1,206 research outputs found

    Effectiveness of segment routing technology in reducing the bandwidth and cloud resources provisioning times in network function virtualization architectures

    Get PDF
    Network Function Virtualization is a new technology allowing for a elastic cloud and bandwidth resource allocation. The technology requires an orchestrator whose role is the service and resource orchestration. It receives service requests, each one characterized by a Service Function Chain, which is a set of service functions to be executed according to a given order. It implements an algorithm for deciding where both to allocate the cloud and bandwidth resources and to route the SFCs. In a traditional orchestration algorithm, the orchestrator has a detailed knowledge of the cloud and network infrastructures and that can lead to high computational complexity of the SFC Routing and Cloud and Bandwidth resource Allocation (SRCBA) algorithm. In this paper, we propose and evaluate the effectiveness of a scalable orchestration architecture inherited by the one proposed within the European Telecommunications Standards Institute (ETSI) and based on the functional separation of an NFV orchestrator in Resource Orchestrator (RO) and Network Service Orchestrator (NSO). Each cloud domain is equipped with an RO whose task is to provide a simple and abstract representation of the cloud infrastructure. These representations are notified of the NSO that can apply a simplified and less complex SRCBA algorithm. In addition, we show how the segment routing technology can help to simplify the SFC routing by means of an effective addressing of the service functions. The scalable orchestration solution has been investigated and compared to the one of a traditional orchestrator in some network scenarios and varying the number of cloud domains. We have verified that the execution time of the SRCBA algorithm can be drastically reduced without degrading the performance in terms of cloud and bandwidth resource costs

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    MeDICINE: Rapid Prototyping of Production-Ready Network Services in Multi-PoP Environments

    Get PDF
    Virtualized network services consisting of multiple individual network functions are already today deployed across multiple sites, so called multi-PoP (points of presence) environ- ments. This allows to improve service performance by optimizing its placement in the network. But prototyping and testing of these complex distributed software systems becomes extremely challenging. The reason is that not only the network service as such has to be tested but also its integration with management and orchestration systems. Existing solutions, like simulators, basic network emulators, or local cloud testbeds, do not support all aspects of these tasks. To this end, we introduce MeDICINE, a novel NFV prototyping platform that is able to execute production-ready network func- tions, provided as software containers, in an emulated multi-PoP environment. These network functions can be controlled by any third-party management and orchestration system that connects to our platform through standard interfaces. Based on this, a developer can use our platform to prototype and test complex network services in a realistic environment running on his laptop.Comment: 6 pages, pre-prin

    Understand Your Chains: Towards Performance Profile-based Network Service Management

    Full text link
    Allocating resources to virtualized network functions and services to meet service level agreements is a challenging task for NFV management and orchestration systems. This becomes even more challenging when agile development methodologies, like DevOps, are applied. In such scenarios, management and orchestration systems are continuously facing new versions of functions and services which makes it hard to decide how much resources have to be allocated to them to provide the expected service performance. One solution for this problem is to support resource allocation decisions with performance behavior information obtained by profiling techniques applied to such network functions and services. In this position paper, we analyze and discuss the components needed to generate such performance behavior information within the NFV DevOps workflow. We also outline research questions that identify open issues and missing pieces for a fully integrated NFV profiling solution. Further, we introduce a novel profiling mechanism that is able to profile virtualized network functions and entire network service chains under different resource constraints before they are deployed on production infrastructure.Comment: Submitted to and accepted by the European Workshop on Software Defined Networks (EWSDN) 201

    Quality of Experience monitoring and management strategies for future smart networks

    Get PDF
    One of the major driving forces of the service and network's provider market is the user's perceived service quality and expectations, which are referred to as user's Quality of Experience (QoE). It is evident that QoE is particularly critical for network providers, who are challenged with the multimedia engineering problems (e.g. processing, compression) typical of traditional networks. They need to have the right QoE monitoring and management mechanisms to have a significant impact on their budget (e.g. by reducing the users‘ churn). Moreover, due to the rapid growth of mobile networks and multimedia services, it is crucial for Internet Service Providers (ISPs) to accurately monitor and manage the QoE for the delivered services and at the same time keep the computational resources and the power consumption at low levels. The objective of this thesis is to investigate the issue of QoE monitoring and management for future networks. This research, developed during the PhD programme, aims to describe the State-of-the-Art and the concept of Virtual Probes (vProbes). Then, I proposed a QoE monitoring and management solution, two Agent-based solutions for QoE monitoring in LTE-Advanced networks, a QoE monitoring solution for multimedia services in 5G networks and an SDN-based approach for QoE management of multimedia services
    • …
    corecore