
Master’s thesis

Master’s Programme in Computer Science

Pseudo-Boolean Optimization by
Implicit Hitting Sets

Pavel Smirnov

February 14, 2022

Faculty of Science
University of Helsinki

Supervisor(s)

Prof. Matti Järvisalo, Dr. Jeremias Berg

Examiner(s)

Prof. Matti Järvisalo, Dr. Jeremias Berg

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Pavel Smirnov

Pseudo-Boolean Optimization by Implicit Hitting Sets

Prof. Matti Järvisalo, Dr. Jeremias Berg

Master’s thesis February 14, 2022 63 pages, 2 appendix pages

constraint optimization, pseudo-Boolean optimization, implicit hitting sets

Helsinki University Library

Algorithms study track

There are many computationally difficult problems where the task is to find a solution with the
lowest cost possible that fulfills a given set of constraints. Such problems are often NP-hard and
are encountered in a variety of real-world problem domains, including planning and scheduling.
NP-hard problems are often solved using a declarative approach by encoding the problem into
a declarative constraint language and solving the encoding using a generic algorithm for that
language. In this thesis we focus on pseudo-Boolean optimization (PBO), a special class of
integer programs (IP) that only contain variables that admit the values 0 and 1.

We propose a novel approach to PBO that is based on the implicit hitting set (IHS) paradigm,
which uses two separate components. An IP solver is used to find an optimal solution under an
incomplete set of constraints. A pseudo-Boolean satisfiability solver is used to either validate
the feasibility of the solution or to extract more constraints to the integer program. The IHS-
based PBO algorithm iteratively invokes the two algorithms until an optimal solution to a given
PBO instance is found.

In this thesis we lay out the IHS-based PBO solving approach in detail. We implement the
algorithm as the PBO-IHS solver by making use of recent advances in reasoning techniques
for pseudo-Boolean constraints. Through extensive empirical evaluation we show that our
PBO-IHS solver outperforms other available specialized PBO solvers and has complementary
performance compared to classical integer programming techniques.

ACM Computing Classification System (CCS)
Mathematics of computing → Discrete mathematics → Combinatorics → Combinatorial opti-
mization
Theory of computation → Logic → Constraint and logic programming

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Preface

This work has been conducted in the Constraint Reasoning and Optimization research
group starting from late 2020 until the end of 2021 while being financially supported by
Academy of Finland under grants 322869 and 328718. I would like to thank Matti Järvisalo
and Jeremias Berg for providing invaluable guidance and advice both with respect to writ-
ing this thesis as well as developing the PBO-IHS solver. I would also like to acknowledge
and thank Paul Saikko for his initial implementation of the PBO-IHS solver. His work in
implementing a baseline version of PBO-IHS provided a starting point for research and
implementation work that eventually led to this thesis. Computational resources were pro-
vided by Finnish Grid and Cloud Infrastructure (urn:nbn:fi:research-infras-2016072533).

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Pseudo-Boolean optimization . 4
2.2 Integer programs and linear relaxations . 7
2.3 Unsatisfiable cores . 8
2.4 Minimum-cost hitting set . 9

3 An overview of PBO algorithms 11
3.1 IP solving with branch-and-cut . 11
3.2 PBO solving by encoding to CNF . 12
3.3 Repurposing CDCL for PB solving . 12

4 Solving PBO via implicit hitting sets 15
4.1 Solving PBO by computing a minimum-cost hitting set over all cores . . . 15
4.2 Implicit hitting sets . 16
4.3 A rudimentary algorithm for PBO using IHS 18

5 Improvements to IHS-based PBO solving 23
5.1 Core shrinking through additional PB calls 23
5.2 Assumption set shuffling . 24
5.3 Disjoint cores . 25
5.4 Weight-aware core extraction . 29
5.5 Seeding constraints to the MCHS solver . 31
5.6 Non-optimal hitting sets . 32
5.7 Fixing individual variables . 35

6 Experiments 37
6.1 Implementation . 37

6.2 Benchmarks . 38
6.3 Results . 39

6.3.1 Comparison with specialized PBO solvers 39
6.3.2 Impact of different search techniques in PBO-IHS 44
6.3.3 Comparison with a commercial IP solver 46
6.3.4 Division of work between two components of PBO-IHS 48

7 Conclusion 49

Bibliography 51

A Problem domains

1 Introduction

There are many computationally difficult problems where the task is to find a solution
that fulfills a given set of constraints. Going further, for many constrained problems the
goal is to find an optimal solution, meaning that there is no better solution to the problem
according to a given objective. Optimization problems are often solved to reduce costs
and to improve the efficiency and productivity of a variety of industrial and societal op-
erations. Such problems are encountered in industrial development, e.g., when optimizing
the cost of quality assurance of aircrafts [16], or configuring a set of virtual machines to
reduce energy consumption while increasing the workload [81]. The cost of transportation
is reduced by solving optimization problems in the fields of logistics [51, 54] and city plan-
ning [17]. Allocating human resources by scheduling work shifts [2, 7], sports matches [36]
and course lectures [12] are also optimization problems that are solved to maximize pro-
ductivity while preventing undesirable outcomes, such as double-booking events, causing
long work shifts or scheduling short travel and rest times. Optimization problems are also
encountered when identifying genetic variations [27, 52], performing cryptanalysis [78, 53],
implementing circuits [69, 101, 100] and allocating radar stations [98], among various other
domains.

In this thesis, we focus on the declarative approach to solving optimization problems. In
the declarative approach, an instance of a constrained optimization problem is represented
in a declarative language via an encoding. Instead of developing an algorithm to solve
problem instances from a specific domain, in the declarative approach an algorithm is de-
veloped that solves problem instances that are encoded in a specific declarative language.
Various optimization paradigms have been developed, including mixed integer program-
ming (MIP) [77], answer set programming (ASP) [48], Boolean satisfiability (SAT) [44]
based maximum satisfiability (MaxSAT) [11] and its extensions to e.g. optimization mod-
ulo theories and MaxSMT [21, 91]. It is notable that many such languages can be used
to succinctly encode instances of NP-hard problems [11, 91]. Despite the computational
complexity, many solvers that have been developed to tackle problems encoded in such
languages [25, 3, 14, 37, 9] are used to solve real-world problems efficiently.

We focus on pseudo-Boolean optimization (PBO) as the declarative language in this thesis.
In PBO the constraints of a given problem are encoded as a set of pseudo-Boolean (PB)

2

constraints [84], which are linear inequalities over binary variables with integer coefficients.
A solution to a PBO instance is an assignment of the binary variables that fulfills the set
of linear inequalities while minimizing a linear cost function over the same variables.

Many PBO solving approaches have been proposed. As PBO is a special case of MIP
and instances of PBO are also known as 0–1 integer programs, instances of PBO can be
solved using a MIP solver [25, 3, 14]. Another approach is to translate a PBO instance
into a MaxSAT instance and to solve the resulting MaxSAT instance with a MaxSAT
solver [73, 90]. Multiple algorithms use reasoning techniques directly for pseudo-Boolean
constraints [67, 41, 20, 32, 93] to find a solution that satisfies the given set of PB con-
straints. To find an optimal solution, a common technique is to run the algorithm itera-
tively, where the upper bound on the cost of a solution that decreases with each iteration
is encoded as a PB constraint [67, 90]. An optimization technique that uses the so-called
core-guided search has also been proposed [33].

The main contribution of this thesis is a novel approach for solving instances of PBO by
making use of implicit hitting sets (IHS) [85, 89]. In an IHS-based approach, a minimum-
cost hitting set (MCHS) solver is used to optimize the solution, and a separate oracle
is used to validate its feasibility. For our IHS-based PBO solver, the MCHS solver is
implemented with a MIP solver that uses a branch-and-cut algorithm (see e.g. [5]) and
the oracle is implemented with a pseudo-Boolean solver that uses direct reasoning for
pseudo-Boolean constraints [41, 32]. IHS has proven itself to be succesful with solv-
ing instances of optimization problems modeled in other declarative languages such as
MaxSAT [29, 31, 30, 87], ASP [88] and MaxSMT [43]. IHS has also been succesfully
applied in solving other types of constrained problems [85, 89, 56, 55, 57].

In this thesis, we present the IHS-based PBO solving algorithm and detail the implemen-
tation of the algorithm called PBO-IHS. To our knowledge, this approach to solving PBO
is novel in that we are not aware of earlier work studying the applicability of IHS in the
context of PBO. We harness recent advances in direct reasoning techniques for pseudo-
Boolean constraints by adapting the pseudo-Boolean solver called Roundingsat [41, 32]
as the oracle component in PBO-IHS. We present multiple practical search techniques to
be used in conjunction with the IHS-based PBO solving algorithm to improve the solv-
ing capability of PBO-IHS. We provide results from an extensive empirical evaluation of
PBO-IHS, comparing its performance with a range of earlier developed specialized solvers
for PBO as well as a commercial MIP solver, and evaluate the impact of the various search
techniques on the empirical performance of PBO-IHS. From the evaluation we find that

3

PBO-IHS outperforms other available specialized PBO solvers and has complementary
performance compared to classical integer programming techniques. Parts of the results
presented in this thesis have been published and presented at the 27th International Con-
ference on Principles and Practice of Constraint Programming (CP 2021) [94].

The rest of the text is organized as follows. Preliminary concepts are defined in Section 2.
In Section 3 there is an overview of other approaches to solving PBO. The theoretical
groundwork for the IHS-based PBO solving algorithm is layed out in Section 4. In Sec-
tion 5 multiple practical techniques that were considered for PBO-IHS to improve the
implementation of the algorithm are detailed. Section 6 details experiments conducted
with the available PBO solvers to evaluate and analyze the performance of PBO-IHS
in comparison to other PBO solvers. Finally, the work is concluded and future work is
outlined in Section 7.

2 Preliminaries

Preliminary concepts that are required for this work are overviewed in this section. In
Section 2.1, the linear pseudo-Boolean optimization (PBO) problem is defined. Linear
program (LP) relaxations of integer programs (IP) are discussed in Section 2.2. Lastly,
concepts that are relevant to the implicit hitting set (IHS) methodology are defined and
explained in Sections 2.3 and 2.4.

2.1 Pseudo-Boolean optimization

A binary variable x has the domain {0, 1}. A literal l over x is either x itself or its
negation, x ≡ (1 − x). The negation of the negation of a literal is the literal itself,
(x) = 1 − x = 1 − (1 − x) = x. An assignment is a function τ : X → {0, 1}, where X is
a set of binary variables. When convenient we treat an assignment τ over X as a set of
literals

τ = {x | x ∈ X ∧ τ(x) = 1} ∪ {x | x ∈ X ∧ τ(x) = 0}.

Conversely, a set of literals τ for which l ∈ τ ⇒ l ̸∈ τ is treated as an assignment for which
τ(l) = 1 ⇔ l ∈ τ .

A pseudo-Boolean (PB) constraint C is a linear inequality of the form ∑
i aili ≥ b, where

ai, b ∈ Z and li are literals. A PB constraint is in normalized form if the variables that
appear in the PB constraint are distinct and the coefficients ai and bound b are non-
negative. Any linear inequality of binary variables can be rewritten in normalized form
using standard algebraic manipulation.

The set of variables that are present in C is denoted by var(C). An assignment
τ : X → {0, 1} satisfies C (τ(C) = 1) if var(C) ⊂ X and ∑

i aiτ(li) ≥ b. A PB for-
mula F ≡ {C1, C2, ..., Cn} is a set of PB constraints. We denote var(F) = ⋃

i var(Ci).
An assignment τ : var(F) → {0, 1} is a solution to F (τ(F) = 1) if τ(Ci) = 1 for every
Ci ∈ F .

5

Example 2.1. The linear inequality x1 − 1 ≤ x2 − 2 · x3 can be rewritten in normalized
form as follows:

x1 − 1 ≤ x2 − 2 · x3 ⇔
x2 − 2 · x3 ≥ x1 − 1 ⇔

−x1 + x2 − 2 · x3 ≥ −1 ⇔
−(1 − x1) + x2 − 2 · (1 − x3) ≥ −1 ⇔

−1 + x1 + x2 − 2 + 2 · x3 ≥ −1 ⇔
x1 + x2 + 2 · x3 ≥ 2

△

Example 2.2. Consider the PB formula

F = {x1 + 2 · x2 + 3 · x3 ≥ 3,

x1 + x2 ≥ 1,

3 · x2 + 5 · x3 ≥ 4}.

Now, τA for which τA(x1) = 1 (τA(x1) = 0), τA(x2) = 1, τA(x3) = 0 (τA(x3) = 1) is a
solution to F because it satisfies all three constraints:

1 + 2 · 1 + 3 · 1 = 6 ≥ 3,

1 + 0 = 1 ≥ 1,

3 · 0 + 5 · 1 = 5 ≥ 4.

On the other hand, τB for which τB(x1) = 0, τB(x2) = 1, τB(x3) = 0 does not satisfy the
second constraint because 0 + 0 = 0 ̸≥ 1. Hence τB is not a solution to F . △

Example 2.3. Consider the PB formula

F = {x1 + 2 · x2 + 3 · x3 ≥ 3,

x1 + x2 ≥ 2,

3 · x2 + 5 · x3 ≥ 8}.

To satisfy the third constraint, an assignment τ must have τ(x2) = τ(x3) = 0. But if
τ(x2) = 0, then the second constraint is not satisfied regardless of the value of τ(x1):

τ(x1) = 1 ⇒ 0 + 0 = 0 ̸≥ 2,

τ(x1) = 0 ⇒ 1 + 0 = 1 ̸≥ 2.

Hence no τ satisfies all three constraints of F , i.e., F has no solutions. △

6

An instance of the pseudo-Boolean decision problem is a PB formula F . The task is to
determine if a solution to F exists, in which case F is satisfiable (SAT). If no solutions to
F exist, then F is unsatisfiable (UNSAT). Sometimes we determine satisfiability of F under
a set of assumptions A, where A is a set of literals. F is satisfiable under an assumption
set A if there exists a solution τ such that τ(F) = 1 and τ(l) = 1 for each l ∈ A.

Example 2.4. Consider the PB formula F from Example 2.2. The formula F is satisfiable
under the assumption set {x1, x3} because τA from Example 2.2 is a solution to F with
τA(x1) = τA(x3) = 1. The formula F is not satisfiable under the assumption set {x3}.
There is no assignment τ with τ(x3) = 1 that satisfies the third constraint because
3 · τ(x2) + 5 · 0 ≥ 4 does not hold regardless of the value of τ(x2). △

An instance of the pseudo-Boolean optimization (PBO) problem consists of a PB formula
F and a linear cost function O ≡ ∑

i wili, where each wi ∈ Z+ and each li is a literal
over some xi ∈ var(F). We will sometimes abuse notation and treat O as a set of tuples,
where (wi, li) ∈ O if and only if wili is a term in O. The cost function O is expressed
in normalized form. Therefore if (wi, li) ∈ O, then (w′, li) ̸∈ O for any w′. The set of
variables that are present in O is var(O). We specify

lit(O) = {l | l ∈ var(O)} ∪ {l | l ∈ var(O)}.

If an assignment τ : X → {0, 1} is such that var(O) ⊂ X, then the cost of τ is
O(τ) = ∑

i wiτ(li). The cost of a literal l is

O(l) =


w if (w, l) ∈ O,

0 otherwise.

Because O is in normalized form, O(l) > 0 if and only if O(l) = 0 for each l ∈ var(O). In
the pseudo-Boolean optimization problem, the task is to find an optimal solution, which
is a solution τ to F such that O(τ) ≤ O(τ ′) for every solution τ ′ to F .

Example 2.5. Consider a PBO instance consisting of the PB formula F from Example 2.2
and a cost function O = x1+2·x2+3·x3. Because there are three variables, there are 23 = 8
possible assignments. As shown in Example 2.4, an assignment τ such that τ(x3) = 1 is
not a solution to F . There are 4 assignments that set x3 to 0, one of which is τB from
Example 2.2 that is also not a solution to F . The remaining 3 assignments are solutions
to F , which have the following costs:

7

• τ1(x1) = 0, τ1(x2) = 0, τ1(x3) = 0, O(τ1) = 0 + 2 · 1 + 3 · 1 = 5,

• τ2(x1) = 1, τ2(x2) = 0, τ2(x3) = 0, O(τ2) = 1 + 2 · 1 + 3 · 1 = 6,

• τ3(x1) = 1, τ3(x2) = 1, τ3(x3) = 0, O(τ3) = 1 + 2 · 0 + 3 · 1 = 4.

An optimal solution (the only optimal solution for this specific PBO instance) is τ3. △

The Boolean SAT problem [44] is a well-known NP-complete problem [22]. SAT is a
special case of the PB decision problem because every clause expressed in conjunctive
normal form (as a CNF clause) can be expressed as a PB constraint. Finding an optimal
solution is at least as hard as finding any solution. Therefore PBO is NP-hard.

Example 2.6. Consider the CNF clause x1 ∨ x2 ∨ ¬x3. An assignment τ does not violate
the clause if τ(x1) = 1, τ(x2) = 1, or τ(x3) = 0. This is expressed as the PB constraint
(x1 + x2 + (1 − x3) ≥ 1). △

2.2 Integer programs and linear relaxations

Integer programming (see e.g. [79]) is a declarative approach for solving NP-hard opti-
mization problems. In this work we consider integer programs that consist of a linear cost
function and a set of linear inequalities as constraints. Unlike instances of PBO that only
admit the values 0 and 1 as variable assignments, a solution to an integer program (IP)
can contain general integers, i.e., τ(xi) ∈ Z for a solution τ to the given IP.

The linear program (LP) relaxation of a given IP has the same cost function and the
same set of constraints, but allows for the variables to be assigned to a real number in
the solution, i.e., τ(xi) ∈ R+ for a solution τ to the LP relaxation. The cost of an
optimal solution to an IP is at least the cost of an optimal solution to its LP relaxation,
because every solution to the IP is a solution to its LP relaxation. For a solution τ to
the LP relaxation of a 0–1 IP (i.e. PBO instance), the assignment to variables is bounded
between zero and one, i.e., τ(xi) ∈ [0, 1].

