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Abstract

Logic Programming (LP) and Argumentation are two paradigms for knowledge repre-

sentation and reasoning under incomplete information. Even though the two paradigms

share common features, they constitute mostly separate areas of research. In this thesis,

we present novel developments in Argumentation, in particular in Assumption-Based Ar-

gumentation (ABA) and Abstract Argumentation (AA), and show how they can 1) extend

the understanding of the relationship between the two paradigms and 2) provide solutions

to problematic reasoning outcomes in LP.

More precisely, we introduce assumption labellings as a novel way to express the se-

mantics of ABA and prove a more straightforward relationship with LP semantics than

found in previous work. Building upon these correspondence results, we apply methods

for argument construction and conflict detection from ABA, and for conflict resolution

from AA, to construct justifications of unexpected or unexplained LP solutions under the

answer set semantics. We furthermore characterise reasons for the non-existence of stable

semantics in AA and apply these findings to characterise different scenarios in which the

computation of meaningful solutions in LP under the answer set semantics fails.
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1.1 Motivation

Answer Set Programming (ASP) is one of the most widely used non-monotonic reasoning

paradigms, allowing for the efficient computation of solutions to complex problems that

require reasoning with defaults and exceptions [Gel08]. It has aided developments in a

variety of areas in computer science and has been used as a problem solving paradigm in

many different domains. For example, Luitel et al. use ASP to evaluate software models

[LSI16], Gagnon and Esfandiari apply ASP for operating system discovery [GE09], Del-

grande et al. show how ASP can aid cryptography [DGH09], and Smith and Bryson review

the application of ASP for content generation in video games [SB14]. In other domains,

ASP has been applied for solving problems such as resource allocation [RGA+12], handling

biological information [BCT+04, Erd11, GSTV11, KOJS15], identifying inconsistencies in

medical databases [TML13], and refining psychological theories [BG10, Inc15].

A problem to be solved with ASP is represented in terms of a logic program, which

consists of if-then clauses whose literals (i.e. the statements in the if-then clauses) can

be negated in two different ways: using negation-as-failure (NAF) or explicit negation.

NAF literals only occur in the if-part of clauses and express exceptions on the appli-

cability of a clause, whereas explicitly negated literals express the opposite (or classical

negation) of a literal and can occur both in the if- and the then-part of a clause. The

solutions to a problem represented as a logic program are then given by the declar-

ative answer set semantics [GL91]. A logic program can have various different an-

swer sets, each representing a different “acceptable” set of literals, which together sat-

isfy the problem encoding. Answer set solvers like clingo [GKK+11, GKKS14], smodels

[SN01], DLV [ELM+97, LPF+02, LPF+06], WASP [ADF+13, ADLR15], and ME-ASP

[MPR14, MPR15] provide efficient tools for the computation of the answer set semantics,

thus facilitating the application of ASP for real-world problem solving.

The solutions of a problem to be solved using ASP heavily rely on the exact encoding

of this problem as a logic program. Different or erroneous encodings can therefore result

in different or unintended solutions. Furthermore, it is not always obvious why an answer

set is the solution of the encoded problem. To illustrate this issue, consider the following

(simple) problem to be solved using ASP.

An ophthalmologist has to decide whether his short-sighted patient should get correc-

tive lenses, i.e. glasses or contact lenses, or have laser surgery. To encode this decision

making problem in ASP, the doctor considers exception conditions under which either cor-

rective lenses or laser surgery are not a good choice. Since laser surgery is rather expensive,

the doctor adds an exception condition to the clause representing the laser surgery choice,

expressing that laser surgery is an option as long as there is no evidence that the patient

is tight on money. Furthermore, the doctor adds a clause representing his common-sense

knowledge that students are usually tight on money, as well as factual knowledge he has

about his patient, namely that the patient is short-sighted and a student. This results in

14



the following encoding as a logic program:1

{ correctiveLenses← shortSighted;

laserSurgery ← shortSighted, not tightOnMoney;

tightOnMoney ← student;

shortSighted← ;

student← }

This logic program has a single answer set: {student, shortSighted, tightOnMoney,

correctiveLenses}. Thus, according to ASP, the solution to the decision problem is that

the patient should get some form of corrective lenses. The doctor was unsure whether

corrective lenses or laser surgery would be more suitable, so is now faced with the problem

of whether or not to trust the decision made by ASP.

If ASP is to be used for solving real-world problems such as aiding decision making, it

is thus often important that the user understands how the solution came about in order

to trust the solution. This is also important, if the user expected a different solution.

In addition to unintended, unexpected, or non-understandable answer sets, the com-

putation of answer sets sometimes fails altogether. Such failure occurs in two different

ways: on the one hand, no answer sets may be computed at all; on the other hand, a single

answer set may be computed that consists of all literals occurring in the logic program

(which is not generally a meaningful solution as it expresses that everything is “accept-

able”, including conflicting information). Such ASP failure is caused by encodings that

cannot be rationally satisfied, which may be due to mistakes in the way a problem is

encoded as a logic program.

Especially when non-ASP-experts use ASP for problem solving, non-understandable

solutions or failure of an ASP solver is problematic. In this thesis, we deal with both types

of problems.

1. Concerning unexpected or non-understandable answer sets, we propose a method for

explaining why a literal is contained in an answer set (e.g. if the user expects that

the literal is not part of the solution) or why it is not contained in an answer set

(e.g. if the user expects that the literal is part of the solution).

2. Concerning ASP failure, we characterise four different failure scenarios and culprit

literals, which are responsible for the failure in each scenario.

1The right-hand side of the arrow constitutes the if-part of a clause and the left-hand side the then-
part. Clauses with an empty right-hand side represent facts and not denotes NAF. Note that this simple
example does not comprise any explicit negation.
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1.2 Approach

In order to deal with non-understandable ASP solutions and ASP failure, we apply meth-

ods from the field of computational argumentation.

1.2.1 Argumentation

The study of computational argumentation is concerned with the development of frame-

works and computational tools for representing arguments and interactions between them

and determining sets of accepted arguments. Many different argumentation frameworks

have been proposed; they can be divided into abstract and structured frameworks.

The former (e.g. [Dun95b, Mod09, CLS13]) assume that a set of arguments, which

are abstract entities, and interactions between them are given. The most prominent (and

most simple) abstract framework was introduced by Dung, whose Abstract Argumentation

(AA) framework [Dun95b] comprises attacks between arguments as the only interactions.

Dung defined different semantics for determining sets of accepted arguments in AA, so-

called argument extensions. These semantics were later reformulated in terms of argument

labellings, which assign to each argument one of the labels “accepted”, “rejected”, or

“undecided” [CG09].

In contrast to abstract frameworks, structured frameworks (e.g. [BDKT97, BH01,

GS04, MP13], see [BGH+14] for an overview) assume that domain and problem-specific

knowledge is given in some underlying logical language, e.g. in terms of inference rules,

facts, and information that is true by default. Based on this knowledge, structured frame-

works provide mechanisms for constructing arguments. Importantly, the logical language

of a structured framework must also include a notion of contrary, for example classical

negation in propositional logic, which allows to determine conflicts between the constructed

arguments.

In this thesis, we make use of a structured framework called Assumption-Based Ar-

gumentation (ABA) [BDKT97, DKT09, Ton14], which is inspired by logic programming,

default logic and other non-monotonic reasoning paradigms closely related to ASP. Struc-

tured knowledge in an ABA framework is given in terms of inference rules made of sen-

tences in some underlying logical language. A subset of sentences is defined as assumptions,

representing information assumed to hold by default. For each assumption, a contrary

sentence in the language is defined. In contrast to AA frameworks, where semantics are

expressed in terms of sets of accepted arguments, ABA semantics are typically expressed

in terms of sets of accepted assumptions, called assumption extensions.

Given a flat ABA framework (where assumptions cannot be deduced from other

assumptions) arguments and attacks between them can be constructed. A flat ABA

framework thus instantiates an AA framework comprising all arguments and attacks

constructable in the flat ABA framework [DMT07]. We call such an instantiated AA

framework the corresponding AA framework of the underlying ABA framework. Then the

semantics of AA frameworks can be applied to a flat ABA framework by means of its
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corresponding AA framework [DMT07].

1.2.2 Argumentation versus Logic Programs

Since ABA frameworks operate on the basis of inference rules just like ASP, an ABA

framework can express the same information as a logic program [BDKT97]. We call

an ABA framework representing a logic program the translated ABA framework of the

underlying logic program. Furthermore, since a translated ABA framework is guaranteed

to be flat, it instantiates a corresponding AA framework, so a logic program can also be

encoded in terms of the corresponding AA framework of the translated ABA framework.

We call such an AA framework the translated AA framework of the underlying logic

program.

One of the semantics of ABA and AA frameworks (in terms of assumption and argu-

ment extensions, respectively) is the stable semantics [BDKT97, Dun95b], which has its

roots in the stable model semantics for logic programs [GL88]. On the other hand, the

answer set semantics of logic programs is an extension of the stable model semantics for

logic programs [GL91]. It is thus unsurprising that answer sets of a logic program and

stable assumption/argument extensions of the translated ABA/AA framework correspond

[BDKT97, Dun95b]. In this thesis, we make use of this semantic connection between logic

programs and ABA/AA frameworks as it allows to apply methods developed for ABA and

AA to logic programs.

To study the semantic connection between ABA frameworks and logic programs in

more detail, we introduce a labelling-based semantics for ABA, inspired by the labelling

semantics for AA frameworks. Using these new assumption labellings, we are able to ex-

tend existing correspondence results between the semantics of a logic program and the

translated ABA framework by showing a more detailed correspondence. In addition to in-

vestigating the stable ABA semantics and answer set semantics for logic programs, which

is needed to apply ABA concepts to logic programs under the answer set semantics, we also

consider and relate other semantics of ABA frameworks and logic programs. Furthermore,

to provide a full picture of semantic correspondence, we also investigate semantic corre-

spondence between logic programs and AA frameworks, extending existing correspondence

results by using our correspondence results between logic programs and translated ABA

frameworks.

Note that even though we will more frequently refer to the translated AA framework

than to the translated ABA framework of a logic program when using argumentation meth-

ods to solve problems in ASP, the translated AA framework is built from the translated

ABA framework. Thus, the semantic correspondence between a logic program and its

translated AA framework relies on the correspondence between the logic program and the

translated ABA framework together with the semantic correspondence between the trans-

lated ABA framework and the translated AA framework. The translated ABA framework

consequently plays an important (albeit implicit) role in our investigations.
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1.2.3 Explaining Answer Sets using Argumentation

If a solution computed by an ASP solver is unexpected or the user simply wants to know

why a literal is or is not part of an answer set, an explanation is desirable. We make use

of the correspondence results between the answer set semantics of a logic program and

the stable semantics of the translated ABA and AA frameworks to explain why literals

are (not) contained in an answer set in terms of arguments (not) contained in a stable

argument extension of the translated AA framework. We propose two types of argumen-

tative explanations, which can both be interpreted as a dialogue between two adversaries

arguing about the “truth” of the literal in question. When justifying a literal contained in

an answer set, the proponent, who is trying to explain why the literal in question should

be regarded as “true”, is able to refute all evidence against the “truth” of the literal given

by the opponent. On the other hand, when justifying a literal not contained in an answer

set, the proponent is not able to refute all evidence given by the opponent.

The first justification approach, an Attack Tree, expresses how to construct an ar-

gument for the literal in question (the supporting argument given by the proponent) as

well as which arguments attack the argument for the literal in question (the attacking

arguments given by the opponent). The same information is provided for all arguments

attacking the attacking arguments (given by the proponent), and so on.

The second justification approach, an ABA-Based Answer Set (ABAS) Justification of

a literal, represents similar information to an Attack Tree, but expressed in terms of literals

rather than arguments. An ABAS Justification comprises facts and NAF literals necessary

to derive the literal in question (the “supporting literals”) as well as information about

literals that are in conflict with the literal in question (the “attacking literals”). The same

information is provided for all supporting and attacking literals of the literal in question,

for all their supporting and attacking literals, and so on.

Attack Trees may be more suitable for non-ASP experts since they provide explanations

in terms of arguments, whereas ABAS Justifications may be more suitable for ASP experts

as they provide explanations in terms of literals.

1.2.4 Characterising and Explaining ASP Failure using Argumentation

If an ASP solver is unable to compute answer sets at all or yields the set of all literals

occurring in the logic program as the only answer set, the logic program is inconsistent.

In such a case, it is useful to know what caused the inconsistency, in particular, which

part of the logic program is responsible for the inconsistency.

We again aim at applying argumentation methods for solving the problem of ASP fail-

ure. Therefore, we first investigate inconsistency in argumentation, i.e. the non-existence

of stable labellings. Rather than basing this investigation on translated ABA frameworks,

we abstract away from the structure of arguments constructed from a logic program and

instead give more general results, which apply to any AA framework. In particular, we

introduce the first characterisation of parts of an AA framework that are responsible for
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the non-existence of stable argument labellings. Additionally, we introduce a method for

obtaining a stable argument labelling by revising the responsible parts. Based on our se-

mantic correspondence result between a logic program and the translated AA framework,

we then transfer these inconsistency results from AA frameworks to logic programs. This

yields a characterisation of parts of a logic program without explicit negation that are

responsible for the logic program being inconsistent.

We then propose a method for identifying the reason of inconsistency in any logic

program based on the well-founded [VRS91] and M-stable [ELS97] model semantics. These

semantics are “weaker” than the answer set semantics in that they are 3-valued rather

than 2-valued. We prove that the two ways in which a logic program may be inconsistent

(i.e. no answer sets or all literals as the only answer set) can in fact be divided into four

inconsistency cases, which provide different reasons for the inconsistency: one where only

explicit negation is responsible, one where only NAF is responsible, and two where the

interplay of explicit negation and NAF is responsible. We show how in each of these

inconsistency cases the reason of the inconsistency can be refined to a characteristic set

of culprit literals. In the case where only NAF is responsible, these culprit literals are

characterised in the same way as responsible parts of a logic program without explicit

negation. We thus apply our characterisation of the non-existence of stable argument

labellings of AA frameworks to logic programs. Finally, we show how culprit literals can

be used to explain why the inconsistency arises by constructing explanations trees which

are similar to our Attack Trees for consistent logic programs.

1.2.5 Approach Summary

Both issues investigated in this thesis, namely non-understandable ASP solutions and

ASP failure, pose problems for the user if he or she is unable to understand the ASP

behaviour. Therefore, human-understandable explanations of the ASP behaviour is an

important component of both issues, which we here address through argumentation.

