59 research outputs found

    Pseudo-Booleanilainen optimisaatio käyttäen implisiittisiä osumisjoukkoja

    Get PDF
    There are many computationally difficult problems where the task is to find a solution with the lowest cost possible that fulfills a given set of constraints. Such problems are often NP-hard and are encountered in a variety of real-world problem domains, including planning and scheduling. NP-hard problems are often solved using a declarative approach by encoding the problem into a declarative constraint language and solving the encoding using a generic algorithm for that language. In this thesis we focus on pseudo-Boolean optimization (PBO), a special class of integer programs (IP) that only contain variables that admit the values 0 and 1. We propose a novel approach to PBO that is based on the implicit hitting set (IHS) paradigm, which uses two separate components. An IP solver is used to find an optimal solution under an incomplete set of constraints. A pseudo-Boolean satisfiability solver is used to either validate the feasibility of the solution or to extract more constraints to the integer program. The IHS-based PBO algorithm iteratively invokes the two algorithms until an optimal solution to a given PBO instance is found. In this thesis we lay out the IHS-based PBO solving approach in detail. We implement the algorithm as the PBO-IHS solver by making use of recent advances in reasoning techniques for pseudo-Boolean constraints. Through extensive empirical evaluation we show that our PBO-IHS solver outperforms other available specialized PBO solvers and has complementary performance compared to classical integer programming techniques

    Boolean Satisfiability in Electronic Design Automation

    No full text
    Boolean Satisfiability (SAT) is often used as the underlying model for a significant and increasing number of applications in Electronic Design Automation (EDA) as well as in many other fields of Computer Science and Engineering. In recent years, new and efficient algorithms for SAT have been developed, allowing much larger problem instances to be solved. SAT “packages” are currently expected to have an impact on EDA applications similar to that of BDD packages since their introduction more than a decade ago. This tutorial paper is aimed at introducing the EDA professional to the Boolean satisfiability problem. Specifically, we highlight the use of SAT models to formulate a number of EDA problems in such diverse areas as test pattern generation, circuit delay computation, logic optimization, combinational equivalence checking, bounded model checking and functional test vector generation, among others. In addition, we provide an overview of the algorithmic techniques commonly used for solving SAT, including those that have seen widespread use in specific EDA applications. We categorize these algorithmic techniques, indicating which have been shown to be best suited for which tasks

    Fast subsumption checks using anti-links

    Get PDF
    The concept of "anti-link" is defined, and useful equivalence-preserving operations based on anti-links are introduced.These operations eliminate a potentially large number of subsumed paths in a negation normal form formula.Those anti-links that directly indicate the presence of subsumed paths are characterized. The operations have linear time complexity in the size of that part of the formula containing the anti-link. The problem of removing all subsumed paths in an NNF formula is shown to be NP-hard, even though such formulas may be small relative to the size of their path sets. The general problem of determining whether there exists a pair of subsumed paths associated with an arbitrary anti-link is shown to be NP-complete. Additional techniques based on "strictly pure full blocks" are introduced and are also shown to eliminate redundant subsumption checks. The effectiveness of these techniques is examined with respect to some benchmark examples from the literature
    corecore