Example 2.7. Consider the IP with the cost function O = x1 + x2 and the constraints
F = {(2x1 + x2 ≥ 1/2), (−x2 ≥ −3/2), (−x1 + 2x2 ≥ 1/2)}. There are two variables in
the IP, allowing the solution space of the IP to be illustrated in a two-dimensional graph
in Figure 2.1. All solutions to the IP are bounded inside the triangle that is formed from
the three lines representing the three constraints of the IP. The space bounded by the

8

constraints contains exactly two integer solutions at (0,1) and (1,1). The point at (0,1)
represents the optimal solution to the IP because the cost of (0,1) is less than the cost
of (1,1). The LP relaxation of the IP, on the other hand, admits non-integer solutions.
This means that any point contained within the triangle represents a solution to the LP
relaxation. The blue rectangle at (0.1, 0.3) represents a solution to the LP relaxation that
is not a solution to the IP. The cost of (0.1, 0.3) is lower than the cost of the optimal
solution to the IP (0.1+0.3 < 1), meaning that the optimal solutions of the LP relaxation
have a smaller cost than the optimal solution to the IP.

x2

x1

1

1 2

Figure 2.1: Visual representation of the integer program from Example 2.7.

△

2.3 Unsatisfiable cores

The concept of unsatisfiable cores is central to this thesis because the IHS-based PBO
solver presented in this work relies on efficiently identifying cores of a given PBO instance.
For an instance of PBO with a PB formula F and a cost function O, a set of literals
κ ⊂ lit(O) is an (unsatisfiable) core if it fulfills the following conditions:

i) any assignment τ for which τ(l) = 0 for every l ∈ κ is not a solution to F ,

ii) if l ∈ κ, then l ̸∈ κ.

Therefore a solution τ to F must assign at least one literal in each core of the PBO instance
to 1.

9

Example 2.8. Consider the PBO instance from Example 2.5. An assignment τ for which
τ(x1) = τ(x2) = 0 is not a solution to F because it does not satisfy the constraint
(x1 + x2 ≥ 1). Therefore {x1, x2} is a core of F . △

2.4 Minimum-cost hitting set

In this thesis we consider the minimum-cost hitting set problem (adapted from [61]) in
the context of unsatisfiable cores of a given PBO instance.

Definition 2.9. Let K = {κ1, κ2, . . . , κk} be a set of unsatisfiable cores of a PBO instance
F with a cost function O. A set H ⊂ lit(O) is a hitting set over K if

i) H ∩ κ ̸= ∅ for each κ ∈ K, and

ii) if l ∈ H, then l ̸∈ H.

In Figure 2.2 (adapted from [85]), an example of a hitting set is visualized. Suppose the
PBO instance for which the hitting set is found has the cost function O = ∑10

i=1 li. The
elements in lit(O) are visualized as circles and the cores in K are visualized as rectangles.
The negations of the literals are omitted because the set K does not have cores that contain
li for any i ∈ {1, . . . , 10}. The circles that are colored gray form a hitting set H.

l1 l2 l3 l4 l5

l6 l7 l8 l9 l10

Figure 2.2: Visual representation of a hitting set (adapted from [85]).

In the minimum-cost hitting set (MCHS) problem, given a cost function O and a set of
cores K, the goal is to find a minimum-cost hitting set over K. The cost of a hitting set
is O(H) = ∑

l∈H O(l). A minimum-cost hitting set is a hitting set H ⊂ lit(O) over K

such that O(H) ≤ O(H ′) for all hitting sets H ′ ⊂ lit(O) over K.

Definition 2.10. Suppose H ⊂ lit(O) such that H meets the condition (ii) of Defini-
tion 2.9. Let HC := {l ∈ lit(O) | l, l ̸∈ H}. An extension of H is

γH := H ∪ {l | l ∈ HC ∧ O(l) = 0}.

10

The extension γH of H meets the condition (ii) because if l ∈ HC , then l, l ̸∈ H and
O(l) = 0 if and only if O(l) > 0. If H is a hitting set over K, then so is γH because if
H ⊂ γ, then γ ∩ κ ̸= ∅ for each κ ∈ K. The extension of a hitting set is refered to as
the hitting set assignment. Including literals in {l | l ∈ HC ∧ O(l) = 0} does not incur
additional cost. This means that the hitting set assignment γH is an assignment of all
variables in var(O) such that γH has the same cost as H. Therefore if H is a minimum-
cost hitting set, then γH is also a minimum-cost hitting set. We will use the terms hitting
set and hitting set assignment interchangeably when it is clear from context.

An instance of the MCHS problem can be encoded as a 0–1 IP, where the cost function of
the IP is O and for each core κ ∈ K the IP has the constraint (∑

l∈κ l ≥ 1). The solution
to the IP is a minimum-cost hitting set assignment over K.

Example 2.11. Consider the instance of the MCHS problem that is visualized in
Figure 2.2. The IP that encodes the MCHS instance has the cost function O = ∑10

i=1 xi

and the constraint set F = {(l1 + l6 ≥ 1), (l2 + l3 + l7 + l8 ≥ 1), (l4 + l5 + l9 + l10 ≥ 1),
(l1 + l2 + l3 + l4 + l5 ≥ 1), (l6 + l7 + l8 + l9 + l10 ≥ 1)}. An optimal solution τ is the hitting
set assignment represented by the gray circles, such that τ(li) = 1 for i ∈ {2, 6, 9} and
τ(li) = 0 otherwise. △

3 An overview of PBO algorithms

Before discussing the PBO-IHS solver, we survey other approaches to solving PBO, some of
which are compared empirically in their performance against PBO-IHS in Section 6. The
PBO-IHS solver makes use of some of the algorithms presented in this section. We start
with Section 3.1 by discussing the branch-and-cut algorithm for solving IP. In Section 3.2
we discuss how instances of PBO can be encoded to CNF and solved through the use of
a SAT solver. Finally, we describe PBO solving algorithms that use reasoning techniques
for pseudo-Boolean constraints directly.

3.1 IP solving with branch-and-cut

Since PBO is a special case of IP, PBO instances can be solved with an IP solver. Many
state-of-the-art IP solvers such as IBM CPLEX [25] and SCIP [3, 14] implement the so-
called branch-and-cut algorithm (see e.g. [5]). The branch-and-cut algorithm first solves
the LP relaxation of a given IP instance. If an optimal solution to the LP relaxation con-
tains variable assignments that are non-integer, the search space is branched into multiple
disjoint search spaces which are then solved separately as subproblems. The subproblems
are LPs themselves that are made disjoint using a branching constraint. Branching is
done recursively on the resulting subproblems, until the subproblem contains an integer
optimal solution or it contains no integer solutions at all. An integer optimal solution of
a subproblem becomes a solution candidate for the IP, in which case the branch-and-cut
algorithm proceeds to find a lower cost integer solution to the subproblems that were not
yet processed. Cutting refers to the method of restricting the subproblem using cutting
planes derived from non-integer solutions to the subproblem. The purpose of cutting is
to prune out some of the solutions that are either non-integer or non-optimal from the
subproblem.

12

Solving LP relaxations is fast because there exist algorithms for solving LPs that have
polynomial worst-case time complexity [62, 60, 35, 15]. The Simplex algorithm (see
e.g. [92]) is one of the most commonly used algorithms for solving LPs in state-of-the-art
IP solvers [25, 3, 14]. Despite the fact that Simplex has an exponential worst-case time
complexity with respect to the number of variables and constraints [63], smoothed analysis
shows that Simplex solves most LPs in polynomial time [95].

3.2 PBO solving by encoding to CNF

There are several approaches to encoding a set of PB constraints into a set of CNF clauses.
The approach presented in [73] uses the so-called generalized totalizer encoding [58], while
another approach presented in [90] uses binary decision diagrams [1]. There are also
different approaches to finding an optimal solution. In [73] the cost function is encoded as
a set of unit soft clauses as presented in [70], encoding the PBO instance into a MaxSAT
instance that is then solved using a MaxSAT solver. The algorithm presented in [90]
obtains upper and lower bounds on the cost of an optimal solution. The upper bound
is expressed as a CNF clause, while the lower bound is implemented through the use of
assumptions. The resulting SAT formula is solved iteratively with a SAT solver, tightening
the bounds with each iteration.

3.3 Repurposing CDCL for PB solving

The conflict-driven clause learning (CDCL) algorithm [72, 103] is an algorithm imple-
mented in most state-of-the-art SAT solvers [37, 9]. CDCL can also be extended to reason
with PB constraints directly. The extended CDCL algorithm makes decisions on how cer-
tain variables are assigned to specific values, which often lead to propagating assignments
for other variables due to the structure of the constraints. If decisions and propagations
lead to a conflict in the PB instance, the conflict is analyzed in order to derive (i.e., learn)
a conflict constraint, which is added into the set of constraints. The worst-case exponen-
tial running time of the extended CDCL algorithm comes from the fact that there can be
an exponential number of decisions that the algorithm can make at any point during the
execution. In order to satisfy a learnt conflict constraint, the algorithm is restricted from
making a set of decisions that cannot lead to a solution to the PB instance, accelerating
the solving process.

13

The PB algorithm presented in [67] has two distinct ways in which it learns a conflict con-
straint. The first way is through resolution, which is a reasoning technique that is widely
used in SAT solvers. In [67], the resolution rule is used to learn conflict constraints by
treating PB constraints as clauses. The second way is by implementing cutting planes [23]
based on techniques described in [20] that rely on the so-called weakening and saturation
rules. A more recent implementation of a PB algorithm [41] uses the so-called division
and rounding rules instead of weakening and saturation rules. In theory, for a given PB
instance, the proof of unsatisfiability using cutting planes is never longer than the proof
of unsatisfiability using resolution. However, there exist instances for which the proof of
unsatisfiability using resolution is exponentially longer. In practice, it is challenging to
implement a CDCL-based PB algorithm that uses cutting planes in order to learn conflict
constraints efficiently.

The PB solving algorithm presented in [32] uses the LP relaxation of the PB formula to
learn conflict constraints. At certain points during the solving process, the LP relaxation
is solved with the variables fixed according to the decisions and propagations set by the
extended CDCL algorithm. An LP solver is used to determine whether the LP relaxation
is unsatisfiable (i.e., rationally infeasible) given the decisions and propagations, which
means that the PB instance itself is unsatisfiable under such decisions and propagations.
A conflict constraint is derived by analyzing the Farkas multipliers [42] extracted from the
rationally infeasible LP instance. Since solving LP can be done in polynomial time [95],
deriving a conflict constraint by determining rational infeasibility of the LP can often be
faster than deriving the same conflict constraint through decisions in the extended CDCL
algorithm.

The CDCL-based PB algorithms discussed so far can be extended to optimization via
a solution-improving search (refered to as linear search in [33], sequential search in [90]
and strengthening in [67]). Suppose that an algorithm has found a solution τi to the
PBO instance with a cost function O. In solution-improving search, the constraint
(∑

(wi,li)∈O wili < O(τi)) is added to the set of constraints. If the PBO instance is still
satisfiable, then the algorithm finds a solution τi+1 for which O(τi+1) < O(τi). The process
is repeated until the algorithm returns UNSAT when there is no solution with lower cost
than the solution found at the previous iteration.

Another way of extending a PB algorithm to optimization as presented in [33] is by extend-
ing the so-called OLL algorithm [8] to PBO solving. In short, the PB formula is iteratively
solved under different assumption sets. If the formula is satisfiable, a constraint is added

14

that bounds the cost of the solution from above, similar to solution-improving search.
If the formula is unsatisfiable under an assumption set, the learnt conflict constraint is
processed. Literals that are not in the assumption set are removed from the conflict con-
straint using the so-called weakening rule. The non-unit coefficients in the constraint are
rounded to have a unit coefficient. The cost function is then reformulated based on the
constraint, so that it allows one more of the literals in the cost function to be set to 1 in
subsequent iterations. The optimization procedure alternates between this method and
using the solution-improving search.

4 Solving PBO via implicit hitting sets

In this section we present how implicit hitting sets (IHS) are used to solve instances of
PBO. The correctness of the IHS-based PBO algorithm is proven by adapting proofs
originally presented for IHS-based MaxSAT solving in [29]. In Section 4.1, we show that
computing a minimum-cost hitting set over all cores of the given PBO instance leads to
solving the PBO instance itself. Because enumerating every unsatisfiable core of a given
PBO instance is impractical, in Section 4.2 we describe how a minimum-cost hitting set is
computed over an incomplete set of cores using implicit hitting sets. Lastly, in Section 4.3
we present a rudimentary version of the IHS-based PBO algorithm in pseudocode.

4.1 Solving PBO by computing a minimum-cost
hitting set over all cores

Let K be the set of all cores of a given PBO instance with a PB formula F and a cost
function O. For a solution τ to F the function restriction is τ ↾lit(O): var(O) → {0, 1}
for which τ ↾lit(O) (l) = τ(l) for each l ∈ lit(O). A literal that is not in lit(O) cannot
incur cost. Therefore O(τ ↾lit(O)) = O(τ). Now consider a set H ⊂ lit(O) for which
l ∈ H ⇒ l ̸∈ H. The extension γH (recall Definition 2.10) is an assignment of literals
in lit(O), which means γH is a function restriction (γH = τ ′ ↾lit(O)) for some assignment
τ ′ : var(F) → {0, 1}.

Proposition 4.1. If an assignment τ : var(F) → {0, 1} is a solution to F , then τ ↾lit(O)

is a hitting set over K.

Proof. By definition of unsatisfiable cores, if τ is a solution to F , then for any unsatisfiable
core κ, τ(l) = 1 for at least one l ∈ κ. When viewed as a set, τ ∩ κ ̸= ∅ for all κ ∈ K and
l ∈ τ ⇒ l ̸∈ τ . Because κ ⊂ lit(O) for every κ ∈ K, τ ↾lit(O) is a hitting set over K.

We now show that a minimum-cost hitting set H can be used to find an optimal solution
to F .

16

Proposition 4.2. Suppose F is a PB formula and O is a cost function. For a minimum-
cost hitting set H over all unsatisfiable cores K, there exists an optimal solution τ to F

such that τ ↾lit(O)= γH , where γH is the hitting set assignment of H.

Proof. First we prove that there exists a solution τ to F such that τ ↾lit(O)= γH . We
do this through contradiction by supposing the opposite, which means that for every
solution τ to F there is at least one literal l for which τ(l) ̸= γH(l). We show that the set
κ = {l | γH(l) = 0} is an unsatisfiable core in such case. If γH(l) = 0, then γH(l) ̸= 0,
which means l ∈ κ ⇒ l ̸∈ κ holds. If τ(l) = 0 for all l ∈ κ, then τ is not a solution to
F unless τ ↾lit(O)= γH . Therefore κ is an unsatisfiable core and κ ∈ K. Because γH is a
hitting set over K, then γH(l) = 1 for at least one l ∈ κ, which is a contradiction.

Next we prove that τ is an optimal solution, i.e., there is no solution τ ∗ to F for which
O(τ ∗) < O(τ). Suppose opposite is true. Because τ ∗ is a solution to F , then τ ∗ ↾lit(O) is
a hitting set over K by Proposition 4.1. We now have O(τ ∗ ↾lit(O)) = O(τ ∗) < O(τ) =
O(τ ↾lit(O)) = O(γH) = O(H), which is a contradiction.

It is important to note that while we have proven the existence of an optimal solution
where τ(l) = γH(l) for all l ∈ lit(O), an assignment for variables in var(F) \ var(O)
has to be found through other means.

4.2 Implicit hitting sets

Computing a minimum-cost hitting set over K leads to solving the given PBO instance, if
K contains all unsatisfiable cores of that PBO instance. Explicitly enumerating every core
is impractical, because the number of unsatisfiable cores for the given PBO instance can,
in the worst case, be exponential with respect to the number of literals in the cost function.
If κ is a core, then any κ′ ⊂ lit(O) such that κ′ ⊃ κ is also a core. Going further, there
exist instances of PBO, where the number of cores that are not subsets of other cores is
exponential. We demonstrate this with an example that is adapted from [30].

Example 4.3. Suppose n ∈ N is even, Fn = {∑n
i=1 li ≥ n/2} and O = ∑n

i=1 li. There
is no solution to Fn that assigns more than n/2 literals li to 0, but any assignment that
assigns n/2 literals li to 1 is a solution. Therefore if κ ⊂ {l1, . . . , ln} and |κ| = n/2 + 1,

17

then κ is a core and any set κ′ ⊊ κ is not a core. The number of such cores is
(

n
n/2+1

)
,

which is exponential in n. △

In the implicit hitting set (IHS) approach a minimum-cost hitting set over all cores K

is found by iteratively computing a hitting set over an incomplete set Ki ⊂ K, where
Ki at each iteration i contains increasingly more cores, i.e., Ki ⊊ Ki+1. There exists an
iteration k for which Kk = K. Hence a minimum-cost hitting set H over K will eventually
be found. The idea in the IHS approach is to find H at an iteration i < k.

The IHS approach requires an oracle that fulfills two requirements. First, the oracle must
be able to verify if a given set H is a hitting set over the complete set of cores K. The
second requirement is that in case the oracle determines that H is not a hitting set over
K, then the oracle must provide at least one core κ ∈ K that H did not hit. There exist
PB solvers that fulfill the requirements of an oracle by solving the PB formula F under a
set of assumptions A.

The PB solver fulfills the first requirement of an oracle because it can verify if the hitting
set assignment γH of H is a hitting set over K by determining if F under an assumption
set γH returns SAT and a solution τ . In that case τ ↾lit(O)= γH is a hitting set over K by
Proposition 4.1.

If solving F under an assumptions set γH returns UNSAT, then there is no solution τ to
F such that τ ↾lit(O)= γH , which means γH is not a hitting set over K. The PB solver
also extracts a subset κ ⊂ {l | l ∈ γH} such that F under an assumption set {l | l ∈ κ} is
unsatisfiable. Because there is no solution to F for which τ(l) = 0 for each l ∈ κ, κ is an
unsatisfiable core for which γH ∩ κ = ∅. Going forward we will refer to a PB solver that
fulfills the requirements of an oracle as the PB oracle.

The outline of the IHS approach is as follows. Starting from i := 0 and K0 := ∅, a
minimum-cost hitting set Hi over Ki is computed and the PB oracle is queried to determine
if Hi is a hitting set over K. If the PB oracle verfies that Hi is not a hitting set and provides
a core κ, then a minimum-cost hitting set Hi+1 over Ki+1 := Ki ∪ {κ} is computed and
the PB oracle is queried again with Hi+1. The process is repeated until the PB oracle
verifies that Hi is a hitting set over K in some iteration i.