Argumentation has been used as a tool for constructing dialectical explanations in a

variety of domains, e.g. linked open data [ACP+16], decision making [ZFTL14], and belief

revision [FKIS02]. We show in this thesis that argumentation is also an ideal formalism

for the explanation of ASP behaviour, in particular the explanation of literals with respect

to answer sets and the explanation of ASP failure scenarios.

In addition to its explanatory capabilities, developments in argumentation can also be

beneficial for investigating other issues of ASP. Here, we show how novel findings on the

non-existence of stable semantics in AA frameworks can be applied to draw conclusions

about the non-existence of answer sets.
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1.3 Contributions and Thesis Structure

We give the necessary background on AA and ABA frameworks as well as on logic programs

and ASP in Chapter 2 and conclude in Chapter 8. The main contributions of the rest of

this thesis are as follows.

❼ Chapter 3: We introduce a new way of defining ABA semantics, namely in terms of

assumption labellings, which represent a more refined interpretation than assumption

extensions. We prove that there is a one-to-one correspondence between the new as-

sumption labellings and assumption extensions, and investigate the correspondence

with argument labellings of the corresponding AA framework of a flat ABA frame-

work. In addition, we define assumption labellings for non-flat ABA frameworks

and prove correspondence with assumption extensions of non-flat ABA frameworks.

❼ Chapter 4: We review and extend existing correspondence results between the seman-

tics of a logic program and its translated ABA framework, as well as its translated

AA framework, thus improving the understanding of the relationship between the

three formalisms. These results are partly based on our new semantic formalisations

for ABA frameworks in Chapter 3.

❼ Chapter 5: Based on the correspondence results from Chapter 4, we propose argu-

mentative explanations for literals (not) contained in answer sets of a logic program.

This is our first approach that applies methods from Argumentation to aid ASP. We

furthermore present a web-platform, which implements our argumentative explana-

tions.

❼ Chapter 6: We characterise the parts of an AA framework that are responsible for the

non-existence of stable argument labellings and propose a methodology for turning

a preferred argument labelling into a stable one.

❼ Chapter 7: Using our characterisations from Chapter 6 and our correspondence

results from Chapter 4, we characterise the parts of an inconsistent logic program

without explicit negation that are responsible for the inconsistency. We then study

inconsistent logic programs in general and characterise four failure scenarios. For

each scenario, we characterise culprit literals responsible for the failure and propose

argumentative explanations as to why the failure arises.

1.4 Publications

This thesis combines and builds upon work that has been published or is under review for

publication:

❼ Chapter 3: C. Schulz and F. Toni. Complete Assumption Labellings. In Pro-

ceedings of the 5th International Conference on Computational Models of Argument

(COMMA), pages 405–412, 2014 [ST14].
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❼ Chapter 3: C. Schulz and F. Toni. Labellings for Assumption-Based and Abstract

Argumentation. International Journal of Approximate Reasoning, 84, pages 110–

149, 2017 [ST17a].

❼ Chapter 4: C. Schulz and F. Toni. Logic Programming in Assumption-Based Argu-

mentation Revisited – Semantics and Graphical Representation. In Proceedings of

the 29th AAAI Conference on Artificial Intelligence (AAAI), pages 1569–1575, 2015

[ST15].

❼ Chapter 4: M. Caminada and C. Schulz. On the Equivalence between Assumption-

Based Argumentation and Logic Programming. In Proceedings of the 1st Interna-

tional Workshop on Argumentation and Logic Programming (ArgLP), 2015 [CS15].

❼ Chapters 4 and 5: C. Schulz and F. Toni. Justifying Answer Sets using Argumenta-

tion. Theory and Practice of Logic Programming, 16(01), pages 59–110, 2016 [ST16].

❼ Chapter 6: C. Schulz and F. Toni. On the Non-Existence and Restoration of Stable

Labellings in Abstract Argumentation Frameworks. Under Review [ST17b]

❼ Chapter 7: C. Schulz, K. Satoh and F. Toni. Characterising and Explaining Incon-

sistency in Logic Programs. In Proceedings of the 13th International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 467–479, 2015

[SST15].

Note that the work published in [DS14] and [SD16] was also performed as part of the

PhD studies of the author, but is not included in this thesis as it is only loosely related

to the rest of the presented material.

1.5 Statement of Originality

I declare that this thesis was composed by myself and that the work it presents is my own,

except where otherwise stated.
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Chapter 2

Background
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2.1 Introduction

As outlined in the previous chapter, in this thesis we present novel concepts and results

regarding argumentation frameworks and apply them for the development of solutions to

issues concerning logic programs.

In this chapter, we give some background on the two argumentation frameworks and

on ASP used throughout the whole thesis. In addition to the concepts introduced in

this chapter, some of the following chapters provide further background specific to the

respective chapters.

The chapter is organised as follows. In Section 2.2, we introduce AA and ABA frame-

works and their respective notions of semantics, and recall how to construct an AA frame-

work from an ABA framework. In Section 2.3, we introduce logic programs and present

the answer set semantics as well as various notions of 3-valued models. We summarise the

given background in Section 2.4.

2.2 Argumentation

For the past twenty years, argumentation has been an active field of research in Artificial

Intelligence (AI), which incorporates ideas from logic, computer science, philosophy, psy-

chology, and linguistics. Argumentation has been applied to many different domains of

AI, such as decision making, multi-agent communication, legal reasoning and explanation

(see e.g. [RS09] for an overview).

Two kinds of approaches can be distinguished in argumentation: abstract and struc-

tured approaches. The former consider arguments as abstract entities, which can be in-

stantiated with anything desired by the user, whereas the latter consider arguments to have

a specific internal structure, which is based on some underlying structured knowledge.

In this thesis, we consider one abstract and one structured approach, namely Ab-

stract Argumentation frameworks (AA) and Assumption-Based Argumentation (ABA)

frameworks, respectively. We chose these two frameworks since they can be considered

“lightweight” argumentation frameworks in the sense that they are made of very few com-

ponents, compared to related frameworks. As we will see throughout this thesis, these few

components are sufficient for our purposes, so choosing frameworks with more components

would result in unused, and thus for our purposes unnecessary, components.

For example, AA frameworks, as introduced in Section 2.2.1, are made of a set of

arguments and a set of attacks between these arguments. In contrast, other abstract

frameworks comprise components such as a set of support relations between the argu-

ments (e.g [CLS05, ON08, NR10, CLS13, Gab16a]), a set of attack relations from argu-

ments to attacks [Mod09], or a set of values or preferences associated with the arguments

(e.g. [BC03, KvdT08, LM11]).

ABA on the other hand, introduced in Section 2.2.2, is a structured argumentation

framework made of one type of inference rule, a contrariness mapping, and a set of de-
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feasible elements. In contrast, other structured argumentation frameworks comprise addi-

tional components. For example, ASPIC+ [MP10, MP13] has two types of inference rules

as well as an additional set of facts. Similarly, DeLP (Defeasible Logic Programming)

[GS04, GS14] comprises two different types of inference rules.

2.2.1 Abstract Argumentation (AA)

An Abstract Argumentation (AA) framework [Dun95b] is a pair 〈Ar,Att〉, where Ar is a

set of arguments and Att ⊆ Ar × Ar is a binary attack relation between arguments. A

pair (A,B) ∈ Att expresses that argument A attacks argument B, or equivalently that B

is attacked by A. A set of arguments Args ⊆ Ar attacks an argument B ∈ Ar if and only

if there is A ∈ Args such that A attacks B. Args+ = {A ∈ Ar | Args attacks A} denotes

the set of all arguments attacked by Args [BCG11]. Args attacks a set of arguments Args′

if and only if Args attacks some B ∈ Args′.

Let Args ⊆ Ar be a set of arguments.

❼ Args is conflict-free if and only if Args ∩Args+ = ∅.

❼ Args defends A ∈ Ar if and only if Args attacks every B ∈ Ar attacking A.

The semantics of an AA framework are defined in terms of argument extensions, i.e. sets

of accepted arguments [Dun95b, DMT07, Cam06b]. A set of arguments Args ⊆ Ar is

❼ an admissible argument extension if and only if Args is conflict-free and defends all

arguments A ∈ Args;

❼ a complete argument extension if and only if Args is conflict-free and consists of all

arguments it defends;

❼ a grounded argument extension if and only if Args is a minimal (w.r.t. 1 ⊆) complete

argument extension;

❼ a preferred argument extension if and only if Args is a maximal (w.r.t. ⊆) complete

argument extension;

❼ an ideal argument extension if and only if Args is a maximal (w.r.t. ⊆) admissi-

ble argument extension satisfying that for all preferred argument extensions Args′,

Args ⊆ Args′;

❼ a semi-stable argument extension if and only if Args is a complete argument exten-

sion and for all complete argument extensions Args′, Args∪Args+ 6⊂ Args′∪Args′+;

❼ a stable argument extension if and only if Args is a complete argument extension

and Args ∪Args+ = Ar.

1Throughout this thesis, we often abbreviate “with respect to” as “w.r.t.”.
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Note that some of these definitions of argument extensions are not the original ones

introduced in [Dun95b] but are equivalent formulations [BCG11].

Example 2.1. Let AA1 = 〈{a, b, c}, {(a, b), (b, a), (b, c), (c, c)}〉 be an AA framework. As

any AA framework, AA1 can be represented by a graph where nodes are arguments and

directed edges are attacks between the arguments, as illustrated in Figure 2.1.

The singleton sets {a} and {b} are conflict-free, whereas {c} is not. Furthermore, no set

with more than one argument is conflict-free.

Both {a} and {b} are admissible and complete argument extensions, and so is the empty

set. The empty set is furthermore the unique grounded argument extension, and both {a}

and {b} are preferred argument extensions. It then follows, that the only ideal argument

extension is the empty set since it is the intersection of {a} and {b}, and is furthermore

an admissible argument extension.

The set of arguments attacked by Args1 = {a} is Args1
+ = {b}, whereas for Args2 = {b}

it is Args2
+ = {a, c}, and for Args3 = {} it is Args3

+ = {}.

Therefore, Args2 is the only semi-stable argument extension and also the only stable

argument extension.

a b c

Figure 2.1: The AA framework AA1 from Example 2.1.

Another way of expressing the semantics of an AA framework is in terms of argument

labellings [Cam06a, CG09]. An argument labelling is a total function LabArg : Ar →

{in, out, undec}. The set of arguments labelled in by LabArg is in(LabArg) = {A ∈ Ar |

LabArg(A) = in}; the sets of arguments labelled out and undec are denoted out(LabArg)

and undec(LabArg), respectively.

An argument labelling LabArg is an admissible argument labelling if and only if for

each argument A ∈ Ar it holds that:

❼ if LabArg(A) = in, then for each B ∈ Ar attacking A, LabArg(B) = out;

❼ if LabArg(A) = out, then there exists someB ∈ Ar attackingA such that LabArg(B)

= in.

An argument labelling LabArg is a complete argument labelling if and only if it is an

admissible argument labelling and for each argument A ∈ Ar it holds that:

❼ if LabArg(A) = undec, then there exists some B ∈ Ar attacking A such that

LabArg(B) = undec and there exists no C ∈ Ar attacking A such that LabArg(C) =

in.
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Equivalently, a complete argument labelling can be defined by reversing the condi-

tions2. That is, an argument labelling is a complete argument labelling if and only if for

each argument A ∈ Ar it holds that:

❼ if for each B ∈ Ar attacking A, LabArg(B) = out, then LabArg(A) = in;

❼ if there exists some B ∈ Ar attacking A such that LabArg(B) = in, then LabArg(A)

= out;

❼ if there exists some B ∈ Ar attacking A such that LabArg(B) = undec and there

exists no C ∈ Ar attacking A such that LabArg(C) = in, then LabArg(A) = undec.

In order to define argument labellings according to other semantics, we first recall how

to compare the commitment of argument labellings [BCG11].

Let LabArg1 and LabArg2 be argument labellings. LabArg2 is more or equally

committed than LabArg1, denoted LabArg1 ⊑ LabArg2, if and only if in(LabArg1) ⊆

in(LabArg2) and out(LabArg1) ⊆ out(LabArg2).

A complete argument labelling LabArg is [CG09, Cam11]

❼ a grounded argument labelling if and only if in(LabArg) is minimal (w.r.t. ⊆) among

all complete argument labellings;

❼ a preferred argument labelling if and only if in(LabArg) is maximal (w.r.t. ⊆) among

all complete argument labellings;

❼ an ideal argument labelling if and only if LabArg is a maximal (w.r.t. ⊑) admissible

argument labelling which satisfies that for all preferred argument labellings LabArg′,

LabArg ⊑ LabArg′;

❼ a semi-stable argument labelling if and only if undec(LabArg) is minimal (w.r.t. ⊆)

among all complete argument labellings;

❼ a stable argument labelling if and only if undec(LabArg) = ∅.

Complete, grounded, preferred, ideal, semi-stable, and stable argument extensions corre-

spond one-to-one to the sets of arguments labelled in by the complete, grounded, preferred,

ideal, semi-stable, and stable argument labellings, respectively [CG09, Cam11]. In con-

trast, an admissible argument extension may correspond to various admissible argument

labellings [CG09].

Example 2.2. Consider again AA1 from Example 2.1. It has three complete argument

labellings:

❼ LabArg1 = {(a, in), (b, out), (c, undec)},

2This follows from Proposition 5 in [CG09].
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❼ LabArg2 = {(a, out), (b, in), (c, out)}, and

❼ LabArg3 = {(a, undec), (b, undec), (c, undec)}.

LabArg1 and LabArg2 are both preferred argument labellings, LabArg3 is the only groun-

ded and only ideal argument labelling, and LabArg2 is the only semi-stable and only

stable argument labelling. We note that LabArg1 corresponds to the complete argument

extension Args1, LabArg2 to Args2, and LabArg3 to Args3 (see Example 2.1).

All three complete argument labellings are also admissible argument labellings. In ad-

dition, there exists an admissible argument labelling that is not a complete argument

labelling, namely LabArg4 = {(a, out), (b, in), (c, undec)}. LabArg4 corresponds to the

admissible argument extension Args2, illustrating the one-to-many correspondence be-

tween admissible argument extensions and labellings.

Admissible extensions can also be defined using trees of attacking arguments.

An abstract dispute tree [DKT06] for an argument A ∈ Ar is a (possibly infinite) tree

such that:

1. every node in the tree is labelled by an argument and is assigned the status of

proponent or opponent node, but not both;

2. the root is a proponent node labelled by A;

3. for every proponent node N labelled by an argument B ∈ Ar and for every argument

C ∈ Ar attacking B, there exists a child of N that is an opponent node labelled by

C;

4. for every opponent node N labelled by an argument B ∈ Ar, there exists exactly

one child of N , which is a proponent node labelled by an argument C ∈ Ar that

attacks B;

5. there are no other nodes in the tree except those given by 1-4 above.

