
Fast Subsumption Checks
Using Anti-Links

Anavai Ramesh Neil V. Murray
Bernhard Beckert Reiner H�ahnle

Interner Bericht 24/95

Universit�at Karlsruhe

Fakult�at f�ur Informatik

Publication Note

This report has been submitted for publication elsewhere, and will be copy-
righted if accepted.

Fast Subsumption Checks Using Anti-Links�

Anavai Ramesh and Neil V. Murray
Institute for Programming & Logics, Department of Computer Science, University at Albany,
Albany, NY 12222. Email: frameshag,nvmg@cs.albany.edu

and

Bernhard Beckert and Reiner H�ahnle
University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems,
76128 Karlsruhe, Germany. Email: fbeckert,haehnleg@ira.uka.de,
WWW: http://i12www.ira.uka.de/

April 20, 1995

Abstract. The concept of anti-link is de�ned, and useful equivalence-preserving operations based
on anti-links are introduced. These operations eliminate a potentially large number of subsumed
paths in a negation normal form formula. Those anti-links that directly indicate the presence of
subsumed paths are characterized. The operations have linear time complexity in the size of that
part of the formula containing the anti-link.

The problem of removing all subsumed paths in an NNF formula is shown to be NP-hard, even
though such formulas may be small relative to the size of their path sets. The general problem
of determining whether there exists a pair of subsumed paths associated with an arbitrary anti-
link is shown to be NP-complete. Additional techniques based on strictly pure full blocks are
introduced and are also shown to eliminate redundant subsumption checks. The e�ectiveness of
these techniques is examined with respect to some benchmark examples from the literature.

1 Introduction

The logical consequences of a ground formula, expressed as minimal implied clau-
ses, are useful in certain approaches to non-monotonic reasoning (Kean and Tsi-
knis, 1992; Przymusinski, 1989; Reiter and de Kleer, 1987), where all consequences
of a formula set (e.g., the support set for a proposed commonsense conclusion) are
required. Minimal conjunctions that imply a formula are useful in situations whe-
re satisfying models are desired, as in error analysis during hardware veri�cation.
Such minimal implied clauses are the formula's prime implicates, and the minimal
conjunctions that imply it are its prime implicants.

Many algorithms have been proposed to compute the prime implicates of pro-
positional boolean formulas. Most algorithms (de Kleer, 1992; Jackson and Pais,
1990; Jackson, 1992; Kean and Tsiknis, 1990; Slagle et al., 1970) assume that
the input is either in conjunctive normal form (CNF) or in disjunctive normal
form (DNF). The algorithm of (Ngair, 1993) requires the input to be a conjuncti-

� This research was supported in part by National Science Foundation Grant CCR-9101208
(Ramesh and Murray) and by Deutsche Forschungsgemeinschaft within the Schwerpunktpro-
gramm Deduktion (Beckert and H�ahnle). Some of the results in this paper appear in condensed

form in the Proceedings of the 5th International Conference on Logic Programming and Automated
Reasoning, Kiev, Ukraine, July 16{21, 1994, and in the Proceedings of the National Conference
on Arti�cial Intelligence, Seattle, WA, July 31{August 4, 1994.

2 Anavai Ramesh et al.

on of DNF formulas. In (Ramesh and Murray, 1993) we propose a set of techniques
for �nding the prime implicates of formulas in negation normal form (NNF). Our
techniques are based on dissolution, an inference rule introduced in (Murray and
Rosenthal, 1987b), and on an algorithm called Pi. We have discovered classes of
formulas for which our techniques are polynomial but for which any CNF/DNF-
based technique must be exponential in the size of the input. Ngair has also
introduced similar examples; however, our method is more general than Ngair's
which is based on order theory (Ngair, 1993). Coudert and Madre (1992) have
also developed an algorithm for computing prime implicates and implicants of for-
mulas in which binary decision diagrams (BDDs) are employed. Although we use
prime implicate/implicant generation as an example to demonstrate the utility of
anti-link operations, anti-link operations can be employed in any application that
requires eliminating subsumed paths in an NNF formula. We have successfully
used anti-link operations in a diagnosis system (Ramesh and Murray, 1995).

In (Ramesh and Murray, 1993) we describe the Pi algorithm; there, Pi is used
to enumerate all the prime implicates of a full dissolvent, an NNF formula that
has no conjunctive links (de�ned later). Pi repeatedly does subsumption checks to
keep intermediate results as small as possible. However these checks are expensive.
Many result in failure, and they have to be done on sets which can be exponentially
large. The time required for these operations can be reduced by using a more
compact representation of the intermediate results (de Kleer, 1992), but avoiding
as many such checks as possible is the focus of this paper.

We show that the full dissolvent can be restructured before applying Pi such
that many non-prime implicates are removed without doing subsumption checks
at all. We de�ne disjunctive and conjunctive anti-links1 in NNF formulas, and we
identify operations to remove such anti-links and their associated subsumed paths.
This leaves fewer subsumption checks for the Pi algorithm.

In the next section we describe our path semantics viewpoint and our graphical
representation of formulas in classical logic. In Section 3 we introduce anti-links

and develop useful equivalence-preserving operations based on them. In Section 4,
complexity issues are discussed and some NP-completeness results are proven.
Section 5 introduces further techniques based on strictly pure subformulas. The
e�ectiveness of our techniques on certain benchmark formulas described by Ngair
(1993) is explored. In Section 6 we introduce strictly pure full blocks and use them
to develop a method that reduces the number of subsumption tests required.

1 Anti-links and some associated operators were �rst proposed by Beckert and H�ahnle | perso-
nal communication. The �rst motivation for studying anti-links arose in connection with regular
clausal tableau calculi (Letz et al., 1992). The anti-link rule as it will be de�ned later can be
viewed as an implementation of the regularity condition in (Letz et al., 1992) for the propositional
non-clausal case (Letz et al. considered the �rst-order clausal case). There, re�nements of general
inference rules are considered, whereas the anti-link rule allows implementation as a preprocessing
step.

Fast Subsumption Checks Using Anti-Links 3

2 Foundations: Facts on Formulas in Negation Normal Form

We assume the reader to be familiar with the notions of atom, literal, and formula

from classical logic. We consider only formulas in negation normal form (NNF):
The only connectives used are conjunction and disjunction, and all negations are
at the atomic level. This restriction is reasonable, since formulas that contain
negations and other operators at any level can be converted to NNF in polynomial
time.

In this section, we introduce a number of technical terms and de�nitions that
are treated in detail in (Murray and Rosenthal, 1993). They are required for the
development of the anti-link operations de�ned in Section 3, and they make the
paper self-contained even for readers not familiar with dissolution.

2.1 Semantic Graphs

Semantic graphs are a graphical representation of NNF formulas:

Definition 1. A semantic graph consists either of

1. one of the constants true and false,

2. a literal A or A,

3. a c-arc, which is a conjunction of two semantic graphs, or

4. a d-arc, which is a disjunction of two semantic graphs.

We use the notation (X; Y)c for the c-arc fromX to Y and similarly use (X; Y)d
for a d-arc; the subscript may be omitted when no confusion is possible.

Each semantic graph used in the construction of a semantic graph G is called
an explicit subgraph of G. If G = (X; Y)c, then X (resp. Y) is a fundamental

subgraph of G if X (Y) is not a c-arc; otherwise the fundamental subgraphs of X
(Y) are fundamental subgraphs of G. Similarly if G = (X; Y)d, then X (Y) is
a fundamental subgraph of G if X (Y) is not a d-arc, otherwise the fundamental
subgraphs of X (Y) are fundamental subgraphs of G.

The set of nodes of a semantic graph G consists of all literal occurrences used
in its construction; the same holds for the set of c-arcs of G and the set of d-arcs

of G; i.e., these sets include the nodes, c-arcs, and d-carc, respectively, occurring
in the explicit subgraphs of G.

In the following, we identify a semantic graph G and the formula it represents2;
essentially, the only di�erence between the semantic graph and the formula is the
point of view, and we will use either term depending upon the desired emphasis.
For a more detailed exposition, see (Murray and Rosenthal, 1993).

2 true, false, and positive literals represent themselves; a negative literal A represents :A;
(X;Y)c represents X ^ Y ; and (X;Y)d represents X _ Y .

4 Anavai Ramesh et al.

In addition, we identify a semantic graph and the triple consisting of its set of
nodes, its set of c-arcs, and its set of d-arcs. The only exception, were this latter
identi�cation is not possible, because it would be ambiguous, are the semantic
graphs true and false (both correspond to (;; ;; ;)). Note, however, that when a
semantic graph contains occurrences of true and false, the obvious truth-functional
reductions apply. Unless otherwise stated, we will assume that semantic graphs
are automatically so reduced.

In pictorial representations, c-arcs and d-arcs are indicated by the usual symbols
for conjunction and disjunction; the arguments of a c-arc are placed vertically
above each other, the arguments of a d-arc horizontally besides each other.

Example 1. Below, the formula

G = (X ^ Y) = ((:C ^ A) _D _E)^ (:A _ (B ^ C)) (1)

is displayed as a semantic graph:

X
C

^
A

_ D _ E

^

Y

A _
B

^
C

(2)

The boxes in (2) show the explicit subgraphs used in the construction of the
semantic graph (since c-arcs and d-arcs are associative and commutative we do
not show the explicit subgraphs in subsequent pictorial representations).

Definition 2. If A and B are nodes in a graph, and if (X; Y)� is an arc (� = c

or � = d) with A in X and B in Y , we say that (X; Y)� is the arc connecting A

and B, and that A and B are �-connected.

Example 2. In (2), C is c-connected to each of B, A, C, D, and E, and is d-
connected to A.