Because Ki ⊊ Ki+1, every (minimum-cost) hitting set over Ki+1 is a hitting set over Ki,
but not every (minimum-cost) hitting set over Ki is a hitting set over Ki+1. Therefore
O(Hi) ≤ O(Hi+1) and for some j ≤ k, O(Hj) = O(τ) where τ is an optimal solution to F .
The cost of Hi is a lower bound on the cost of an optimal solution τ because O(Hi) ≤ O(τ)

18

0) 1)

2) 3)

4) ∗)

Figure 4.1: Illustration of the IHS approach (adapted from [85]).

for any i.

The IHS approach is illustrated in Figure 4.1, where the MCHS problem visualized in
Figure 2.2 is solved in four iterations. For each Subfigure (i), the rectangles repre-
sent the cores in Ki. Gray circles represent literals that are in the minimum-cost hit-
ting set computed for Ki. The Subfigure (∗) illustrates the full set of cores K, with
Subfigures (0-4) illustrating how a new core is introduced with each subsequent Ki. No-
tice that the minimum-cost hitting set computed in the fourth iteration is a minimum-cost
hitting set over the full set K. A set that is missing from K4 is highlighted in Subfigure (∗)
with a dashed line rectangle.

4.3 A rudimentary algorithm for PBO using IHS

A rudimentary algorithm for solving PBO with IHS uses two solvers as black-box inter-
faces: an MCHS solver and a PB oracle. We use MCHS(O, K) to represent a call to the
MCHS solver to compute a minimum-cost hitting set assignment γ over K with respect to
the cost function O, where K is a set of IP constraints that encodes the MCHS instance.
We use PBSolve(F , A) to represent a call to the PB oracle to solve F under an assump-
tion set A. The PBSolve(F , A) call returns a tuple (sat?, κ, τ), where sat? specifies
whether the result was SAT or UNSAT. In case sat? is UNSAT, τ is empty and κ ⊂ {l | l ∈ A}

19

Algorithm 1: The rudimentary IHS-based PBO solving algorithm.
Input : A PB formula F and a cost function O
Output: SAT/UNSAT, an optimal solution τ

1 (sat?, κ, τ) := PBSolve(F , ∅);
2 if sat? = UNSAT then // Check that F has solutions

3 return (UNSAT, ∅);

4 [UB := O(τ), τbest := τ];
5 K := ∅;
6 while TRUE do
7 γ := MCHS(O, K);
8 [LB := O(γ)];
9 (sat?, κ, τ) := PBSolve(F , γ);

10 if sat? = SAT then
11 return (SAT, τ);
12 else
13 K := K ∪ {(∑

l∈κ l ≥ 1)};

is an unsatisfiable core that the PB oracle has extracted. In case sat? is SAT, κ is empty
and τ is a solution to F that was found as proof of satisfiability.

The pseudocode of the rudimentary IHS-based PBO algorithm is presented in Algorithm 1.
Algorithm 1 performs the first call to the PB oracle with an empty assumption set at
Line 1 to make sure that F has solutions from which to find an optimal solution. Next,
the algorithm proceeds to the main loop, where it alternates between calling both black-
box solvers. Starting with an empty set of constraints K = ∅ (Line 5), the MCHS solver
returns a hitting set assignment γ over cores encoded in K at Line 7.

At Line 10, if the PB oracle finds a solution τ to F under the assumption set γ, Algorithm 1
is terminated and τ is returned as an optimal solution to F . If no such solution exists,
the unsatisfiable core κ is encoded as a constraint and added to K at Line 13. The MCHS
solver is then called again with updated K, iterating the main loop.

The optional Line 8 computes the lower bound LB of the cost of an optimal solution.
The lower bound can be output periodically during the execution of the IHS-based PBO
algorithm or returned if the user halts the algorithm prematurely. The lower bound
is computed from the cost of a minimum-cost hitting set of K at each iteration. As

20

K := K ∪ {κ}
UNSAT

γ

F O

PB oracle
PBSolve(F, γ)

MCHS solver
γ := MCHS(O, K)

Input

Output: τ
SAT

Figure 4.2: The IHS-based PBO solving algorithm (adapted from [85]).

new constraints are added to the existing set of constraints K, LB cannot decrease in
subsequent iterations. The optional Line 4 computes the upper bound UB from the
solution τ that was obtained after verifying that the PBO instance is satisfiable, then
stores τ as τbest as the best solution encountered so far. Bounding an optimal solution and
storing the best encountered solution becomes more relevant when discussing some of the
techniques that improve upon the rudimentary IHS-based PBO algorithm in Section 5.

Figure 4.2 illustrates the flow of execution of Algorithm 1. Given an input (F, O), the
PB oracle is given F as input and the MCHS solver is given O as input. The main loop
starting from Line 6 is illustrated by the two arrows between the two boxes that illustrate
the PB oracle and the MCHS solver. The result of the MCHS solver γ (Line 7) is supplied
to the PB oracle as an assumption set (Line 9). If the result of the PB oracle is UNSAT, κ is
supplied to the MCHS solver by encoding κ as a constraint that is added to K (Line 13).
If the result of the PB oracle is SAT, τ is returned as output (Line 11).

Theorem 4.4. Given a PBO instance with a PB formula F and a cost function O,
Algorithm 1 terminates and returns an optimal solution τ to F .

Proof. First we show that τ returned by Algorithm 1 is an optimal solution. The as-
signment τ is a solution to F because it is returned by the PB oracle. The hitting set
assignment γ returned by the MCHS solver is an assignment for all literals in lit(O) such
that O(γ) is at most the cost of an optimal solution to F . Now τ ↾lit(O)= γ, because τ is
a solution to F under an assumption set γ. Therefore O(τ) = O(τ ↾lit(O)) = O(γ), which
means τ is an optimal solution.

Next we show that Algorithm 1 terminates. There is a finite number of cores for the
given PBO instance. Line 13 ensures that the number of cores encoded in K increases
with each iteration. We prove that the PB oracle does not return the same core twice.

21

Suppose a core κi = {l1, ..., lq} is extracted at iteration i, which means that a constraint
(l1+...+lq ≥ 1) is added to K. If PBSolve(F, γ) extracts the same core in iteration j > i,
then γ ⊃ {l | l ∈ κi}. This is a contradiction because γ returned in iteration j violates the
constraint (l1 + ... + lq ≥ 1). Therefore, in the worst case, the halting condition at Line 11
is met after k iterations, where k is the number of all cores in the PBO instance.

In terms of computational complexity, there are three potential sources of exponential
runtimes. Firstly, an instance of MCHS is solved at every iteration, where MCHS is in
general an NP-hard problem [61]. Secondly, the PB oracle extracts a core by solving an
NP-complete PB decision problem. Finally, there are PBO instances such as Example 4.3
for which the IHS-based PBO algorithm has to find an exponential number of cores with
respect to |var(O)| before terminating. This was shown in [29] for the IHS-based MaxSAT
algorithm and the proof can be adapted for the IHS-based PBO algorithm as well. As
with other algorithms that are capable of solving instances of NP-hard problems, often the
worst case runtimes can be avoided when solving real-world problem instances. Therefore
empirical evaluation of the performance of such algorithms is often more informative than
the analysis of their computational complexity.

Example 4.5. Consider a PBO instance with F = {∑5
i=1 li ≥ 2} and O = ∑5

i=1 li. An
assignment that assigns exactly two arbitrary literals to 1 is an optimal solution.

The PBO instance passes the check at Line 2, because τ for which τ(li) = 1 for each
i = 1, 2, .., 5 is a solution (UB = 5). The first MCHS(O, K) call on an empty constraint
set K finds a minimum-cost hitting set of cost zero (LB = 0), where γ(li) = 0 for each
i = 1, 2, .., 5. The PBSolve(F, γ) call returns UNSAT because the assignment τ for which
τ(li) = 0 for each i = 1, 2, .., 5 is not a solution to F . There are multiple choices for a core
that the PB oracle could return, suppose κ = {l1, l2, l3, l4}. After the first PBSolve(F, γ)
call, the constraint set is K = {(l1 + l2 + l3 + l4 ≥ 1)}.

The second MCHS(O, K) call has multiple choices for γ that it can return, suppose
γ(l1) = 1 and γ(li) = 0 for i = 2, .., 5 (LB = 1). The PBSolve(F, γ) call returns UNSAT

because the assignment τ for which τ(l1) = 1 and τ(li) = 0 for i = 2, .., 5 is not a solution
to F . The core that is returned is κ = {l2, l3, l4, l5} and the constraint set is updated to
K = {(l1 + l2 + l3 + l4 ≥ 1), (l2 + l3 + l4 + l5 ≥ 1)}.

Suppose the third MCHS(O, K) call returns γ(l2) = 1 and γ(li) = 0 for i ̸= 2 (LB = 1).
The PBSolve(F, γ) call still returns UNSAT, the returned core is κ = {l1, l3, l4, l5} and the
constraint set is updated to K = {(l1+l2+l3+l4 ≥ 1), (l2+l3+l4+l5 ≥ 1), (l1+l3+l4+l5 ≥

22

1)}. A similar pattern of core extraction continues. For each i = 1, ..., 5, a core κ is
extracted such that κ = {lj | 1 ≤ j ≤ 5} \ {li}. Finally when K = {(l1 + l2 + l3 + l4 ≥
1), (l2 + l3 + l4 + l5 ≥ 1), (l1 + l3 + l4 + l5 ≥ 1), (l1 + l2 + l4 + l5 ≥ 1), (l1 + l2 + l3 + l5 ≥ 1)},
the next MCHS(O, K) call returns a hitting set with two literals assigned to 1. Suppose
γ(l1) = γ(l2) = 1 and γ(li) = 0 for i = 3, .., 5 (LB = 2). An assignment τ for which
τ(li) = γ(li) for i = 1, .., 5 is a solution to F . Therefore PBSolve(F, γ) returns SAT,
halting the algorithm and returning τ as an optimal solution. △

5 Improvements to IHS-based PBO
solving

In this section we discuss several techniques considered for the PBO-IHS solver to improve
upon the rudimentary IHS-based PBO solving algorithm presented in Algorithm 1. Tech-
niques that reduce the number of MCHS solver and PB oracle calls or reduce the time
taken by them can significantly impact the overall solving time of PBO-IHS.

In Section 5.1 we briefly discuss subset-minimization, a technique that decreases the size
of an extracted core via additional calls to the PB oracle. In Section 5.2 we discuss
how shuffling the assumption set can be used to extract multiple cores from a single
call to the PB oracle. We restructure the IHS-based PBO algorithm to include a so-called
disjoint phase to extract multiple cores in between calls to the MCHS solver in Sections 5.3
and 5.4. In Section 5.5 we describe a way to offload some of the information of the PBO
instance onto the MCHS solver to produce hitting sets that violate fewer PB constraints.

In Section 5.6 we show how solving for hitting sets that are not minimum-cost is enough
to implement PBO-IHS, as long as the cost of the hitting sets is below the cost of the
best solution found so far. In Section 5.7 we discuss techniques that allow PBO-IHS to
fix variables to specific values during the execution of PBO-IHS.

5.1 Core shrinking through additional PB calls

As shown in [29] in the context of MaxSAT, extracting smaller cores improves the perfor-
mance of the IHS algorithm. Suppose the PB oracle returns a core κ. Using additional
queries to the PB oracle it is possible to find a smaller core κ′ ⊊ κ. To perform core-
shrinking, we make use of a subset-minimization algorithm (see e.g. [71]). Given a core κ,
the core-shrinking algorithm excludes one literal l∗ from κ and calls on the PB oracle with
an assumption set A = {l | l ∈ κ \ {l∗}}. If the PB oracle returns SAT, then the excluded
literal is put back into κ and the process is repeated with another literal excluded. How-
ever, if the PB oracle returns UNSAT and a core κ′, then l∗ ̸∈ κ′ ⊂ κ \ {l∗}, in which case
κ is updated to κ := κ′. The algorithm halts when each literal in κ has been excluded
from the assumption set exactly once. Although not implemented for the purposes of this

24

thesis, a carefully chosen stopping heuristic to the subset-minimization algorithm could
be used to balance the number of additional PB calls with the size of the shrinked core.

Example 5.1. Let F = {(∑5
i=1 li ≥ 3), (l1 + l3 ≥ 1)}. Suppose the PB oracle extracts

a core κ = {l1, l2, l3} during the execution of the PBO-IHS algorithm. The set κ is a
core because an assignment τ for which τ(l1) = τ(l2) = τ(l3) = 0 violates the constraint
(∑5

i=1 li ≥ 3). The core-shrinking algorithm calls PBSolve(F, {l | l ∈ κ \ {l1}}). The
PB oracle returns SAT because there is a solution τ to F such that τ(l2) = τ(l3) = 0
and τ(li) = 1 for i ̸∈ {2, 3}. The core-shrinking algorithm keeps the l1 in κ and proceeds
to call the PB oracle with l2 excluded from κ. The PBSolve(F, {l | l ∈ κ \ {l2}}) call
returns UNSAT because an assignment τ for which τ(l1) = τ(l3) = 0 violates the constraint
(l1 + l3 ≥ 1). The PB oracle returns a core κ′ := {l1, l3}, the core-shrinking algorithm
updates κ := κ′ and calls the PB oracle the third time with PBSolve(F, {l | l ∈ κ\{l3}}).
PB oracle returns SAT because an assignment τ for which τ(li) = 1 for i = 2, 3, 4, 5 is a
solution to F . After three additional PB oracle calls, the subset-minimization algorithm
obtains a smaller core κ = {l1, l3}. △

5.2 Assumption set shuffling

When the PBSolve(F, A) is called, the CDCL-based PB solver assigns the value to
each literal in A one at a time. While the satisfiability of the PB formula remains the
same regardless of the order of the literals in A, the PB solver may arrive at a different
contradiction from a different subset of literals in A as shown in [86] in the context of
MaxSAT. Therefore it is possible that the core κ returned from an UNSAT call to the PB
oracle is different depending on the order of literals in A.

Once the PB decision solver finds that F is unsatisfiable while assigning literals from the
assumption set A, the sequence of literals in A is permuted at random and the literals
of A are assigned again in the order of the permuted sequence. The process is repeated
for some predefined number of iterations, with each iteration potentially resulting in a
different core.

Example 5.2. Let F = {(l1 + l2 + l3 ≥ 2), (l3 + l4 + l5 ≥ 1)} and A = {l1, l2, l3, l4, l5}.
The PB formula F is unsatisfiable under the assumption set A. If the order of A starts
with (l1, l3), then the first constraint is violated after assigning two literals, resulting in
core {l1, l3}. If the order of A starts with (l3, l4, l5), then the second constraint is violated
after assigning three literals, resulting in core {l3, l4, l5}. △

25

Given a set of distinct cores extracted using assumption shuffling, various heuristics can
be used to choose appropriate cores from the set. One heuristic is to include all distinct
cores that are not supersets of other cores in the set into the MCHS instance. This allows
for multiple cores to be extracted in between calls to the MCHS solver.

Another heuristic that we consider is to only include the smallest core. When applied
to the PB formula F and the assumption set A from Example 5.2, if the two cores from
the example are extracted, the heuristic includes {l1, l3} to the MCHS solver but does
not include {l3, l4, l5}. This heuristic provides an alternative method to extracting smaller
cores compared to subset-minimization discussed in Section 5.1. Core shrinking relies on
multiple calls to the PB oracle that can be exponential in their running time in the worst
case. On the other hand, reassigning literals in A during the assumption set shuffling is
always done in polynomial time. In contrast to core shrinking, there is no guarantee that
the resulting core will be the smallest possible when using assumption set shuffling.

5.3 Disjoint cores

Instead of extracting one core at a time in between calls to the MCHS solver, multiple
disjoint cores can be extracted by manipulating a single hitting set. In the context of
MaxSAT solving [29] it was proposed to extract multiple disjoint cores in the initial stage
of the IHS algorithm, after which the algorithm would proceed to extract one core in
between calls to the MCHS solver. However, in [86] it was found that extracting multiple
disjoint cores at every iteration of the IHS algorithm improves performance of solving
MaxSAT. We adapt this idea to PBO solving. Algorithm 2 shows in pseudocode how
disjoint cores are extracted.

In comparison to Algorithm 1, Algorithm 2 introduces a new loop at Line 12 inside the
main loop, which we will refer to as the disjoint phase. Starting from A := γ, after
extracting a core κ, the algorithm removes literals whose negations are present in κ from
the assumption set A at Line 14. This causes the next core extracted at Line 15 to
be disjoint with every previous core extracted during the disjoint phase. Before every
PBSolve(F, A) call during the disjoint phase, the assumption set A is made strictly
smaller at Line 14. This means that eventually the PB oracle returns SAT, exiting the loop
at Line 12. As verified at Line 2, the PB oracle returns SAT under an empty assumption
set. However, the PB oracle may return SAT under a non-empty assumption set as well.

26

Algorithm 2: IHS-based PBO solving algorithm with disjoint cores.
Input : A PB formula F and a cost function O
Output: SAT/UNSAT, an optimal solution τ

1 (sat?, κ, τ) := PBSolve(F, ∅);
2 if sat? = UNSAT then // Check that F has solutions

3 return (UNSAT, ∅);

4 UB := O(τ), τbest := τ , K := ∅;
5 while TRUE do
6 γ := MCHS(O, K);
7 LB := O(γ);
8 if LB = UB then
9 return (SAT, τbest);

10 A := γ;
11 (sat?, κ, τ) := PBSolve(F, A);
12 while sat? = UNSAT do // Disjoint phase

13 K := K ∪ {∑
l∈κ l ≥ 1};

14 A := A \ {l | l ∈ κ};
15 (sat?, κ, τ) := PBSolve(F, A);

16 if O(τ) < UB then
17 UB := O(τ), τbest := τ ;

18 if LB = UB then
19 return (SAT, τbest);

27

As opposed to the rudimentary IHS-based PBO algorithm, during the execution of Al-
gorithm 2 the PB oracle may return SAT multiple times. Once the assumption set A is
reduced in Line 14 after extracting at least one core, the solution τ under A is no longer
such that τ ↾lit(O)= γ. Therefore τ is not guaranteed to be an optimal solution, which
means that the algorithm cannot be halted when τ is returned.