An abstract dispute tree is admissible [DKT09] if and only if no argument labels both

a proponent and an opponent node. It was shown that the set of all arguments labelling

proponent nodes in an admissible abstract dispute tree is an admissible argument extension

[DMT07].

2.2.2 Assumption-Based Argumentation (ABA)

An Assumption-Based Argumentation (ABA) framework [BDKT97, DKT09, Ton14] is a

tuple 〈L,R,A, ¯〉 where:

❼ (L,R) is a deductive system, with L a language of countably many sentences and R

a set of inference rules of the form s0 ← s1, . . . , sn (n ≥ 0) with s0, . . . , sn ∈ L;

s0 is the head of the inference rule and s1, . . . , sn is the body ;
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❼ A ⊆ L is a non-empty set of assumptions;

❼ ¯ is a total mapping from A into L defining the contrary of assumptions, where α

denotes the contrary of α ∈ A.

An ABA framework is flat if assumptions occur only in the body of inference rules

[DKT06]. For the rest of this section, we assume as given a flat ABA framework 〈L,R,A, ¯〉.

An argument [DKT09] for (the conclusion) s ∈ L supported by the set of premises

Asms ⊆ A, denoted Asms ⊢ s, is a finite tree where every node holds a sentence in L or

the sentence τ (where τ /∈ L stands for “true”) such that:

❼ the root node holds s;

❼ for every node N

– if N is a leaf, then N holds either an assumption or τ ;

– if N is not a leaf and N holds the sentence s0, then there is an inference rule

s0 ← s1, . . . , sm ∈ R and either m = 0 and the only child node of N holds τ or

m > 0 and N has m children holding s1, . . . , sm;

❼ Asms is the set of all assumptions held by leaf nodes.

We sometimes name arguments with capital letters, e.g. A :Asms ⊢ s is an argument with

name A. With an abuse of notation, the name of an argument is also used to refer to

the whole argument. Note that for every assumption α ∈ A there exists an assumption-

argument {α} ⊢ α.

Let Asms,Asms1, Asms2 ⊆ A be sets of assumptions and let α ∈ A be an assumption.

❼ Asms attacks α if and only if there exists an argument Asms′ ⊢ α such that Asms′ ⊆

Asms. Equivalently, we say that α is attacked by Asms.

❼ Asms1 attacks Asms2 if and only if Asms1 attacks some α ∈ Asms2.

❼ Asms+ = {α ∈ A | Asms attacks α}.

❼ Asms is conflict-free if and only if Asms ∩Asms+ = ∅.

❼ Asms defends α if and only if Asms attacks all sets of assumptions attacking α.

Example 2.3. Let ABA1 be the following (flat) ABA framework:

L = {p, q, x, ψ, χ},

R = {q ← ; p← q, χ ; x← p, ψ},

A = {ψ, χ},

ψ = p, χ = x.
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Figure 2.2: The arguments {} ⊢ q, {χ} ⊢ p, and {χ, ψ} ⊢ x (left to right) constructible in
ABA1 (see Example 2.3).

The non-assumption-arguments constructible in ABA1 are illustrated in Figure 2.2. In

addition, there are two assumption-arguments, {χ} ⊢ χ and {ψ} ⊢ ψ, which both consist

of only a single node, namely χ and ψ, respectively.

The set of assumptions {χ} attacks assumption ψ since there exists an argument {χ} ⊢ p,

and {χ, ψ} attacks both ψ and χ. The sets of assumptions {ψ} and {} do not attack any

assumption.

The semantics of an ABA framework are defined as assumption extensions, i.e. sets of

accepted assumptions [BDKT97, DMT07, CSAD15a]. A set of assumptions Asms ⊆ A is

❼ an admissible assumption extension if and only if Asms is conflict-free and defends

every α ∈ Asms;

❼ a complete assumption extension if and only if Asms is conflict-free and consists of

all assumptions it defends;

❼ a grounded assumption extension if and only if Asms is a minimal (w.r.t. ⊆) complete

assumption extension;

❼ a preferred assumption extension if and only ifAsms is a maximal (w.r.t.⊆) complete

assumption extension;

❼ an ideal assumption extension if and only if Asms is a maximal (w.r.t. ⊆) complete

assumption extension satisfying that for all preferred assumption extensions Asms′,

Asms ⊆ Asms′;

❼ a semi-stable assumption extension if and only if Asms is a complete assumption

extension and for all complete assumption extensions Asms′, Asms ∪ Asms+ 6⊂

Asms′ ∪Asms′+;

❼ a stable assumption extension if and only if Asms is a complete assumption extension

and Asms ∪Asms+ = A.
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Note that some of these definitions are not the original ones introduced in [BDKT97,

DMT07] but are equivalent formulations as proven in [CSAD15a].

Example 2.4. Consider again ABA1 from Example 2.3. The only admissible assumption

extensions of ABA1 are {χ}, as it defends χ against the attacking set of assumptions

{χ, ψ}, and {}, which trivially defends all its assumptions against attackers (as there are

none). Both {} and {χ} are complete assumption extensions, {χ} is the only preferred,

ideal, semi-stable, and stable assumption extension, and {} is the unique grounded as-

sumption extension.

2.2.3 Correspondence between ABA and AA

A flat ABA framework 〈L,R,A, ¯〉 can be mapped into a corresponding AA framework

〈ArABA, AttABA〉 [DMT07] where:

❼ ArABA is the set of all arguments Asms ⊢ s;

❼ (Asms1 ⊢ s1, Asms2 ⊢ s2) ∈ AttABA if and only if ∃α ∈ Asms2 such that s1 = α.

Given an admissible / complete / grounded / preferred / ideal / stable assumption

extension Asms of 〈L,R,A, ¯〉, the set of all arguments whose premises are a subset

of Asms is an admissible / complete / grounded / preferred / ideal / stable argument

extension of 〈ArABA, AttABA〉 [DMT07, Ton12, CSAD15a].

Conversely, given an admissible / complete / grounded / preferred / ideal / stable

argument extension Args of 〈ArABA, AttABA〉, the union of all premises of arguments

in Args is an admissible / complete / grounded / preferred / ideal / stable assumption

extension of 〈L,R,A, ¯〉 [DMT07, Ton12, CSAD15a].

Note that this correspondence does not hold for semi-stable assumption and argument

extensions [CSAD15a].

2.3 Logic Programming

Logic programming is a large field of research in AI, comprising various sub-fields such

as inductive logic programming, constraint logic programming, and answer set program-

ming. For an overview of the development of the field and its sub-fields, see for example

see [DP10].

Many different semantics for logic programs have been proposed and studied, and the

language of logic programs has been extended in various ways to incorporate, for example,

preferences and aggregation (see [BET11, Fab13] for an overview). Here, we restrict

ourselves to logic programs without language extensions, which may however comprise

two different types of negation, namely negation-as-failure (NAF) and explicit negation.

Concerning the semantics, we focus on the answer set semantics as well as the 3-valued

model semantics, as outlined in the following.
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2.3.1 Logic Programs

A logic program P is a (finite) set of ground clauses3 of the form

l0 ← l1, . . . , lm, not lm+1, . . . , not lm+n

with m,n ≥ 0, where all li (1 ≤ i ≤ m) and all lj (m + 1 ≤ j ≤ m + n) are classical

literals, i.e. atoms a or explicitly negated atoms ¬a, and not lj are negation-as-failure

(NAF) literals. The classical literal l0 on the left-hand side of the arrow is referred to as

the clause’s head, all literals on the right of the arrow form the body of the clause. If the

body of a clause is empty, the clause is called a fact.

We will use the following notion of dependency inspired by [YY94]:

❼ l0 is positively dependent on li and

❼ l0 is negatively dependent on lj .

A dependency path is a chain of positively or negatively dependent literals. A negative

dependency path is obtained from a dependency path by deleting all literals l in the path

such that some k in the path is positively dependent on l, e.g. if p, q, r is a dependency

path where p is positively dependent on q and q is negatively dependent on r, then p, r

is a negative dependency path. A negative dependency cycle is a negative dependency

path l0, . . . , ln with l0 = ln. It is an odd-length cycle if n is odd, and an even-length cycle

otherwise.

Example 2.5. Let P1 be the following logic program:

{ p← ¬q, not x;

x← not p;

¬q ← not p }

There exists both an odd- and an even-length negative dependency cycle: p, p is odd, and

p, x, p is even.

HBP denotes the Herbrand Base of P, i.e. the set of all ground atoms of P, and

LitP = HBP ∪ {¬a | a ∈ HBP} consists of all classical literals of P. NAFHBP
= {not a |

a ∈ HBP} consists of all NAF literals of atoms of P and NAFLitP = {not l | l ∈ LitP} of

all NAF literals of classical literals of P.

An atom a and the explicitly negated atom ¬a are called complementary literals. l

is the corresponding classical literal of a NAF literal not l, and conversely not l is the

corresponding NAF literal of the classical literal l. We will use the letter k for a literal

in general, i.e. a classical literal l or a NAF literal not l. ∼ k denotes the corresponding

literal of k, i.e. if k is a classical literal l, then ∼k = not l, and if k is a NAF literal not l,

then ∼k = l. For a set of literals S, ∼S = {∼k | k ∈ S}.

3Clauses containing variables are used as shorthand for all their ground instances over the Herbrand
Universe of the logic program.
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⊢MP denotes derivability using modus ponens on← as the only inference rule, treating

l← as l← true, where P ⊢MP true for any P. For a logic program P and ∆ ⊆ NAFLitP ,

P ∪∆ denotes P ∪ {not l ←| not l ∈ ∆}. When used on such P∪∆, ⊢MP treats NAF

literals syntactically as in [EK89].

A classical literal l ∈ LitP is strictly derivable from P if and only if P ⊢MP l, and defea-

sibly derivable from P if and only if P 0MP l and ∃∆ ⊆ NAFLitP such that P ∪ ∆ ⊢MP l.

l is derivable from P if and only if l is strictly or defeasibly derivable from P.

2.3.2 Answer Set Semantics

In the following, we recall the concept of answer sets as introduced by Gelfond and Lifschitz

[GL91]. Let P be a logic program without NAF literals. The answer set of P, denoted

AS(P), is the smallest set S ⊆ LitP such that:

1. for any clause l0 ← l1, . . . , lm in P it holds that if l1, . . . , lm ∈ S, then l0 ∈ S;

2. S = LitP if S contains complementary literals.

For a logic program P, possibly containing NAF literals, and any S ⊆ LitP , the reduct

PS is obtained from P by deleting

1. all clauses containing not l where l ∈ S, and

2. all NAF literals in the remaining clauses.

Then S is an answer set of P if and only if it is the answer set of the reduct PS , i.e. S =

AS(PS). P is inconsistent if it has no answer sets or if its only answer set is LitP , else it

is consistent.

Example 2.6. The logic program P1 from Example 2.5 has a single answer set, namely

{¬q, x}.

2.3.3 3-Valued Semantics for Logic Programs without Explicit Negation

We now recall the definition of 3-valued models for logic programs without explicit negation

[Prz90, Prz91b]. Let P be a logic program with no explicitly negated atoms. A 3-valued

interpretation of P is a pair 〈T ,F〉, where T ,F ⊆ HBP , T ∩F = ∅, and U = HBP\(T ∪F).

The truth value of a ∈ HBP and not a ∈ NAFHBP
w.r.t. 〈T ,F〉 is:

❼ val(a) = T if a ∈ T ; val(not a) = T if a ∈ F ;

❼ val(a) = F if a ∈ F ; val(not a) = F if a ∈ T ;

❼ val(a) = U if a ∈ U ; val(not a) = U if a ∈ U .

The truth values are ordered by T > U > F and naturally val(T) = T, val(F) = F, and

val(U) = U.
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A 3-valued interpretation 〈T ,F〉 satisfies a clause a0 ← a1, . . . , am, not am+1, . . . ,

not am+n if and only if val(a0) ≥ min{val(a1), . . . , val(not am+n)}. 〈T ,F〉 satisfies

a0 ← if and only if val(a0) = T.

The partial reduct P
〈T ,F〉 of P w.r.t. a 3-valued interpretation 〈T ,F〉 is obtained by

replacing each NAF literal in every clause of P by its respective truth value.

❼ A 3-valued interpretation 〈T ,F〉 of P is a 3-valued model of P if and only if 〈T ,F〉

satisfies every clause in P.

❼ A 3-valued model 〈T ,F〉 of P is a 3-valued stable model of P if and only if it is a

3-valued model of P
〈T ,F〉 and ∄〈T1,F1〉 that is a 3-valued model of P

〈T ,F〉 such that

T1 ⊆ T and F1 ⊇ F and T 6= T1 or F 6= F1.

❼ A 3-valued stable model 〈T ,F〉 of P is the well-founded model of P if and only if

∄〈T1,F1〉 that is a 3-valued stable model of P such that U ⊆ U1.
4

❼ A 3-valued stable model 〈T ,F〉 of P is a 3-valued M-stable model (Maximal stable)

of P if and only if ∄〈T1,F1〉 that is a 3-valued stable model of P such that T ⊆ T1

and F ⊆ F1 and T 6= T1 or F 6= F1.

❼ A 3-valued stable model 〈T ,F〉 of P is a 3-valued L-stable model (Least-undefined

stable) of P if and only if ∄〈T1,F1〉 that is a 3-valued stable model of P such that

U1 ⊂ U .

❼ A 3-valued stable model 〈T ,F〉 of P is a (2-valued) stable model of P if and only if

U = ∅.

❼ A 3-valued stable model 〈T ,F〉 of P is an ideal model of P if and only if T is maximal

(w.r.t. ⊆) among all 3-valued stable models satisfying that for all 3-valued M-stable

models 〈TM ,FM 〉, T ⊆ TM .

Note that 3-valued stable models as defined here are sometimes called “partial stable”

models [Prz91b]. Furthermore, this definition of 3-valued stable models coincides with

the definition of partial stable models based on unfounded sets [SZ91]. Note that Saccà

and Zaniolo [SZ90] call maximal partial stable models based on unfounded sets “partial

stable” models, but later rename them to “M-stable models” [Sac95] (maximal partial

stable models). Saccà [Sac95] also introduces “L-stable” models in terms of partial stable

models based on unfounded sets. These coincide with our notions of “3-valued M-stable

models” and “3-valued L-stable models” as used by Eiter et al. [ELS97]. 3-valued M-stable

models have furthermore been shown [KM92, YY95] to coincide with preferred extensions

[Dun91], regular models [YY90], and maximal stable classes [BS92]. The notion of well-

founded model used here furthermore coincides with the original definition of well-founded

4Przymusinski [Prz90] defines a 3-valued stable model 〈T ,F〉 of P to be the well-founded model of P
if and only if ∄〈T1,F1〉 that is a 3-valued stable model of P such that T1 ⊆ T and F1 ⊆ F , but notes that
this is equivalent to U ⊆ U1.
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model by Van Gelder et al. [VRS88, VRS91] as proven in [Prz90]. In addition, the definition

of 2-valued stable models in terms of 3-valued stable models [Prz90] coincides with the

original definition of 2-valued stable models [GL88].

