which implies the total running
time is O(x log x · tc(m)).

As ℓ > x we have the required running time. The case of weighted graph can be handled
similarly by using (tsgp , t

sg

c )-data-structure from Lemma 6.11.

We look at a related lemma for implementing the Interval sub-routine, but this time
with contiguous set of edges.

Lemma 6.13. There exists an algorithm which, given an unweighted graph G and and a
spanning tree T , can pre-process in time tp(m) and can answer the following question: Given
a path p ∈ T of length ℓ, the algorithm can output cut-value the smallest exact-2-respecting cut
which respects two edges from in time O(ℓ log2 ℓ·tc(m)). For weighted graph, the pre-processing
time is tsgp (m), and query time is O(ℓ log2 ℓ · tsgc (m)).
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Proof. This algorithm follows the schematic of Algorithm 3.3. As before, we can pretend that
edges of T not in p to be collapsed. For the sake of efficiency, the algorithm stores the edges
of p in sequence in an array. Also, as before, we first look at the case of unweighted graphs.

1. The algorithm prepares the data-structure from Lemma 6.11,

2. Given any path p ∈ T , the algorithm runs Algorithm 3.3 on p. The algorithm needs to
issue O(ℓ log2 ℓ) many exact-2-respecting cut queries (i.e., queries of the form C(u↓, v↓))
to the data-structure. Hence the total running time is O(ℓ log2 ℓ · tc(m)).

The case of weighted graphs can be handled similarly by using (tsgp , t
sg

c )-data-structure from
Lemma 6.11.

Now we look at the most crucial part of our sequential implementation: How to find the
set Pcross

e and Pdown
e efficiently for each e ∈ T ? To this end, we introduce a random sampling

lemma below. But, before stating the lemma, we need to an assumption on the edge weights
of G, which is as follows:

Lemma 6.14 (Initial assumption). By spending linear time, we can assume that the input
graph G has no parallel edge and the maximum edge weight is at most 3λ where λ is the
min-cut of G.

Proof. We can assume, without loss of generality, that G has no parallel edge simply by
merging parallel edges into one edge. As pointed out by Karger [Kar99, Kar95], one can
modify Matula’s algorithm [Mat93] to get a (2 + ǫ)-approximate value of λ in linear time. So
we can assume that we have λ′ ∈ [λ, 3λ]. We then contract all edges of weight more than λ′.
Observe that the min-cut does not change after the contraction. (Note: Karger [Kar99] also
described a simple n2-approximation algorithm, which can be used to prove a weaker lemma
than here. Such lemma is also enough for our purpose.)

Lemma 6.15 (Finding big C(u↓, v↓)). There is a data structure that, after pre-processing a
weighted m-edge connected graph G = (V,E) and a spanning tree T of G in O(tp(m)) time,
can answer the following type of queries:

• Query(u): Given a node u, the algorithm returns O(log n) sets of edges in G, denoted
by F1(u), F2(u), . . ., such that with high probability

(I) |Fi(u)| = O(log n) for all i, and

(II) for any node v where C(u↓, v↓) > deg(u↓)/2, there exists i such that the number
of edges in F (u) that connect between u↓ and v↓, i.e., |Fi(u) ∩ C(u↓, v↓)| is at least
|Fi(u)|/16.

The algorithm takes ts(m)
∑

i |Fi(u)| amortized time to answer each query.

Proof. Intuition: If the graph is unweighted, we can simply sample Θ(log n) edges from deg(u↓)
using the (tp, tc, ts)-data structure from Theorem 6.3 (where we convert edges to points as in
Lemma 6.11). We can then use the Chernoff’s bound to argue that if C(u↓, v↓) > deg(u↓)/2
then one-third of the sample edges are between u↓ and v↓ (where we view both u↓ and v↓ as
ranges in two orthogonal axes as in Theorem 6.11). For weighted graphs, more has to be
done, as follows.
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Pre-processing: Recall that, by Lemma 6.14, we can assume that the maximum edge
weight is at most 3λ and there is no parallel edge. Let G′ be a graph obtained by removing all
edges in G of weight less than ǫλ/n2, for a small enough constant ǫ. Thus, the ratio between
the minimum and maximum weight of G′ is 3n2/ǫ. To simplify the exposition, we assume
that the minimum weight is 1. Partition edges of G′ into E0, E1, . . . , Eℓ where Ei is the set of
edges whose weights are in the range [2i, 2i+1). (Note that ℓ = O(log n).) Convert each edge
in G′ into a 2-dimensional point by a post-order traversal in T as in Lemma 6.11. Let Pi be
the set of points resulting from converting edges in E ′

i. Let Di be a (tp, tc, ts)-data structure
that is given points in Pi to pre-process11.