Finding solutions to F during the execution of PBO-IHS allows for obtaining an upper
bound on the cost of an optimal solution (UB). At Line 16, the cost of τ obtained by a
SAT call to the PB oracle is compared to the cost of the previously stored solution τbest.
In case the cost of τ is lower than the cost of τbest, τ is set as τbest, maintaining a record
of the lowest cost solution that was found by PBO-IHS so far.

The lower bound on the cost of an optimal solution (LB) is obtained from the cost of a
minimum-cost hitting set obtained at Line 7. Instead of terminating when the PB solver
returns SAT, Algorithm 2 terminates when the lower and the upper bounds meet. At
Line 8, the bounds are compared after calling the MCHS solver, because it is possible
that the lower bound is made higher by the minimum-cost hitting set returned at Line 6.
Should the lower and upper bounds meet at Line 8, there is no need to call the PB oracle
to retrieve a solution, because O(τbest) is exactly the lower bound on the cost of an optimal
solution, in which case τbest is an optimal solution. Notice that γ obtained at Line 6 may
not be the restriction of τbest to lit(O).

At Line 18 the bounds are checked after the disjoint phase, in case the upper bound was
tightened due to finding a lower cost solution τbest. This halting condition also covers the
halting condition of the rudimentary IHS-based PBO algorithm. Suppose τ is a solution
to F under the assumption set A = γ that is obtained at Line 10. In that case Algorithm 2
skips the entire disjoint phase. Because γ = τ ↾lit(O), then O(τ) = O(γ) = LB. The cost
of τ is stored as UB at Line 17, after which the condition at Line 18 is fulfilled, terminating
the algorithm.

Maintaining both the upper and lower bound provides valuable information that can be
used to evaluate the cost of an optimal solution, for example, in case PBO-IHS needs to
be prematurely interrupted by the user. PBO-IHS with disjoint cores also maintains τbest

as a witness to the upper bound, which can act as an intermediate result.

In addition to guiding the PB oracle to extract disjoint cores, another benefit to introducing
the disjoint phase is that the IHS-based PBO algorithm makes less calls to the MCHS solver
to extract the same number of cores. We conclude this section by simulating Algorithm 2
for a few iterations on a concrete PBO instance in Example 5.3.

28

Example 5.3. Consider a PBO instance with F = {∑5
i=1 li ≥ 4} and O = ∑5

i=1 li. Clearly
an assignment that assigns exactly four literals to 1 is an optimal solution.

Suppose the first call to the PB oracle at Line 2 returns a solution τ for which τ(li) = 1
for each i = 1, 2, .., 5. The upper bound UB is set to 5 and τ is designated as τbest. The
first MCHS(O, K) call on an empty constraint set K returns γ for which γ(li) = 0 for
each i = 1, 2, .., 5 and LB := 0. Bounds do not meet, LB ̸= UB because 0 ̸= 5. The
algorithm proceeds to the disjoint phase. Assumption set A initially contains all literals
that are in γ. The PBSolve(F, A) call returns UNSAT and, as there are multiple choices
for cores to return, suppose the PB oracle returns κ = {l1, l2}. The set κ is a core because
an assignment τ such that τ(l1) = τ(l2) = 0 can only assign at most three literals to 1,
violating the constraint in F . The core κ is encoded as a constraint and added to K, at
which point K = {(l1 + l2 ≥ 1)}.

Next, the assumption set A is modified so that all negated literals from κ are subtracted:
A := A \ {l1, l2} = {l3, l4, l5}. The PBSolve(F, A) call returns UNSAT again, and the
disjoint phase proceeds to its second iteration. Suppose the obtained core is κ = {l3, l4}.
Adding κ to K produces K = {(l1 + l2 ≥ 1), (l3 + l4 ≥ 1)}.

The negated literals from κ are again subtracted from A, leaving A = {l5}. Calling the
PB oracle under the assumption set {l5} returns SAT with solution τ for which τ(l5) = 0
and τ(li) = 1 for each i = 1, 2, 3, 4. This concludes the disjoint phase. The cost of τ is 4,
which is lower than UB = 5. Hence τ is designated as τbest and the upper bound is refined
to UB := 4. We know already that τbest is an optimal solution. However, the algorithm
still has more work to do to prove this, since LB = 0 ̸= 4 = UB. Therefore the algorithm
proceeds to the second iteration of the main loop.

Let the next call to the MCHS solver return γ for which γ(li) = 1 if i ∈ {1, 3} and γ(li) = 0
otherwise. The halting condition at Line 8 fails because LB = 2 ̸= 4 = UB. Therefore
the algorithm proceeds to the disjoint phase. Let PBSolve(F, A = γ) return κ = {l2, l4}.
Notice that the extracted cores are only disjoint with other cores that were extracted
within the same disjoint phase. Now, K = {(l1 + l2 ≥ 1), (l3 + l4 ≥ 1), (l2 + l4 ≥ 1)} and
A = {l1, l3, l5}. The PBSolve(F, A) call returns SAT with the same solution as the one
at the end of the previous disjoint phase.

The main loop of Algorithm 2 is repeated until enough cores are extracted for K so that
the cost of a minimum-cost hitting set is 4. Let the MCHS solver return γ such that
γ(l1) = 0 and γ(li) = 1 for i = 2, .., 5. The algorithm has already stored a solution τbest

for which τbest(l5) = 0 and τbest(li) = 1 for i = 1, .., 4, which also has the cost 4. The

29

halting condition at Line 8 is fulfilled, which spares the algorithm from calling the PB
oracle with A = γ as an assumption set, returning τbest as an optimal solution. Notice
that γ ̸= τbest ↾lit(O).

5.4 Weight-aware core extraction

Weight-aware core extraction (WCE) is a technique first proposed in the context of core-
guided MaxSAT solving in [13] and later explored in the context of PBO under the name
independent cores in [33]. In the context of IHS, WCE offers a generalization to the
disjoint phase. Instead of forcing all cores extracted within the same disjoint phase to be
disjoint, literals with larger coefficients in the cost function may be shared among several
cores. The goal is to increase the number of cores that is extracted within the same disjoint
phase.

Algorithm 3 details the IHS-based PBO algorithm with the WCE technique in pseudocode.
Lines that were added or modified with respect to Algorithm 2 are outlined with a comment
included on the right side. At Lines 10 and 11 before the start of a disjoint phase, a
variable W (l) := O(l) is initialised for every literal l ∈ lit(O). We will refer to W (l) as
the working weight of literal l. After extracting a core κ during an iteration of the disjoint
phase, the minimum working weight wmin of the literals in κ is computed at Line 15.
Then, each literal from κ has its working weight subtracted by wmin. At Line 18, instead
of subtracting the negation of every literal of κ from the assumption set, the algorithm
only subtracts the negation of a literal if its working weight is set to zero. Notice that at
least one literal will be subtracted from the assumption set on each iteration, making it so
the modified disjoint phase terminates eventually. However, because it is not necessarily
the case that W (l) = 0 for all l ∈ κ, not all literals in κ have their negations subtracted
from the assumption set. Therefore more cores may be extracted within the disjoint phase
with WCE compared to the disjoint phase without WCE.

Example 5.4. Suppose a PBO instance with F = {(l1 + lN ≥ 1), (l2 + lN ≥ 1), ...,

(ln + lN ≥ 1)} and O = ∑n
i=1 li + nlN . Every core of this PBO instance contains the literal

lN , since any assignment τ for which τ(lN) = 1 is a solution to F .

The first call to the MCHS solver returns γ such that γ(li) = γ(lN) = 0 for each i = 1, .., n.
The assumption set is A = γ and suppose the PB oracle returns a core κ = {l1, lN}.
Without WCE, the IHS-based PBO algorithm subtracts l1 and lN from A. Because there

30

Algorithm 3: IHS-based PBO solving algorithm with WCE.
Input : A PB formula F and a cost function O
Output: SAT/UNSAT, an optimal solution τ

1 (sat?, κ, τ) := PBSolve(F, ∅);
2 if sat? = UNSAT then
3 return (UNSAT, ∅);

4 UB := O(τ), τbest := τ , K := ∅;
5 while TRUE do
6 γ := MCHS(O, K);
7 LB := O(γ);
8 if LB = UB then
9 return (SAT, τbest);

10 W := ∅;
11 for (w, l) ∈ O do W (l) := w; // Initialize working weight values

12 A := γ;
13 (sat?, κ, τ) := PBSolve(F, A);
14 while sat? = UNSAT do
15 wmin := minl∈κ{W (l)}; // Obtain minimum weight

16 for l ∈ κ do W (l) := W (l) − wmin; // Subtract minimum weight

17 K := K ∪ {∑
l∈κ l ≥ 1};

18 A := A \ {l | W (l) = 0}; // Remove literals from A based on W

19 (sat?, κ, τ) := PBSolve(F, A);

20 if O(τ) < UB then
21 UB := O(τ), τbest := τ ;

22 if LB = UB then
23 return (SAT, τbest);

31

are no cores that do not include literal lN , the disjoint phase terminates. Hence the
algorithm without WCE extracts one core at a time for each disjoint phase.

Now consider the algorithm with WCE. Starting with A = {l1, l2, ..., ln, lN}, the working
weights are set as W (li) = 1 for i = 1, ..., n and W (lN) = n. Suppose the PB oracle returns
κ = {l1, lN}. Now wmin = 1 and working weights of the two literals of κ are W (l1) = 0
and W (lN) = n − 1. The literal l1 is removed from the assumption set, however, lN still
remains. Notice that {lN} is not a core, because an assignment that sets lN to zero and
all other literals to one is a solution to F . Therefore every core contains a literal with a
working weight of value 1, which means that W (lN) is always subtracted by at most 1.
This means that up to n cores may be extracted from a single disjoint phase. The disjoint
phase ends when W (lN) is set to zero or the negations of all literals other than lN are
removed from A. △

5.5 Seeding constraints to the MCHS solver

In the implementation of the PBO-IHS solver, an IP solver acts as an MCHS solver, solving
the instances of the MCHS problem as IPs using the encoding presented in Section 2.4.
When PBO-IHS is initialised, the IP consists of the cost function and an empty set of
constraints. Providing additional information of the given PBO instance to the MCHS
solver can cause it to return hitting sets that violate less PB constraints of the PBO in-
stance. Several seeding techniques have been employed succesfully for IHS-based MaxSAT
solving [29].

The seeding technique used in PBO-IHS is as follows. Before executing the main loop
of the IHS-based PBO algorithm, every PB constraint C ≡ ∑

i aili ≥ b in the formula F

for which every li is such that li ∈ lit(O) is seeded, i.e., C is included into the IP as a
constraint.

Example 5.5. Consider the PBO instance with F = {(l1 + 2l2 + 3l3 ≥ 3), (l1 + l3 ≥ 1),
(2l3 + l4 ≥ 5)} and O = l1 + 2l3 + 3l4. The first constraint contains a literal l2 ̸∈ lit(O),
which is why the constraint is not seeded. The second constraint is seeded because
it consists of literals l1, l3 ∈ lit(O). The third constraint is seeded because it con-
sists of literals l3, l4 ∈ lit(O). After each constraint is checked, the MCHS instance is
{(l1 + l3 ≥ 1), (2l3 + l4 ≥ 5)} with the cost function O = l1 + 2l3 + 3l4. △

Seeding constraints does not affect the correctness of the IHS-based PBO algorithm, be-
cause seeding does not prevent the MCHS solver from returning a hitting set assignment

32

γ that is a restriction of some solution to F . If γ does not satisfy one of the constraints in
F , then F under an assumption set γ is unsatisfiable because an assignment τ for which
τ ↾lit(O)= γ also does not satisfy the same constraint. Seeding constraints to the MCHS
instance also decreases the number of cores that may be returned by the PB oracle, which
is demonstrated by the following example.

Example 5.6. Consider a PBO instance with F = {(∑7
i=1 lO

i ≥ 3), (∑7
i=1 li ≥ 5),

(l1 + lO
1 ≥ 1), (l2 + lO

2 ≥ 1), . . . , (l7 + lO
7 ≥ 1)} and O = ∑7

i=1 lO
i . This instance con-

tains 7 pairs of variables (li, lO
i), for which li ̸∈ lit(O) and lO

i ∈ lit(O). Constraints of
form (li + lO

i ≥ 1) establish an implication li ⇒ lO
i . Due to the constraint (∑7

i=1 li ≥ 5) in
conjunction with li ⇒ lO

i constraints, the cost of a solution is restricted to have a cost of
at least 5, implying that the condition (∑7

i=1 lO
i ≥ 5) must hold true.

Any subset κ ⊂ {lO
i | i ∈ {1, .., 7}} for which |κ| ≥ 3 is a core of F , because an assignment

that sets at least 3 literals lO
i to 0 is not a solution to F due to the implied (∑7

i=1 lO
i ≥ 5).

There are ∑7
i=3

(
7
i

)
possible cores that the PB oracle may return.

If constraints are seeded, the constraint (∑7
i=1 lO

i ≥ 3) is included in the MCHS instance
from the start of the execution of PBO-IHS. This means that a hitting set returned by the
MCHS solver sets at most four literals lO

i to 0. Therefore the PB oracle extracts a core κ

for which 3 ≤ |κ| ≤ 4, which means that there are at most
(

7
3

)
+

(
7
4

)
cores that the PB

oracle will extract. △

5.6 Non-optimal hitting sets

Using an upper bound on the cost of an optimal solution UB, PBO-IHS can be imple-
mented with an MCHS solver that returns non-optimal hitting sets. The requirement of
the non-optimal MCHS solver is that it returns a hitting set γ that is either minimum-cost
or for which O(γ) < UB. The non-optimal MCHS solver should also be able to explicitly
identify if the returned γ is non-optimal.

If a hitting set assignment γ returned by the non-optimal MCHS solver is not minimum-
cost, then it cannot be used to compute the lower bound (LB). For a non-optimal hitting
set assignment γ, there might be γ′ such that O(γ′) < O(γ) for which there exists a
solution τ to F such that τ ↾lit(O)= γ′, which means O(τ) = O(γ′) < O(γ). The value of
LB is only updated to O(γ) when the non-optimal MCHS solver identifies the returned γ

to be minimum-cost.

33

It is possible that F is satisfiable under an assumption set γ, where γ is a non-optimal
hitting set. The PB oracle returns τ such that O(τ) = O(γ) < UB, which causes
the UB to be updated to O(γ). The IHS-based PBO algorithm does not terminate if
LB < O(γ) = UB. In that case the algorithm proceeds to the next iteration without
extracting any cores. However, because UB decreases in such scenario, the algorithm will
still eventually terminate. The correctness of the IHS-based MaxSAT algorithm that uses
the non-optimal MCHS solver is proven in [10]. The proof can be adapted to IHS-based
PBO algorithm as well.

Example 5.7. Consider a PBO instance with F = {∑5
i=1 li ≥ 3} and O = ∑5

i=1 li. We
clearly see that the cost of an optimal solution is 3. Suppose PB oracle returns τ for which
τ(li) = 1 for each i = 1, 2, .., 5, setting UB = O(τ) = 5. Suppose then that the first call to
the MCHS solver returns γ for which γ(l1) = 0 and γ(li) = 1 for each i = 2, .., 5 because
O(γ) = 4 < UB. The PB oracle is called under the assumption set γ, which returns SAT

and a solution τ for which τ(l1) = 0 and τ(li) = 1 for i = 2, .., 5. The upper bound UB
is updated to O(τ) = 4. Then the MCHS solver is called again, and suppose it returns
γ for which γ(l1) = γ(l2) = 0 and γ(li) = 1 for each i = 3, .., 5 because O(γ) = 3 < UB.
The PB oracle called under γ returns SAT with solution τ such that τ(l1) = τ(l2) = 0
and τ(li) = 1 for i = 3, 4, 5. The upper bound UB is updated to O(τ) = 3, which is the
cost of an optimal solution to F . From this point forward if returned γ is non-optimal,
then O(γ) < 3, which means that the PB oracle will return UNSAT because there are no
solutions τ for which O(τ) < 3. A hitting set returned by the MCHS solver will always
cause the PB oracle to extract a core, until enough cores are extracted for the MCHS
solver to return γ with a cost of 3. Then LB is updated to the value of 3, triggering the
halting condition LB = UB. △

When solving for a non-optimal hitting set, the hitting set solver may avoid the worst case
exponential running time that would be required when solving for a minimum-cost hitting
set. In the implementation of PBO-IHS we make use of an IP solver that maintains the
best solution candidate internally when solving the MCHS instance as an IP. The IP solver
is interrupted when an internal solution candidate is found for which the cost is strictly
lower than the most recent UB value. In addition, with each MCHS call a flag is returned
that is set to true if the IP solver was not interrupted, which means that the IP solver
has executed the solving algorithm to its completion, producing an optimal solution to
the MCHS instance.

34

An alternative strategy can be used in implementing the IHS-based PBO algorithm with
a non-optimal MCHS solver. Suppose the PB oracle returns SAT with a solution τ without
extracting any cores. Instead of solving for another non-optimal hitting set whose cost
is strictly lower than O(τ), the MCHS solver is forced to find a minimum-cost hitting
set γ. This forces LB to be updated to O(γ). After forcing the MCHS solver to return
a minimum-cost hitting set, if the PB oracle returns SAT with solution τ ′, then O(τ ′) =
O(γ) = LB, terminating the algorithm. In the other case where the PB oracle returns
UNSAT, the cores are extracted as usual, after which the MCHS solver is called without the
requirement of the returned γ to be optimal. The IHS-based PBO algorithm using this
strategy is still correct because the requirement of the non-optimal MCHS solver is still
the same – it either returns an optimal hitting set or a hitting set with a cost strictly less
than UB.

Example 5.8. Consider the same PBO instance as in Example 5.7, with UB set initially
to 5. Suppose the first call to the MCHS solver returns γ for which γ(l1) = 0 and γ(li) = 1
for i = 2, .., 5 because O(γ) = 4 < UB. The PB oracle returns SAT and UB is updated
to 4. Because the PB oracle returned SAT without extracting any cores, the next call to
the MCHS solver forces it to return an optimal hitting set. As the MCHS instance has no
constraints, the hitting set is γ for which γ(li) = 0 for i = 1, .., 5. The PB oracle returns
UNSAT and suppose κ = {l1, l2, l3}.