Definition 3. Let G be a semantic graph. A partial c-path through G is a set
of nodes such that any two are c-connected, and a c-path through G is a partial
c-path that is not properly contained in any partial c-path.

(Partial) d-paths are de�ned accordingly using d-arcs instead of c-arcs.
`(p) denotes the set of literals of a path p.

Fast Subsumption Checks Using Anti-Links 5

Example 3. Below, the semantic graph (2) is shown with lines indicating its c-
paths (on the left) and its d-paths (on the right):

C

^
A

_ D _ E

^

A _
B

^
C

C

^
A

_ D _ E

^

A _
B

^
C

The c-paths are fC;A;Ag, fC;A;B; Cg, fD;Ag, fD;B;Cg, fE;Ag, fE;B;Cg;
the d-paths are fC;D;Eg, fA;D;Eg, fA;Bg, fA;Cg.

The following lemma is obvious.

Lemma 1. Let G be a semantic graph. Then an interpretation I satis�es (falsi-
�es) G i� I satis�es (falsi�es) every literal on some c-path (d-path) through G.

2.1.1 Subgraphs
We will frequently �nd it useful to consider subgraphs of a semantic graph that
are not explicit.

Definition 4. Given a semantic graph G and a non-empty subset N of the nodes
of G, the subgraph of G that corresponds to N is that part of G that consists of
nodes from N , where the logical structure of that part is preserved.

G �N denotes the subgraph of G corresponding to the set of nodes of G that
are not in N .

Two subgraphs H and H 0 of G meet each other if they have nodes in common.

A non-empty subset N of nodes corresponds unambiguously to one subgraph
of G. The empty set corresponds to both true and false; true and false are sub-
graphs of all semantic graphs.

For a more precise de�nition of subgraphs, see (Murray and Rosenthal, 1993).

Example 4. Below the subgraph of (2) is shown that corresponds to the node set
fA;D;A; g.

A _ D

^

A

6 Anavai Ramesh et al.

2.1.2 Blocks

The most important subgraphs are the blocks:

Definition 5. A c-blockH is a subgraph of a semantic graph G with the property
that any c-path p that includes at least one node fromH passes throughH , where p
passes through H i� the subset of p consisting of nodes of H is a c-path through H .

d-blocks are accordingly de�ned using d-paths.

Example 5. In (2), the subgraph corresponding to the node set fA;D;E;A; Cg
is a c-block. However, it is not a d-block since the d-path fA;Bg restricted to the
subgraph is fAg, which is a proper sub-path of fA;Cg in the subgraph.

Definition 6. A full block is a subgraph that is both a c-block and a d-block.

One way to envision a full block is to consider conjunction and disjunction as
n-ary connectives. Then a full block is a subset of the arguments of one connective,
i.e., of one explicit subformula.

Full blocks may be treated as essentially explicit subgraphs (up to the order of
arguments), and the Isomorphism Theorem from (Murray and Rosenthal, 1987a)
assures us that they are the only structures that may be so treated.

Example 6. In (2), the subgraph corresponding to fC;A;Eg is a full block. It
can be written as (fC;Ag; E)d; i.e., we can regard the upper part of the graph
as (fC;A;Eg; D)d. The fundamental subgraphs of the upper disjunction are
(fCg; fAg)c and the literals D and E.

Definition 7. Let H be a full block; H is a conjunction or a disjunction of fun-
damental subgraphs of some explicit subgraph M . If the �nal arc of M is a
conjunction, then we de�ne the c-extension of H to be M and the d-extension of
H to be H itself. The situation is reversed if the �nal arc of M is a d-arc.

We use the notation CE(H) and DE(H) for the c- and d-extensions, respecti-
vely, of H .

Example 7. In (2),

CE(A) = A and DE(A) = A _
B

^
C

:

In this paper, we compute c- and d-extensions of single nodes only. Single nodes
are always full blocks and so testing for this property will be unnecessary. If we
assume that formulas are represented as n-ary trees, computing these extensions
can be done in constant time; we merely determine whether the given node's parent
is a conjunction or a disjunction, and the appropriate extension is then either the
node itself or the parent.

Fast Subsumption Checks Using Anti-Links 7

2.2 Path Dissolution

Path dissolution (Murray and Rosenthal, 1993) is an inferencing mechanism for
classical logic that has several interesting properties. It is an e�cient generalization
of the method of analytic tableaux, is strongly complete in the propositional case,
and can produce a list of satisfying interpretations of a formula. The latter feature
is particularly valuable in this or in any setting in which one wishes to make use
of satisfying interpretations rather than merely to determine whether any exist.

Path dissolution works by selecting a link and restructuring the formula so
that all paths through the link are eliminated. The nature of the restructuring is
such that one cannot rely on CNF (conjunctive normal form): Even if a formula
starts out in CNF, a single dissolution step produces an unnormalized formula.
One consequence of eliminating all paths through a link is strong completeness:
Any sequence of dissolution steps will eventually create a linkless formula. The
paths that remain may be interpreted as models (satisfying interpretations) of the
formula.

Definition 8. A c-link is a complementary pair of c-connected nodes; d-connec-
ted complementary nodes form a d-link.

Unless stated otherwise, we use the term link to refer to a c-link. Path disso-
lution is in general applicable to collections of links; here we restrict attention to
single links.

Example 8. Consider the link fA;Ag in (2). Then the entire graph G = (X ^Y)
is the smallest full block containing the link.

Definition 9. Let X be a semantic graph and H an arbitrary subgraph.3

The c-path complement of H with respect to X , written CC(H;X), is the
subgraph of X consisting of all literals in X that lie on c-paths that do not contain
nodes from H . If no such literal exists, CC(H;X) = false.

The c-path extension of H with respect to X , written CPE(H;X), is the sub-
graph of X containing all literals that lie on c-paths that pass through H . If no
such literal exists, CPE(H;X) = false.4

In the development of anti-link operations, we will use operations that are the
duals of CC and CPE. We use DC for the d-path complement and DPE for the
d-path extension operators. Their de�nitions are straightforward by duality,

Because we consider only single link dissolution, the �rst arguments of CC
and CPE will be literals when these operators are used in the construction of
dissolvents in the examples below. However, this is not the case in Section 3, and
hence the above de�nitions of these operators are in full generality.

3 H usually is but does not have to be a subgraph of X.
4 Note, that CPE has two arguments whereas CE (Def. 7) has but one; intuitively, CE has an

implicit second argument that is always the entire graph in which the explicit argument occurs.

8 Anavai Ramesh et al.

Example 9. In (2),

CC(A;X) = (D _E)

CPE(A;X) = (C ^A)

CPE(A;G) = (C ^A ^ Y)

CE(A) = (C ^A)

The above de�nitions of the operators CC and CPE are adequate for the
de�nition of dissolution. However, (equivalent) more constructive de�nitions are
given in Section 3, where they will be required in proving the correctness of the
anti-link operations introduced there.

The reader is referred to (Murray and Rosenthal, 1993) for the proofs of the
lemmas below.

Lemma 2. Let H be an arbitrary subgraph of G. The c-paths of CPE(H;G) are
precisely the c-paths of G that pass through H .

Corollary 1. CPE(H;G) is exactly the subgraph of G relative to the set of
nodes that lie on c-paths that pass through H .

Lemma 3. Let H be an arbitrary subgraph of G. The c-paths of CC(H;G) are
precisely the c-paths of G that do not pass through H .

Corollary 2. CC(H;G) is exactly the subgraph of G relative to the set of nodes
that lie on c-paths that do not pass through H .

Lemma 4. If H is a c-block, then CC(H;G)_ CPE(H;G) and G have the same
c-paths.

The above lemmas and corollaries about CC and CPE all hold in dual form
for DC and DPE.

Suppose that we have literal occurrences A and A residing in conjoined sub-
graphs X and Y , respectively. It is intuitively clear that the c-paths through (X^
Y) that do not contain the link fA;Ag are those through (CPE(A;X)^CC(A; Y))
plus those through (CC(A;X) ^ CPE(A; Y)) plus those through (CC(A;X) ^
CC(A; Y)).

Definition 10. Let H = fA;Ag be a link, and let M = (X; Y)c be the smallest
full block containingH . DV (H;M), the dissolvent of H inM , is de�ned as follows:

If H is a single c-block, then DV (H;M) = CC(A;M) = CC(A;M) = false.
Otherwise (i.e., if H consists of two c-blocks),

DV (H;M) =

CPE(A;X)
^

CC(A; Y)
_

CC(A;X)
^

CPE(A; Y)
_

CC(A;X)
^

CC(A; Y)

Fast Subsumption Checks Using Anti-Links 9

The only way that H can be a single c-block is if H is a full block (it is trivially a
d-block). In that case, H = M , and A and A must be (up to commutations and
reassociations) arguments of the same conjunction.

The following proposition follows from the corollaries and Lemma 4:

Proposition 1. Either of the two more compact graphs shown below has the
same c-paths as DV (H;M), and may thus be used instead:

X

^
CC(A; Y)

_
CC(A;X)

^
CPE(A; Y)

(3)

CC(A;X)
^
Y

_
CPE(A;X)

^
CC(A; Y)

(4)

The semantic graphs from the above proposition are not identical toDV (H;M)
as graphs, but they do have the identical c-paths: all those of the original full block
M except those of CPE(A;X)^ CPE(A; Y), i.e., except those through the link.

Example 10. If we dissolve on the link fA;Ag in (2) (using the compact form (4)
of dissolution from Proposition 1), the graph that results is:

D _ E

^

A _
B

^
C

_

C

^
A

^
B

^
C

Theorem 1. Let H be a link in a semantic graph G, and let M be the smallest
full block containing H . Then M and DV (H;M) are logically equivalent.