Some authors express 3-valued interpretations as a single setM containing both atoms

and NAF literals (see e.g. [ELS97]). Such sets correspond to the tuple-notation of 3-

valued interpretations as follows: M corresponds to 〈T ,F〉 if and only if T =M∩HBP ,

F =∼(M∩ NAFHBP
), and M = T ∪ F .

2.3.4 3-Valued Semantics for Logic Programs with Explicit Negation

The translated logic program P ′ of a logic program P, possibly containing explicitly negated

atoms, is obtained by substituting every explicitly negated atom ¬a in P with a new atom

a′ /∈ HBP [GL91, Prz90]. We call a′ the translated literal of the original literal ¬a. With

an abuse of terminology, we sometimes refer to a as the translated literal of atom a. For a

3-valued stable model 〈T ′,F ′〉 of P ′, the corresponding model 〈T ,F〉 of 〈T ′,F ′〉 is obtained

by replacing each translated literal in 〈T ′,F ′〉 by its original literal.

Then 〈T ,F〉 is a 3-valued stable model of P if and only if 〈T ′,F ′〉 is a 3-valued sta-

ble model of P ′, 〈T ,F〉 is the corresponding model of 〈T ′,F ′〉, and T does not contain

complementary literals [Prz90].

The well-founded / 3-valued M-stable / 3-valued L-stable / (2-valued) stable / ideal

models of P are defined analogously, i.e. they are those corresponding models of well-

founded / 3-valued M-stable / 3-valued L-stable / (2-valued) stable / ideal models of P ′

where T does not contain complementary literals.

Example 2.7. In the translated logic program P ′
1 of P1, the literal ¬q is replaced by q′.

P ′
1 has two 3-valued stable models: 〈{q′, x}, {p}〉 and 〈{}, {}〉. Since T of the correspond-

ing models does not contain complementary literals, P1 has two 3-valued stable models:

〈{¬q, x}, {p}〉 and 〈{}, {}〉.

Note that P ′ always has a 3-valued stable, and thus a well-founded, 3-valued M-stable,

and 3-valued L-stable, model but P might not. Furthermore, 〈T ,F〉 is a (2-valued) stable

model of P if and only if T 6= LitP is an answer set of P [GL91, Prz90].

2.4 Summary

In this chapter, we presented the background on AA and ABA frameworks as well as on

logic programs used throughout this thesis.

Chapter 6 relies only on the background on AA frameworks from Section 2.2.1 and

Chapter 3 only makes use of concepts regarding ABA and AA frameworks, presented

in Section 2.2. All other chapters apply both concepts from argumentation and logic

programming presented in this chapter.
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Chapter 3

Labellings for Assumption-Based

and Abstract Argumentation
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3.1 Introduction

As introduced in Section 2.2.1, the semantics of AA frameworks can be expressed in

terms of either argument extensions or labellings. Argument labellings have the advan-

tage over argument extensions that they do not only distinguish between accepted and

non-accepted arguments, but further divide the non-accepted arguments into rejected and

undecided ones. Since argument labellings and extensions correspond [CG09, BCG11], ar-

gument labellings can also be used to characterise the semantics of a flat ABA framework

in terms of its corresponding AA framework. In this chapter, we transfer the idea of argu-

ment labellings to assumptions, yielding a new characterisation of the semantics of ABA

frameworks. In contrast to argument labellings, which label whole arguments, assumption

labellings label each assumption as in (accepted), out (rejected), or undec (undecided).

Assumption labellings have the advantage over assumption extensions that rejected (out)

assumptions and assumptions that are neither accepted nor rejected (undec) are dis-

tinguished. This distinction can be important in applications such as decision making.

Undecided assumptions can for example provide an indication that further information

from an expert is required in order to make a definite decision about their acceptability.

We propose assumption labellings for all semantics defined for flat ABA frameworks,

i.e. admissible, grounded, complete, preferred, ideal, semi-stable, and stable semantics,

and prove that there is a one-to-one correspondence between the respective assumption

labellings and extensions. We also investigate the relation between assumption labellings

of flat ABA frameworks and argument labellings of the corresponding AA frameworks,

showing a one-to-one correspondence for the grounded, complete, preferred, ideal, and

stable semantics. These results extend existing work on the correspondence between the

semantics of flat ABA frameworks and AA frameworks, as illustrated in Figure 3.1. Since

semi-stable argument and assumption extensions do not correspond [CSAD15a], it is un-

surprising that the respective labellings do not correspond either, as shown in Figure 3.2.

Concerning the admissible semantics we prove a one-to-many correspondence between as-

sumption and argument labellings. Based on this dissimilarity, we introduce a variant

of admissible argument labellings for AA frameworks, called committed admissible argu-

ment labellings, which correspond more closely to admissible assumption labellings than

the original admissible argument labellings, as illustrated in Figure 3.3. We furthermore

introduce labellings for possibly non-flat ABA frameworks, and prove correspondence with

the extension semantics for possibly non-flat ABA frameworks, as shown in Figure 3.4.

The chapter is organised as follows. In Section 3.2, we introduce assumption labellings

for the different semantics of flat ABA frameworks and prove their correspondence with as-

sumption extensions of flat ABA frameworks. In Section 3.3, we simplify the definition of

assumption labellings for flat ABA frameworks by considering only certain sets of assump-

tions as attackers of assumptions. We furthermore introduce a graphical representation of

flat ABA frameworks and illustrate how assumption labellings can be easily determined

and represented using these graphs. In Section 3.4, we investigate the correspondence
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sented in this chapter.
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between assumption labellings of flat ABA frameworks and argument labellings of their

corresponding AA frameworks, and introduce committed admissible argument labellings

as a variant of admissible argument labellings for AA frameworks. In Section 3.5, we

extend the definition of assumption labellings to possibly non-flat ABA frameworks. We

discuss related work in Section 3.6 and summarise the contributions of this chapter in

Section 3.7.

3.2 Assumption Labellings

From here onwards, and if not stated otherwise, we assume as given a flat ABA framework

〈L,R,A, ¯〉. We first introduce labellings for ABA frameworks, which assign a label to

each assumption. The three labels used throughout this chapter are in, indicating that

an assumption is accepted, out, indicating that an assumption is rejected, and undec,

indicating that an assumption is neither accepted nor rejected and thus undecided.

Definition 3.1 (Assumption Labelling). An assumption labelling is a total function

LabAsm : A → {in,out,undec}.

If LabAsm(α) = in, we say that α is labelled in by LabAsm, or equivalently that

LabAsm labels α (as) in. Analogous terminology is used for assumptions labelled out

and undec. The set of all assumptions labelled in by LabAsm is in(LabAsm) = {α ∈ A |

LabAsm(α) = in}, and the sets of all assumptions labelled out and undec are denoted

out(LabAsm) and undec(LabAsm), respectively.

3.2.1 Admissible Semantics

An admissible assumption extension is a set of accepted assumptions which is able to

defend itself. In other words, if an assumption α is contained in an admissible assumption

extension, then all sets of assumptions attacking α contain some assumption attacked by

this admissible assumption extension. In an admissible assumption labelling the concept

of defence is mirrored by requiring that if an assumption α is accepted (labelled in), then

all sets of assumptions attacking α contain a rejected assumption (labelled out), which in

turn is attacked by a set of accepted assumptions (all labelled in). In addition, we require

that an undecided assumption (labelled undec) is not attacked by a set of accepted

assumptions (all labelled in), since an assumption attacked by accepted assumptions can

clearly not be accepted (due to the conflict-freeness property of the admissible semantics)

and should thus be rejected rather than undecided.

Definition 3.2 (Admissible Assumption Labelling). Let LabAsm be an assumption la-

belling. LabAsm is an admissible assumption labelling if and only if for each assumption

α ∈ A it holds that:

❼ if LabAsm(α) = in, then for each set of assumptions Asms attacking α there exists

some β ∈ Asms such that LabAsm(β) = out;
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❼ if LabAsm(α) = out, then there exists a set of assumptions Asms attacking α such

that for all β ∈ Asms, LabAsm(β) = in;

❼ if LabAsm(α) = undec, then for each set of assumptions Asms attacking α there

exists some β ∈ Asms such that LabAsm(β) 6= in.

Example 3.1. Consider the following ABA framework, which we call ABA2:

L = {r, p, x, ρ, ψ, χ},

R = {p← ρ;x← ψ},

A = {ρ, ψ, χ},

ρ = r , ψ = p , χ = x.

ABA2 has three admissible assumption labellings:

❼ LabAsm1 = {(ρ,undec), (ψ,undec), (χ,undec)},

❼ LabAsm2 = {(ρ, in), (ψ,out), (χ,undec)}, and

❼ LabAsm3 = {(ρ, in), (ψ,out), (χ, in)}.

These assumption labellings demonstrate two important points: first, an assumption

that is not attacked by any set of assumptions (ρ in ABA2) cannot be labelled out;

and second, an assumption attacked by a set of assumptions containing only in-labelled

assumptions (ψ in LabAsm2 and LabAsm3) must be labelled out.

It is important to note that the empty set of assumptions has a special role as an

attacking set of assumptions: any assumption attacked by the empty set is labelled out

by all admissible assumption labellings since an argument supported by the empty set

stands for a (non-refutable) fact, so the attacked assumption clearly has to be rejected, as

illustrated in Example 3.2.

Example 3.2. Let ABA3 be ABA2 from Example 3.1 with the additional sentences φ

and f in L, where φ is an assumption with φ = f , and with the additional inference rule

f ←.

Since {} ⊢ f is an argument, φ is attacked by the empty set of assumptions as well as

by all other sets of assumptions. Thus, φ cannot be labelled in since the attacking empty

set does not contain an assumption labelled out, and φ cannot be labelled undec since

the attacking empty set does not contain an assumption not labelled in. Consequently, φ

is labelled out by all admissible assumption labellings.

ABA3 has thus three admissible assumption labellings:

❼ LabAsm1 = {(φ,out), (ρ,undec), (ψ,undec), (χ,undec)},

❼ LabAsm2 = {(φ,out), (ρ, in), (ψ,out), (χ,undec)}, and

❼ LabAsm3 = {(φ,out), (ρ, in), (ψ,out), (χ, in)}.
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Note that these are the same admissible assumption labellings as for ABA2, but with

the additional assumption φ, which is always labelled out. The number of admissible

assumption labellings is thus not influenced by assumptions attacked by the empty set

since these assumptions do not have alternative labels in different admissible assumption

labellings.

The following theorem shows that there is a one-to-one correspondence between the

admissible semantics in terms of assumption labellings and extensions.

Theorem 3.1.

1. Let Asms be an admissible assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+, and undec(LabAsm) = A \ (Asms ∪ Asms+) is

an admissible assumption labelling.

2. Let LabAsm be an admissible assumption labelling. Then Asms = in(LabAsm) is

an admissible assumption extension with Asms+ = out(LabAsm) and A\ (Asms ∪

Asms+) = undec(LabAsm).

Proof.

1. First note that Asms ∩ Asms+ = ∅ since Asms does not attack itself. Thus each

α ∈ A is either contained in in(LabAsm), in out(LabAsm), or in undec(LabAsm).

❼ Let LabAsm(α) = in. Then α ∈ Asms, so Asms defends α, i.e. for all sets of

assumptions Asms1 attacking α there exists some β ∈ Asms1 such that Asms

attacks β. Thus, β ∈ Asms+ and consequently LabAsm(β) = out.

❼ Let LabAsm(α) = out. Then α ∈ Asms+, so Asms attacks α. Since Asms =

in(LabAsm), there exists a set of assumptions Asms1 attacking α such that for

all β ∈ Asms1, LabAsm(β) = in.

❼ Let LabAsm(α) = undec. Then α /∈ Asms and α /∈ Asms+, so α is not

attacked and not defended by Asms. Since α is not attacked by Asms, for

each set of assumptions Asms1 attacking α there exists some β ∈ Asms1 such

that β /∈ Asms, and thus LabAsm(β) 6= in.

2. We first prove that in(LabAsm) is an admissible assumption extension.

❼ in(LabAsm) is conflict-free: Assume in(LabAsm) is not conflict-free. Then

in(LabAsm) attacks some α ∈ in(LabAsm). By Definition 3.2, for each set

of assumptions Asms1 attacking α there exists some β ∈ Asms1 such that

LabAsm(β) = out. Hence, in(LabAsm) contains some β such that LabAsm(β)

= out. Contradiction.

❼ in(LabAsm) defends all α ∈ in(LabAsm): Let α ∈ in(LabAsm). Then by

Definition 3.2, for each set of assumptions Asms1 attacking α there exists some

β ∈ Asms1 such that LabAsm(β) = out. Furthermore, for each such β there
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exists a set of assumptions Asms2 attacking β such that for all γ ∈ Asms2,

LabAsm(γ) = in so Asms2 ⊆ in(LabAsm). Hence, in(LabAsm) attacks all

sets of assumptions attacking α.

❼ Asms+ = {α ∈ A | Asms attacks α} = {α ∈ A | in(LabAsm) attacks α}

= {α ∈ A | α ∈ out(LabAsm)} = out(LabAsm).

❼ A \ (Asms ∪ Asms+) = {α ∈ A | α /∈ in(LabAsm), α /∈ out(LabAsm)}

= {α ∈ A | α ∈ undec(LabAsm)} = undec(LabAsm).

Example 3.3. ABA3 from Example 3.2 has three admissible assumption extensions:

Asms1 = {}, Asms2 = {ρ}, and Asms3 = {ρ, χ}, corresponding to the three admissible

assumption labellings LabAsm1, LabAsm2, and LabAsm3, respectively.

Note that without the third condition in Definition 3.2, the second item in Theorem 3.1

would not hold. For example, LabAsm4 = {(φ,out), (ρ, in), (ψ,undec), (χ,undec)}

would be an admissible assumption labelling of ABA3 (see Example 3.2), but even though

Asms4 = in(LabAsm4) = {ρ} is an admissible assumption extension of ABA3, it does

not hold that Asms+4 = out(LabAsm4) as stated in the second item of Theorem 3.1 since

ψ ∈ Asms+4 but ψ /∈ out(LabAsm4).