After this, the MCHS solver is called to find a non-optimal hitting set for the constraint set
{(l1 + l2 + l3 ≥ 1)}, where the cost of the hitting set is strictly less than UB = 4. Suppose
the MCHS solver returns γ for which γ(l1) = γ(l2) = 0 and γ(li) = 1 for i = 3, 4, 5. The
PB oracle returns SAT and UB is updated to 3. The MCHS solver is again forced to solve
for an optimal hitting set, suppose it returns γ(l1) = 1 and γ(li) = 0 for i = 2, .., 5, from
which the PB oracle returns UNSAT with κ = {l2, l3, l4}. After UB is set to 3, the PB oracle
cannot return SAT when a non-optimal hitting set is used as an assumption set, because
there are no solutions to F with cost less than 3. Therefore the progression for the rest of
the algorithm is as described in Example 5.7. △

35

5.7 Fixing individual variables

Reduced cost fixing is a standard technique used in IP solving [26, 28, 77] and has found
its footing in IHS-based MaxSAT solving [10]. With each MCHS call, the IP that encodes
the MCHS instance is solved by an IP solver, which also retrieves an optimal solution
τLP : var(O) → [0, 1] to the LP relaxation of the IP, its cost zLP = O(τLP), and the
reduced cost di ∈ R for each literal li ∈ lit(O) that has an integral assignment, i.e.,
τLP (li) ∈ {0, 1}. The reduced cost di of a literal li is the lower bound for the increase in
the cost function if the assignment of li is changed to its opposite integer value. Because
zLP is optimal, the cost can only increase if the assigned value to li is changed to its
opposite, increasing the cost of the solution at minimum by the value of di.

When fixing a variable, for example li to 0, we need to make sure that there exists a
solution τ to F such that τ(li) = 0 and O(τ) ≤ O(τ ′) for any solution τ ′ to F such that
τ ′(li) = 1. The PBO-IHS solver maintains the best solution candidate τbest and its cost
as the upper bound on the cost of an optimal solution, UB = O(τbest). Suppose that
τLP (li) = 0 and zLP + di > UB. This means that a solution to the LP relaxation τ ′

LP such
that τ ′

LP (li) = 1 has a cost O(τ ′
LP) > UB. Recall from Section 2.2 that the cost of an

optimal solution to the IP is at least the cost of an optimum solution to its LP relaxation.
Therefore O(τ ′) ≥ O(τ ′

LP) > UB for any solution τ ′ to F such that τ ′(li) = 1, which
means that τbest(li) = 0. Therefore it is safe to fix li to 0. Using similar reasoning, li can
be fixed to 1 if τLP (li) = 1 and zLP − di > UB, keeping in mind that di ≤ 0 if τLP (li) = 1.

In the case where the absolute value of di added on top of zLP is equal to UB, the condition
τbest(li) = τLP (li) needs to be explicitly checked, because otherwise there is no guarantee
that there is a solution τ to F such that τ(li) = τLP (li) and O(τ) ≤ UB. In summary, the
conditions for fixing li to a specific value are as follows.

τLP (li) = 0 and


(zLP + di > UB) or

(zLP + di = UB and τbest(li) = 0)
→ fix li to 0

τLP (li) = 1 and


(zLP − di > UB) or

(zLP − di = UB and τbest(li) = 1)
→ fix li to 1

Reduced cost fixings can also be derived from the LP relaxation of the entire PBO instance.
As the PBO instance remains unchanged throughout the execution of PBO-IHS, the LP
relaxation needs only to be solved once to retrieve the cost of an optimal solution to the

36

LP relaxation and a reduced cost for each literal li ∈ var(F). The conditions for fixing
individual assignments to li are the same as detailed previously and need to be rechecked
only when UB is decreased due to a changed τbest.

Another variable fixing technique used in PBO-IHS is employed when the PB oracle ex-
tracts a unit core κ such that |κ| = 1. If κ = {l} is a core of F , then for every solution
τ to F , τ(l) = 1. When such core is extracted, the constraint (l ≥ 1) is added to the
MCHS instance, effectively fixing the literal l. With unit core fixing, the same literal l is
explicitly fixed in the PB oracle as well.

6 Experiments

In this section we present results from an empirical evaluation of the PBO-IHS solver. In
Section 6.1 we detail the implementation of the PBO-IHS solver, which was used along
with other PBO solvers to solve benchmarks that were collected and sampled as described
in Section 6.2. We discuss the results of the experiments in Section 6.3. The experi-
ments were run single-threadedly on nodes with 8-core Intel Xeon E5-2670 2.6-GHz CPUs
and 64-GB RAM with a per-instance 3600-second time and 16-GB memory limit.

6.1 Implementation

We implemented the PBO-IHS solver in Python (version 3.6.9), with a PB solver (acting
as the PB oracle) and an IP solver (acting as the MCHS solver) imported as external
modules. We use Roundingsat version 2 [41] (commit 1476bf0bcd) as the PB solver. The
Roundingsat solver was compiled with a configuration that enables learning constraints
from Farkas multipliers [32]. The Roundingsat code published in [40] does not support
solving a PB formula under an assumption set and cannot extract cores. To make the
PB solver compatible with PBO-IHS, we extended the Roundingsat implementation to be
able to extract cores by including an analyzeFinal function similar to the one implemented
in MiniSat SAT solver [37, 38]. As the IP solver we use IBM ILOG CPLEX C++ API
version 12.8 [25]. As both Roundingsat and the CPLEX API are implemented in C++,
we use pybind11 to compile the C++ libraries as python modules. A benefit of using both
solvers as external modules is that solvers acting as the PB oracle or the MCHS solver
can be replaced with other solvers with relative ease in future research.

We make sure that the instantiated solvers persist throughout the execution of PBO-IHS,
rather than reinstantiating the solvers with each solver call. When a core is added to the
MCHS solver, PBO-IHS performs a call to CPLEX to add another constraint, modifying
the IP instance. The instance in Roundingsat is modified when PBO-IHS fixes a variable
as detailed in Section 5.7. As modifications to the two solvers are limited to adding a
constraint on top of an existing set of constraints, the internal state of either solver does
not get invalidated in-between solver calls.

38

Unless otherwise stated, in the following sections PBO-IHS refers to our implementation
of the IHS-based PBO algorithm with the following default configuration.

• Subset minimization is not enabled (recall Section 5.1).

• For each call to the PB oracle, the assumption set is shuffled 20 times, with only the
smallest core being included in the MCHS instance (recall Section 5.2).

• Disjoint phase is included using weight-aware core extraction (recall Sections 5.3
and 5.4).

• MCHS seeding is enabled (recall Section 5.5).

• The MCHS solver is configured to return non-optimal hitting sets, but it is forced
to return an optimal hitting set if the previous hitting set caused no cores to be
extracted by the PB solver (recall Section 5.6).

• Reduced cost fixing is enabled based on the LP relaxation of the MCHS instance
(recall Section 5.7).

• Reduced cost fixing is not enabled based on the LP relaxation of the entire PBO
instance (recall Section 5.7).

• Unit cores are fixed in the PB solver (recall Section 5.7).

The PBO-IHS implementation is available in open source at

https://bitbucket.org/coreo-group/pbo-ihs-solver/.

6.2 Benchmarks

We collected a large number of benchmarks from two sources:

• the Pseudo-Boolean Competition 2016 website [82] (which also contains benchmarks
from the previous instantiations of the PB competition since 2005), and

• the MIPLIB 2017 library [50] (which includes benchmarks from earlier MIPLIB
releases).

https://bitbucket.org/coreo-group/pbo-ihs-solver/

39

Most benchmarks collected from these sources were not suitable for our experiments for
different reasons. The set of 17312 Pseudo-Boolean Competition benchmarks and 1273
MIPLIB benchmarks contained 9462 satisfiable PBO benchmarks. 548 benchmarks were
removed because they contain a non-linear term either in the cost function or in one of
the constraints. 206 benchmarks were removed because they have at least one coefficient
with an absolute value higher than 264. In total, we were left with 8708 benchmarks that
were used for our experiments.

We found that the benchmark set is significantly unbalanced with respect to the number
of benchmarks per each problem domain. For a fair comparison of the overall performance
of the different solvers across the different benchmark domains, we sampled at random
(without repetition) from each problem domain up to 30 instances. The sampled bench-
mark set contains in total 1786 benchmarks. Results reported in the following section are
with respect to the sampled benchmark set by default, and we refer to the set of 8708
benchmarks as the full benchmark set. We categorized the benchmarks to the best of
our knowledge into different problem domains based on their source, related publications
and by their file names. The problem domains with citations and brief descriptions are
detailed in Appendix A.

6.3 Results

We make several observations from the results of our empirical evaluation. We compare the
performance of PBO-IHS with other published specialized PBO solvers in Section 6.3.1 and
find that PBO-IHS performs best with respect to the sampled benchmark set. We analyze
the effect of different configurations of PBO-IHS in Section 6.3.2. We then compare the
performance of PBO-IHS with a commercial MIP solver CPLEX in Section 6.3.3. Finally,
in Section 6.3.4 we show the division of PBO-IHS solving time between the MCHS solver
and the PB oracle.

6.3.1 Comparison with specialized PBO solvers

The empirical performance of PBO-IHS is compared to the performance of other special-
ized PBO solvers on the sampled benchmark set. Following PBO solvers were used for the
comparison.

40

• RS – Roundingsat solver [41] (commit 1476bf0bcd) with solution-improving search.

• RS/lp – Roundingsat solver (commit 1476bf0bcd) with solution-improving search
and with the use of Farkas multipliers [32] for constraint learning.

• RS/oll – Roundingsat solver that extends the OLL algorithm to PBO solving as
described in [33].

• Sat4J – PB solver with solution-improving search [67].

• Open-WBO – OLL-based MaxSAT solver that encodes PB constraints to CNF
clauses using generalized totalizer encoding [73].

• NaPS – SAT solver that encodes PB constraints to CNF clauses using binary deci-
sion diagrams [90]. Optimization is done with a combination of solution-improving
search and binary search.

Figure 6.1 (top) shows how many benchmarks each solver was able to solve (y-axis) under
different per-instance time limits (x-axis). We observe that PBO-IHS outperforms all of
the other specialized solvers. The two recent variants of Roundingsat perform the second
and third best. In particular, PBO-IHS also outperforms the version of Roundingsat
(RS/lp) which is used within PBO-IHS for core extraction. In Figure 6.1 (bottom) the
results of the three best-performing solvers are shown under 10 different random samplings
of the sampled benchmark set. For each solver S, Figure 6.1 (bottom) includes 3 lines:
S-max, S-median and S-min. A point (t, x) on the S-max line indicates that S was able
to solve x benchmarks within t seconds for at least one of the ten benchmark set samples.
Analogously, a point on the S-min line indicates solving x benchmarks within t seconds
in all samples, and the S-median line indicates solving x benchmarks within t in five of
the 10 samples. This indicates that the ranking of the three best-performing solvers is
robust with respect to the different random samplings of the sampled benchmark set.

More detailed data per benchmark domain over the full benchmark set is reported in
Table 6.1, with the number of instances solved (left column) and the cumulative runtimes
over solved instances (right column) shown for each solver. In Figure 6.2, PBO-IHS is
compared to RS/lp and RS/oll, where for each benchmark in the sampled benchmark
set a tick is placed based on the PBO-IHS solve time on the x-axis and based on either
Roundingsat version solve time on the y-axis, with the color of the tick differentiating
the problem domain of the benchmark. It can be observed that the relative performance

41

of the Roundingsat versions and PBO-IHS depends significantly on the problem domain,
suggesting that the approaches complement each other.

0 500 1000 1500 2000 2500 3000 3500
Per-instance time limit (s)

400

500

600

700

800

900

Nu
m

be
r o

f b
en

ch
m

ar
ks

 so
lv

ed

PBO-IHS
RS/lp
RS/oll
NaPS
Open-WBO
RS
Sat4J

0 1000 2000 3000
Per-instance time limit (s)

760

780

800

820

840

860

880

900

Nu
m

be
r o

f b
en

ch
m

ar
ks

 so
lv

ed

PBO-IHS - max
PBO-IHS - median
PBO-IHS - min
RS/lp - max
RS/lp - median
RS/lp - min
RS/oll - max
RS/oll - median
RS/oll - min

Figure 6.1: Top: Runtime comparison of specialized PBO solvers. Bottom: Confidence intervals over 10
benchmark subset samples for the three best-performing solvers.

42

Table 6.1: Comparison of specialized PBO solver per benchmark domain: number of solved instances (#)
and cumulative runtimes over solved instances in seconds (cum.)

Sat4J RS Open-WBO Naps RS/lp RS/oll PBO-IHS
Domain (#instances) # cum. # cum. # cum. # cum. # cum. # cum. # cum.
10orplus/9orless (156) 55 99459 39 64252 156 202 156 14149 154 55344 156 1406 156 23670
caixa (24) 24 13 20 16 24 2 24 179 24 70 24 3 24 64
rand.*list (118) 113 5241 59 1961 118 44 118 2218 118 692 118 125 118 2296
area_* (59) 11 626 37 11998 59 138 54 3613 54 16176 57 9469 51 11784
trarea_ac (18) 1 1 1 2 13 2314 4 4582 16 3722 5 1868 18 7751
aries-da_nrp (70) 15 1747 16 7994 25 11938 19 7325 43 15442 21 10599 32 10413
BA (1440) 85 175161 301 221066 160 116377 0 0 588 472938 356 230143 20 30038
NG (960) 2 804 59 71042 11 11990 0 0 48 115499 138 194128 0 0
MANETs (150) 29 5744 0 0 20 13648 14 17875 40 23547 29 9525 25 21152
BioRepair (30) 30 457 30 8551 30 105 30 311 30 3258 30 35 30 262
Metro (30) 30 4413 30 1270 30 3341 30 775 30 1795 29 3291 27 12595
ShiftDesign (30) 12 2258 16 5671 28 10696 30 2781 18 12824 27 3371 9 9060
Timetabling (30) 17 11920 15 8026 27 10054 25 17502 23 15419 24 3295 28 8768
EmployeeScheduling (14) 0 0 0 0 9 480 9 506 0 0 0 0 0 0
golomb-rulers (34) 14 642 14 5765 11 1656 12 3451 12 1216 12 436 12 4212
bsg (60) 0 0 10 156 10 4767 10 813 10 465 10 1963 5 16
mis/mds (120) 0 0 44 8968 48 6605 47 6245 45 3853 45 5525 57 15335
course-ass (6) 0 0 2 1225 2 29 4 3226 3 33 2 1 1 6
decomp (10) 0 0 0 0 8 1809 8 4516 0 0 2 2200 0 0
data (68) 1 2 8 1628 0 0 4 2414 13 4044 13 5837 11 2163
dt-problems (60) 37 1712 40 3573 38 2777 59 8697 60 2 60 7 60 113
domset (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
factor (186) 186 56 186 0 186 710 186 160 186 2 186 0 186 342
factor-mod-B (225) 0 0 225 67 199 39899 225 3243 225 60 225 25 225 344
fctp (35) 2 36 2 0 1 141 6 468 5 940 5 2 12 499
featureSubscription (20) 20 1266 20 2492 20 76 20 112 20 8106 20 941 20 303
frbXX-XX-opb (40) 0 0 0 0 0 0 17 11552 0 0 0 0 6 11343
flexray (9) 5 1697 4 83 4 496 4 296 4 393 4 31 4 50
fome (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
graca (100) 20 230 24 3664 97 4687 98 10487 31 21769 93 14428 84 40593
haplotype (8) 0 0 8 202 8 31 8 60 8 2385 8 57 7 4023
garden (7) 4 28 5 1 6 94 6 355 5 1 5 0 6 76
hw32/hw64/hw128 (27) 0 0 2 1 1 217 1 50 8 3470 5 889 10 12063
jXXopt (2040) 1604 32395 1613 36840 1611 34453 1621 58870 1589 51821 1603 42149 1579 64191
keeloq_tasca (4) 0 0 4 424 4 360 4 3019 4 33 4 7 4 54
kullmann (7) 0 0 1 2 1 0 0 0 1 2 1 3 3 3016
lion9-single-obj (1513) 1181 89655 687 4242 1501 12026 1400 105853 1412 113829 1482 62955 1487 120526
logic-synthesis (74) 24 7180 39 5078 49 4750 33 2581 61 11647 48 786 71 708
miplib/neos (79) 18 3516 27 1725 25 2455 25 5479 37 8377 32 6048 38 10631
miplib/other (405) 84 9044 96 7093 80 20989 95 20135 147 36264 123 15349 156 38501
unibo (36) 0 0 3 127 0 0 0 0 3 228 3 77 8 5342
market-split (20) 2 659 4 4750 0 0 4 1575 4 342 4 2670 1 1167
opb/graphpart (31) 0 0 8 2641 22 940 23 7019 12 435 14 4942 24 5211
opb/autocorr_bern (43) 0 0 5 1168 3 1768 3 337 4 3594 3 318 8 2089
opb/sporttournament (22) 0 0 4 667 7 697 4 168 4 23 6 2032 11 3121
opb/edgecross (19) 0 0 3 2869 6 1634 4 1230 6 2899 3 9 12 3984
opb/pb (8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
opb/faclay (10) 0 0 0 0 0 0 0 0 0 0 0 0 1 960
opb/other (6) 0 0 1 0 1 0 1 0 1 0 1 0 1 2
primes/aim (48) 48 15 48 0 48 0 48 0 48 4 48 0 46 234
primes/jnh (16) 16 16 16 35 16 36 16 11 16 19 16 44 16 53
primes/ii (41) 10 504 21 7087 26 9348 25 12121 23 6874 33 2792 34 5230
primes/par (30) 20 17 20 14 20 2 20 14 20 15 20 31 20 422
primes/other (13) 2 5 2 2 6 5 6 22 6 452 4 204 5 938
routing (15) 15 1030 15 19 15 2 15 17 15 7 15 1 15 26
radar (12) 0 0 6 313 0 0 0 0 6 71 1 127 12 77
synthesis-ptl-cmos (10) 2 0 2 0 8 15 3 27 9 135 8 1186 10 16
testset (6) 6 1529 6 1161 5 81 6 1721 6 0 6 1 6 8
ttp (8) 2 1 2 0 2 0 2 1 2 0 2 0 2 10
vtxcov (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
wnq (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43

other
10orplus
9orless
caixa
rand.*list
area_*/trarea_ac
aries-da_nrp
BA/NG
MANETs
BioRepair
Metro
ShiftDesign
Timetabling
golomb-rulers
bsg
mds
mis
data
factor
fctp
featureSubscription
frbXX-XX-opt
graca/haplotype
hwXXX
jXXXopt
kullmann
lion9
logic-synthesis
market-split
miplib/unibo
opb
primes

0 1000 2000 3000
PBO-IHS, solve time

0

500

1000

1500

2000

2500

3000

3500

RS
/lp

, s
ol

ve
 ti

m
e

0 1000 2000 3000
PBO-IHS, solve time

0

500

1000

1500

2000

2500

3000

3500

RS
/o

ll,
 so

lv
e

tim
e

Figure 6.2: Per-instance runtime comparison between PBO-IHS (x-axis) and (i) RS/lp (y-axis, left),
(ii) RS/oll (y-axis, right).