A proof of Theorem 1 (in a more general form) can be found in (Murray and
Rosenthal, 1993).

We may therefore select an arbitrary link H in G and replace the smallest full
block containing H by its dissolvent, producing (in the ground case) an equivalent
graph. We call the resulting graph the dissolvent of G with respect to H . Since
the paths of the new graph are all that appeared in G except those that contained
the link, this graph has strictly fewer c-paths than the old one. As a result, �nitely
many dissolutions (bounded above by the number of c-paths in the original graph)
will yield a linkless equivalent graph. This proves:

Theorem 2. At the ground level, path dissolution is a strongly complete rule of
inference.5

5 That means, that the result of applying dissolution repeatedly to an unsatis�able semantic
graph results in the graph false, independently of the choice of the link that is dissolved on at
each step.

10 Anavai Ramesh et al.

2.3 Prime Implicates/Implicants

We briey summarize basic de�nitions regarding implicates. The treatment for
implicants is completely dual and is indicated by appropriate dual expressions in
parentheses.

Definition 11. A disjunction (conjunction) D subsumes another disjunction D0

(conjunction D0) i� D j= D0 (D0 j= D).
true (false) is subsumed by all disjunctions (conjunctions).

A disjunction is called true i� it is equivalent to true. A conjunction is called
false i� it is equivalent to false.

Lemma 5. If a disjunction (conjunction) D0 that is not true (false), then D sub-
sumes D0 i� D � D0.

A true disjunction (false conjunction) subsumes another true disjunction (false
conjunction) only.

Definition 12. A disjunction (conjunction) P of literals is an implicate (impli-

cant) of a formula G, i� G j= P (P j= G).
A disjunction (conjunction) D is a prime implicate (prime implicant) of a for-

mula G i�

1. D is not true (false).

2. D is an implicate (implicant) of G.

3. For all literals Ai in D, G 6j= (D� fAig) ((D� fAig) 6j= G).

Note that the set of all prime implicates (implicants) of a formual G, when
treated as a CNF (DNF) formula, is equivalent to G.

Definition 13. Let D be the set of all prime implicates of a formula G. A prime
implicate D of G is essential if D n fDg is not equivalent to G, otherwise D is
inessential.

2.4 Fully Dissolved Formulas

If we dissolve in a semantic graph G until it is linkless, we call the resulting graph
the full dissolvent ofG and denote it by FD(G). Observe that FD(G) is dependent
on the order in which links are activated. However, the set of c-paths in FD(G) is
unique: It is exactly the set of satis�able c-paths in G. Because FD(G) is link-free,
the consequences, i.e., implicates, of G are represented in the d-paths of FD(G).
In a dual manner, we may de�ne dissolution for disjunctive links; in that case,
FD(G) has no disjunctive links, and the implicants of G are represented in the
c-paths of FD(G). These relationships are made precise by Theorem 3 below.

Fast Subsumption Checks Using Anti-Links 11

In the discussion that follows, we will often refer to subsumption of d- and c-
paths rather than of disjuncts and conjuncts. Paths are de�ned as sets of literal
occurrences, but with regard to subsumption, we consider the literal set `(p) of
a path p. In this way, no change in the standard de�nitions is necessary. The
theorem below was proved in (Ramesh and Murray, 1993).

Theorem 3. In any non-empty formula in which no c-path (d-path) contains a
link, every implicate (implicant) of the formula is subsumed by some d-path (c-
path) in the formula.

Corollary 3. Every prime implicate (implicant) of a reduced DNF (CNF) for-
mula, i.e., one with no false conjuncts (true disjuncts), is subsumed by some d-path
(c-path) in the formula.

This follows directly from the theorem because such a DNF (CNF) formula has
no c-paths (d-paths) with links.

In (Ramesh and Murray, 1993), the prime implicates of G are computed by �rst
obtaining FD(G); then, knowing that all implicates are present in the d-paths of
FD(G), the Pi algorithm computes �(FD(G)), where

�(F) = fp j p is a d-path through F , `(p) is not true;
for all d-paths q through F : `(q) 6� `(p)g :

When used in this way, Pi extracts all unsubsumed non-tautological d-paths from
an NNF formula without c-links. In general, Pi computes �(F) for an arbitrary
NNF formula F .

3 Subsumed Paths and Anti-Links

Much of the material in this section is a detailed description of the results sketched
in (Ramesh et al., 1994). Our goal is to �rst identify as many subsumed paths
as possible in an e�cient manner and then eliminate them. The presence of anti-
links (both disjunctive and conjunctive) in a graph may indicate that subsumed
d-paths are present in the graph. We now de�ne anti-links and then discuss ways
to identify and remove subsumed paths due to anti-links.

Definition 14. If M = (X; Y)d is a d-arc in a semantic graph G and if AX and
AY are nodes (occurrences of literal A) in X and in Y respectively, then we call
fAX ; AY g a disjunctive anti-link.

If M = (X; Y)c is a c-arc in G, then we call fAX ; AY g a conjunctive anti-link.

Note, that M is the smallest full block containing the anti-link.
The following theorem relates subsumed paths to anti-links. The theorem is

immediate for CNF formulas; there is an obvious dual theorem regarding subsumed
c-paths that is immediate for DNF formulas.

12 Anavai Ramesh et al.

Theorem 4. Let G be a semantic graph in which a d-path p is subsumed by a
distinct non-tautological d-path p0 in G. Then G contains either a disjunctive
anti-link or a conjunctive anti-link.

Proof. There are two distinct possibilities, either `(p) = `(p0) or `(p) � `(p0).
Suppose `(p) = `(p0). Then there must be a literal having two di�erent occurrences.
These two occurrences must be either d- or c-connected and thereby constitute
either a disjunctive or a conjunctive anti-link.

Suppose `(p) � `(p0). The proof is by induction on the structure of G.

Basis: G is a literal. The result is vacuously true since there cannot be two distinct
d-paths through G.

Induction step:

(a) Suppose G = (X ^ Y) for some X and Y . Then either p and p0 are
both from the same explicit subgraph (X or Y) or from di�erent explicit
subgraphs. If they lie in the same explicit subgraph then the result
follows directly from the induction hypothesis. If they are from di�erent
subgraphs then every literal in `(p0) occurs at least once in X and at least
once in Y . Any two such occurrences of some literal in `(p0) constitute
a conjunctive anti-link.

(b) Suppose G = (X _ Y). Let pX and pY be the restriction of p to X and
to Y respectively. Let p0

X
and p0

Y
be the restriction of p0 to X and to

Y respectively. Since p and p0 are distinct, either pX and p0
X

must be
distinct, or pY and p0

Y
must be distinct (or both), so assume without loss

of generality that pX and p0
X
are distinct.

If either pX subsumes p0
X
or vice versa, then by the induction hypothesis,

X must have an anti-link and so does G. On the other hand if pX and
p0
X
do not subsume each other, then there must be some literal (say L)

in `(p0
X
) which is not in pX . But since p0 subsumes p, there must be

an occurrence of L in pY . The two occurrences of L, one in p
0

X
and the

other in pY , constitute a disjunctive anti-link.

Unfortunately, the presence of anti-links does not imply the presence of subsu-
med paths, and hence the converse of the above theorem is not true.

3.1 Redundant Anti-links

We now identify those disjunctive anti-links which do imply the presence of sub-
sumed paths.

Definition 15. A disjunctive anti-link fAX ; AY g with respect to the graph G is
redundant if either CE(AX) 6= A or CE(AY) 6= A.

Fast Subsumption Checks Using Anti-Links 13

Definition 16. Let fAX ; AY g be a disjunctive anti-link in graph G, where M =
(X; Y)d is the smallest full block containing the anti-link.

Then DP (fAX ; AY g; G) is the set of all d-paths ofM which pass through both
CE(AX)� fAXg and AY or through both CE(AY)� fAY g and AX .

Example 11. Consider the following graph G = (X; Y)d:

X

AX _ C

^
B

_

Y

AY
^

E _ C

(5)

The two occurrences of A form a disjunctive anti-link. Because CE(AY)� fAg =
Y � fAg and DPE(AX ; X) = A _ C, DP (fAX ; AY g; G) contains the d-path p =
fAX ; C; E;Cg (indicated by a line). But since CE(AX) = AX , there are no paths
through CE(AX)� fAXg; p is the only member of DP (fAX ; AY g; G). The anti-
link is redundant, and p is subsumed by p0 = fAX ; C; AY g (with literal set fA;Cg).
Notice that had G been embedded in a larger graph G0, every d-path q containing
p in G0 would be subsumed by a corresponding d-path q0 that di�ers from q only
in that q0 contains p0 instead of p.

In general, one or both of the literals in a redundant anti-link fAX ; AY g is an
argument of a conjunction, and DP (fAX ; AY g; G) 6= ;. In the above example,
the two occurrences of C are both arguments of disjunctions, and thus comprise a
non-redundant anti-link for which DP (fCX ; CY g; G) = ;.

Although only redundant disjunctive anti-links contribute directly to subsumed
d-paths, non-redundant anti-links do not prohibit the existence of subsumed paths.
However, such non-redundant anti-links do not themselves provide any evidence
that such paths are in fact present.

Theorem 5. Let fAX ; AY g be a redundant disjunctive anti-link in a semantic
graph G. Then each d-path in DP (fAX ; AY g; G) is properly subsumed by a d-
path in G that contains the anti-link.

Proof. Recall that a d-path (c-path) in a graph G is said to pass through a sub-
graph X of G if the path when restricted to the set of nodes in X forms a d-path
(c-path) in X . Let p 2 DP (fAX ; AY g; G), and assume without loss of generality
that p passes through both CE(AX)�fAXg and AY . Note that CE(AX)�fAXg is
non-empty and thatM = (X_Y) is the largest full block containing the anti-link.
We may write CE(AX) as (A ^ C1 ^ : : :^ Cn), where n � 1.