Query(u): For every i, we query Di to sample k = c log n many points, for a big enough
constant c, where the queried range is defined to cover edges between u↓ and V (G)\u↓ (which
can be done according to Lemma 6.11.) Let Fi(u) denote the set of edges corresponding to
points returned by Di. In other words, Fi(u) is a set of random edges in between u↓ and
V (G) \ u↓ in E ′

i.

Analysis: By Theorem 6.3, the processing requires
∑

i tp(|Pi|) = O(tp(m)) time and the
query outputs O(ℓk) = O(log2 n) edges with high probability. The number of points sampled
is
∑

i |Fi(u)|, and hence the time required to sample these many points is ts(m)
∑

i |Fi(u)|.
This is the time required to answer Query(u). Additionally these data structures require
O(log n) amortized time to output each point, which becomes an output edge.

Now it is left to show (II). That is, if we let v be any node such that CG(u↓, v↓) >
degG(u↓)/2, then for some i

|Fi(u) ∩ C(u↓, v↓)| ≥ |Fi(u)|/16. (3)

Let w(E ′) be the total weight of any set of edges E ′. Note that w(E(G) \E(G′)) ≤ ǫλ. Since
degG′(u↓) ≥ λ for any node u (since it defines a cut), we have

CG′(u↓, v↓) > (1− 2ǫ)CG(u↓, v↓) > (1− 2ǫ) degG(u↓)/2.

By the averaging argument we have that there is some i such that w(Ei ∩ CG′(u↓, v↓)) >
1−2ǫ
2

w(Ei ∩ CG(u↓)). Since all edges in Ei have weights within a factor of two from each other,
we have

|Ei ∩ CG′(u↓, v↓)| > 1− 2ǫ

4
|Ei ∩ CG(u↓)|.

Thus, when we sample k = c log n edges from Ei ∩ degG(u↓) to construct Fi(u), the expected
number of edges in Ei ∩ CG′(u↓, v↓) is at least 1−2ǫ

4
c log n. So, by Chernoff’s bound, we have

|Fi(u) ∩ CG′(u↓, v↓)| > 1− 2ǫ

8
|Fi(u)|

with high probability when c is large enough. With small enough ǫ, Equation (3) follows.

11Even though the edges in Pi have weights in the range [2i, 2i+1), Di treats all edges equally by disregarding
edge weights. More informally, Di treats the subgraph induced by Pi as an unweighted simple graph. See
Remark 6.8 for relevance.
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We have a similar claim for down-interesting edges. The proof is similar to that of Lemma
6.15 and is omitted.

Lemma 6.16 (Finding big C(v↓, V −u↓)). There is a data structure that, after pre-processing
a weighted m-edge connected graph G = (V,E) and a spanning tree T of G in O(tp(m)) time,
can answer the following type of queries:

• Query(u): Given a node u, the algorithm returns O(log n) sets of edges in G, denoted
by F ′

1(u), F ′
2(u), . . ., such that with high probability

(I) |F ′
i (u)| = O(log n) for all i, and

(II) for any node v where C(v↓, V −u↓) > deg(u↓)/2, there exists i such that the number
of edges in F ′(u) that connect between u↓ and v↓, i.e., |F ′

i (u)∩ C(v↓, V − u↓)| is at
least |F ′

i (u)|/16.

The algorithm takes ts(m)
∑

i |F ′
i (u)| amortized time to answer each query, which is O(log2 n ·

ts(m)) with high probability.

Next, we need a data-structure for heavy-light decomposition which, on an edge query,
will provide the set of paths of decomposition which intersects the root-to-leaf path containing
that edge. We use the compressed tree data-structure from [HT84]. A minor modification of
this data-structure will give the following lemma.