If an assumption is defended by an admissible assumption extension, then adding this

assumption to the extension yields another admissible assumption extension [BDKT97]

(similar to the Fundamental Lemma for AA frameworks [Dun95b]). Due to the one-to-one

correspondence between admissible assumption labellings and extensions, an analogous

property holds for admissible assumption labellings. The following lemma states that

if an assumption α is defended by an admissible assumption labelling, i.e. all sets of

assumptions Asms attacking α contain an assumption β labelled out, then changing the

label of α to in and changing the label of all assumptions γ that now need to be rejected

(due to the change of label of α) to out yields another admissible assumption labelling.

Lemma 3.2. Let LabAsm be an admissible assumption labelling and let α ∈ A be such

that for each set of assumptions Asms attacking α there exists some β ∈ Asms such that

LabAsm(β) = out. Let α⋆ = {γ ∈ A | ∃Asms ⊆ A such that α ∈ Asms,Asms attacks γ,

∀δ ∈ Asms : δ 6= α→ LabAsm(δ) = in}. Then LabAsm′ with

in(LabAsm′) = in(LabAsm) ∪ {α},

out(LabAsm′) = out(LabAsm) ∪ α⋆, and

undec(LabAsm′) = undec(LabAsm) \ ({α} ∪ α⋆)

is an admissible assumption labelling.

Proof. Since each set of assumptions attacking α contains some β such that LabAsm(β) =

out, LabAsm(α) 6= out. If LabAsm(α) = in, then ∀γ ∈ α⋆ : LabAsm(γ) = out and
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therefore LabAsm′ = LabAsm, so trivially LabAsm′ is an admissible assumption labelling.

If LabAsm(α) = undec, then ∀γ ∈ α⋆ : LabAsm(γ) = undec or LabAsm(γ) = out.

Furthermore, α /∈ α⋆ since each set of assumptions attacking α contains some β such that

LabAsm(β) = out, so if α ∈ α⋆, then ∃Asms attacking α such that LabAsm(α) = out

(since all ∀δ ∈ Asms : δ 6= α → LabAsm(δ) = in), which is a contradiction. Therefore,

LabAsm′ is an assumption labelling.

❼ Let LabAsm′(ǫ) = in. If LabAsm(ǫ) = in, then for each set of assumptions Asms1

attacking ǫ there exists some η ∈ Asms1 such that LabAsm(η) = out and therefore

LabAsm′(η) = out. If LabAsm(ǫ) 6= in, then ǫ = α, so for each set of assumptions

Asms2 attacking α there exists some β ∈ Asms such that LabAsm(β) = out and

thus LabAsm′(β) = out.

❼ Let LabAsm′(ǫ) = out. If LabAsm(ǫ) = out, then there exists a set of assumptions

Asms1 attacking ǫ such that for all η ∈ Asms1, LabAsm(η) = in and therefore

LabAsm′(η) = in. If LabAsm(ǫ) 6= out, then ǫ ∈ α⋆, so there exists a set of

assumptions Asms2 attacking ǫ such that ∀δ ∈ Asms2 with δ 6= α it holds that

LabAsm(δ) = in and thus LabAsm′(δ) = in. Since LabAsm′(α) = in the set of

assumptions Asms2 attacking ǫ is such that for all η ∈ Asms3, LabAsm
′(η) = in.

❼ Let LabAsm′(ǫ) = undec. Then LabAsm(ǫ) = undec. Thus, for each set of

assumptionsAsms1 attacking ǫ there exists some η ∈ Asms1 such that LabAsm(η) 6=

in. Since ǫ /∈ α⋆, for each such set of assumptions Asms1 attacking ǫ either α /∈

Asms1 or there exists some κ ∈ Asms1 such that κ 6= α and LabAsm(κ) 6= in. In

the first case η 6= α, so LabAsm′(η) 6= in. In the second case, LabAsm′(κ) 6= in.

Thus, for each set of assumptions Asms1 attacking ǫ there exists some λ ∈ Asms1

such that LabAsm′(λ) 6= in.

Example 3.4. Let ABA4 be the following ABA framework with:

L = {f, p, r, x, φ, ψ, ρ, χ},

R = {r ← φ, χ; p← ρ},

A = {φ, ψ, ρ, χ},

φ = f , ψ = p, ρ = r, χ = x.

LabAsm1 = {(φ,undec), (ψ,undec), (ρ,undec), (χ, in)} is an admissible assumption la-

belling of ABA4. Since φ is not attacked by any set of assumptions, it holds that each

set of assumptions attacking φ contains an assumption labelled out, and φ⋆ = {ρ}. As

stated in Lemma 3.2, LabAsm2 with in(LabAsm2) = {χ, φ}, out(LabAsm2) = {ρ}, and

undec(LabAsm2) = {ψ} is an admissible assumption labelling of ABA4. Since with

respect to LabAsm2 it holds that each set of assumptions attacking ψ contains an as-

sumption labelled out, LabAsm3 with in(LabAsm3) = {χ, φ, ψ}, out(LabAsm3) = {ρ},
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and undec(LabAsm3) = {} is also an admissible assumption labelling of ABA4 (where

ψ⋆ = {}).

3.2.2 Complete Semantics

In addition to defending each of its elements against attackers, a complete assumption

extension contains every assumption it defends. This additional condition is mirrored in

complete assumption labellings by requiring that an assumption that is defended has to

be labelled in. This can be achieved by modifying the definition of admissible assumption

labellings in various ways.

In an admissible assumption labelling a defended assumption may be labelled in or

undec. Thus, one way of modifying the definition of admissible assumption labellings

is to prohibit labelling defended assumptions as undec. In other words, an assumption

labelled undec has to be attacked by at least one set of assumptions that does not contain

any assumption labelled out.

Definition 3.3 (Complete Assumption Labelling). Let LabAsm be an assumption la-

belling. LabAsm is a complete assumption labelling if and only if LabAsm is an admissible

assumption labelling and for each assumption α ∈ A it holds that:

❼ if LabAsm(α) = undec, then there exists a set of assumptions Asms attacking α

such that for all γ ∈ Asms, LabAsm(γ) 6= out.

Note that the new condition for undec assumptions implies that there exists a set

of assumptions Asms attacking α such that for some γ ∈ Asms, LabAsm(γ) = undec,

since by the definition of admissible assumption labellings some β ∈ Asms is not labelled

in and by the new condition no γ ∈ Asms is labelled out.

Example 3.5. Consider again ABA2 from Example 3.1 and its three admissible assump-

tion labellings. In LabAsm1, ρ does not satisfy the new condition for undec assumptions,

and in LabAsm2, χ does not satisfy the new condition. The only admissible assump-

tion labelling satisfying the new condition is LabAsm3, which is thus the only complete

assumption labelling of ABA2.

The second way to modify the definition of admissible assumption labellings in order

to express the complete semantics is to add a condition that explicitly states that if

an assumption α is defended, i.e. if all sets of assumptions attacking α contain some

assumption labelled out, then α has to be labelled in. This condition adds the “opposite

direction” of the first condition of an admissible assumption labelling. To make this way

of defining complete assumption labellings more uniform, the “opposite direction” of the

second condition of an admissible assumption labelling is added, too. This renders the

third condition of an admissible assumption labelling superfluous and thus leaves two “if

and only if” conditions to be satisfied by each α ∈ A:
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❼ LabAsm(α) = in if and only if for each set of assumptions Asms attacking α there

exists some β ∈ Asms such that LabAsm(β) = out;

❼ LabAsm(α) = out if and only if there exists a set of assumptions Asms attacking

α such that for all β ∈ Asms, LabAsm(β) = in.

Since LabAsm is an assumption labelling and thus labels each assumption in an ABA

framework, assumptions that do not satisfy the right hand side of either of the above

conditions are “automatically” labelled undec by LabAsm.

A third way to define complete assumption labellings reverses all three conditions of

Definition 3.3, thus specifying which label an assumption satisfying a certain condition

should have.

Theorem 3.3. Let LabAsm be an assumption labelling. The following statements are

equivalent:

1. LabAsm is a complete assumption labelling.

2. LabAsm is such that for each α ∈ A it holds that:

❼ LabAsm(α) = in if and only if for each set of assumptions Asms attacking α

there exists some β ∈ Asms such that LabAsm(β) = out;

❼ LabAsm(α) = out if and only if there exists a set of assumptions Asms at-

tacking α such that for all β ∈ Asms, LabAsm(β) = in.

3. LabAsm is such that for each α ∈ A it holds that:

❼ if for each set of assumptions Asms attacking α there exists some β ∈ Asms

such that LabAsm(β) = out, then LabAsm(α) = in;

❼ if there exists a set of assumptions Asms attacking α such that for all β ∈

Asms, LabAsm(β) = in, then LabAsm(α) = out;

❼ if for each set of assumptions Asms1 attacking α there exists some β ∈ Asms1

such that LabAsm(β) 6= in, and there exists a set of assumptions Asms2 at-

tacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out, then LabAsm(α) =

undec.

Proof. Equivalence of first and second item:

❼ First item implies second item: Let LabAsm be a complete assumption labelling.

Then clearly the “only if” part of both conditions of the second item are satisfied

since they are the same as the conditions in Definition 3.3. To prove that the “if”

part of the conditions in the second item holds:

– Let α be an assumption such that for each set of assumptions Asms attacking α

there exists some β ∈ Asms such that LabAsm(β) = out. Then LabAsm(α) 6=
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out because there exists no set of assumptions Asms1 attacking α such that

for all β ∈ Asms1, LabAsm(β) = in. Furthermore, LabAsm(α) 6= undec

because there exists no set of assumptions Asms2 attacking α such that for all

γ ∈ Asms2, LabAsm(γ) 6= out. Hence, LabAsm(α) = in.

– Let α be an assumption such that there exists a set of assumptions Asms

attacking α such that for all β ∈ Asms, LabAsm(β) = in. Then LabAsm(α) 6=

in because not for each set of assumptions Asms1 attacking α there exists some

β ∈ Asms1 such that LabAsm(β) = out. Furthermore, LabAsm(α) 6= undec

because not for each set of assumptions Asms2 attacking α there exists some

γ ∈ Asms2 such that LabAsm(γ) 6= in. Hence, LabAsm(α) = out.

❼ Second item implies first item: Let LabAsm be such that the second item holds.

We prove that LabAsm is a complete assumption labelling. Clearly the first two

conditions of complete assumption labellings are satisfied since they are the same as

the “only if” part of the conditions in the second item. To prove the third condition of

complete assumption labellings, let LabAsm(α) = undec. From the first condition

of the second item we know that not for each set of assumptions Asms1 attacking

α there exists some β ∈ Asms1 such that LabAsm(β) = out, so there exists a set

of assumptions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out.

From the second condition of the second item we know that there exists no set of

assumptions Asms3 attacking α such that for all δ ∈ Asms3, LabAsm(δ) = in, so

for each set of assumptions Asms4 attacking α there exists some ǫ ∈ Asms4 such

that LabAsm(ǫ) 6= in.

Equivalence of second and third item:

❼ Second item implies third item: Let LabAsm be such that the second item holds.

Then clearly the first two conditions of the third item are satisfied since they are

the same as the “if” part of the second item. To prove the third condition of

the third item, let α be such that for each set of assumptions Asms1 attacking α

there exists some β ∈ Asms1 such that LabAsm(β) 6= in, and there exists a set of

assumptions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out.

Then LabAsm(α) 6= in because not for each set of assumptions Asms3 attacking α

there exists some δ ∈ Asms3 such that LabAsm(δ) = out, and LabAsm(α) 6= out

because there exists no set of assumptions Asms4 attacking α such that for all

ǫ ∈ Asms4, LabAsm(ǫ) = in. Hence, LabAsm(α) = undec.

❼ Third item implies second item: Assume that LabAsm is such that the third item

holds. Then clearly the “if” part of both conditions in the second item are satisfied

since they the same as the conditions in the third item. To prove that the “only if”

parts of the conditions in the second item are satisfied, first note that for every α ∈ A

exactly one of the “if” parts of the three conditions in the third item is satisfied.

Thus, if LabAsm(α) = in, the “if” part of the second and third condition in the third
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item are not satisfied. It follows that the “if” part of the first condition is satisfied,

so for each set of assumptions Asms1 attacking α there exists some β ∈ Asms1 such

that LabAsm(β) = out. Analogously, if LabAsm(α) = out, only the “if” part of

the second condition in the third item applies, so there exists a set of assumptions

Asms2 attacking α such that for all β ∈ Asms2, LabAsm(β) = in.

Example 3.6. Consider again ABA2 from Example 3.1 and its three admissible assump-

tion labellings. LabAsm1 does not satisfy the second item in Theorem 3.3 since ρ violates

the first condition. Similarly, LabAsm1 does not satisfy the third item in Theorem 3.3

since ρ violates the first condition. LabAsm2 does not satisfy the second or third item in

Theorem 3.3 since χ violates the first condition of both items. Only LabAsm3 satisfies the

second as well as the third item in Theorem 3.3, and is thus the only complete assumption

labelling of ABA2.

All three ways of defining complete assumption labellings are useful in their own rights.

Definition 3.3 is particularly suitable to verify whether a given assumption labelling is

indeed a complete assumption labelling. In contrast, the third item in Theorem 3.3 is

more suitable for determining which assumptions should have which label. Since the

second item in Theorem 3.3 can be considered as the “union” of the two other definitions,

it lends itself to either of the two tasks.

Note that the definition of admissible assumption labellings cannot be equivalently ex-

pressed by reversing the conditions in Definition 3.2 since they are not mutually exclusive.

In particular, an unattacked assumption would satisfy both the condition to be labelled

in and to be labelled undec, so not matter which of the two labels was assigned to the

assumption, one of the two conditions would be violated.

The following theorem proves that there is a one-to-one correspondence between com-

plete assumption labellings and extensions, just as between admissible assumption la-

bellings and extensions.

Theorem 3.4.

1. Let Asms be a complete assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+, and undec(LabAsm) = A \ (Asms ∪ Asms+) is

a complete assumption labelling.

2. Let LabAsm be a complete assumption labelling. Then Asms = in(LabAsm) is a

complete assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪

Asms+) = undec(LabAsm).

Proof.

1. Since Asms is a complete assumption extension it is by definition also an admissi-

ble assumption extension. By Theorem 3.1, LabAsm is an admissible assumption
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labelling. It remains to prove that the additional condition of complete assumption

labellings is satisfied. Let LabAsm(α) = undec. Then α /∈ Asms and α /∈ Asms+,

so α is not attacked and not defended by Asms. Since α is not defended by Asms,

there exists a set of assumptions Asms1 attacking α such that Asms1 is not at-

tacked by Asms. Thus, for all γ ∈ Asms1 it holds that γ /∈ Asms+. Consequently,

LabAsm(γ) 6= out.