Let p = pX[pY [po where pX and pY are p restricted toX and to Y , respectively,
and po is p restricted to nodes outside of both X and Y . By construction, AX 62 pX
and thus pX passes through some Ci, 1 � i � n. So pX = p0

X
[pCi , where pCi is

pX restricted to Ci, and hence p = p0
X
[pci [pY [po. The d-path p

0

X
[fAg clearly

passes through X , and since AY 2 pY , p0 = p0
X
[AX [pY [po subsumes p.

14 Anavai Ramesh et al.

3.2 An Anti-Link Operator

The identi�cation of redundant disjunctive anti-links can be done easily by chec-
king to see if either CE(AX) 6= AX or CE(AY) 6= AY . After identifying a redun-
dant anti-link, it is possible to remove it using the disjunctive anti-link dissolvent

(DADV) operator de�ned below; in the process, all d-paths in DP (fAX ; AY g; G)
are eliminated, and the two occurrences of the anti-link literal are collapsed into
one.

Definition 17. Let fAX ; AY g be a disjunctive anti-link and let M = (X; Y)d be
the smallest full block containing the anti-link. Then

DADV (fAX ; AY g;M) =

DC(AX ; X) _ DC(AY ; Y)

^

DC(CE(AX); X) _ DPE(AY ; Y)

^

DPE(AX ; X) _ CC(AY ; Y)

Example 12. Consider again the semantic graph (5) from Example 11. We have
DC(AX ; X) = B and DC(AY ; Y) = (E _ C), so the upper conjunct in DADV is
(B _ C _ E). For the middle conjunct,

CE(AX ; X) = AX

DC(CE(AX); X) = B

DPE(AY ; Y) = AY

this conjunct is (B _ A). Finally in the lower conjunct, DPE(AX ; X) = (A _ C)
and CC(AY ; Y) = false, so this reduces to (A _ C). The result is:

DADV (AX ; AY ;M) =

B _ E _ C

^
B _ A

^
A _ C

We point out that although DADV produces a CNF formula in the above
simple example, in general it does not. In particular, the above graph can be
simpli�ed as the consequence of easily recognizable conditions, and the resulting
graph is not in CNF. For the details, see Case 1 of Section 3.5.

3.3 Extension and Path Complement Operators

A number of more primitive operators are used in the de�nition ofDADV ; they are
described in (Murray and Rosenthal, 1993) and have been de�ned in Section 2. We
present equivalent constructive descriptions here in order to prove Lemma 6 below,
and, in the next subsection, to verify that DADV has the desired properties.

Fast Subsumption Checks Using Anti-Links 15

Proposition 2. Let G be a semantic graph and H an arbitrary subgraph. Then

CPE(H;G) =

8>>><
>>>:

false if H does not meet G

G if H = GW
n

i=1 CPE(HFi
; Fi) if the �nal arc of G is a d-arcV

k

i=1 CPE(HFi
; Fi) ^

V
n

j=k+1 Fj if the �nal arc of G is a c-arc

DPE(H;G) =

8>>><
>>>:

true if H does not meet G

G if H = GV
n

i=1DPE(HFi
; Fi) if the �nal arc of G is a c-arcW

k

i=1DPE(HFi
; Fi) _

W
n

j=k+1 Fj if the �nal arc of G is a d-arc

CC(H;G) =

8>>><
>>>:
G if H does not meet G

false if H = GW
n

i=1 CC(HFi
; Fi) if the �nal arc of G is a d-arcV

k

i=1 CC(HFi
; Fi) ^

V
n

j=k+1 Fj if the �nal arc of G is a c-arc

DC(H;G) =

8>>><
>>>:
G if H does not meet G

true if H = GV
n

i=1DC(HFi
; Fi) if the �nal arc of G is a c-arcW

k

i=1DC(HFi
; Fi) _

W
n

j=k+1 Fj if the �nal arc of G is a d-arc

where Fi (i � i � k) are the fundamental subgraphs of G that meet H , and Fi
(k + 1 � i � n) are those that do not.

Lemma 6. If G is a graph and A is a literal occurrence in G, then CC(A;G) is
logically equivalent to

(DPE(A;G)� fAg) ^DC(CE(A); G) :

Proof. We prove the lemma by showing that the formula on the left and the
formula on the right possess exactly the same set of d-paths; the result then follows
from Lemma 1. The proof is done via induction on the syntactic structure of G
(the lemma trivially holds if G = true or G = false).

1. If G is a literal, then G = A and both the set of d-paths of CC(A;G) and the
set of d-paths of DPE(A;G)� fAg)^DC(CE(A); G) are empty. Note, that
DC(CE(A); G) = DC(A;A) = true, but (DPE(A;G)�fAg) = fAg�fAg =
false = CC(A;A).

2. If G = (X; Y)d, then without loss of generality assume A belongs to X .
Hence CC(A;G) = (CC(A;X) _ Y). By the induction hypothesis, the d-
paths of CC(A;X) are just those of (DPE(A;X)�fAg)^DC(CE(A);X). So
CC(A;G) has the same d-paths as (DPE(A;X)�fAg)^DC(CE(A);X)_Y .

Now consider the right hand side of the equation. Since A is in X ,

DPE(A;G) = (DPE(A;X)_ Y) :

16 Anavai Ramesh et al.

Therefore, DPE(A;G)� fAg = (DPE(A;X)� fAg _ Y). Also, CE(A) will
be disjoint from Y , and thus

DC(CE(A); G) = DC(CE(A);X)_ Y :

Therefore we can write the right hand side of the equation as (DPE(A;X)�
fAg _ Y) ^ (DC(CE(A); X)_ Y). By factoring out the subgraph Y we get
an equivalent subgraph ((DPE(A;X)� fAg) ^DC(CE(A); X))_ Y having
the same d-paths. But this is just the semantic graph that has been shown to
have the same d-paths as the left hand side.

3. Finally suppose G = (X; Y)c; again assume that A is in X . Now there are
two subcases to consider.

a) If CC(A;G) = false and thus has no d-paths, then A in X is not d-
connected to any other subgraph in X . Hence X is of the form A^C1^
: : :^Cn (where n � 0). But then G = A^C1^ : : :^Cn^Y , CE(A) = G,
and DPE(A;G) = DPE(A;X) = A. As a result, both DC(CE(A); G)
and DPE(A;G)� fAg have no d-paths.

(b) If CC(A;G) 6= false, then

CC(A;G) = CC(A;X)^ Y ;

and thus CC(A;X) 6= false. Therefore, by the induction hypothesis,
CC(A;G) has the same d-paths as

(DPE(A;X)� fAg)^DC(CE(A); X)^ Y :

Focusing now on the right hand side of the equation, DPE(A;G) =
DPE(A;X) by de�nition. The c-extension of A can only include nodes
from X (otherwise, CC(A;G) = false, contrary to the subcase (b) condi-
tion). Therefore, DC(CE(A); G) = DC(CE(A); X)^ Y . Therefore the
right hand side of the equation has the same d-paths as (DPE(A;X)�
fAg)^ (DC(CE(A); X)^Y). This is just the result obtained for the left
hand side in this subcase.

3.4 Correctness of DADV

In Theorem 6 below we show that DADV (fAX ; AY g; G) is logically equivalent
to G and does not contain the d-paths of DP (fAX ; AY g; G).

Theorem 6. Let M = (X; Y)d be the smallest full block containing fAX ; AY g, a
disjunctive anti-link in semantic graph G. Then DADV (fAX ; AY g;M) is equiva-
lent to M and di�ers in d-paths from M as follows: d-paths in DP (fAX ; AY g; G)
are not present, and any d-path ofM containing the anti-link is replaced by a path
with the same literal set having only one occurrence of the anti-link literal.

Fast Subsumption Checks Using Anti-Links 17

Proof. Note that AX and AY are literal occurrences (and hence d-blocks) in X

and in Y respectively. By the dual of Lemmas 4, X is equivalent to DC(AX ; X)^
DPE(AX ; X), and from the distributive law, M is equivalent to

DC(AX ; X) _ Y

^
DPE(AX ; X) _ Y

Similarly, Y is equivalent to DC(AY ; Y) ^ DPE(AY ; Y), and we expand the
upper occurrence of Y and distribute. Thus, M is equivalent to

DC(AX ; X) _ DC(AY ; Y)

^
DC(AX ; X) _ DPE(AY); Y

^
DPE(AX ; X) _ Y

By the duals of Lemmas 2 and 3, not only have we rewrittenM equivalently, but
the d-paths ofM have been preserved. We will continue to rewriteM ; our goal is to
eventually put it in an equivalent form in which the d-paths of DP (fAX ; AY g;M)
have been omitted.

Consider the d-paths of DC(AX ; X) | the d-paths in X that miss AX . They
either miss CE(AX), the c-extension of AX , or pass through CE(AX) � fAXg.
Hence DC(AX ; X) has the same d-paths as

DPE(CE(AX)� fAXg); X)^DC(CE(AX); X) :

By replacing the lower occurrence of DC(AX ; X) in the previous graph, we get
the following graph M 0 which is equivalent to M and has the same d-paths as M :

M 0 =

DC(AX ; X) _ DC(AY ; Y)

^

DPE((CE(AX)� fAXg); X)
^

DC(CE(AX); X)
_ DPE(AY ; Y)

^

DPE(AX ; X) _ Y

Every d-path in the subgraph DPE((CE(AX)� fAXg); X)_DPE(AY ; Y) is in
DP (fAX ; AY g;M). By Theorem 5, all these paths are subsumed by other d-
paths. Therefore, we can remove the subgraph DPE((CE(AX)�fAXg); X) from

18 Anavai Ramesh et al.

M 0 while preserving equivalence to get the graph M 00 shown below.