0 500 1000 1500 2000 2500 3000 3500
Per-instance time limit (s)

700

725

750

775

800

825

850

875

900

Nu
m

be
r o

f b
en

ch
m

ar
ks

 so
lv

ed

PBO-IHS
With pb-rc
Alternative non-opt hs
No hs-rc
No wce
Only optimal hitting sets
Core shrinking
No shuffle
No constraint seeding

Figure 6.3: Runtime comparison of various PBO-IHS variants.

44

6.3.2 Impact of different search techniques in PBO-IHS

The marginal impact of the different search techniques and refinements on the empirical
performance of PBO-IHS is reported in Figure 6.3, which provides a comparison of the
default configuration of PBO-IHS as described in Section 6.1 to configurations that differ
from the default configuration in the following ways.

• With pb-rc – reduced cost fixing is enabled based on the LP relaxation of the entire
PBO instance as described in Section 5.7.

• Alternative non-opt hs – the MCHS solver is never forced to find an optimal
hitting set, one of the strategies described in Section 5.6.

• No hs-rc – reduced cost fixing is disabled based on the LP relaxation of the MCHS
instance as described in Section 5.7.

• No wce – the disjoint phase is implemented as described in Section 5.3 rather than
as described in Section 5.4.

• Only optimal hitting sets – the MCHS solver always returns an optimal hitting
set rather than as described in Section 5.6.

• Core shrinking – each extracted core is shrinked using a subset-minimization al-
gorithm as described in Section 5.1.

• No shuffle – the assumption set is not shuffled, with only one core getting extracted
per call to the PB oracle rather than as described in Section 5.2.

• No constraint seeding – no PB constraints are seeded to the MCHS solver rather
than as described in Section 5.5.

We observe that constraint seeding makes the largest positive marginal contribution to
the empirical performance of PBO-IHS, and assumption set shuffling the second largest
positive marginal contribution. The third largest positive contribution is made by using
non-optimal hitting sets, followed closely by weight-aware core extraction. Performing
core shrinking impacts negatively on the empirical performance of PBO-IHS, ranking as
the third worst PBO-IHS configuration out of nine configurations. The two different forms
of reduced cost fixing have only a very modest impact. While reduced cost fixing based on
the LP relaxation of the entire PBO instance does not make a significant negative marginal

45

contribution, it does not appear to improve on the performance of PBO-IHS, which justifies
disabling it in the default configuration of PBO-IHS. The alternative strategy for using
the non-optimal MCHS solver does not appear to alter the performance of PBO-IHS in
any significant capacity.

Recall from Section 5.2 that when a set of cores is produced by shuffling the assumption
set, there are several strategies that can be used to decide which cores are included from
the core set. The effect of different strategies is reported in Figure 6.4 with the following
strategies.

• No shuffle – the assumption set is not shuffled with only one core getting extracted
per call to the PB oracle.

• Shuffle once – the assumption set is permuted at random before calling the PB
oracle, extracting one core.

• 20 shuffles 1 core – for each call to the PB oracle, the assumption set is shuffled 20
times, with only the smallest core being included in the MCHS instance.

• 20 shuffles 5 cores – for each call to the PB oracle, the assumption set is shuffled 20
times, with five smallest cores being included in the MCHS instance.

• 20 shuffles 20 cores – for each call to the PB oracle, the assumption set is shuf-
fled 20 times, with all cores being included in the MCHS instance.

For each assumption set shuffling strategy we also ran a PBO-IHS variant that did not
use WCE during the disjoint phase.

We observe that regardless of the assumption set shuffling strategy, using WCE during
the disjoint phase always improves on the performance of PBO-IHS. The ranking of the
shuffling strategies with respect to the number of benchmarks solved within the 3600
second time limit is the same among variants that use WCE and among variants that
do not. The no shuffle strategy is the weakest performing shuffling strategy from the
strategy set. The shuffle once strategy differs from the no shuffle strategy only in that the
assumption set is permuted once before calling the PB oracle, which is enough to improve
the performance of PBO-IHS in a significant way. Including all cores from 20 shuffles
does not improve the performance of PBO-IHS significantly when compared to the shuffle
once strategy. The 20 shuffles 5 cores strategy is the second best strategy between the
five strategies and the WCE variant is quite competitive with the default configuration of
PBO-IHS.

46

0 1000 2000 3000
Per-instance time limit (s)

760

780

800

820

840

860

880

900

Nu
m

be
r o

f b
en

ch
m

ar
ks

 so
lv

ed
20 shuffles 1 core, WCE
20 shuffles 1 core
20 shuffles 5 cores, WCE
20 shuffles 5 cores
20 shuffles 20 cores, WCE
20 shuffles 20 cores
Shuffle once, WCE
Shuffle once
No shuffle, WCE
No shuffle

Figure 6.4: Runtime comparison of PBO-IHS variants that differ in assumption set shuffling strategies.
For each strategy, a variant is included that uses WCE during the disjoint phase and a variant that does
not.

6.3.3 Comparison with a commercial IP solver

The runtime performance of PBO-IHS is compared separately against CPLEX [25], one
of the state-of-the-art commercial MIP solvers with a significant number of person years
behind it. For a fair comparison with CPLEX, the CPLEX presolver was used before
running PBO-IHS as well. This eliminates to an extent the differentiating contribution of
the powerful preprocessor of CPLEX in terms of runtime performance, though it should
be noted that CPLEX appears to employ further probing for e.g. clique inequalities after
the presolving stage, which we were unable to employ before running PBO-IHS. A per-
instance runtime comparison for the sampled benchmark set is shown in Figure 6.5, with
more details per benchmark domain provided in Table 6.2 on the full benchmark set. We
observe that, while CPLEX fairs better in the overall number of solved instances, the two
solvers exhibit noticeably complementary performance depending on the problem domain
considered.

47
other
10orplus
9orless
caixa
rand.*list
area_*/trarea_ac
aries-da_nrp
BA/NG
MANETs
BioRepair
Metro
ShiftDesign
Timetabling
golomb-rulers
bsg
mds
mis
data
factor
fctp
featureSubscription
frbXX-XX-opt
graca/haplotype
hwXXX
jXXXopt
kullmann
lion9
logic-synthesis
market-split
miplib/unibo
opb
primes

0 1000 2000 3000
PBO-IHS solve time (s)

0

500

1000

1500

2000

2500

3000

3500

CP
LE

X
so

lv
e

tim
e

(s
)

Figure 6.5: Per-instance runtime comparison of PBO-IHS (x-axis) vs CPLEX (y-axis).

Table 6.2: Per-domain comparison of PBO-IHS and CPLEX: number of solved instances (#) and
cumulative runtimes over solved instances in seconds (cum.)

PBO-IHS CPLEX
Domain (#instances) # cum. # cum.
10orplus/9orless (156) 156 20309 156 1709
caixa (24) 18 38 24 61
rand.*list (118) 118 878 118 301
area_* (59) 57 10735 59 789
trarea_ac (18) 17 5209 18 47
aries-da_nrp (70) 55 17508 70 2278
BA (1440) 7 17028 761 419659
NG (960) 0 0 238 224058
MANETs (150) 27 13051 61 25757
BioRepair (30) 30 223 30 862
Metro (30) 27 10911 30 2626
ShiftDesign (30) 10 9688 6 7062
Timetabling (30) 28 8019 27 6313
EmployeeScheduling (14) 0 0 13 149
golomb-rulers (34) 12 4669 10 589
bsg (60) 5 16 15 3571
mis/mds (120) 64 26665 58 15127
course-ass (6) 1 8 6 12
decomp (10) 0 0 0 0
data (68) 10 2202 24 3076
dt-problems (60) 47 74 60 358
domset (15) 0 0 0 0
factor (186) 186 348 186 242
factor-mod-B (225) 225 317 216 4204
fctp (35) 12 622 12 936
featureSubscription (20) 20 301 1 2644
frbXX-XX-opb (40) 5 5397 3 3615
flexray (9) 4 69 3 14
fome (3) 0 0 0 0
graca (100) 62 20019 27 14459

PBO-IHS CPLEX
Domain (#instances) # cum. # cum.
haplotype (8) 7 2992 0 0
garden (7) 6 76 6 60
hw32/hw64/hw128 (27) 6 1324 18 5072
jXXopt (2040) 1581 47081 1487 136243
keeloq_tasca (4) 4 124 4 1412
kullmann (7) 3 3016 3 3183
lion9-single-obj (1513) 1487 33403 1480 57923
logic-synthesis (74) 71 767 71 690
miplib/neos (79) 36 9962 58 14578
miplib/other (405) 161 32009 217 50306
unibo (36) 8 4764 8 6826
market-split (20) 0 0 8 6075
opb/graphpart (31) 24 3795 28 715
opb/autocorr_bern (43) 8 1838 8 2180
opb/sporttournament (22) 11 3056 13 3089
opb/edgecross (19) 12 3433 15 6316
opb/pb (8) 0 0 0 0
opb/faclay (10) 1 879 1 1004
opb/other (6) 1 2 3 4106
primes/aim (48) 44 236 46 235
primes/jnh (16) 16 52 16 42
primes/ii (41) 34 5148 34 5060
primes/par (30) 20 369 20 426
primes/other (13) 5 1512 5 976
routing (15) 15 32 15 28
radar (12) 11 62 12 39
synthesis-ptl-cmos (10) 10 17 10 18
testset (6) 6 8 6 12
ttp (8) 2 12 2 4
vtxcov (15) 0 0 0 0
wnq (15) 0 0 0 0

48

6.3.4 Division of work between two components of PBO-IHS

Finally, we present our findings on how the processing work is divided between the MCHS
solver and the PB oracle. Figure 6.6 (left) details the fraction of solving time spent on
calls to the MCHS solver during the execution of PBO-IHS on the 898 of the instances
solved within the time limit. Note that since calls to the MCHS solver and the PB oracle
dominate the running time of PBO-IHS, the rest of the runtime is effectively spent on PB
oracle calls. It can be observed that on most of the instances, over 80% of the overall
solving time is spent on extracting cores: on 462 of the 898 instances, only 20% of the
time was spent on calls to the MCHS solver, and on over 1/3 of the instances 99% of
the overall solving time was spent on calls to the PB oracle. On the other hand, the
cumulative runtime of the MCHS solver dominates on approximately 1/5 of the instances.
From this we can conclude that in the current implementation of PBO-IHS, in most cases,
the time it takes to extract cores is a more significant contributor to the execution time
of PBO-IHS compared to the time it takes to find hitting sets over extracted cores.

If all constraints of a given PBO instance are seeded to the MCHS solver (recall
Section 5.5), PBO-IHS relies entirely on the MCHS solver to solve the PBO instance.
Figure 6.6 (right) shows the fractions of constraints that can be seeded over all benchmark
instances in the sampled benchmark set. At least one constraint is seeded for 71.4% of
the instances; at least half of all constraints are seeded for 41.6% of the instances; and all
of the constraints are seeded for 33.7% of the instances. Note that we also observed that
there are instances on which the cumulative runtime of the MCHS solver dominates even
though all constraints are not seeded.

0 200 400 600 800
Benchmark number

0

20

40

60

80

100

%
 o

f s
ol

vi
ng

 ti
m

e
sp

en
t

 in
 M

CH
S(

O,
K)

 (C
PL

EX
)

Time in MCHS(O,K) > 99% of overall solving time
Time in MCHS(O,K) 1%, 99% of solving time
Time in MCHS(O,K) < 1% of overall solving time

0 250 500 750 1000 1250 1500 1750
Benchmark number

0

20

40

60

80

100

%
 o

f c
on

st
ra

in
ts

 se
ed

ed

Instances with all constraints seeded
Instances with some seeded constraints
Instances with no seeded constraints

Figure 6.6: Left: Ratio of solving time spent by PBO-IHS on MCHS(O, K) calls for solved benchmarks.
Right: Ratio of constraints seeded on all benchmarks.

7 Conclusion

In this thesis we described a novel approach to PBO solving through the use of implicit
hitting sets and detailed an open-source implementation of the approach. The IHS frame-
work allows for utilizing powerful optimization capabilities of a MIP solver while at the
same time making use of recent developments in the realm of PB solving to perform fast
core extraction. An instance of PBO is solved efficiently by using these two separate
techniques in tandem. We presented a variety of techniques that enhance the IHS based
PBO solving algorithm and evaluated their individual contribution to the performance
of PBO-IHS. We compared the performance of PBO-IHS with the performance of other
available PBO solvers on a large set of standard benchmarks. We found that in its best-
performing configuration, PBO-IHS outperforms other published specialized PBO solvers.
When compared to the state-of-the-art commercial MIP solver CPLEX, PBO-IHS was
found to have complementary performance.

There are many directions for further research in order to potentially make the PBO-IHS
solver perform better. In this thesis the cores extracted during the execution of PBO-IHS
have unit coefficients and a unit right-hand bound when encoded as constraints. Using
a PB solver that extracts core constraints with varying coefficients or a higher right-
hand bound (like the one described in [33]) could lead to tighter lower bounds during the
execution of PBO-IHS, possibly leading to faster solving times.

The reduced costs of the LP relaxation of the MCHS instance could be further utilized to
obtain tighter bounds during the execution of PBO-IHS. This is motivated by other work
where reduced costs have been succesfully utilized to solve NP-hard problems [96]. For
example, reduced costs could be used as another heuristic for picking a subset from a set
of cores retrieved via assumption shuffling as described in Section 5.2. Another example is
to use reduced costs as weights for WCE instead of cost function coefficients as described
in Section 5.4.

As PBO-IHS repeatedly calls two different black-box solvers during its execution, there
is an opportunity to run these solvers in parallel. For example, a separate thread could
call the MCHS solver while the disjoint phase is not finished with extracting cores. As-
sumption shuffling as described in Section 5.2 could also be executed in parallel. Other
search improving techniques could be run as subroutines in parallel with the execution

50

of the IHS-based PBO algorithm. One such subroutine could be a so-called solution-
improving search, which is an optimization routine employed by some of the other PBO
solvers [90, 67, 33]. The PBO-IHS solver provides both a lower and an upper bound for the
cost of the optimal solution, which means that a binary search similar to the one described
in [90] can be conducted in parallel. Another subroutine could probe the PB formula for
unit cores by calling the PB solver with a unit assumption set to see if it returns UNSAT.
Probing for unit cores could be done in parallel by brute-force, fixing variables of the PBO
instance in the process.

Bibliography

[1] I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and V. Mayer-
Eichberger. A new look at BDDs for pseudo-Boolean constraints. Journal of Arti-
ficial Intelligence Research, 45:443–480, 2012. url: https://doi.org/10.1613/

jair.3653.

[2] M. Abseher, M. Gebser, N. Musliu, T. Schaub, and S. Woltran. Shift design with an-
swer set programming. Fundamenta Informaticae, 147(1):1–25, 2016. url: https:

//doi.org/10.3233/FI-2016-1396.

[3] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009. url: https://doi.org/10.1007/s12532-

008-0001-1.

[4] L. Aksoy, E. A. C. da Costa, P. F. Flores, and J. Monteiro. Exact and approximate
algorithms for the optimization of area and delay in multiple constant multipli-
cations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(6):1013–1026, 2008. url: https://doi.org/10.1109/TCAD.2008.

923242.

[5] S. Albert. Solving Mixed Integer Linear Programs Using Branch and Cut Algorithm.
Master’s thesis, North Carolina State University, 2006. url: http://www4.ncsu.

edu/~kksivara/masters-thesis/shon-thesis.pdf.

[6] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Generic ILP versus spe-
cialized 0-1 ILP: An update. In L. T. Pileggi and A. Kuehlmann, editors, Proceed-
ings of the 2002 IEEE/ACM International Conference on Computer-aided Design,
ICCAD 2002, San Jose, California, USA, November 10-14, 2002, pages 450–457.
ACM / IEEE Computer Society, 2002. url: https://doi.org/10.1145/774572.

774638.

[7] F. A. Aloul, S. Z. H. Zahidi, A. Al-Farra, B. Al-Roh, and B. Al-Rawi. Solving the
employee timetabling problem using advanced SAT & ILP techniques. Journal of
Computers, 8(4):851–858, 2013. url: http://www.jcomputers.us/index.php?m=

content&c=index&a=show&catid=67&id=766.

https://doi.org/10.1613/jair.3653
https://doi.org/10.1613/jair.3653
https://doi.org/10.3233/FI-2016-1396
https://doi.org/10.3233/FI-2016-1396
https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1109/TCAD.2008.923242
https://doi.org/10.1109/TCAD.2008.923242
http://www4.ncsu.edu/~kksivara/masters-thesis/shon-thesis.pdf
http://www4.ncsu.edu/~kksivara/masters-thesis/shon-thesis.pdf
https://doi.org/10.1145/774572.774638
https://doi.org/10.1145/774572.774638
http://www.jcomputers.us/index.php?m=content&c=index&a=show&catid=67&id=766
http://www.jcomputers.us/index.php?m=content&c=index&a=show&catid=67&id=766

52

[8] B. Andres, B. Kaufmann, O. Matheis, and T. Schaub. Unsatisfiability-based opti-
mization in CLASP. In A. Dovier and V. S. Costa, editors, Technical Communi-
cations of the 28th International Conference on Logic Programming, ICLP 2012,
September 4-8, 2012, Budapest, Hungary, volume 17 of LIPIcs, pages 211–221.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. url: https://doi.org/

10.4230/LIPIcs.ICLP.2012.211.