2. Since LabAsm is a complete assumption labelling it is by Definition 3.3 also an

admissible assumption labelling. Thus, by Theorem 3.1 Asms is an admissible as-

sumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) =

undec(LabAsm). It remains to prove that all assumptions defended by Asms are

contained in Asms. Let α be defended by Asms and thus by in(LabAsm). Then for

each set of assumptions Asms1 attacking α, in(LabAsm) attacks Asms1. Thus, for

each such Asms1 there exists some β ∈ Asms1 which is attacked by in(LabAsm),

and therefore LabAsm(β) = out. Since this holds for each Asms1 attacking α,

LabAsm(α) = in.

3.2.3 Grounded, Preferred, Ideal, Semi-Stable, and Stable Semantics

Based on the notion of complete assumption labellings, the grounded, preferred, ideal,

semi-stable, and stable semantics can be defined in terms of assumption labellings.

Definition 3.4 (Grounded, Preferred, Ideal, Semi-Stable, Stable Assumption Labelling).

A complete assumption labelling LabAsm is

❼ a grounded assumption labelling if and only if in(LabAsm) is minimal (w.r.t. ⊆)

among all complete assumption labellings;

❼ a preferred assumption labelling if and only if in(LabAsm) is maximal (w.r.t. ⊆)

among all complete assumption labellings;

❼ an ideal assumption labelling if and only if in(LabAsm) is maximal (w.r.t. ⊆) among

all complete assumption labellings satisfying that for all preferred assumption la-

bellings LabAsm′, in(LabAsm) ⊆ in(LabAsm′);

❼ a semi-stable assumption labelling if and only if undec(LabAsm) is minimal (w.r.t.⊆)

among all complete assumption labellings;

❼ a stable assumption labelling if and only if undec(LabAsm) = ∅.

Example 3.7. Let ABA5 be the following ABA framework:

L = {r, p, x, ρ, ψ, χ},

R = {r ← ψ ; p← ρ ; p← χ ; x← ψ ; x← χ},

A = {ρ, ψ, χ},

ρ = r , ψ = p , χ = x.
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ABA5 has three complete assumption labellings:

❼ LabAsm1 = {(ρ,undec), (ψ,undec), (χ,undec)},

❼ LabAsm2 = {(ρ,out), (ψ, in), (χ,out)}, and

❼ LabAsm3 = {(ρ, in), (ψ,out), (χ,undec)}.

LabAsm1 is the grounded assumption labelling, LabAsm2 and LabAsm3 are both preferred

assumption labellings, LabAsm1 is the ideal assumption labelling, and LabAsm2 is the

only stable as well as the only semi-stable assumption labelling.

The following theorem proves that the grounded, preferred, ideal, semi-stable, and sta-

ble assumption labellings correspond one-to-one to the respective assumption extensions.

Theorem 3.5.

1. Let Asms be a grounded / preferred / ideal / semi-stable / stable assumption ex-

tension. Then LabAsm with in(LabAsm) = Asms, out(LabAsm) = Asms+, and

undec(LabAsm) = A \ (Asms ∪ Asms+) is a grounded / preferred / ideal / semi-

stable / stable assumption labelling.

2. Let LabAsm be a grounded / preferred / ideal / semi-stable / stable assumption

labelling. Then Asms = in(LabAsm) is a grounded / preferred / ideal / semi-stable

/ stable assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪

Asms+) = undec(LabAsm).

Proof.

1. Let Asms be a 1) grounded 2) preferred 3) ideal 4) semi-stable 5) stable assump-

tion extension. By definition Asms is a complete assumption extension. Further-

more, for all complete assumption extensions Asms′ it holds that 1) Asms′ 6⊂

Asms 2) Asms′ 6⊃ Asms 3) if for all preferred assumption extensions Asms′′ it

holds that Asms′ ⊆ Asms′′, then Asms′ 6⊃ Asms 4) Asms′ ∪ Asms′+ 6⊃ Asms ∪

Asms+ 5) Asms ∪ Asms+ = A. By Theorem 3.4 LabAsm is a complete assump-

tion labelling. Furthermore, from the above and Theorem 3.4, for all complete

assumption labellings LabAsm′ it holds that 1) in(LabAsm′) 6⊂ in(LabAsm) 2)

in(LabAsm′) 6⊃ in(LabAsm) 3) if for all preferred assumption labellings LabAsm′′

it holds that in(LabAsm′) ⊆ in(LabAsm′′), then in(LabAsm′) 6⊃ in(LabAsm) 4)

in(LabAsm′) ∪ out(LabAsm′) 6⊃ in(LabAsm) ∪ out(LabAsm), and consequently

undec(LabAsm′) 6⊂ undec(LabAsm) 5) in(LabAsm) ∪ out(LabAsm) = A, and

consequently undec(LabAsm) = ∅. Therefore, LabAsm is a 1) grounded 2) pre-

ferred 3) ideal 4) semi-stable 5) stable assumption labelling.

2. Let LabAsm be a 1) grounded 2) preferred 3) ideal 4) semi-stable 5) stable assump-

tion labelling. By definition LabAsm is a complete assumption labelling. Further-

more, for all complete assumption labellings LabAsm′ it holds that 1) in(LabAsm′) 6⊂
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in(LabAsm) 2) in(LabAsm′) 6⊃ in(LabAsm) 3) if for all preferred assumption la-

bellings LabAsm′′ it holds that in(LabAsm′) ⊆ in(LabAsm′′), then in(LabAsm′) 6⊃

in(LabAsm) 4) undec(LabAsm′) 6⊂ undec(LabAsm), or equivalently in(LabAsm′)∪

out(LabAsm′) 6⊃ in(LabAsm)∪out(LabAsm) 5) undec(LabAsm) = ∅, or equiva-

lently in(LabAsm) ∪ out(LabAsm) = A. By Theorem 3.4 Asms = in(LabAsm) is

a complete assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪

Asms+) = undec(LabAsm). Furthermore, from the above and by Theorem 3.4,

for all complete assumption extensions Asms′ it holds that 1) Asms′ 6⊂ Asms 2)

Asms′ 6⊃ Asms 3) if for all preferred assumption extensions Asms′′ it holds that

Asms′ ⊆ Asms′′, then Asms′ 6⊃ Asms 4) Asms′ ∪ Asms′+ 6⊃ Asms ∪ Asms+ 5)

Asms ∪ Asms+ = A. Therefore, Asms is a 1) grounded 2) preferred 3) ideal 4)

semi-stable 5) stable assumption extension.

Corollary 3.6 follows straightaway from the correspondence of grounded and ideal

assumption labellings and extensions and the uniqueness of grounded and ideal assumption

extensions [BDKT97, DMT07].

Corollary 3.6. The grounded and ideal assumption labellings are both unique.

We now show that preferred, ideal, semi-stable, and stable assumption labellings can

be redefined in terms of admissible (rather than complete) assumption labellings.

Proposition 3.7. Let LabAsm be an admissible assumption labelling.

❼ LabAsm is a preferred assumption labelling if and only if in(LabAsm) is maximal

(w.r.t. ⊆) among all admissible assumption labellings.

❼ LabAsm is an ideal assumption labelling if and only if in(LabAsm) is maximal

(w.r.t. ⊆) among all admissible assumption labellings satisfying that for all preferred

assumption labellings LabAsm′, in(LabAsm) ⊆ in(LabAsm′).

❼ LabAsm is a semi-stable assumption labelling if and only if undec(LabAsm) is

minimal (w.r.t. ⊆) among all admissible assumption labellings.

❼ LabAsm is a stable assumption labelling if and only if undec(LabAsm) = ∅.

Proof.

❼ Preferred: Follows from the one-to-one correspondence between complete assump-

tion labellings and extensions (Theorem 3.4) and between admissible assumption

labellings and extensions (Theorem 3.1) together with Theorem 8 in [CSAD15a].

❼ Ideal: Follows from the one-to-one correspondence between complete assumption la-

bellings and extensions (Theorem 3.4) and between admissible assumption labellings

and extensions (Theorem 3.1) together with Theorem 10 in [CSAD15a].
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❼ Semi-stable: Left to right: Let LabAsm be a semi-stable assumption labelling,

i.e. a complete assumption labelling such that undec(LabAsm) is minimal among

all complete assumption labellings. By definition, LabAsm is an admissible as-

sumption labelling. Assume undec(LabAsm) is not minimal among all admissible

assumptions labellings, i.e. ∃LabAsm′ with undec(LabAsm′) ⊂ undec(LabAsm)

and LabAsm′ is an admissible assumption labelling but not a complete assump-

tion labelling. Thus LabAsm′ satisfies Definition 3.2 but not Definition 3.3, so

∃α ∈ undec(LabAsm′) such that for all sets of assumptions Asms attacking α there

exists some β ∈ Asms such that LabAsm′(β) = out. By Lemma 3.2, LabAsm′′

with in(LabAsm′′) = in(LabAsm′) ∪ {α}, out(LabAsm′′) = out(LabAsm′) ∪ α⋆,

and undec(LabAsm′′) = undec(LabAsm′)\ ({α}∪α⋆) is an admissible assumption

labelling. Clearly, undec(LabAsm′′) ⊂ undec(LabAsm′), so undec(LabAsm′) is

not minimal among all admissible assumption labellings. Contradiction.

Right to left: Let LabAsm be an admissible assumption labelling such that

undec(LabAsm) is minimal (w.r.t. ⊆) among all admissible assumption labellings.

Assume that LabAsm is not a complete assumption labelling. By the same reasoning

as above, ∃α ∈ undec(LabAsm) such that for all sets of assumptions Asms attack-

ing α there exists some β ∈ Asms such that LabAsm(β) = out. It follows that

there exists an admissible assumption labelling LabAsm′′ with undec(LabAsm′′) ⊂

undec(LabAsm). Contradiction. Thus, LabAsm is a complete assumption la-

belling. Furthermore, since for all admissible assumption labellings LabAsm′ it

holds that undec(LabAsm′) 6⊂ undec(LabAsm) and since every complete assump-

tion labelling is an admissible assumption labelling, it follows that for all com-

plete assumption labellings LabAsm′, undec(LabAsm′) 6⊂ undec(LabAsm). Thus,

undec(LabAsm) is minimal (w.r.t. ⊆) among all complete assumption labellings.

❼ Stable: Left to right: Let LabAsm be a complete assumption labelling such that

undec(LabAsm) = ∅. By definition, LabAsm is admissible.

Right to left: Let LabAsm be an admissible assumption labelling such that

undec(LabAsm) = ∅. Then LabAsm is also a complete assumption labelling since

the conditions for in and out assumptions are the same for admissible and complete

assumption labellings (see Definitions 3.2 and 3.3).

Example 3.8. The results from Proposition 3.7 are illustrated by ABA2 (see Exam-

ples 3.1 and 3.5). For instance, the only maximal admissible assumption labelling of

ABA2 is LabAsm3, which is also the only maximal complete, and thus preferred, assump-

tion labelling of ABA2.
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3.3 Argument-Supporting Sets of Assumptions

Determining admissible or complete assumption labellings of an ABA framework as well

as checking whether an assumption labelling is admissible or complete can be cumbersome

since some conditions specifying the label of an assumption α require to consider every

set of assumptions attacking α. In particular, not only the set of premises of an argument

with conclusion α attacks α, but also every superset thereof.

Example 3.9. To verify whether χ is correctly labelled in the admissible assumption

labelling LabAsm3 = {(ρ, in), (ψ,out), (χ, in)} of ABA2 (see Example 3.1), not only the

set of assumptions {ψ}, which forms the premises of an argument with conclusion x (the

contrary of χ), but also every superset thereof, i.e. {ρ, ψ}, {ψ, χ}, and {ρ, ψ, χ}, has to be

checked.

In this section, we show that considering only sets of assumptions that form the

premises of some argument, which we call argument-supporting sets of assumptions, when

determining or checking assumption labellings is equivalent to considering all sets of as-

sumptions. This is inspired by the fact that assumption extensions can be determined

and checked by considering either all or only argument-supporting sets of assumptions

[DKT06].

3.3.1 Assumption Labellings with respect to Argument-Supporting Sets

of Assumptions

A set of assumptions is argument-supporting if it forms the premises of some argument.

Definition 3.5 (Argument-Supporting set of Assumptions). Let Asms ⊆ A be a set of

assumptions. Asms is an argument-supporting set of assumptions if and only if there

exists some s ∈ L such that Asms ⊢ s.

Note that all singleton sets of assumptions are argument-supporting, i.e. for every

assumption α ∈ A, {α} is an argument-supporting set of assumptions, since {α} ⊢ α.

Notation 3.6. The set of all argument-supporting sets of assumptions is Sarg = {Asms ⊆

A | Asms is an argument-supporting set of assumptions}.

We define a variant of admissible assumption labellings where only argument-supporting,

rather than all, sets of assumptions attacking an assumption are taken into account.

Definition 3.7 (Admissible Assumption Labelling w.r.t. Argument-Supporting Sets).

Let LabAsm be an assumption labelling. LabAsm is an admissible assumption labelling

w.r.t. argument-supporting sets if and only if for each assumption α ∈ A it holds that:

❼ if LabAsm(α) = in, then for each argument-supporting set of assumptions Asms

attacking α there exists some β ∈ Asms such that LabAsm(β) = out;
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❼ if LabAsm(α) = out, then there exists an argument-supporting set of assumptions

Asms attacking α such that for all β ∈ Asms, LabAsm(β) = in;

❼ if LabAsm(α) = undec, then for each argument-supporting set of assumptions

Asms attacking α there exists some β ∈ Asms such that LabAsm(β) 6= in.

To check whether χ in ABA2 is correctly labelled according to admissible assumption

labellings w.r.t. argument-supporting sets, only the set {ψ} has to be taken into account

(compare Example 3.9).

The following Lemma shows that our definition of admissible assumption labellings

(Definition 3.2) and the new definition of admissible assumption labellings w.r.t. argument-

supporting sets can be used interchangeably. This extends the result of Dung et al. [DKT06]

that admissible assumption extensions can be equivalently defined in terms of all sets of

assumptions or argument-supporting sets of assumptions.

Lemma 3.8. Let LabAsm be an assumption labelling. LabAsm is an admissible assump-

tion labelling if and only if LabAsm is an admissible assumption labelling w.r.t. argument-

supporting sets.

Proof. Left to right: Let LabAsm be an admissible assumption labelling.

❼ Let LabAsm(α) = in. Then for each set of assumptions Asms attacking α there

exists some β ∈ Asms such that LabAsm(β) = out.

❼ Let LabAsm(α) = out. Then there exists a set of assumptions Asms attacking

α such that for all β ∈ Asms, LabAsm(β) = in. Thus, there exists an argument

Asms′ ⊢ α such that Asms′ ⊆ Asms. Therefore, Asms′ is an argument-supporting

set of assumptions attacking α such that for all β ∈ Asms′, LabAsm(β) = in.