M 00 =

DC(AX ; X) _ DC(AY ; Y)

^

DC(CE(AX); X) _ DPE(AY ; Y)

^

DPE(AX ; X) _ Y

Again by using arguments dual to the one given earlier for X , we have that Y and

DPE(AX ; Y)
^

DPE((CE(AY)� fAY g); Y)
^

DC(CE(AY); Y)

have identical d-paths.
Replacing Y in M 00, we �nd that every d-path in the subgraph DPE(AX ; X)_

DPE((CE(AY)�fAY g); Y) is in DP (fAX ; AY g;M). Again by Theorem 5, these
paths are also subsumed by other d-paths. Therefore we can remove the subgraph
DPE((CE(AY)� fAY g); Y) and preserve equivalence; M 000 results.

M 000 =

DC(AX ; X) _ DC(AY ; Y)

^

DC(CE(AX); X) _ DPE(AY ; Y)

^

DPE(AX ; X) _
DPE(AY ; Y)

^
DC(CE(AY); Y)

The d-paths in M 000 are those of M excluding the d-paths in DP (fAX ; AY g;M).
Consider now the d-paths of DPE(AX ; X) _ DPE(AY ; Y) in M 000. They are
exactly those ofM (and ofM 000) that contain the anti-link: They each contain two
occurrences of the literal A. Hence we can remove the node AY fromDPE(AY ; Y)

Fast Subsumption Checks Using Anti-Links 19

and apply Lemma 6 to get M 0000.

M 0000 =

DC(AX ; X) _ DC(AY ; Y)

^

DC(CE(AX); X) _ DPE(AY ; Y)

^

DPE(AX ; X) _
DPE(AY ; Y)� fAY g

^
DC(CE(AY); Y)

Applying Lemma 6 to M 0000 we get DADV (fAX ; AY g;M).
In constructingDADV (fAX ; AY g;M) we have removed only subsumed d-paths

and altered only d-paths that contain the anti-link by collapsing the double occur-
rence of the anti-link literal. HenceDADV (fAX ; AY g;M) is equivalent toM , does
not contain the anti-link, and does not contain any d-path of DP (fAX ; AY g;M).

Theorem 6 gives us a method to remove disjunctive anti-links and some sub-
sumed d-paths: Simply identify a redundant anti-link H = fAX ; AY g and the
smallest full block M containing it, and then replace M by DADV (H;M). The
cost of this operation is proportional to the size of the graph replacing M , and
this is linear in M . Also, c-connected literals in M do not become d-connected in
DADV (H;M). Thus truly new disjunctive anti-links are not introduced. Howe-
ver, parts of the graph may be duplicated, and this may give rise to additional
copies of anti-links not yet removed. Nevertheless, persistent removal of redun-
dant disjunctive anti-links (in which case DP (fAX ; AY g;M) 6= ;) is a terminating
process, because the number of d-paths is strictly reduced at each step. This
proves:

Theorem 7. Finitely many applications of the DADV operation on redundant
anti-links will result in a graph without redundant disjunctive anti-links, and ter-
mination of this process is independent of the choice of anti-link at each step.

Although we can remove all the redundant disjunctive anti-links in the graph,
this process can introduce new conjunctive anti-links. Such anti-links may indicate
the presence of subsumed d-paths, but the situation is not as favorable as with
disjunctive anti-links | see Section 3.7.

3.5 Simplifications

Obviously, DADV (fAX ; AY g;M) can be syntactically larger than M = (X; Y)d.
Under certain conditions we may use simpli�ed alternative de�nitions for DADV .
These de�nitions result in formulas which are syntactically smaller than those that
result from the general de�nition. The following is a list of possible simpli�cations.

20 Anavai Ramesh et al.

1. If
CE(AX) = AX (and CE(AX) 6= X) ;

then DC(CE(AX); X) = DC(AX ; X). Therefore by (possibly non atomic)
factoring on DC(AX ; X) and observing that (DC(AY ; Y) ^ DPE(AY ; Y))
has the same d-paths as Y , DADV (fAX ; AY g;M) becomes

DC(AX ; X) _ Y

^
DPE(AX ; X) _ CC(AY ; Y)

It turns out that this rule applies to (2) in Example 1. Since CE(AX) = AX ,
the simpli�ed rule for this case results in the following graph.

B _
A

^
E _ C

^

A _ C

2. If
CE(AX) = X ;

then DC(CE(AX); X) = true. Hence

DPE(AX) = AX and DC(AX ; X) = (X � fAXg) :

DADV (fAX ; AY g;M) becomes

X � fAXg _ DC(AY ; Y)

^

AX _ CC(AY ; Y)

3. If both Case 1 and Case 2 apply, then CE(AX; X) = X = AX , and the above
formula simpli�es to

AX _ CC(AY ; Y) :

Note that in all the above versions of DADV , the roles of X and Y can be
interchanged.

Fast Subsumption Checks Using Anti-Links 21

3.6 Disjunctive Anti-Links and Factoring

It is interesting to note that the DADV operation contains factoring (i.e., the
ordinary application of the distributive law to a pair of conjunctions containing a
common argument) as a special case. This is just the condition for Case 2 above
except that both CE(AX) = X and CE(AY) = Y hold. Under these conditions,
DADV (fAX ; AY g;M) becomes

X � fAXg _ Y � fAY g
^
A

:

This is the graph obtained by disjunctive factoring (Murray and Rosenthal, 1993).
The DADV operator also captures the absorption law (or merging). If AX and

AY are both arguments of the same disjunction, then X = AX , Y = AY , and
DADV (fAX ; AY g;M) = AX . Note, however, that technically the anti-link is not
redundant in this case.

3.7 Conjunctive Anti-Links

There are conjunctive anti-links that always indicate the presence of d-paths that
are subsumed by others, and they are easy to detect. However, the conditions
to be met are much more restrictive than those for redundant disjunctive anti-
links. Consider a conjunctive anti-link fAX ; AY g, where the smallest full block M
containing the anti-link is (AX ; Y)c. Every d-path in Y which passes through AY
will be subsumed by the d-path consisting of the single literal AX . Hence we can
replace Y by DC(AY ; Y).

This is a kind of dual to Case 3 of the simpli�ed versions of DADV discussed
earlier. There, the anti-link fAX ; AY g is disjunctive andM = (AX ; Y)d. The sim-
pli�ed DADV operation just replaces Y by CC(AY ; Y). Note that the conjunctive
anti-link operation above removes subsumed d-paths, whereas the Case 3 disjuncti-
ve anti-link operation can either remove paths or merely remove the second occur-
rence of the anti-link literal on paths that contain the anti-link. Both operations
involve d-paths, and both have strictly dual operations that would a�ect c-paths
instead.

4 Complexity Considerations

The problem of eliminating all subsumed paths in a graph in an e�cient manner
does not seem feasible. The following de�nition makes precise the notion of mini-
mality with respect to subsumed d-paths. Then we show that it is NP-hard to
achieve this property.

Definition 18. Let G be a semantic graph; we say that a graph G0 is a d-minimal

equivalent of G if it satis�es the following conditions.

22 Anavai Ramesh et al.

1. G is logically equivalent to G0.

2. If p0 and q0 are two distinct d-paths in G0, then p0 does not subsume q0 and
vice versa.

3. If p0 is a d-path in G0, then there is a d-path p in G such that, `(p) = `(p0).

4. If p is a minimal d-path in G, then there is a d-path p0 in G0 such that
`(p0) = `(p).

The c-minimal equivalent of a graph is de�ned in the obvious dual way.

Note that Property 1 above is implied by Properties 3 and 4, and that G0 needs
not be unique. However, the d-paths of G0 will always include all essential (and
possibly some inessential) prime implicates of G.

Computing d-minimal equivalent graphs e�ciently would be helpful for �nding
prime implicates. In a d-minimal equivalent graph of a full dissolvent, subsumption
checks can be completely eliminated by Property 2 above. Hence to �nd the prime
implicates ofG, we can �nd a d-minimal equivalent G0 of the full dissolvent FD(G),
and then simply enumerate the d-paths of G0.

A d-minimal equivalent of a given graph G can be trivially obtained by �rst
enumerating all the d-paths of the given graph G and then eliminating all the
subsumed d-paths. The above algorithm is exponential in the size of G, because
G0 is being constructed in CNF. However an NNF d-minimal equivalent G0 of G
may be small compared to a CNF d-minimal equivalent. Even so, the problem is
NP-hard (proof follows) and hence is not likely to have an e�cient algorithm.

Theorem 8. The following problem (elimination of subsumed paths) is NP-hard.
Given a graph G, �nd a d-minimal equivalent graph G0.

Proof. To show NP-hardness we reduce from satis�ability of CNF formulas. Let
C be an instance of the CNF satis�ability problem and fX1; : : : ; Xng be the
set of variables in C. Let A;X 0

1; : : : ; X
0

n
be distinct variables not occurring in

fX1; : : : ; Xng. Let D be the semantic graph obtained by replacing Xi by X 0

i
,

1 � i � n, in :C (by which we denote the NNF of the negation of C). We
construct the following semantic graph G.

A _ D

^
X1 _ X 0

1

^
...
^

Xn _ X 0

n

Fast Subsumption Checks Using Anti-Links 23

The size of the graph G is no more than a constant factor of the size of C and can
therefore be constructed in linear time. It is easy to see that any d-path which
includes the literal A must pass through D and vice versa.

Let G0 be any graph which is a d-minimal equivalent to G. We will show that
C is satis�able i� the literal A occurs in G0.

