8 research outputs found

    Developments in abstract and assumption-based argumentation and their application in logic programming

    Get PDF
    Logic Programming (LP) and Argumentation are two paradigms for knowledge representation and reasoning under incomplete information. Even though the two paradigms share common features, they constitute mostly separate areas of research. In this thesis, we present novel developments in Argumentation, in particular in Assumption-Based Argumentation (ABA) and Abstract Argumentation (AA), and show how they can 1) extend the understanding of the relationship between the two paradigms and 2) provide solutions to problematic reasoning outcomes in LP. More precisely, we introduce assumption labellings as a novel way to express the semantics of ABA and prove a more straightforward relationship with LP semantics than found in previous work. Building upon these correspondence results, we apply methods for argument construction and conflict detection from ABA, and for conflict resolution from AA, to construct justifications of unexpected or unexplained LP solutions under the answer set semantics. We furthermore characterise reasons for the non-existence of stable semantics in AA and apply these findings to characterise different scenarios in which the computation of meaningful solutions in LP under the answer set semantics fails.Open Acces

    How we designed winning algorithms for abstract argumentation and which insight we attained

    Get PDF
    In this paper we illustrate the design choices that led to the development of ArgSemSAT, the winner of the preferred semantics track at the 2017 International Competition on Computational Models of Arguments (ICCMA 2017), a biennial contest on problems associated to the Dung’s model of abstract argumentation frameworks, widely recognised as a fundamental reference in computational argumentation. The algorithms of ArgSemSAT are based on multiple calls to a SAT solver to compute complete labellings, and on encoding constraints to drive the search towards the solution of decision and enumeration problems. In this paper we focus on preferred semantics (and incidentally stable as well), one of the most popular and complex semantics for identifying acceptable arguments. We discuss our design methodology that includes a systematic exploration and empirical evaluation of labelling encodings, algorithmic variations and SAT solver choices. In designing the successful ArgSemSAT, we discover that: (1) there is a labelling encoding that appears to be universally better than other, logically equivalent ones; (2) composition of different techniques such as AllSAT and enumerating stable extensions when searching for preferred semantics brings advantages; (3) injecting domain specific knowledge in the algorithm design can lead to significant improvements

    Foundations of implementations for formal argumentation

    Get PDF
    We survey the current state of the art of general techniques, as well as specific software systems for solving tasks in abstract argumentation frameworks, structured argumentation frameworks, and approaches for visualizing and analysing argumentation. Furthermore, we discuss challenges and promising techniques such as parallel processing and approximation approaches. Finally, we address the issue of evaluating software systems empirically with links to the International Competition on Computational Models of Argumentation

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument
    corecore