[9] G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT
solvers. In C. Boutilier, editor, IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17,
2009, pages 399–404, 2009. url: http://ijcai.org/Proceedings/09/Papers/

074.pdf.

[10] F. Bacchus, A. Hyttinen, M. Järvisalo, and P. Saikko. Reduced cost fixing in
MaxSAT. In C. Beck, editor, Principles and Practice of Constraint Programming -
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 -
September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Sci-
ence, pages 641–651. Springer, 2017. url: https://doi.org/10.1007/978-3-

319-66158-2_41.

[11] F. Bacchus, M. Järvisalo, and R. Martins. Maximum satisfiability. In Handbook of
Satisfiability. Volume 336. Frontiers in Artificial Intelligence and Applications. IOS
Press BV, 2021. Chapter 24, pages 929–991. url: https://doi.org/10.3233/

FAIA201008.

[12] M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub. Answer set
programming as a modeling language for course timetabling. Theory and Prac-
tice of Logic Programming, 13(4-5):783–798, 2013. url: https://doi.org/10.

1017/S1471068413000495.

[13] J. Berg and M. Järvisalo. Weight-aware core extraction in SAT-based MaxSAT
solving. In J. C. Beck, editor, Principles and Practice of Constraint Programming
- 23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28
- September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer
Science, pages 652–670. Springer, 2017. url: https://doi.org/10.1007/978-3-

319-66158-2_42.

[14] T. Berthold, G. Gamrath, A. Gleixner, S. Heinz, T. Koch, and Y. Shinano. Solving
mixed integer linear and nonlinear problems using the SCIP Optimization Suite.
Technical report 12-27, ZIB, Takustraße 7, 14195 Berlin, 2012.

https://doi.org/10.4230/LIPIcs.ICLP.2012.211
https://doi.org/10.4230/LIPIcs.ICLP.2012.211
http://ijcai.org/Proceedings/09/Papers/074.pdf
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.3233/FAIA201008
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1017/S1471068413000495
https://doi.org/10.1017/S1471068413000495
https://doi.org/10.1007/978-3-319-66158-2_42
https://doi.org/10.1007/978-3-319-66158-2_42

53

[15] D. Bertsimas and S. S. Vempala. Solving convex programs by random walks. Jour-
nal of the ACM, 51(4):540–556, 2004. url: https://doi.org/10.1145/1008731.

1008733.

[16] P. Bieber, R. Delmas, and C. Seguin. DALculus - theory and tool for development
assurance level allocation. In F. Flammini, S. Bologna, and V. Vittorini, editors,
Computer Safety, Reliability, and Security - 30th International Conference, SAFE-
COMP 2011, Naples, Italy, September 19-22, 2011. Proceedings, volume 6894 of
Lecture Notes in Computer Science, pages 43–56. Springer, 2011. url: https :

//doi.org/10.1007/978-3-642-24270-0_4.

[17] G. Brewka, M. Diller, G. Heissenberger, T. Linsbichler, and S. Woltran. Solving
advanced argumentation problems with answer set programming. Theory and Prac-
tice of Logic Programming, 20(3):391–431, 2020. url: https://doi.org/10.1017/

S1471068419000474.

[18] C. Buchheim, A. Wiegele, and L. Zheng. Exact algorithms for the quadratic linear
ordering problem. INFORMS Journal on Computing, 22(1):168–177, 2010. url:
https://doi.org/10.1287/ijoc.1090.0318.

[19] M. R. Bussieck, A. S. Drud, and A. Meeraus. MINLPLib - A collection of test mod-
els for mixed-integer nonlinear programming. INFORMS Journal on Computing,
15(1):114–119, 2003. url: https://doi.org/10.1287/ijoc.15.1.114.15159.

[20] D. Chai and A. Kuehlmann. A fast pseudo-Boolean constraint solver. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 24(3):305–
317, 2005. url: https://doi.org/10.1109/TCAD.2004.842808.

[21] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. A modular approach
to MaxSAT modulo theories. In M. Järvisalo and A. V. Gelder, editors, Theory and
Applications of Satisfiability Testing - SAT 2013 - 16th International Conference,
Helsinki, Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture Notes in
Computer Science, pages 150–165. Springer, 2013. url: https://doi.org/10.

1007/978-3-642-39071-5_12.

[22] S. A. Cook. The complexity of theorem-proving procedures. In M. A. Harrison,
R. B. Banerji, and J. D. Ullman, editors, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA,
pages 151–158. ACM, 1971. url: https://doi.org/10.1145/800157.805047.

https://doi.org/10.1145/1008731.1008733
https://doi.org/10.1145/1008731.1008733
https://doi.org/10.1007/978-3-642-24270-0_4
https://doi.org/10.1007/978-3-642-24270-0_4
https://doi.org/10.1017/S1471068419000474
https://doi.org/10.1017/S1471068419000474
https://doi.org/10.1287/ijoc.1090.0318
https://doi.org/10.1287/ijoc.15.1.114.15159
https://doi.org/10.1109/TCAD.2004.842808
https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1145/800157.805047

54

[23] W. J. Cook, C. R. Coullard, and G. Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, 1987. url: https://doi.org/

10.1016/0166-218X(87)90039-4.

[24] G. Cornuéjols and M. Dawande. A class of hard small 0-1 programs. INFORMS
Journal on Computing, 11(2):205–210, 1999. url: https://doi.org/10.1287/

ijoc.11.2.205.

[25] I. I. Cplex. V12. 1: user’s manual for CPLEX. International Business Machines
Corporation, 46(53):157, 2009.

[26] H. P. Crowder, E. L. Johnson, and M. W. Padberg. Solving large-scale zero-one
linear programming problems. Operational Research, 31(5):803–834, 1983. url:
https://doi.org/10.1287/opre.31.5.803.

[27] A. S. S. da Graça. Satisfiability-based Algorithms for Haplotype inference. PhD
thesis, Instituto Superior Técnico, 2011.

[28] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large-scale
traveling-salesman problem. Operational Research, 2(4):393–410, 1954. url: https:

//doi.org/10.1287/opre.2.4.393.

[29] J. Davies. Solving MAXSAT by Decoupling Optimization and Satisfaction. PhD
thesis, University of Toronto, 2013.

[30] J. Davies and F. Bacchus. Postponing optimization to speed up MAXSAT solv-
ing. In C. Schulte, editor, Principles and Practice of Constraint Programming -
19th International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013.
Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 247–262.
Springer, 2013. url: https://doi.org/10.1007/978-3-642-40627-0_21.

[31] J. Davies and F. Bacchus. Solving MAXSAT by solving a sequence of simpler
SAT instances. In J. H. Lee, editor, Principles and Practice of Constraint Pro-
gramming - CP 2011 - 17th International Conference, CP 2011, Perugia, Italy,
September 12-16, 2011. Proceedings, volume 6876 of Lecture Notes in Computer
Science, pages 225–239. Springer, 2011. url: https://doi.org/10.1007/978-3-

642-23786-7_19.

[32] J. Devriendt, A. Gleixner, and J. Nordström. Learn to relax: integrating 0-1 integer
linear programming with pseudo-Boolean conflict-driven search. Constraints, 2021.
issn: 1383-7133. url: https://doi.org/10.1007/s10601-020-09318-x.

https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1287/ijoc.11.2.205
https://doi.org/10.1287/ijoc.11.2.205
https://doi.org/10.1287/opre.31.5.803
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/s10601-020-09318-x

55

[33] J. Devriendt, S. Gocht, E. Demirovic, J. Nordström, and P. J. Stuckey. Cutting to
the core of pseudo-Boolean optimization: combining core-guided search with cutting
planes reasoning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 3750–3758. AAAI
Press, 2021. url: https://ojs.aaai.org/index.php/AAAI/article/view/

16492.

[34] Dimacs. https://www.cs.princeton.edu/courses/archive/fall03/cs302/

assignments/satisfaction/dimacs.pdf. Accessed: 29 April 2021.

[35] J. Dunagan and S. S. Vempala. A simple polynomial-time rescaling algorithm for
solving linear programs. Mathematical Programming, 114(1):101–114, 2008. url:
https://doi.org/10.1007/s10107-007-0095-7.

[36] K. Easton, G. L. Nemhauser, and M. A. Trick. The traveling tournament prob-
lem description and benchmarks. In T. Walsh, editor, Principles and Practice
of Constraint Programming - CP 2001, 7th International Conference, CP 2001,
Paphos, Cyprus, November 26 - December 1, 2001, Proceedings, volume 2239 of
Lecture Notes in Computer Science, pages 580–584. Springer, 2001. url: https:

//doi.org/10.1007/3-540-45578-7_43.

[37] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tac-
chella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518.
Springer, 2003. url: https://doi.org/10.1007/978-3-540-24605-3_37.

[38] N. Eén and N. Sörensson. Temporal induction by incremental SAT solving. Elec-
tronic Notes in Theoretical Computer Science, 89(4):543–560, 2003. url: https:

//doi.org/10.1016/S1571-0661(05)82542-3.

[39] M. Elf, M. Jünger, and G. Rinaldi. Minimizing breaks by maximizing cuts. Oper-
ations Research Letters, 31(3):343–349, 2003. url: https://doi.org/10.1016/

S0167-6377(03)00025-7.

[40] J. Elffers, J. Devriendt, S. Gocht, and J. Nordström. Roundingsat - the pseudo-
Boolean solver powered by proof complexity! https://gitlab.com/MIAOresearch/

roundingsat. Accessed 16 September 2021.

https://ojs.aaai.org/index.php/AAAI/article/view/16492
https://ojs.aaai.org/index.php/AAAI/article/view/16492
https://www.cs.princeton.edu/courses/archive/fall03/cs302/assignments/satisfaction/dimacs.pdf
https://www.cs.princeton.edu/courses/archive/fall03/cs302/assignments/satisfaction/dimacs.pdf
https://doi.org/10.1007/s10107-007-0095-7
https://doi.org/10.1007/3-540-45578-7_43
https://doi.org/10.1007/3-540-45578-7_43
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S0167-6377(03)00025-7
https://doi.org/10.1016/S0167-6377(03)00025-7
https://gitlab.com/MIAOresearch/roundingsat
https://gitlab.com/MIAOresearch/roundingsat

56

[41] J. Elffers and J. Nordström. Divide and conquer: towards faster pseudo-Boolean
solving. In J. Lang, editor, Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden, pages 1291–1299. ijcai.org, 2018. url: https://doi.org/10.24963/

ijcai.2018/180.

[42] J. Farkas. Theorie der einfachen ungleichungen. Journal für die reine und ange-
wandte Mathematik, 124:1–27, 1902. url: http://eudml.org/doc/149129.

[43] K. Fazekas, F. Bacchus, and A. Biere. Implicit hitting set algorithms for maximum
satisfiability modulo theories. In D. Galmiche, S. Schulz, and R. Sebastiani, editors,
Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 134–151.
Springer, 2018. url: https://doi.org/10.1007/978-3-319-94205-6_10.

[44] J. Franco and J. Martin. A history of satisfiability. In A. Biere, M. Heule, H. van
Maaren, and T. Walsh, editors, Handbook of Satisfiability. Volume 185, Frontiers
in Artificial Intelligence and Applications, chapter 1, pages 3–55. IOS Press, 2009.
url: https://doi.org/10.3233/978-1-58603-929-5-3.

[45] P. Galinier, B. Jaumard, R. Morales, G. Pesan, E. Montréal, and C. Montreal. A
constraint-based approach to the Golomb ruler problem, 2007.

[46] D. M. Gay. Electronic mail distribution of linear programming test problems. Math-
ematical Programming Society COAL Newsletter, 13:10–12, 1985.

[47] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P.
Veber. Repair and prediction (under inconsistency) in large biological networks
with answer set programming. In F. Lin, U. Sattler, and M. Truszczynski, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010.
AAAI Press, 2010. url: http://aaai.org/ocs/index.php/KR/KR2010/paper/

view/1334.

[48] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991. url: https://doi.

org/10.1007/BF03037169.

https://doi.org/10.24963/ijcai.2018/180
https://doi.org/10.24963/ijcai.2018/180
http://eudml.org/doc/149129
https://doi.org/10.1007/978-3-319-94205-6_10
https://doi.org/10.3233/978-1-58603-929-5-3
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1334
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1334
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169

57

[49] B. Ghaddar, M. F. Anjos, and F. Liers. A branch-and-cut algorithm based on
semidefinite programming for the minimum k-partition problem. Annals of Opera-
tions Research, 188(1):155–174, 2011. url: https://doi.org/10.1007/s10479-

008-0481-4.

[50] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold,
P. M. Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H. D. Mittel-
mann, D. Ozyurt, T. K. Ralphs, D. Salvagnin, and Y. Shinano. MIPLIB 2017: Data-
Driven Compilation of the 6th Mixed-Integer Programming Library. Mathematical
Programming Computation, 2021. url: https://doi.org/10.1007/s12532-020-

00194-3.

[51] J. Gottlieb and L. Paulmann. Genetic algorithms for the fixed charge transporta-
tion problem. In 1998 IEEE International Conference on Evolutionary Computa-
tion Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.
98TH8360), pages 330–335. IEEE, 1998. url: https://doi.org/10.1109/ICEC.

1998.699754.

[52] A. Graça, J. Marques-Silva, I. Lynce, and A. L. Oliveira. Haplotype inference
with pseudo-Boolean optimization. Annals of Operations Research, 184(1):137–162,
2011. url: https://doi.org/10.1007/s10479-009-0675-4.

[53] M. Gwynne and O. Kullmann. Attacking AES via SAT. PhD thesis, 2010.

[54] S. S. Heragu and A. Kusiak. Machine layout problem in flexible manufacturing
systems. Operations Research, 36(2):258–268, 1988. url: https://doi.org/10.

1287/opre.36.2.258.

[55] A. Hyttinen, P. Saikko, and M. Järvisalo. A core-guided approach to learning op-
timal causal graphs. In C. Sierra, editor, Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017, pages 645–651. ijcai.org, 2017. url: https://doi.org/

10.24963/ijcai.2017/90.

[56] A. Ignatiev, A. Previti, M. H. Liffiton, and J. Marques-Silva. Smallest MUS ex-
traction with minimal hitting set dualization. In G. Pesant, editor, Principles and
Practice of Constraint Programming - 21st International Conference, CP 2015,
Cork, Ireland, August 31 - September 4, 2015, Proceedings, volume 9255 of Lecture
Notes in Computer Science, pages 173–182. Springer, 2015. url: https://doi.

org/10.1007/978-3-319-23219-5_13.

https://doi.org/10.1007/s10479-008-0481-4
https://doi.org/10.1007/s10479-008-0481-4
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1109/ICEC.1998.699754
https://doi.org/10.1109/ICEC.1998.699754
https://doi.org/10.1007/s10479-009-0675-4
https://doi.org/10.1287/opre.36.2.258
https://doi.org/10.1287/opre.36.2.258
https://doi.org/10.24963/ijcai.2017/90
https://doi.org/10.24963/ijcai.2017/90
https://doi.org/10.1007/978-3-319-23219-5_13
https://doi.org/10.1007/978-3-319-23219-5_13

58

[57] M. Janota, A. Morgado, J. F. Santos, and V. M. Manquinho. The Seesaw algorithm:
function optimization using implicit hitting sets. In L. D. Michel, editor, 27th In-
ternational Conference on Principles and Practice of Constraint Programming, CP
2021, Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210
of LIPIcs, 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
url: https://doi.org/10.4230/LIPIcs.CP.2021.31.

[58] S. Joshi, R. Martins, and V. M. Manquinho. Generalized totalizer encoding for
pseudo-Boolean constraints. In G. Pesant, editor, Principles and Practice of Con-
straint Programming - 21st International Conference, CP 2015, Cork, Ireland, Au-
gust 31 - September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer
Science, pages 200–209. Springer, 2015. url: https://doi.org/10.1007/978-3-

319-23219-5_15.

[59] A. P. Kamath, N. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. A
continuous approach to inductive inference. Mathematical Programming, 57:215–
238, 1992. url: https://doi.org/10.1007/BF01581082.

[60] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4(4):373–396, 1984. url: https://doi.org/10.1007/BF02579150.

[61] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series,
pages 85–103. Plenum Press, New York, 1972. url: https://doi.org/10.1007/

978-1-4684-2001-2_9.

[62] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Compu-
tational Mathematics and Mathematical Physics, 20(1):53–72, 1980. url: https:

//doi.org/10.1016/0041-5553(80)90061-0.

[63] V. Klee and G. J. Minty. How good is the simplex algorithm. Inequalities, 3(3):159–
175, 1972.

[64] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E.
Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. D. Mittelmann, T. K.
Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical
Programming Computation, 3(2):103–163, 2011. url: https://doi.org/10.1007/

s12532-011-0025-9.

https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/BF01581082
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1007/s12532-011-0025-9
https://doi.org/10.1007/s12532-011-0025-9

59

[65] R. Kolisch and A. Sprecher. PSPLIB - a project scheduling problem library: OR
software - ORSEP operations research software exchange program. European Jour-
nal of Operational Research, 96(1):205–216, 1997. issn: 0377-2217. url: https:

//doi.org/10.1016/S0377-2217(96)00170-1.

[66] D. Le Berre, P. Marquis, and S. Roussel. Planning personalised museum visits. Pro-
ceedings of the International Conference on Automated Planning and Scheduling,
23(1):380–388, 2013. url: https://ojs.aaai.org/index.php/ICAPS/article/

view/13587.

[67] D. Le Berre and A. Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7(2-3):59–64, 2010. url: https://doi.org/

10.3233/sat190075.

[68] F. Liers, E. Marinari, U. Pagacz, F. Ricci-Tersenghi, and V. Schmitz. A non-
disordered glassy model with a tunable interaction range. Journal of Statistical
Mechanics: Theory and Experiment, 2010(05):L05003, 2010. issn: 1742-5468. url:
http://dx.doi.org/10.1088/1742-5468/2010/05/L05003.

[69] S. Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Retim-
ing and resynthesis: optimizing sequential networks with combinational techniques.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
10(1):74–84, 1991. url: https://doi.org/10.1109/43.62793.