Suppose C is satis�able; then :C is falsi�able, and there are d-paths (in fact,
clauses, since :C is in DNF) in :C that do not contain any disjunctive link
fXi; Xig. All such d-paths through D do not contain any fXi; X

0

i
g, 1 � i � n; at

least one such, say p, is not subsumed by another d-path through D. The d-path
pA cannot be subsumed by any other d-path in G and hence there will be a path
in G0 which has the same literal set as pA. Hence the literal A must occur in G0.

If C is not satis�able, then :C is valid. Therefore for every d-path p in D (and
hence every d-path through A), there is some i, 1 � i � n, such that the pair
of literals fXi; X

0

i
g � `(p). But every such pair of literals forms a d-path in G

and hence every d-path containing A will be subsumed by another d-path in G.
Furthermore the subsuming path will not contain the literal A. By de�nition of
d-minimal equivalent and by construction of G0, no d-path in G0 can contain the
literal A, and thus the literal A cannot occur in G0.

If we can solve the elimination of subsumed paths problem in polynomial time
then we have the following algorithm which can solve the satis�ability of CNF
in polynomial time: Given any instance C of the CNF satis�ability problem, we
can construct in polynomial time the graph G as shown earlier. We then �nd the
graph G0 using the algorithm for elimination of subsumed paths. The size of G0

will be polynomial in the size of G (since computing it required only polynomial
time). Now C is satis�able i� the literal A occurs in G0 and this check can be done
in polynomial time.

By a completely dual construction we obtain the following corollary.

Corollary 4. Given a graph G, �nding a c-minimal equivalent of G is NP-hard.

We have seen that the general problem of computing d- or c-minimal graphs
is NP-hard. Nevertheless, redundant disjunctive anti-links are easily recognized,
and eliminating their corresponding subsumed d-paths can be done without direct
subsumption checks. On the other hand, recognizable subsumed d-paths due to
conjunctive anti-links are not likely to be as plentiful due to the strong restriction
de�ning such useful anti-links. It is also di�cult to �nd out if an arbitrary conjunc-
tive anti-link results in subsumed d-paths. In fact, this problem is NP-complete.

Theorem 9. The following problem is NP-complete. Given a conjunctive anti-
link fAX ; AY g in a graph G, determine whether there are there two d-paths pX
and pY in G, such that pX passes through AX and pY passes through AY and
either pX subsumes pY or vice versa.

Proof. It is easy see that this problem is in NP. To show NP-hardness we reduce
from satis�ability of CNF formulas. Let C be an instance of the CNF satis�ability

24 Anavai Ramesh et al.

problem and fX1; : : : ; Xng be the set of variables in C. Let A;B;X 0

1; : : : ; X
0

n
be

distinct variables not occurring in fX1; : : : ; Xng. Let D be the semantic graph
obtained by replacing Xi by X

0

i
, 1 � i � n, in :C. We construct the following

semantic graph G.

A1 _ D

^

A2 _ B _
X1

^
X 0

1

_ : : : _
Xn

^
X 0

n

The subgraph D is a DNF formula, and A1 and A2 are two di�erent occurrences
of the literal A. These two literal occurrences form a conjunctive anti-link in G.
Every d-path through A2 contains the literal B, and only d-paths containing A1

can possibly subsume d-paths through A2. The size of the graph G is no more
than a constant factor of the size of C and can therefore be constructed in linear
time.

We must show that C is satis�able i� there is a d-path through A1 that subsu-
mes another d-path through A2. Suppose �rst that C is satis�able. Then :C is
falsi�able, and there is at least one d-path in :C that does not contain any dis-
junctive link fXi; Xig. Therefore some d-path p through D does not contain any
of the literal pairs fXi; X

0

i
g, 1 � i � n. Recall that `(p) is de�ned to be the literal

set of path p. It is easy to see that since `(p) does not contain such a literal pair
(corresponding to a d-link in :C), a d-path p0 can be chosen that passes through
the n rightmost disjuncts in the lower part of G, such that `(p0) � `(p). Clearly,
A2Bp

0 is subsumed by A1p.
To show the if-part, suppose there is some d-path (say p) through A1 that

subsumes another d-path (say p0) through A2. Then p cannot contain any literal
pair fXi; X

0

i
g because no such pair occurs on any d-path in the lower part of G.

Therefore p when restricted to D will not have such a literal pair, :C has a d-path
without a d-link, and hence C is satis�able.

Corollary 5. The problem dual to the one described in Theorem 9 involving
disjunctive anti-links and c-paths is NP-complete.

5 Some Benchmark Examples

Ngair (1993) has investigated examples that prove di�cult for many proposed
prime implicate/implicant algorithms. In this section, we show that Pi + anti-
links is e�ective for some of these examples. For other examples from (Ngair,
1993), applying anti-link techniques appears not to produce as signi�cant an impro-
vement. We develop an additional technique based on strictly pure full blocks that
results in a dramatic improvement for these latter examples.

Fast Subsumption Checks Using Anti-Links 25

In (Ngair, 1993) a class of formulas is proposed for which reliance on an inter-
mediate CNF form can result in an exponential increase in size and hence would be
intractable for CNF-based algorithms. Dissolution + Pi also does poorly for these
examples: Although the full dissolvent can be computed quickly, a large number
of subsumption checks must be performed by Pi. It turns out, however, that in
this case the subsumed implicates correspond to easily recognizable anti-links of
both the disjunctive and conjunctive kind. We show that if these anti-links are
removed after dissolution is performed, dissolution + Pi can �nd all the implicates
in polynomial time.

Ngair's formulas are abbreviated with Fn (n � 1) and are de�ned as:

Fn =

n^
i=2

A2i�1

!
_A1

!
^

n^
i=2

A2i

!
_A2

!
^

n_
i=1

(A2i�1 ^ A2i)

In the left part of Figure 1 we show the graph of Fn for a �xed n.

A3

^
...
^

A2n�1

_ A1

^

A4

^
...
^
A2n

_ A2

^

A1

^
A2

_ : : : _
A2n�1

^
A2n

A3

^
...
^

A2n�1

_ A1

^

A1

^
A2

_

A1

^
A2

^
A4

^
...
^
A2n

_

A1

^
A2

^
A2n�1

^
A2n

_ : : : _

A1

^
A2

^
A3

^
A4

Fig. 1. Semantic graph of Ngair's formulas before and after dissolution.

Clearly Fn has 4n literals, and 2n�2 c-links; dissolution can remove these links
by performing 2n dissolution steps. The full dissolvent that results is depicted in
the right part of Figure 1.

The structure of the full dissolvent depends on the order in which links are
selected for application of dissolution; the above dissolvent is the one obtained
by the current version of our propositional dissolution prover Dissolver. (The

26 Anavai Ramesh et al.

compact version (3) from Proposition 1 of the dissolvent is used; X is chosen to
be the smallest of the two c-blocks). We can now factor on all the occurrences
of both A1 and A2 in the upper right hand part of the graph and on the two
occurrences ofA1 in the lower left corner. The resulting graph is shown in Figure 2.
(Since Dissolver is NNF-based, such factoring is not only feasible but is in fact
implemented and routinely employed to produce the �nal output.)

A3

^
...
^

A2n�1

_ A1

^

A1

^

A2 _

A2

^
A4

^
...
^
A2n

_

A1

^

A2

^

A2n�1

^
A2n

_ : : : _
A3

^
A4

Fig. 2. Ngair's formulas after dissolution and factoring.

The two occurrences of A2 at the bottom left part of the graph form a redundant
disjunctive anti-link; they can be removed using the special case covered by Rule 1
for disjunctive anti-links. The two occurrences of A1 on the left hand side of
the graph form a conjunctive anti-link and can be removed using the conjunctive
anti-link rule. This produces:

A1

^
A2

_

A1

^
A2

^
A2n�1

^
A2n

_ : : : _
A3

^
A4

By factoring on A1 and removing the conjunctive anti-link comprised of the
two occurrences of A2 (or by just factoring on A1 ^ A2), the above graph reduces

Fast Subsumption Checks Using Anti-Links 27

to (A1 ^ A2); the prime implicates are just fA1g and fA2g. To get this graph,
n + 3 factoring and 3 anti-link operations were required | obviously polynomial
time. Hence dissolution + removal of anti-links + Pi can handle the above class
of problems in polynomial time. Perhaps the most important point is that no
subsumption checks whatsoever are required.

6 A Generalized Purity Principle

6.1 Strictly Pure Full Blocks

Recall that a full block is essentially an explicit subgraph; it is a subset of the argu-
ments of a conjunction or disjunction, and, via commutations and reassociations,
can in fact be made explicit.

Definition 19. A subgraph M in a graph G is pure i� all c-links or d-links that
meet M at all are totally within M .6 If, in addition, all conjunctive or disjunctive
anti-links that meetM at all are totally within M , we say thatM is strictly pure.7

If M is a full block in G we speak of a (strictly) pure full block .

When factored, some of the examples from (Ngair, 1993) contain surprisingly
many strictly pure full blocks. Note that both factoring and recognizing strictly
pure full blocks are polynomial operations. Intuitively, such full blocks can be
replaced by single new variables, and the implicates of the resulting graph bear a
strong relationship to those of the original. Of course, the full block in question
must be satis�able (since the new variable certainly is). At �rst, this may appear
to be a heavy penalty. It is not, however, because the prime implicates of the full
block itself must be computed anyway. In doing so, its satis�ability is determined
as a byproduct.

The following theorems characterize the properties of strictly pure full blocks
with respect to prime implicates. In them we employ the following notation: let
M be an explicit subgraph of a graph G and let X be a variable not occurring in
G. By GX

M
we denote the graph obtained by the substitution of X for M in G.