Lemma 6.17 ([HT84]). Consider P to be a set of paths obtained by heavy-light decomposition
of a tree T . Given a tree T on n vertices, there is a data-structure which can pre-process the
tree in O(n) times such that it can answer the following type of queries:

• Query(e): Given an edge e of the graph, the algorithm returns at most log n many edges
e′1, · · · , e′k and a set of paths {p1, · · · , pk} ⊆ P such that (i) each e′i belongs to the same
root-to-leaf path that e belongs to, (ii) each e′i belongs to a distinct path pi from P, and
(iii) e′i is the edge closest to the root in pi.

The algorithm takes O(log n) time to answer each such query.

We need one more data-structure for technical purpose.

Lemma 6.18. Consider a family S of n many sets of a universe. There is a data-structure
which allows the following operations:

1. Insertion. Given a tuple (S, T, x) where S and T are sets in S and x is an element
in S, the data-structure inserts (S, T, x) in time O(log n).

2. Sequential access. At any point, provides sequential access to a set of tuples of the
form (S, {x1, · · · , xs}, T, {y1, · · · , yt}) in O(1) amortized time where, for each xi, there
was an insertion (S, T, xi) and, for each yi, there was an insertion (T, S, yi).

Proof sketch. The data-structure maintains an inherent ordering of the sets in S. Given any
tuple (S, T, x), where S ≺ T w.r.t. that ordering, the data-structure first searches whether
there is any entry corresponding to (S, T ) in it. This can be searched in O(log n) time by
binary-search. If there is such an entry, the data-structure adds x to the set corresponding
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to S in that entry. Otherwise, the data-structure creates an entry corresponding to (S, T )
at the lexicographically correct position (w.r.t. the ordering of S) and adds x to the set
corresponding to S in that entry. When T ≺ S, the data-structure works exactly in the same
way, but does the search with the tuple (T, S) instead of (S, T ) for not creating double entry.
This data-structure can be very efficiently maintained by traditional data-structure, such as,
B+ tree which also provides the quick sequential access as claimed.

At this point, we look at the implementation of Algorithm 3.13 in the sequential model.
The algorithm, given a weighted graph G and a spanning tree T , will construct a few data-
structures to efficiently perform the computations, but the schematics will remain more-or-less
the same. We explain the steps as follows:

Initial data-strucure creation: The algorithm first creates a data-structure D1 as in
Lemma 6.11. This can be done in time tsgp (m). For unweighted graph, the time needed
is tp(m). The algorithm also initializes a min-heap Heap.

Line 1 to 3: For each edge e of T , the algorithm issues query deg(u↓) to D1 where e is the
parent edge of e, and inserts it in Heap. This can be done in time O(n · tsgc (m)) for
weighted graphs, and O(n · tc(m)) for unweighted graphs.

Line 4 : This can be done in time O(n). At this point, the algorithm also creates a
data-structure D2 as in Lemma 6.17.

Line 5 to 8: The algorithm uses D1, as in Lemma 6.13, to find out the minimum exact-
2-respecting cut in each path p ∈ P and inserts it into Heap. The total amount
of time needed, by Lemma 6.13, is O(n log2 n · tc(m)) for unweighted graphs, and
O(n log2 n · tsgc (m)) for weighted graphs.

Line 9 to 12: 1. The algorithm first creates data-structures Dcross
3 as in Lemma 6.15 and

Ddown
3 as in Lemma 6.16. The algorithm also initiates a data-structures Dcross

4 and
Ddown

4 as in Lemma 6.18.

2. The algorithm iterates over each vertex u ∈ V .

(a) The algorithm queries u in Dcross
3 to obtain the set {Fi(u)}i. Note that

the number of edges in
⋃

i Fi(u) is at most O(log2 n). This requires time
O(log2 n · ts(m)).

(b) For each edge e ∈ ⋃

i Fi(u), let v be the end-point of e not in u↓. The algorithm
queries v in D2 to obtain a set of edges {e′1, · · · , e′k} of size O(log n) along
with the paths {p′1, · · · , p′k} where e′i ∈ p′i. Hence, in total, O(log3 n) many
edges corresponding to e are collected in this process—we call this set ET

e .
Each query takes time O(log n), and hence in total O(log3 n) time is required.