❼ Let LabAsm(α) = undec. Then for each set of assumptions Asms attacking α there

exists some β ∈ Asms such that LabAsm(β) 6= in.

Right to left: Let LabAsm be an admissible assumption labelling w.r.t. argument-supporting

sets.

❼ Let LabAsm(α) = in. Then for each argument-supporting set of assumptions Asms

attacking α there exists some β ∈ Asms such that LabAsm(β) = out. Since each

set of assumptions Asms′ attacking α is a superset of some argument-supporting

set of assumptions attacking α, it follows that for each set of assumptions Asms′

attacking α there exists some β ∈ Asms′ such that LabAsm(β) = out.

❼ Let LabAsm(α) = out. Then there exists an argument-supporting set of assump-

tions Asms attacking α such that for all β ∈ Asms, LabAsm(β) = in.

❼ Let LabAsm(α) = undec. Then for each argument-supporting set of assumptions

Asms attacking α there exists some β ∈ Asms such that LabAsm(β) 6= in. Since
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each set of assumptions Asms′ attacking α is a superset of some argument-supporting

set of assumptions, it follows that for each set of assumptions Asms′ attacking α

there exists some β ∈ Asms′ such that LabAsm(β) 6= in.

Analogously to admissible assumption labellings, we define a variant of complete as-

sumption labellings where only argument-supporting sets of assumptions attacking an

assumption in question are taken into account.

Definition 3.8 (Complete Assumption Labelling w.r.t. Argument-Supporting Sets). Let

LabAsm be an assumption labelling. LabAsm is a complete assumption labelling w.r.t.

argument-supporting sets if and only if LabAsm is an admissible assumption labelling

w.r.t. argument-supporting sets and for each assumption α ∈ A it holds that:

❼ if LabAsm(α) = undec, then there exists an argument-supporting set of assump-

tions Asms attacking α such that for all γ ∈ Asms, LabAsm(γ) 6= out.

As for admissible assumption labellings, the notions of complete assumption labellings

and complete assumption labellings w.r.t. argument-supporting sets are equivalent.

Proposition 3.9. Let LabAsm be an assumption labelling. LabAsm is a complete as-

sumption labelling if and only if LabAsm is a complete assumption labelling w.r.t. argument-

supporting sets.

Proof.

❼ Left to right: Let LabAsm be a complete assumption labelling. By definition,

LabAsm is an admissible assumption labelling and by Lemma 3.8 an admissible

assumption labelling w.r.t. argument-supporting sets. It remains to prove that the

additional condition of complete assumption labellings w.r.t. argument-supporting

sets is satisfied. Let LabAsm(α) = undec. Then there exists a set of assumptions

Asms attacking α such that for all β ∈ Asms, LabAsm(β) 6= out. Thus, there

exists an argument Asms′ ⊢ α such that Asms′ ⊆ Asms. Therefore, Asms′ is an

argument-supporting set of assumptions attacking α such that for all γ ∈ Asms′,

LabAsm(γ) 6= out.

❼ Right to left: Let LabAsm be a complete assumption labelling w.r.t. argument-

supporting sets. By definition, LabAsm is an admissible assumption labelling w.r.t. argument-

supporting sets and by Lemma 3.8 an admissible assumption labelling. It remains

to prove that the additional condition of complete assumption labellings is satis-

fied. Let LabAsm(α) = undec. Then there exists an argument-supporting set of

assumptions Asms attacking α such that for all γ ∈ Asms, LabAsm(γ) 6= out.
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Since the grounded, preferred, ideal, semi-stable, and stable assumption labellings are

based on complete/admissible assumption labellings, it follows that they can be equiv-

alently defined in terms of complete/admissible assumption labellings w.r.t. argument-

supporting sets.

Depending on the ABA framework, and in particular on the set of inference rules R,

the set of all argument-supporting sets of assumptions Sarg may be equal to the set of all

sets of assumptions ℘(A) or a subset thereof with much lower cardinality. For example, in

ABA2 from Example 3.1, the set of all argument-supporting sets of assumptions consists

only of the singleton sets, i.e. {{ρ}, {ψ}, {χ}}, whereas the set of all sets of assumptions is

℘({ρ, ψ, χ}) = {{}, {ρ}, {ψ}, {χ}, {ρ, ψ}, {ρ, χ}, {ψ, χ}, {ρ, ψ, χ}}. Therefore, considering

only argument-supporting sets of assumptions may in the best case require to check only

a fraction of all sets of assumptions, but in the worst case it is exactly the same.

Observation 3.10. Let Sall = ℘(A) be the set of all sets of assumptions, so |Sall| = 2|A|.

❼ In the best case, |Sarg| = |A|. This is for example the case if R = ∅, since the only

argument-supporting sets of assumptions are the singleton sets.

❼ In the worst case, |Sarg| = |Sall| = 2|A|. This is for example the case if R is such

that for each Asms ∈ Sall there exists some inference rule s0 ← s1, . . . , sn ∈ R such

that Asms = {s1, . . . , sn}.

Example 3.10. Let ABA6 be the following ABA framework:

L = {p, r, ψ, ρ},

R = {p← ; p← ρ; r ← ψ; r ← ψ, ρ},

A = {ψ, ρ},

ψ = p , ρ = r.

Here, the set of all argument-supporting sets of assumptions is Sarg = {{}, {ψ}, {ρ}, {ψ, ρ}},

which coincides with the set of all sets of assumptions.

3.3.2 ABA Graphs

In most of the ABA literature (e.g. [DKT06, DMT07, MM09, Ton13, Ton14, HS16]),

ABA frameworks are not displayed graphically; they are simply given as tuples, as done

in the Examples presented so far. We introduce ABA graphs, where nodes are argument-

supporting sets of assumptions and edges are attacks between these argument-supporting

sets of assumptions.

Definition 3.9 (ABA Graph). The ABA graph G = (V,E) is a directed graph with

V = Sarg and E = {(Asms1, Asms2) | Asms1, Asms2 ∈ V and Asms1 attacks Asms2}.

The ABA graph of ABA2 from Example 3.1 has only three nodes, namely the singleton

sets of assumptions, as shown on the left of Figure 3.5. As a comparison, the right of

Figure 3.5 illustrates the graph of all sets of assumptions and attacks between them.
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{ρ} {ψ} {χ}

{ρ, ψ} {ψ, χ} {ρ, χ}

{ρ} {ψ} {χ}

{ρ, ψ, χ}

{ }

Figure 3.5: Left – the ABA graph of ABA2. Right – the graph illustrating all sets of
assumptions of ABA2 and all attacks between them.

Since an ABA graph illustrates all argument-supporting sets of assumptions and at-

tacks between them, an ABA graph can be used to determine the semantics of an ABA

framework.

Example 3.11. The ABA graph of ABA5 (see Example 3.7) is displayed on the left

of Figure 3.6. It illustrates which (argument-supporting) sets of assumptions have to

be taken into account when determining complete or admissible assumption labellings

(w.r.t. argument-supporting sets). For example, for ρ to be labelled in by a complete

assumption labelling (w.r.t. argument-supporting sets), all (argument-supporting) sets of

assumptions attacking ρ have to contain an assumption labelled out. Since the only set

of assumptions attacking ρ in the ABA graph is {ψ}, we deduce that ψ has to be labelled

out by any complete assumption labelling that labels ρ as in. It is then easy to verify,

based on the two sets of assumptions attacking χ, that with ψ labelled out, χ can only be

labelled undec. This complete assumption labelling of ABA5 is illustrated in the ABA

graph on the right of Figure 3.6.

{ρ} {ψ} {χ} {ρin} {ψout} {χundec}

Figure 3.6: The ABA graph of ABA5 (see Example 3.11). The right version also indicates
one of the complete assumption labellings of ABA5.

Another graphical representation of an ABA framework is the attack relationship graph

[BDKT97], which was introduced to characterise different types of ABA frameworks. The

question thus arises whether attack relationship graphs can also be used to determine the

semantics, in particular the assumption labellings, of an ABA framework.

The attack relationship graph Gatt = (V,E) is a directed graph with V =

A and E = {(α, β) | α, β ∈ V and α ∈ Asms such that Asms attacks β
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and ∄Asms′ ⊂ Asms such that Asms′ attacks β}.

The main difference between an ABA graph and an attack relationship graph is that

the vertices of an ABA graph are sets of assumptions, including all the singleton sets,

whereas the vertices of an attack relationship graph are single assumptions. The following

example demonstrates that attack relationship graphs do not capture enough information

to determine the semantics of an ABA framework.

Example 3.12. Let ABA7 be the following ABA framework:

L = {ρ, ψ, χ, φ, ω, r, p, x},

R = {r ← φ ; r ← ω ; r ← ψ, χ},

A = {ρ, ψ, χ, φ, ω},

ρ = r, ψ = p, χ = x, φ = ψ, ω = ψ.

Furthermore, let ABA8 have the same L, A, and contraries as ABA7, but with R =

{r ← φ ; r ← ψ, ω ; r ← χ, ω}. The ABA graphs of ABA7 and ABA8, which are

structurally different, are displayed in Figure 3.7. In contrast, the attack relationship

graphs of ABA7 and ABA8 are the same, as illustrated in Figure 3.8. Thus, it is impossible

to distinguish ABA7 and ABA8 based on the attack relationship graphs. However, the

two ABA frameworks have different complete labellings, as indicated in Figure 3.7. It is

therefore not possible to determine the complete or admissible assumption labellings of

ABA7 and ABA8 based on their attack relationship graphs. Furthermore, it is in general

not the case that complete or admissible assumption labellings of an ABA framework can

be determined based on its attack relationship graph.

{ρout} {ψin, χin} {χin}

{ωout}

{ψin}{φout}

{ρin} {χin, ωout}

{ψin, ωout}

{χin}

{ωout}

{ψin}{φout}

Figure 3.7: The ABA graphs of ABA7 (left) and ABA8 (right) from Example 3.12, each
with its only complete assumption labelling.

Conversely, ABA graphs cannot be (straightforwardly) used to characterise different

types of ABA frameworks. For example, an ABA framework is stratified if and only if its

attack relationship graph does not have an infinite sequence of edges [BDKT97]. However,

ABA graphs may have an infinite sequence of edges even if the attack relationship graph

does not, as demonstrated in Example 3.13.
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ρ χ

ω

ψφ

Figure 3.8: The attack relationship graph of both ABA7 and ABA8 from Example 3.12.

Example 3.13. Let ABA9 be the following ABA framework:

L = {p, r, x, ψ, ρ, χ},

R = {r ← ψ ; x← ρ ; r ← ψ, χ},

A = {ψ, ρ, χ},

ψ = p , ρ = r , χ = x.

The attack relationship graph and the ABA graph of ABA9 are displayed in Figure 3.9.

Since the attack relationship graph does not have any infinite sequence of edges, ABA9

is stratified. However, the ABA graph does have an infinite sequence of edges since it

comprises a cycle.

ψ ρ χ

{ψ} {ρ} {χ}

{ψ, χ}

Figure 3.9: The attack relationship graph (left) and the ABA graph (right) of ABA9 from
Example 3.13.

The example illustrates that an infinite sequence of edges in an ABA graph does not

indicate that the ABA framework is not stratified.

Proposition 3.11. Let G be the ABA graph and Gatt the attack relationship graph of

〈L,R,A, ¯〉. If Gatt has an infinite sequence of edges, then G has an infinite sequence of

edges, but not vice versa.

Proof. Let there be an infinite sequence of edges (α1, α2), (α2, α3), . . . in Gatt. Then there

exists a set of assumptions Asmsα1
attacking α2 such that α1 ∈ Asmsα1

, a set of assump-

tions Asmsα2
attacking α3 such that α2 ∈ Asmsα2

, and so on. Thus, in G there exists an

edge from Asmsα1
to {α2} as well as to every other set of assumptions containing α2, in

particular an edge to Asmsα2
. Furthermore, there is an edge from Asmsα2

to {α3} as well

as every set of assumptions containing α3, and so on. Thus, there is an infinite sequence

of edges (Asmsα1
, Asmsα2

), (Asmsα2
, Asmsα3

), . . . in G.

Example 3.13 proves that the converse does not hold.
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{ρ} ⊢ ρ

{ρ} ⊢ p

{ψ} ⊢ ψ

{ψ} ⊢ r

{ψ} ⊢ x

{χ} ⊢ χ

{χ} ⊢ p

{χ} ⊢ x

Figure 3.10: AA graph of the corresponding AA framework of ABA5.

Another way to graphically represent an ABA framework is in terms of the AA graph of

its corresponding AA framework, as for example done in [CSAD15a, ST16]. Interestingly,

even though nodes in an ABA graph are argument-supporting sets of assumptions, an

ABA graph does not generally have the same number of nodes as the AA graph of the

corresponding AA framework, where nodes are arguments. In particular, an AA graph

may have more nodes than an ABA graph since the same set of assumptions may form the

set of premises of various arguments. As an example, compare the ABA graph of ABA5

shown in Figure 3.6 with the AA graph of its corresponding AA framework illustrated in

Figure 3.10.

Recently a new way to represent arguments of an ABA framework has been introduced

with the purpose of eliminating redundancies in arguments [CT16a], namely as argument

graphs rather than trees. Various argument graphs can furthermore be combined to form

a larger argument graph, which represents a set of arguments without redundancies. Since

the semantics of ABA frameworks in terms of argument graphs is slightly different from the

semantics in terms of assumption and argument extensions [CT16a], a detailed comparison

between argument graphs and ABA graphs is beyond the scope of this thesis.

3.4 Assumption Labellings versus Argument Labellings

In this section, we examine the relationship between assumption labellings of an ABA

framework and argument labellings of its corresponding AA framework. In the remainder,

and if clear from the context, we assume as given a flat ABA framework 〈L,R,A, ¯〉 and

its corresponding AA framework 〈ArABA, AttABA〉.

3.4.1 Translating between Assumption and Argument Labellings

Before going into detail about the (non-) correspondence between assumption and argu-

ment labellings according to the various semantics, we show that there is a correspondence

between attacks in the ABA framework and attacks in its corresponding AA framework.
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Lemma 3.12 states that given a set of assumptions Asms, the set of arguments con-

structable from these assumptions attacks exactly those arguments supported by some

assumption attacked by Asms. Conversely, Lemma 3.13 states that given a set of ar-

guments Args, the set of assumptions supporting these arguments attacks exactly those

assumptions whose assumption-arguments are attacked by Args.

Lemma 3.12. Let Asms ⊆ A and Args = {Asms′ ⊢ s ∈ ArABA | Asms
′ ⊆ Asms}.