Similarly, if D is a disjunction of literal occurrences from G we denote by DM the
disjunction of literals that occur in M and by DG�M the disjunction of literals
that do not. Obviously, D = (DG�M _DM) holds. Finally, we set

DX

M
=

�
DG�M _X if DM 6= false (empty disjunction)
DG�M otherwise

Theorem 10. LetM be a satis�able strictly pure full block in a satis�able seman-
tic graph G and let D be a non-tautological disjunction of literals from G. If
DM 6= false, then the following statements are equivalent:

6 This is just the obvious generalization of the concept of a pure literal as it is used in the
literature on CNF-based automated deduction.

7 Simply put, M shares no variables with the rest of G.

28 Anavai Ramesh et al.

1. D is a prime implicate of G.

2. DX

M
is a prime implicate of GX

M
, and DM is a prime implicate of M .

This theorem turns out to be a special case of Theorem 11 to be proved in the
following subsection.

If a graph G contains several strictly pure full blocks M1; : : : ;Mn, then the
repeated application of Theorem 10 provides a potentially signi�cant speedup in
computing the prime implicates of G: Replace each strictly pure full block Mi by
a new variable Xi (1 � i � n) and compute the prime implicates of the resulting
graph GX

M
. Then, all substitutions of prime implicates of Mi for Xi in the prime

implicates of GX

M
result in prime implicates of G. The speedup is potentially

dramatic: Each subsumption test performed within some Mi would otherwise be
performed once for every d-path in GX

M
that can be extended throughMi to form a

d-path in G. Observe that prime implicates of GX

M
containing none of the variables

Xi (1 � i � n) are simply prime implicates of G that do not contain literals from
any of the blocks Mi.

Several distinct strictly pure full blocks can be handled by repeated application
of Theorem 10 as explained above. However, multiple occurrences M1; : : : ;Mn of
a single full block M in G require an extended analysis. The problem is that the
multiple occurrences themselves preclude any single M i from being strictly pure,
even if M shares no variables with the rest of G. Intuitively, we would expect that
by replacing each of the occurrences M i in G by the single new variable X , the
prime implicates of the resulting graph GX

M
would also bear a strong relationship

to those of G. This is made precise in the next section.

6.2 Multi-Pure Full Blocks

Definition 20. Suppose thatM1; : : : ;Mn are occurrences of full blocks in G and
that all of them are syntactically identical (up to associativity and commutativity
of disjuncts and conjuncts). The subgraph M� formed by taking all the nodes of
the blocks M i is not necessarily a full block;8 but let M� be strictly pure. Then
we call the M i multi-pure full blocks.

In addition, suppose that there are occurrences Mn+1;Mn+2; : : : ;Mn+m of full
blocks syntactically identical (up to associativity and commutativity of disjuncts
and conjuncts) toM , the NNF of the complement of any of theM i (1 � i � n). We

call M1; : : : ;Mn;Mn+1;Mn+2; : : : ;Mn+m complementary multi-pure full blocks.

Note that each (complementary) multi-pure full block M i is not strictly pure,
since it has anti-links (and possibly links) to its equivalent (complementary) full
blocks in G.

Observe that complementary non-atomic formulas must be recognized. For
example, if M = (A _ B), then M could be A ^ B or B ^ A. In fact, M could

8 As the blocks M i could be single literals occuring in arbitrary positions, this is hardly
surprising.

Fast Subsumption Checks Using Anti-Links 29

have been input as :(A _ B) or as :(:A � B). If NNF formulas are stored in an
appropriate canonical way, complementarity is easily (that is, in polynomial time)
detectable; the situation is also straightforward when complementary formulas
have the form M and :M prior to conversion to NNF. In any case, a detailed
treatment of this issue is beyond the scope of this paper. We do note that in
the absence of complements, multi-pure full blocks are recognizable in polynomial
time via a canonical NNF representation. A modi�cation of any algorithm for
�nding common subtrees (see (Grossi, 1993) for one such algorithm) can be used
for recognizing multi-pure full blocks.

It turns out that the results of Theorem 10 can be extended to the case in
which a formula contains complementary multi-pure full blocks. We use the nota-
tion of Theorem 10 with the understanding that M denotes any occurrence of an
M1;M2; : : : ;Mn and the Mn+1;Mn+2; : : : ;Mn+m are treated as negated occur-
rences ofM (thus GX

M
replaces the complementary occurrencesM j as well). M� is

de�ned as the subgraph of G relative to the M i and M
j

(1 � i � n < j � n+m).
GX

M
, DM , DG�M , and DX

M
are de�ned as before, but relative toM�. Additionally,

we de�ne DX

M
in the obvious way (Intuitively, we use DX

M
when the literals of DM

correspond to unnegated occurrences of M , and we use DX

M
when the literals in

DM correspond to negated occurrences of M).

Theorem 11. Let M1;M2; : : : ;Mn and Mn+1;Mn+2; : : : ;Mn+m be complemen-
tary multi-pure full blocks in a satis�able semantic graph G, where all of the
blocks M i and M j are satis�able (we allow m = 0). Let D be a non-tautological
disjunction of literals from G. Then the following statements are equivalent:

1. D is a prime implicate of G.

2. DM = false and D is a prime implicate of GX

or

DM 6= false and DX

M
is a prime implicate of GX

M
, and DM is a prime

implicate of M

or

DM 6= false and DX

M
is a prime implicate of GX

M
, and DM is a prime

implicate of M .

Proof. Let G0X

M
be a graph without c-links that is equivalent to GX

M
(for instance,

G0X

M
could be the full dissolvent of GX

M
). Similarly, letM 0 be a c-linkless equivalent

ofM , andM 0 be a c-linkless equivalent ofM . Let G0 be the graph obtained from G

by replacing X by M 0 and X by M 0. It is easy to see that G0 is equivalent to G
but has no c-links. By Theorem 3, every prime implicate of G is present as a
d-path in G0 and every prime implicate of GX

M
is present as a d-path in G0X

M
.

30 Anavai Ramesh et al.

To prove the only-if-part, let D be a prime implicate of G. Then there must
be an unsubsumed d-path p in G0 such that `(p) = D. Since M 0 and M 0 are

complementary, p can never meet (and thus pass through) both M i and M
j

for
any i and j.

Suppose �rst that p does not pass through any of the occurrences of M or M .
In this case, p must also be a d-path in G0X

M
(technically, p is isomorphic to a d-

path in G0X

M
). To prove that p is not subsumed by another d-path in G0X

M
, assume

otherwise, namely, that there is a path p0 in G0X

M
that subsumes p. But p0 cannot

contain X or X, and hence would also be a d-path in G0 that subsumes p, which
is a contradiction. Thus D is a prime implicate of G0X

M
and hence of GX

M
.

Now suppose p passes through the full blocks M i10; : : : ;M iq0. Let pj , 1 � j � q,
be the restriction of p to M ij0. Notice that for 1 � j, k � q, `(pj) = `(pk); other-
wise, the d-path obtained by replacing pj by pk in p would subsume p. Similarly,
pj cannot be subsumed by another d-path in M ij0. Since pj is an unsubsumed d-
path in M ij0 which is a linkless equivalent of M , DM = `(pj) is a prime implicate
of M . Now let pX be the d-path obtained by replacing each of the pj by X in p;
pX is a d-path in GX

M
. Furthermore, pX cannot be subsumed by another d-path

in GX

M
(again, such a subsuming path would induce a path in G0 that subsumes p).

Therefore DX

M
= `(pX) is a prime implicate of GX

M
.

Finally, in the case that p passes through the full blocks M
i10

; : : : ;M
ir0, the

argument is similar as in the previous paragraph.
To prove the if-part, �rst suppose DM = false andD is a prime implicate ofGX

M
.

Then there is an unsubsumed d-path (say p) in G0X

M
such that D = `(p). Since

DM = false, p contains neither X nor X. Thus p is an unsubsumed d-path of G0,
and D is a prime implicate of G.

Now suppose that DX

M
is a prime implicate of GX

M
and that DM is a prime

implicate of M . Then there are unsubsumed d-paths pX in G0X

M
and pM in M 0,

respectively, such that `(pX) = DX

M
and `(pM) = DM , respectively. In the present

subcase, by de�nition, DX

M
contains X (and cannot contain X). Let p0 be the

result of replacing all occurrences of X in pX by pM ; p0 is a d-path in G0. Since
both pM and pX are unsubsumed in GX

M
and M 0, respectively, and since M 0 does

not share any variables with the rest of G0, p0 will also be unsubsumed in G0.
Hence, by Theorem 3, D = `(p0) is a prime implicate of G.

Similarly, if DX

M
is a prime implicate of GX

M
and DM is a prime implicate ofM ,

then D is a prime implicate of G.
It is straightforward to see that in the case when n = 1 and m = 0 Theorem 11

collapses into Theorem 10.
On the one hand we expect to substitute new variables for multi-pure full blocks

and achieve a savings in the computation of prime implicates comparable to that
provided by Theorem 10. But note that some complementary occurrences of M
may be c-connected; this means that such occurrences play a role in whatever
inference process is employed prior to computation of the implicates themselves. In

Fast Subsumption Checks Using Anti-Links 31

particular, we may treat them as literals and dissolve (indeed, the set of individual
links between such full blocks would satisfy the requirements of a multiple link
dissolution chain as it is de�ned in (Murray and Rosenthal, 1993)).

That dissolving on two complementary full blocks accomplishes exactly what
dissolving on all the corresponding single-links would is clear: All c-paths through
both full blocks are eliminated from the graph. But the former operation is much
more e�cient than the latter. Therefore, recognizing such complementary full
blocks and performing inference directly on them, rather than on their constituent
literals, is desirable. Note also that for the inference phase of a prime implicate
computation, complementary full blocks do not have to be multi-pure full blocks.
This condition is necessary only for the extraction of implicates using Theorem 11
once all implicates are known to be present.