(c) The algorithm then inserts O(log3 n) many tuples of the form (p, p′, e′) in
Dcross

4 where e ∈ P , e′ ∈ ET
e , and p′ is the path in P which contains e′. Each

insertion takes time O(log n), and hence O(log4 n) time is required in total.

(d) The algorithm also follows Lemma 6.16 to query Ddown
3 to obtain O(log n) many

sets {F ′
i (u)}i, and executes exactly similar steps: For every edge e ∈ ⋃

i F
′
i (u),

the algorithm queries D2 to obtain all potential interesting set of edges and
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path (up to u), and inserts all these O(log3 n) tuples in Ddown
4 . The algorithm

also inserts all tuples of the form (p, p′, e′) in Ddown
4 where e ∈ p, e′ is an

ancestor of e and e′ ∈ p′. Total time required is, as before, O(log4 n).

(e) As the algorithm iterates over each edge u ∈ V , the total time required in
O(n(log4 n + log2 n · ts(m))).

Line 13 to 26: The algorithm uses D1, as in Lemma 6.12, to find the minimum 2-respecting-
cuts for each tuple in Dcross

4 and Ddown
4 . A similar amortized analysis as that in Section

5.1 or 5.2 will yield a running time of O(n log n · tc(m)) for unweighted graphs, and
O(n log n · tsgc (m)) for weighted graph.

At the end, the algorithm finds the minimum entry from Heap and outputs it. Let us
compute the total running time for this implementation when the graph is weighted. The
total running time of Algorithm 3.13 is (ignoring lower order terms)

O(tsgp (m) + tp(m) + n log2 n · ts(m) + n log2 n · tsgc (m) + n log4 n),

which is O(m log n + n log4 n) if we plug in the value of tsgp (m), tsgc (m), tp(m), ts(m) from
Theorem 6.3 and Theorem 6.10. This implementation does not use any bit operation. Note
that we can use the range-sampling data-structure where bit-operations are allowed instead
of the one where bit-operations are not allowed—Unfortunately this does not improve the
running time as tsgp dominates tp. In the unweighted case, however, we can replace the
semigroup range searching data structure by the range counting data structure, and so we do
not need to use the (tsgp , t

sg

c )-data-structure. Hence the running time in this case is

O(tp(m) + n log2 n · ts(m) + n log2 n · tc(m) + n log4 n),

which is O(m
√

log n + n log4 n) if we put values of tp(m), tc(m), ts(m) from Theorem 6.3
and 6.3. Clearly, this case requires bit operations.

We will now look at the correctness of this implementation. The most interesting part of
this algorithm is Line 9 to 12. From Lemma 6.15, we know that if v is cross-interesting to
u in G, then there is an i such that |Fi(u) ∩ C(u↓, v↓)| ≥ |Fi(u)|/16. Let pick such an edge
e′ ∈ Fi(u) ∩ C(u↓, v↓) and let v′ be the vertex of e′ in v↓. Note that v belongs to the same
root-to-leaf path as v′. Hence, all edges of the root-to-leaf path which are cross-interesting
w.r.t. e will be discovered by a query to D2 with v′ 12. As we iterate over all i, the set Pcross

e

will be discovered w.h.p. A similar argument can be made for Pdown
e using Lemma 6.16. This

immediately implies the following claim.

Claim 6.19. In Line 9 to 12, the algorithm finds, for every edge e, the set Pcross
e and Pdown

e .

The correctness of the rest of the implementation follows from the correctness of the
data-structures (Lemma 6.11, 6.12 and 6.13).

12In fact, we do not need such a strong guarantee on Fi(u) ∩ C(u↓, v↓) for this purpose. We just need that
|Fi(u) ∩ C(u↓, v↓)| 6= ∅.
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7 Open problems

In this work we show that weighted min-cut can be solved efficiently in many settings.
One setting that remains difficult is for dynamic graphs. Improved dynamic algorithms (or
conditional lower bounds) for maintaining min-cut exactly and approximately are both very
challenging. For exact min-cut, the tree packing can be maintained using existing dynamic
minimum spanning tree algorithms (e.g. [HK99, HdLT01, Wul13, KKM13, NSW17]). The
challenge is again maintaining the minimum 2-respecting cut. See [Tho07] for the state of
the art of approximately maintaining the min-cut. Additionally, it is interesting to see if the
number of passes can be improved in the streaming setting.