[70] V. M. Manquinho, J. Marques-Silva, and J. Planes. Algorithms for weighted Boolean
optimization. In O. Kullmann, editor, Theory and Applications of Satisfiability Test-
ing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30
- July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science,
pages 495–508. Springer, 2009. url: https://doi.org/10.1007/978-3-642-

02777-2_45.

[71] J. Marques-Silva and I. Lynce. On improving MUS extraction algorithms. In K. A.
Sakallah and L. Simon, editors, Theory and Applications of Satisfiability Testing
- SAT 2011 - 14th International Conference, SAT 2011, Ann Arbor, MI, USA,
June 19-22, 2011. Proceedings, volume 6695 of Lecture Notes in Computer Science,
pages 159–173. Springer, 2011. url: https://doi.org/10.1007/978-3-642-

21581-0_14.

[72] J. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999. url: https:

//doi.org/10.1109/12.769433.

https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/S0377-2217(96)00170-1
https://ojs.aaai.org/index.php/ICAPS/article/view/13587
https://ojs.aaai.org/index.php/ICAPS/article/view/13587
https://doi.org/10.3233/sat190075
https://doi.org/10.3233/sat190075
http://dx.doi.org/10.1088/1742-5468/2010/05/L05003
https://doi.org/10.1109/43.62793
https://doi.org/10.1007/978-3-642-02777-2_45
https://doi.org/10.1007/978-3-642-02777-2_45
https://doi.org/10.1007/978-3-642-21581-0_14
https://doi.org/10.1007/978-3-642-21581-0_14
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433

60

[73] R. Martins, V. M. Manquinho, and I. Lynce. Open-WBO: A modular MaxSAT
solver, in C. Sinz and U. Egly, editors, Theory and Applications of Satisfiability
Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, vol-
ume 8561 of Lecture Notes in Computer Science, pages 438–445. Springer, 2014.
url: https://doi.org/10.1007/978-3-319-09284-3_33.

[74] G. Mavrotas. Effective implementation of the epsilon-constraint method in multi-
objective mathematical programming problems. Applied Mathematics and Compu-
tation, 213(2):455–465, 2009. url: https://doi.org/10.1016/j.amc.2009.03.

037.

[75] C. Michel and M. Rueher. Handling software upgradeability problems with MILP
solvers. In I. Lynce and R. Treinen, editors, Proceedings First International Work-
shop on Logics for Component Configuration, LoCoCo 2010, Edinburgh, UK, 10th
July 2010, volume 29 of Electronic Proceedings in Theoretical Computer Science,
pages 1–10, 2010. url: https://doi.org/10.4204/EPTCS.29.1.

[76] H. D. Mittelmann. Testcases. http://plato.asu.edu/sub/testcases.html.
Accessed: 29 April 2021.

[77] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley
Interscience Series in Discrete Mathematics and Optimization. Wiley, 1988. url:
https://doi.org/10.1002/9781118627372.

[78] Y. Oren, M. Kirschbaum, T. Popp, and A. Wool. Algebraic side-channel analysis
in the presence of errors. In S. Mangard and F. Standaert, editors, Cryptographic
Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes
in Computer Science, pages 428–442. Springer, 2010. url: https://doi.org/10.

1007/978-3-642-15031-9_29.

[79] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, 1982.

[80] C. Pizzuti. Computing prime implicants by integer programming. In Eigth Inter-
national Conference on Tools with Artificial Intelligence, ICTAI ’96, Toulouse,
France, November 16-19, 1996, pages 332–336. IEEE Computer Society, 1996. url:
https://doi.org/10.1109/TAI.1996.560473.

https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1016/j.amc.2009.03.037
https://doi.org/10.1016/j.amc.2009.03.037
https://doi.org/10.4204/EPTCS.29.1
http://plato.asu.edu/sub/testcases.html
https://doi.org/10.1002/9781118627372
https://doi.org/10.1007/978-3-642-15031-9_29
https://doi.org/10.1007/978-3-642-15031-9_29
https://doi.org/10.1109/TAI.1996.560473

61

[81] B. C. Ribas, R. M. Suguimoto, R. A. N. R. Montaño, F. Silva, and M. A. Castilho.
PBFVMC: A new pseudo-Boolean formulation to virtual-machine consolidation. In
Brazilian Conference on Intelligent Systems, BRACIS 2013, Fortaleza, CE, Brazil,
19-24 October, 2013, pages 201–206. IEEE Computer Society, 2013. url: https:

//doi.org/10.1109/BRACIS.2013.41.

[82] O. Roussel. Pseudo-Boolean competition 2016. http://www.cril.univ-artois.

fr/PB16/. Accessed: 25 April 2021.

[83] O. Roussel and V. Manquinho. Input/output format and solver requirements for
the competitions of pseudo-Boolean solvers, 2012. url: http://www.cril.univ-

artois.fr/PB12/format.pdf. Accessed: 25 April 2021.

[84] O. Roussel and V. Manquinho. Pseudo-Boolean and cardinality constraints. In
Handbook of Satisfiability, 2nd edition. A. Biere, M. Heule, H. Van Maaren, and T.
Walsh, editors. Frontiers in Artificial Intelligence and Applications. IOS Press BV,
2021. Chapter 28, pages 1087–1129. url: https://doi.org/10.3233/FAIA201012.

[85] P. Saikko. Implicit Hitting Set Algorithms for Constraint Optimization. PhD thesis,
University of Helsinki, 2019.

[86] P. Saikko. Re-implementing and Extending a Hybrid SAT-IP Approach to Maximum
Satisfiability. Master’s thesis, University of Helsinki, 2015. url: https://helda.

helsinki.fi/bitstream/handle/10138/159186/msc_thesis_saikko.pdf.

[87] P. Saikko, J. Berg, and M. Järvisalo. LMHS: A SAT-IP hybrid maxsat solver. In
N. Creignou and D. Le Berre, editors, Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8,
2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 539–
546. Springer, 2016. url: https://doi.org/10.1007/978-3-319-40970-2_34.

[88] P. Saikko, C. Dodaro, M. Alviano, and M. Järvisalo. A hybrid approach to optimiza-
tion in answer set programming. In M. Thielscher, F. Toni, and F. Wolter, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth
International Conference, KR 2018, Tempe, Arizona, 30 October - 2 November
2018, pages 32–41. AAAI Press, 2018. url: https://aaai.org/ocs/index.php/

KR/KR18/paper/view/18021.

[89] P. Saikko, J. P. Wallner, and M. Järvisalo. Implicit hitting set algorithms for rea-
soning beyond NP. In C. Baral, J. P. Delgrande, and F. Wolter, editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Fifteenth

https://doi.org/10.1109/BRACIS.2013.41
https://doi.org/10.1109/BRACIS.2013.41
http://www.cril.univ-artois.fr/PB16/
http://www.cril.univ-artois.fr/PB16/
http://www.cril.univ-artois.fr/PB12/format.pdf
http://www.cril.univ-artois.fr/PB12/format.pdf
https://doi.org/10.3233/FAIA201012
https://helda.helsinki.fi/bitstream/handle/10138/159186/msc_thesis_saikko.pdf
https://helda.helsinki.fi/bitstream/handle/10138/159186/msc_thesis_saikko.pdf
https://doi.org/10.1007/978-3-319-40970-2_34
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021

62

International Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016,
pages 104–113. AAAI Press, 2016. url: http://www.aaai.org/ocs/index.php/

KR/KR16/paper/view/12812.

[90] M. Sakai and H. Nabeshima. Construction of an ROBDD for a PB-constraint in
band form and related techniques for PB-solvers. IEICE Transactions on Informa-
tion and Systems, 98-D(6):1121–1127, 2015. url: https://doi.org/10.1587/

transinf.2014FOP0007.

[91] R. Sebastiani and P. Trentin. OptiMathSAT: A tool for optimization modulo the-
ories. Journal of Automated Reasoning, 64(3):423–460, 2020. url: https://doi.

org/10.1007/s10817-018-09508-6.

[92] R. Shamir. The efficiency of the simplex method: a survey. Management science,
33(3):301–334, 1987.

[93] H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):165–189, 2006.
url: https://doi.org/10.3233/sat190020.

[94] P. Smirnov, J. Berg, and M. Järvisalo. Pseudo-Boolean Optimization by Implicit
Hitting Sets. In L. D. Michel, editor, 27th International Conference on Principles
and Practice of Constraint Programming (CP 2021), volume 210 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), 51:1–51:20, Dagstuhl, Germany.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. url: https://drops.

dagstuhl.de/opus/volltexte/2021/15342.

[95] D. A. Spielman and S. Teng. Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.
url: https://doi.org/10.1145/990308.990310.

[96] F. Trösser, S. de Givry, and G. Katsirelos. Improved acyclicity reasoning for Bayesian
network structure learning with constraint programming. In Z. Zhou, editor, Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages 4250–
4257. ijcai.org, 2021. url: https://doi.org/10.24963/ijcai.2021/584.

[97] J. P. Walser. 0-1 integer optimization benchmarks. https : / / www . ps . uni -

saarland.de/~walser/benchmarks/benchmarks.html. Accessed: 29 April 2021.

http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812
https://doi.org/10.1587/transinf.2014FOP0007
https://doi.org/10.1587/transinf.2014FOP0007
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.3233/sat190020
https://drops.dagstuhl.de/opus/volltexte/2021/15342
https://drops.dagstuhl.de/opus/volltexte/2021/15342
https://doi.org/10.1145/990308.990310
https://doi.org/10.24963/ijcai.2021/584
https://www.ps.uni-saarland.de/~walser/benchmarks/benchmarks.html
https://www.ps.uni-saarland.de/~walser/benchmarks/benchmarks.html

63

[98] J. P. Walser. Solving linear pseudo-Boolean constraint problems with local search.
In B. Kuipers and B. L. Webber, editors, Proceedings of the Fourteenth National
Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial
Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode
Island, USA, pages 269–274. AAAI Press / The MIT Press, 1997. url: http:

//www.aaai.org/Library/AAAI/1997/aaai97-042.php.

[99] K. Xu. Pseudo-Boolean (0-1 integer programming) benchmarks with hidden opti-
mum solutions. http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/pb-

benchmarks.htm. Accessed: 29 April 2021.

[100] C. Yang and M. J. Ciesielski. Synthesis for mixed CMOS/PTl logic. In I. Bolsens,
editor, 2000 Design, Automation and Test in Europe (DATE 2000), 27-30 March
2000, Paris, France, page 750. IEEE, 2000. url: https://doi.org/10.1109/

DATE.2000.840883.

[101] S. Yang. Logic synthesis and optimization benchmarks user guide: version 3.0. Mi-
croelectronics Center of North Carolina (MCNC), 1991.

[102] S. Zahidi, F. A. Aloul, A. Sagahyroon, and W. El-Hajj. Using SAT & ILP techniques
to solve enhanced ILP formulations of the clustering problem in MANETS. In
8th International Wireless Communications and Mobile Computing Conference,
IWCMC 2012, Limassol, Cyprus, August 27-31, 2012, pages 1085–1090. IEEE,
2012. url: https://doi.org/10.1109/IWCMC.2012.6314357.

[103] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven
learning in Boolean satisfiability solver. In R. Ernst, editor, Proceedings of the 2001
IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2001,
San Jose, CA, USA, November 4-8, 2001, pages 279–285. IEEE Computer Society,
2001. url: https://doi.org/10.1109/ICCAD.2001.968634.

http://www.aaai.org/Library/AAAI/1997/aaai97-042.php
http://www.aaai.org/Library/AAAI/1997/aaai97-042.php
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/pb-benchmarks.htm
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/pb-benchmarks.htm
https://doi.org/10.1109/DATE.2000.840883
https://doi.org/10.1109/DATE.2000.840883
https://doi.org/10.1109/IWCMC.2012.6314357
https://doi.org/10.1109/ICCAD.2001.968634

Appendix A Problem domains

Table A.1 lists all problem domains from which benchmarks were used for the experiments
in Section 6. Each problem domain entry includes the name of the problem domain
with the number of benchmarks per problem domain stated in parentheses. The entry is
followed by a brief description on the nature of the problem and relevant citations from
which instances of the problem domain have originated from. The table has (?) marked
for the description and citation entry in case we could not verify the source of the given
problem domain.

Table A.1: Problem domains from the benchmark set used for experiments. Problem domain name
is followed by the number of benchmarks that are present in the domain (#). Description and citation
entries are marked with (?) if we could not verify the source of the given problem domain.

Problem domain (#) Description Citation
10orplus/9orless (156)

Upgradeability problem – finding the best solution according to some criteria
to install, remove or upgrade packages in a given installation

[75]caixa (24)
rand.*list (118)

BA (1440) Planning personalized Museum visits given a set of preferences and constraints
– Palais des Beaux Arts de Lille

[66]

NG (960) Planning personalized Museum visits given a set of preferences and constraints
– National Gallery of London

[66]

BioRepair (30) Repairing large-scale biological networks
(encoded to PBO from Answer Set Programming)

[47]

Metro (30) Problems related to transport systems
(encoded to PBO from Answer Set Programming)

[17]

ShiftDesign (30) Minimizing the number of workshifts while reducing over- and understaffing
(encoded to PBO from Answer Set Programming)

[2]

Timetabling (30) Assigning a number of lectures to a limited set of timeslots and rooms
(encoded to PBO from Answer Set Programming)

[12]

EmployeeScheduling (14) Assigning employees into a given set of shifts over a fixed period of time while meeting
the preferences and organizational work regulations of the employees

[7]

MANETs (150) Clustering Problem in Mobile Ad-Hoc Networks to maximize the lifetime of the network [102]
area_* (59)

Minimization of area in multiple constant multiplications for FIR digital filters [4]
trarea_ac (18)
aries-da_nrp (70) ? ?
bsg (60) ? ?
mis/mds (120) ? ?
course-ass (6) Course allocation for the law school of the Saarland University [97]
decomp (10) ? ?
data (68) Problems of various problem domains retireved from Netlib repository [46]
dt-problems (60) ? ?
domset (15) ? ?
factor (186)

Linearized number factorization problems [83]
factor-mod-B (225)
featureSubscription (20) ? ?
frbXX-XX-opb (40) Generated satisfiable PBO instances [99]

ii Appendix A

Table A.1: (continued) Problem domains from the benchmark set used for experiments. Problem
domain name is followed by the number of benchmarks that are present in the domain (#). Description
and citation entries are marked with (?) if we could not verify the source of the given problem domain.

Problem domain (#) Description Citation
fctp (4) Fixed charge transportation problem – minimizing the shipping cost between plants and

customers depending on the transported amount of a single commodity
[51]

flexray (9) ? ?
fome (3) ? ?
graca (100)

Haplotype inference for identifying genetic variations
[27]

haplotype (8) [52]
golomb-rulers (34) Finding smallest Golomb rulers [45]
garden (7) ? ?
hw32/hw64/hw128 (27) Placing a set of virtual machines in a set of hardware in such a way that the workload on

hardware is increased and the virtual machines operate more energy-efficiently
[81]

jXXopt (2040) Generated job-scheduling problems from the PSPLib library [65]
keeloq_tasca (4) Tolerant Algebraic Side-Channel Analysis – attacks on the Keeloq cipher [78]
kullmann (7) Attacking AES block cipher [53]
lion9-single-obj (1513) Optimizing the costs for quality assurance of hardware and software functions of an aircraft [16]
logic-synthesis (74) Implementing a logical specification into a circuit [69, 101]
miplib/neos (81) Unknown problems from the MIPLIB library that were gathered from the NEOS server [64]
miplib/other (457) Problems of various problem domains retireved from the MIPLIB library [64]
market-split (20) Generated PBO instances for market-split problem [24]
opb/graphpart (31) Graph partitioning problem [49]
opb/autocorr_bern (43) Degree-four model from theoretical physics for low autocorrelated binary sequences [68]
opb/sporttournament
(22)

Minimizing breaks in sports tournaments via max-cut encoding [39]

opb/edgecross (19) Edge-crossing minimization in bipartite graphs [18]
opb/pb (8) General quadratic assignment problem that was linearized [74]
opb/faclay (10) Arranging single row facilities to minimize the total weighted sum of the center-to-center

distances between all pairs of facilities
[54]

opb/other (6) Miscellaneous benchmarks from the MINLPLib library [19]
primes/aim (48) Computing prime implicants from a set of artificially generated 3-sat instances with exactly

one satisfying assignment
[80, 34]

primes/jnh (16) Computing prime implicants from a set of random instances generated by John Hooker [80, 34]
primes/ii (41) Computing prime implicants from inductive inference instances [80, 34, 59]
primes/par (30) Computing prime implicants from instances that arise from a problem in learning the parity

function
[80, 34]

primes/other (13) Computing prime implicants from other miscellaneous CNF instances [80, 34]
routing (15) Global routing of a random set of n two-pin connections over a two-dimensional grid of

cells, where the capacity of each intercell channel is limited
[6]

radar (12) Allocate a number of radar stations for observation of a geographic area, such that each
point is observed by at least three stations

[98]

synthesis-ptl-cmos (10) Performing logic synthesis for PTL/CMOS circuits [100]
testset (6) ? ?
ttp (8) Sports timetabling problems – scheduling sports matches in consideration with the travel

time and the playing schedule of the teams
[36]

unibo (36) Problems of various problem domains supplied by the University of Bologna [76]
vtxcov (15) ? ?
wnq (15) ? ?

	Introduction
	Preliminaries
	Pseudo-Boolean optimization
	Integer programs and linear relaxations
	Unsatisfiable cores
	Minimum-cost hitting set

	An overview of PBO algorithms
	IP solving with branch-and-cut
	PBO solving by encoding to CNF
	Repurposing CDCL for PB solving

	Solving PBO via implicit hitting sets
	Solving PBO by computing a minimum-cost hitting set over all cores
	Implicit hitting sets
	A rudimentary algorithm for PBO using IHS

	Improvements to IHS-based PBO solving
	Core shrinking through additional PB calls
	Assumption set shuffling
	Disjoint cores
	Weight-aware core extraction
	Seeding constraints to the MCHS solver
	Non-optimal hitting sets
	Fixing individual variables

	Experiments
	Implementation
	Benchmarks
	Results
	Comparison with specialized PBO solvers
	Impact of different search techniques in PBO-IHS
	Comparison with a commercial IP solver
	Division of work between two components of PBO-IHS

	Conclusion
	Bibliography
	Problem domains

