502 research outputs found

    A 1-parameter family of spherical CR uniformizations of the figure eight knot complement

    Full text link
    We describe a simple fundamental domain for the holonomy group of the boundary unipotent spherical CR uniformization of the figure eight knot complement, and deduce that small deformations of that holonomy group (such that the boundary holonomy remains parabolic) also give a uniformization of the figure eight knot complement. Finally, we construct an explicit 1-parameter family of deformations of the boundary unipotent holonomy group such that the boundary holonomy is twist-parabolic. For small values of the twist of these parabolic elements, this produces a 1-parameter family of pairwise non-conjugate spherical CR uniformizations of the figure eight knot complement

    Bisector energy and few distinct distances

    Get PDF
    We introduce the bisector energy of an nn-point set PP in R2\mathbb{R}^2, defined as the number of quadruples (a,b,c,d)(a,b,c,d) from PP such that aa and bb determine the same perpendicular bisector as cc and dd. If no line or circle contains M(n)M(n) points of PP, then we prove that the bisector energy is O(M(n)25n125+ϵ+M(n)n2).O(M(n)^{\frac{2}{5}}n^{\frac{12}{5}+\epsilon} + M(n)n^2).. We also prove the lower bound Ω(M(n)n2)\Omega(M(n)n^2), which matches our upper bound when M(n)M(n) is large. We use our upper bound on the bisector energy to obtain two rather different results: (i) If PP determines O(n/logn)O(n/\sqrt{\log n}) distinct distances, then for any 0<α1/40<\alpha\le 1/4, either there exists a line or circle that contains nαn^\alpha points of PP, or there exist Ω(n8/512α/5ϵ)\Omega(n^{8/5-12\alpha/5-\epsilon}) distinct lines that contain Ω(logn)\Omega(\sqrt{\log n}) points of PP. This result provides new information on a conjecture of Erd\H{o}s regarding the structure of point sets with few distinct distances. (ii) If no line or circle contains M(n)M(n) points of PP, then the number of distinct perpendicular bisectors determined by PP is Ω(min{M(n)2/5n8/5ϵ,M(n)1n2})\Omega(\min\{M(n)^{-2/5}n^{8/5-\epsilon}, M(n)^{-1} n^2\}). This appears to be the first higher-dimensional example in a framework for studying the expansion properties of polynomials and rational functions over R\mathbb{R}, initiated by Elekes and R\'onyai.Comment: 18 pages, 2 figure

    On distinct distances in homogeneous sets in the Euclidean space

    Full text link
    A homogeneous set of nn points in the dd-dimensional Euclidean space determines at least Ω(n2d/(d2+1)/logc(d)n)\Omega(n^{2d/(d^2+1)} / \log^{c(d)} n) distinct distances for a constant c(d)>0c(d)>0. In three-space, we slightly improve our general bound and show that a homogeneous set of nn points determines at least Ω(n.6091)\Omega(n^{.6091}) distinct distances

    Algebro-geometric analysis of bisectors of two algebraic plane curves

    Get PDF
    In this paper, a general theoretical study, from the perspective of the algebraic geometry, of the untrimmed bisector of two real algebraic plane curves is presented. The curves are considered in C2, and the real bisector is obtained by restriction to R2. If the implicit equations of the curves are given, the equation of the bisector is obtained by projection from a variety contained in C7, called the incidence variety, into C2. It is proved that all the components of the bisector have dimension 1. A similar method is used when the curves are given by parametrizations, but in this case, the incidence variety is in C5. In addition, a parametric representation of the bisector is introduced, as well as a method for its computation. Our parametric representation extends the representation in Farouki and Johnstone (1994b) to the case of rational curves

    Euclidean Offset and Bisector Approximations of Curves over Freeform Surfaces

    Get PDF
    The computation of offset and bisector curves/surfaces has always been considered a challenging problem in geometric modeling and processing. In this work, we investigate a related problem of approximating offsets of curves on surfaces (OCS) and bisectors of curves on surfaces (BCS). While at times the precise geodesic distance over the surface between the curve and its offset might be desired, herein we approximate the Euclidean distance between the two. The Euclidean distance OCS problem is reduced to a set of under-determined non-linear constraints, and solved to yield a univariate approximated offset curve on the surface. For the sake of thoroughness, we also establish a bound on the difference between the Euclidean offset and the geodesic offset on the surface and show that for a C2 surface with bounded curvature, this difference vanishes as the offset distance is diminished. In a similar way, the Euclidean distance BCS problem is also solved to generate an approximated bisector curve on the surface. We complete this work with a set of examples that demonstrates the effectiveness of our approach to the Euclidean offset and bisector operations

    The technological mediation of mathematics and its learning

    Get PDF
    This paper examines the extent to which mathematical knowledge, and its related pedagogy, is inextricably linked to the tools – physical, virtual, cultural – in which it is expressed. Our goal is to focus on a few exemplars of computational tools, and to describe with some illustrative examples, how mathematical meanings are shaped by their use. We begin with an appraisal of the role of digital technologies, and our rationale for focusing on them. We present four categories of digital tool-use that distinguish their differing potential to shape mathematical cognition. The four categories are: i. dynamic and graphical tools, ii. tools that outsource processing power, iii. new representational infrastructures, and iv. the implications of highbandwidth connectivity on the nature of mathematics activity. In conclusion, we draw out the implications of this analysis for mathematical epistemology and the mathematical meanings students develop. We also underline the central importance of design, both of the tools themselves and the activities in which they are embedded
    corecore