Finally, the remarks above apply also to identical full blocks if they form appro-
priate non-atomic anti-links as discussed in Section 3.

6.3 More Examples

Kean & Tsiknis (1990) provide a class of examples referred in the following to
as Knm. They havemn+1 input CNF clauses and (m+1)n+mn prime implicates.
This set of clauses can be factored to obtain a more compact representation in NNF
as shown in Figure 3.

A1 _

S11
^
...
^
S1m

^

...
^

An _

Sn1
^
...
^
Snm

^

A1 _ : : : _ An

Fig. 3. Semantic graph of Kean & Tsiknis's formulas.

32 Anavai Ramesh et al.

Since the number of prime implicates is exponential, so is the number of sub-
sumption checks required. The number of subsumption checks for the Ipia (de
Kleer, 1992) and Gen-Pi (Ngair, 1993) algorithms are shown in Table I.

Examples Ipia Gen-Pi Pi + anti-link

K33 5166 972 164

K44 506472 11600 887

K54 1730120 29074 887

TABLE I

Number of subsumption checks needed for Kmn by
Ipia, Gen-Pi, and Pi + anti-link.

For each i, the literals Si1; : : : ; Sim form a full block Mi, and all literals in it are
strictly pure. Let K0

mn
be the graph obtained by replacing each full block Mi by

a new variable Xi. By the corollary of Theorem 10, we can get the prime impli-
cates of Kmn from the prime implicates of K0

mn
. Since each of the subgraphs Mi

has no c-links, the prime implicates of Mi are present as d-paths by Theorem 3.
Since they also have no anti-links, by the contrapositive of Theorem 4, neither are
subsumption checks required to �nd these prime implicates. Thus the number of
subsumption checks to be done is exactly that required for computing the prime
implicates of K0

mn
, and this is signi�cantly less than that needed for Kmn. Note

that the number of prime implicates of K0

mn
is only 2n + n. For the problems in

Table I, we applied the above technique in combination with anti-link operations.
For K0

mn
, the full dissolvent depends only on n and can be de�ned recursively. The

full dissolvent of K0

m2 (basis) and of the general case of K0

mn
(n > 2) are shown in

Figure 4.
The number of subsumption checks required here is also shown in Table I. Cle-

arly, our techniques produce a signi�cant reduction in the number of subsumption
checks required. Note that for the problem Kmn, the number of subsumption
checks depends only on n and not on m, and is not reduced by applying the
anti-link operations to the full dissolvent.

Our techniques are not limited to NNF formulas. They can sometimes be used
by other algorithms like Ipia and Gen-Pi which are not based on NNF formulas.
For example K0

mn
turns out to be in CNF and hence both Ipia and Gen-Pi can

handle these formulas, thereby reducing the number of subsumption checks nee-
ded. However normal forms like CNF provide very little scope for applying these
techniques directly. For example the literals Si1; : : : ; Sim in the unfactored form of
Kmn do not form a full block. Hence one cannot apply Theorem 10. They do form
a full block after factoring. This provides stronger evidence that by avoiding less
general normal forms like CNF/DNF, one can improve the performance of prime

Fast Subsumption Checks Using Anti-Links 33

A1 _ X1

^
A2

^
X2

_

A1

^
X1

^
A2 _ X2

Xn _ An
^

K0

m(n�1)

_

Xn

^
An
^
A1

^
A2 _ X2

^
...
^

An�1 _ Xn�1

Fig. 4. The full dissolvent of Km2 (left) and of Kmn, n > 2 (right).

implicate algorithms.
We also note that we have implemented some of the anti-link operations pre-

sented above in a diagnosis system introduced in (Ramesh and Murray, 1995). As
a result, we greatly increased the size of problems solvable on our system. (The
anti-link operations used were the special cases that do not increase the size of the
formula.)

7 Comparison with BDDs

BDDs (Bryant, 1986) are commonly used in veri�cation of boolean circuits. Cou-
dert and Madre (Coudert and Madre, 1992) describe an algorithm which produces
the prime implicates/implicants of a propositional formula represented as a BDD.
Any algorithm including theirs which uses BDDs must perform large amounts of
subsumption testing. Given any formula in NNF, a BDD based method would
�rst construct the BDD and then extract the prime implicates/implicants from it.
In contrast, our system would �rst compute the full dissolvent. But for either of
these approaches, the next stage | extracting the prime implicates/implicants |
requires extensive testing for subsumption.

The size of the BDD depends critically on the ordering (of variables) chosen.
There are classes of NNF formulas (Breitbart et al., 1990) for which any BDD
will be exponentially large in the formula size. These formulas do not have any
c-links, so the dissolution phase of our method does not change the formula. Hence
the input to Pi would be a small formula, whereas the BDD based method would
have to handle an exponentially larger intermediate representation. However these
formulas have many prime implicates and prime implicants, and the subsumption
checking is the bottleneck for both methods.

34 Anavai Ramesh et al.

In all likelyhood, the relative performance of these two methods can be deter-
mined through experimental evaluation only; formulas will exist for which one
method is superior, and vice versa.

8 Conclusions and Future Work

We have introduced anti-links and de�ned useful equivalence-preserving opera-
tions on them. These operations can be employed so as to strictly reduce the
number of d-paths in an NNF formula. Unlike path dissolution, which removes
unsatis�able (or tautological, in the dual case) paths, anti-link operations remove
subsumed paths without any direct checks for subsumption. This is signi�cant for
prime implicate computations, since such computations tend to be dominated by
subsumption checks.

Although prime implicate/implicant problems are intractable in general, our
techniques perform exponentially better than others on certain examples. In addi-
tion, we are able to improve performance greatly on the inherently exponential
examples of (Ngair, 1993).

Some experimental results on a dissolution- and Pi-based system for computing
prime implicates are reported in (Ramesh and Murray, 1993). That system is
currently being extended; some anti-link operations are already implemented and
have shown to improve performance. Operations based on strictly pure full blocks
are under development, and their e�ectiveness in practice will be tested.

References

Y. Breitbart, Harry B. Hunt III, and Daniel Rosenkrantz. On the size of binary decision diagrams
representing boolean functions. TR 90-17, Dept. of Computer Science, SUNY at Albany,
Albany, NY, 1990.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE trans. on
computers, c-35(8):677{691, August 1986.

Olivier Coudert and Jean-Christophe Madre. Implicit and incremental computation of primes
and essential implicant primes of boolean functions. In Proceedings of the 29th ACM/IEEE
Design Automation Conference, pages 36{39, 1992.

J. de Kleer. An improved incremental algorithm for computing prime implicants. In Proceedings,
AAAI-92, San Jose, CA, pages 780{785, 1992.

Roberto Grossi. On �nding common subtrees. Theoretical Computer Science, 108(2):345{356,
1993.

Peter Jackson and John Pais. Computing prime implicants. In Proceedings, 10th International
Conference on Automated Deduction (CADE), Kaiserslautern, Germany, LNCS 449, pages
543{557. Springer, July 1990.

Peter Jackson. Computing prime implicants incrementally. In Proceedings, 11th International
Conference on Automated Deduction (CADE), Saratoga Springs, NY, LNCS 607, pages 253{
267, June 1992.

Alex Kean and George Tsiknis. An incremental method for generating prime implicants/im-
plicates. Journal of Symbolic Computation, 9:185{206, 1990.

Alex Kean and George Tsiknis. Assumption based reasoning and clause management systems.
Computational Intelligence, 8(1):1{24, November 1992.

Fast Subsumption Checks Using Anti-Links 35

Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEO: A high-
performance theorem prover. Journal of Automated Reasoning, 8(2):183{212, 1992.

Neil V. Murray and Eric Rosenthal. Inference with path resolution and semantic graphs. Journal
of the ACM, 34(2):225{254, April 1987.

Neil V. Murray and Eric Rosenthal. Path dissolution: A strongly complete rule of inference. In
Proceedings, 6th National Conference on Arti�cial Intelligence, Seattle, WA, pages 161{166,
July 1987.

Neil V. Murray and Eric Rosenthal. Dissolution: Making paths vanish. Journal of the ACM,
48(3):504{535, July 1993.

T. Ngair. A new algorithm for incremental prime implicate generation. In Proceedings, IJCAI-93,
Chambery, France, August 1993.

Teodor C. Przymusinski. An algorithm to compute circumscription. Arti�cial Intelligence, 30:49{
73, 1989.

Anavai Ramesh and Neil V. Murray. Non-clausal deductive techniques for computing prime impli-
cants and prime implicates. In Proceedings, 4th International Conference on Logic Program-
ming and Automated Reasoning (LPAR), St. Petersburg, Russia, LNCS 698, pages 277{288.
Springer, July 1993.

Anavai Ramesh and Neil V. Murray. An application of non clausal deduction in diagnosis. TR
95-1, Dept. of Computer Science, SUNY at Albany, Albany, NY, January 1995.

Anavai Ramesh, Bernhard Beckert, Reiner H�ahnle, and Neil V. Murray. On anti-links. In Procee-
dings, 5th International Conference on Logic Programming and Automated Reasoning, Kiev,
Ukraine, LNCS 882, pages 275{289. Springer, July 1994.

Raymond Reiter and J. de Kleer. Foundations of assumption-based truth maintenance systems:
preliminary report. In Proceedings, 6th National Conference on Arti�cial Intelligence, Seattle,
WA, pages 183{188, July 1987.

James R. Slagle, Chin-Liang Chang, and Richard C. T. Lee. A new algorithm for generating
prime implicants. IEEE Transactions on Computers, C-19(4):304{310, 1970.