All efficient min-cut algorithms are randomized (there is a near-linear time deterministic
algorithm in the sequential setting, but it works only on simple graphs [KT19]). Can we
obtain an efficient deterministic algorithm in any of the settings considered in this paper?
Note that our algorithm is randomized due to the need of a cut sparsifier. A cut sparsifier
can be obtained deterministically in almost-linear time using the recent result in [CGL+19],
but the approximation ratio is too high (no(1)). Improving the approximation ratio is the
first important step.

Two problems related to min-cut, namely directed min-cut and vertex connectivity, are
still widely open. We leave as a major open problem designing an efficient algorithm for
any of these problems either in the sequential, streaming, and cut-query setting, or any
other interesting computational model. One model that is of our interest is the two-party
communication model where edges are partitioned into two parties. In this setting, the two
party can compute the min-cut by communicating Õ(n) bits. Can they use the same amount
of communication for computing the minimum directed cut or vertex connectivity? In fact,
this question is also open and interesting for other graph problems such as the maximum
bipartite matching.

Acknowledgement

We thank Michal Dori and Sorrachai Yingchareonthawornchai for actively participating in
the discussions during their visits at KTH, when we were trying to prove a communication
complexity lower bound for the interval problem (which turns out to be impossible due to
our results). We would also like to thank Yuval Efron, Joseph Swernofsky and Jan van den
Brand for fruitful discussions on different stages of this work.

We thank Timothy Chan for pointing out relevant results on range searching data
structures. We also thank Pawe l Gawrychowski for pointing out an error in the earlier version,
where we used Chazelle’s range counting instead of semigroup range searching data structure.
(This change does not affect our results.)

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant agreement No
715672. Authors are also supported by the Swedish Research Council (Reg. No. 2015-04659
and 2019-05622).

37



References

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for
graph streaming algorithms. In STOC, pages 265–276. ACM, 2019.

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure
via linear measurements. In SODA, pages 459–467. SIAM, 2012.

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsifi-
cation, spanners, and subgraphs. In PODS, pages 5–14. ACM, 2012.

[AKM+87] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E.
Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica,
2:195–208, 1987.

[BGKS15] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana
Starikovskaya. Wavelet trees meet suffix trees. In Proceedings of the 26th SODA,
pages 572–591, 2015.

[BKR96] Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives of monge
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A Proof of Claim 3.1

A path T of length n has n− 1 edges. We consider the edges {e1, · · · , en−1} of the path T
from left to right. This ordering naturally defines left and right vertex of an edge in the path.
Given this ordering, we identify each edge eℓ with the point ℓ in the Interval problem. For
an edge e (which is not in the path) which connects the left vertex of edge ei and the right
vertex of edge ej, we identify e with an interval Ie = (i, j).

If we consider a 2-respecting cut that respects edges ei and ej (i ≤ j), then we claim that
the cost of this cut is equal to Cost(i, j) in the Interval problem. This is because:

1. For any edge e to contribute to this cut, the edge has to connect a vertex v, which is
between right-side of edge ei and left-side of edge ej , with a vertex u which is either on
the left-side of edge ei or right-side of edge ej. The interval Ie, will cover either i or j,
but nor both, and hence contributes to Cost(i, j). In Figure 3, where we are interested
in Cost(2, 5), interval I3 is such an interval.

2. For any edge e′, which connects the left-side of edge ei to the right-side of edge ej, Ie
covers both i and j. For any edge e′′, which is contained between the right-side of edge
ei to the left-side of edge ej , Ie′ covers none of i and j. In both cases, the corresponding
intervals do not contribute to Cost(i, j). In Figure 3, interval I1 is the first kind of
interval, and I2 is the second kind. Neither of I1 and I2 contributes to Cost(2, 5).
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Note that this argument goes both ways, i.e., Cost(i′, j′) represents the cost of a 2-respecting
min-cut which respects edge ei′ and ej′ .
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