Then

❼ Args+ = {Asms′ ⊢ s ∈ ArABA | ∃α ∈ Asms
′ : α ∈ Asms+};

❼ ArABA \ (Args ∪ Args+) = {Asms′ ⊢ s ∈ ArABA | Asms
′ * Asms, ∄α ∈ Asms′ :

α ∈ Asms+}.

Proof. We prove both statements:

❼ Args+ = {Asms′ ⊢ s ∈ ArABA | Args attacks Asms′ ⊢ s}

= {Asms′ ⊢ s ∈ ArABA | ∃α ∈ Asms
′ : ∃Asms′′ ⊢ α ∈ Args}

= {Asms′ ⊢ s ∈ ArABA | ∃α ∈ Asms
′ : ∃Asms′′ ⊢ α and Asms′′ ⊆ Asms}

= {Asms′ ⊢ s ∈ ArABA | ∃α ∈ Asms
′ : Asms attacks α}

= {Asms′ ⊢ s ∈ ArABA | ∃α ∈ Asms
′ : α ∈ Asms+}

❼ ArABA \ (Args ∪ Args+) = {Asms′ ⊢ s ∈ ArABA | Asms
′ ⊢ s /∈ Args,Asms′ ⊢ s /∈

Args+} = {Asms′ ⊢ s ∈ ArABA | Asms
′ * Asms, ∄α ∈ Asms′ : α ∈ Asms+}

Lemma 3.13. Let Args ⊆ ArABA and let Asms = {α ∈ A | ∃Asms′ : α ∈ Asms′ and

Asms′ ⊢ s ∈ Args}. Then

❼ Asms+ = {α ∈ A | {α} ⊢ α ∈ Args+};

❼ A \ (Asms ∪Asms+) = {α ∈ A | {α} ⊢ α /∈ Args, {α} ⊢ α /∈ Args+}.

Proof. We prove both statements:

❼ Asms+ = {α ∈ A | Asms attacks α} = {α ∈ A | ∃Asms′ ⊢ α : Asms′ ⊆ Asms}

= {α ∈ A | ∃Asms′ ⊢ α ∈ Args} = {α ∈ A | Args attacks {α} ⊢ α}

= {α ∈ A | {α} ⊢ α ∈ Args+}

❼ A \ (Asms ∪Asms+) = {α ∈ A | α /∈ Asms, α /∈ Asms+}

= {α ∈ A | ∄Asms′ : α ∈ Asms′ and Asms′ ⊢ s ∈ Args, {α} ⊢ α /∈ Args+}

= {α ∈ A | {α} ⊢ α /∈ Args, {α} ⊢ α /∈ Args+}

Next, we examine the number of assumption labellings of an ABA framework as com-

pared to the number of argument labellings of its corresponding AA framework.
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Notation 3.10. LAsm denotes the set of all assumption labellings of 〈L,R,A, ¯〉 and

LArg the set of all argument labellings of 〈ArABA, AttABA〉.

First, we observe that the number of all possible assumption labellings of an ABA

framework is smaller than or equal to the number of all possible argument labellings of

its corresponding AA framework since an assumption labelling labels only assumptions,

i.e. |A| elements, whereas an argument labelling labels every assumption-argument as well

as every argument constructed using inference rules in R.

Observation 3.14. Since assumption labellings assign one of three labels to each assump-

tion, |LAsm| = 3|A|. Since argument labellings assign one of three labels to each argument,

|LArg| = 3|ArABA|.

❼ In the best case |LArg| = |LAsm| = 3|A|. This is the case if the only arguments are

assumption-arguments, so |ArABA| = |A|, for example if R = ∅.

❼ In all other cases |LArg| > |LAsm|. This is the case if there exists at least one

argument that is not an assumption-argument, so |ArABA| > |A|, for example if

there exists an inference rule s← ∈ R.

As an example, ABA5 from Example 3.7 has three assumptions, so there are |LAsm| =

33 = 27 possible assumption labellings. In contrast, the corresponding AA framework of

ABA5 has eight arguments (see Figure 3.10), so there are |LArg| = 38 = 6561 possible

argument labellings. We will see in the following sections that even though the number

of possible assumption labellings of an ABA framework may be less than the number of

possible argument labellings of its corresponding AA framework, the number of assumption

and argument labellings according to various semantics is the same.

In order to compare assumption and argument labellings, we define two functions for

translating between the two types of labellings. The first translation, LabAsm2LabArg, de-

termines the labels of arguments based on the given labels of premises of these arguments.

Definition 3.11 (Mapping an Assumption Labelling into an Argument Labelling).

LabAsm2LabArg : LAsm → LArg maps an assumption labelling LabAsm into an argument

labelling LabArg such that:

❼ in(LabArg) = {Asms ⊢ s ∈ ArABA | Asms ⊆ in(LabAsm)};

❼ out(LabArg) = {Asms ⊢ s ∈ ArABA | ∃α ∈ Asms : α ∈ out(LabAsm)};

❼ undec(LabArg) = {Asms ⊢ s ∈ ArABA | ∃α ∈ Asms : α ∈ undec(LabAsm),

Asms ∩ out(LabAsm) = ∅}.

LabAsm2LabArg mirrors the correspondence between assumption and argument exten-

sions (see Section 2.2.3) through the mapping from in-labelled assumption into in-labelled

arguments. In addition, LabAsm2LabArg maps assumptions labelled out and undec into

arguments labelled out and undec, respectively. An argument is labelled out if one of its
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premises is labelled out, independently of the labels of its other premises. The intuition

of this translation is that an assumption α which is labelled out is attacked by a set of

assumptions labelled in. Since this set gives rise to an in-labelled argument, any argu-

ment that has α as its premise is attacked by an in-labelled argument and should thus

be labelled out. Arguments labelled undec are simply those whose premises fulfil neither

the condition for in- nor for out-labelled arguments.

Lemma 3.15. LabAsm2LabArg is an injective function but not generally a surjective func-

tion.

Proof. Note first that LabAsm2LabArg is clearly a function.

❼ Injective: We prove that no two different assumption labellings LabAsm1 and

LabAsm2 are mapped to the same argument labelling by LabAsm2LabArg. Let

LabAsm1 6= LabAsm2. Thus, ∃α ∈ A such that LabAsm1(α) 6= LabAsm2(α). If α ∈

in(LabAsm1), then α /∈ in(LabAsm2), so {α} ⊢ α ∈ in(LabAsm2LabArg(LabAsm1))

but {α} ⊢ α /∈ in(LabAsm2LabArg(LabAsm2)). Analogous results are reached as-

suming that α ∈ out(LabAsm1) and that α ∈ undec(LabAsm1).

Thus, LabAsm2LabArg(LabAsm1) 6= LabAsm2LabArg(LabAsm2).

❼ Not generally surjective: The following ABA framework illustrates that there may

be some LabArg ∈ LArg such that there exists no LabAsm ∈ LAsm with LabArg =

LabAsm2LabArg(LabAsm): L = {r, ρ}, R = {r ←}, A = {ρ}, ρ = r. There are three

possible assumption labellings: LabAsm1 = {(ρ, in)}, LabAsm2 = {(ρ,out)}, and

LabAsm3 = {(ρ,undec)}. The corresponding AA framework has two arguments:

ArABA = {A1 : {ρ} ⊢ ρ,A2 : {} ⊢ r}. In the translations of all three assump-

tion labellings in terms of LabAsm2LabArg, A2 is labelled in. Thus, for instance

for the argument labelling {(A1, in), (A2, out)} there exists no LabAsm such that

LabAsm2LabArg(LabAsm) = {(A1, in), (A2, out)}.

The second translation, LabArg2LabAsm, determines the labels of assumptions based

on the given labels of assumption-arguments.

Definition 3.12 (Mapping an Argument Labelling into an Assumption Labelling).

LabArg2LabAsm : LArg → LAsm maps an argument labelling LabArg into an assumption

labelling LabAsm such that:

❼ in(LabAsm) = {α ∈ A | {α} ⊢ α ∈ in(LabArg)};

❼ out(LabAsm) = {α ∈ A | {α} ⊢ α ∈ out(LabArg)};

❼ undec(LabAsm) = {α ∈ A | {α} ⊢ α ∈ undec(LabArg)}.
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In contrast to LabAsm2LabArg, the translation from in-labelled arguments into in-

labelled assumptions in terms of LabArg2LabAsm does not mirror the correspondence be-

tween argument and assumption extensions (see Section 2.2.3). In particular, the set

of in-labelled assumptions consists of all assumptions whose assumption-arguments are

labelled in, rather than of all assumptions occurring as the premise of some argument

labelled in (which would mirror the correspondence between argument and assumption

extensions). This is to ensure that the translation of any argument labelling results in a

well-defined assumption labelling.

Example 3.14. Let ABA10 be the following ABA framework:

L = {ρ, ψ, r, p},

R = {r ← ρ},

A = {ρ, ψ},

ρ = ψ, ψ = p.

The corresponding AA framework of ABA10 has three arguments, A1 : {ρ} ⊢ ρ, A2 : {ψ} ⊢

ψ, and A3 : {ρ} ⊢ r. Let LabArg be the argument labelling {(A1, out), (A2, out), (A3, in)}.

Then LabArg2LabAsm(LabArg) = {(ψ, in), (ρ,out)} is a well-defined assumption labelling.

However, if the set of assumptions labelled in was defined in such a way that it mirrors the

correspondence between argument and assumption extensions, i.e. in(LabAsm) = {α ∈

A | ∃Asms ⊢ s ∈ in(LabArg), α ∈ Asms}, then ρ ∈ in because A3 ∈ in(LabArg) but also

ρ ∈ out because A1 ∈ out(LabArg).

Note that if LabArg2LabAsm was restricted to admissible or complete, rather than ar-

bitrary, argument and assumption labellings, the translation from in-labelled arguments

into in-labelled assumptions could mirror the correspondence between argument and as-

sumption extensions [ST14].

Lemma 3.16. LabArg2LabAsm is a surjective function but not generally an injective func-

tion.

Proof. Note first that LabArg2LabAsm is clearly a function.

❼ Surjective: We prove that for every LabAsm ∈ LAsm there exists some LabArg ∈

LArg such that LabArg2LabAsm(LabArg) = LabAsm. Let LabAsm ∈ LAsm. Fur-

thermore, let LabArg be an argument labelling that satisfies that for all α ∈ A,

{α} ⊢ α ∈ in(LabArg) if α ∈ in(LabAsm), {α} ⊢ α ∈ out(LabArg) if α ∈

out(LabAsm), and {α} ⊢ α ∈ undec(LabArg) if α ∈ undec(LabAsm). Then

LabArg2LabAsm(LabArg)=LabAsm. Clearly LabArg∈LArg.

❼ Not generally injective: Consider the ABA framework from the proof of Lemma 3.15

and the two argument labellings LabArg1 = {(A1, in), (A2, out)} and LabArg2 =

{(A1, in), (A2, in)}. Then LabArg2LabAsm(LabArg1) = LabArg2LabAsm(LabArg2) =

{(ρ, in)}.
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3.4.2 Complete Semantics

Due to the one-to-one correspondence between complete assumption labellings and ex-

tensions (Theorem 3.4), between complete assumption and argument extensions [Ton12,

CSAD15a], and between complete argument extensions and labellings [CG09], there is also

a one-to-one correspondence between complete assumption labellings and complete argu-

ment labellings. Theorem 3.17 below characterises the complete argument labelling corre-

sponding to a given complete assumption labelling in terms of the mapping LabAsm2LabArg.

Theorem 3.17. Let LabAsm be an assumption labelling. LabAsm is a complete assump-

tion labelling if and only if LabAsm2LabArg(LabAsm) is a complete argument labelling.

Proof. Note that we could simply prove that the conditions of a complete argument la-

belling (left to right) and a complete assumption labelling (right to left) are satisfied.

Instead, we use existing results about the correspondence of assumption and argument

semantics.

❼ Left to right: Let LabAsm be a complete assumption labelling. Firstly note that

for all Asms ⊢ s ∈ ArABA exactly one of the three conditions in the definition

of LabAsm2LabArg applies, so all Asms ⊢ s are in exactly one of in(LabArg),

out(LabArg), or undec(LabArg).

By Theorem 3.4: Asms = in(LabAsm) is a complete assumption extension with

Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) = undec(LabAsm).

By Theorem 6.1 in [CSAD15a]: Args = {Asms′ ⊢ s | Asms′ ⊆ in(LabAsm)} is a

complete argument extension.

By Lemma 3.12: Args+ = {Asms′ ⊢ s | ∃α ∈ Asms′ : α ∈ out(LabAsm)} and

ArABA \ (Args ∪ Args+) = {Asms′ ⊢ s | Asms′ * in(LabAsm), ∄α ∈ Asms′ :

α ∈ out(LabAsm)} = {Asms′ ⊢ s | ∃α ∈ Asms′ : α ∈ undec(LabAsm), Asms′ ∩

out(LabAsm) = ∅}.

By Theorem 10 in [CG09]: LabArg with in(LabArg) = Args, out(LabArg) =

Args+, undec(LabArg) = ArABA\(Args∪Args
+) is a complete argument labelling.

❼ Right to left: Let LabArg = LabAsm2LabArg(LabAsm) be a complete argument

labelling where LabAsm is an assumption labelling. Since LabAsm2LabArg is injective

by Lemma 3.15, LabAsm is unique.

By Theorems 9 and 11 in [CG09]: Args = in(LabArg) = {Asms′ ⊢ s | Asms′ ⊆

in(LabAsm)} is a complete argument extension with Args+ = out(LabArg) =

{Asms′ ⊢ s | ∃α ∈ Asms′ : α ∈ out(LabAsm)} and ArABA \ (Args ∪ Args+) =

undec(LabArg) = {Asms′ ⊢ s | ∃α ∈ Asms′ : α ∈ undec(LabAsm), Asms′ ∩

out(LabAsm) = ∅}.

By Theorem 6.1 in [CSAD15a]: Asms = {α ∈ A | ∃Asms′ : α ∈ Asms′ and Asms′ ⊢

s ∈ Args} = in(LabAsm) is a complete assumption extension.
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By Lemma 3.13: Asms+ = {α | {α} ⊢ α ∈ Args+} = {α | α ∈ out(LabAsm)} =

out(LabAsm) and A \ (Asms ∪ Asms+) = {α | {α} ⊢ α /∈ Args, {α} ⊢ α /∈

Args+} = {α | {α} ⊢ α ∈ undec(LabArg)} = {α | α ∈ undec(LabAsm)} =

undec(LabAsm).

By Theorem 3.4: LabAsm is a complete assumption labelling.

Note that in addition to proving that every complete assumption labelling is trans-

lated into a corresponding complete argument labelling by LabAsm2LabArg, analogous to

the correspondence between complete assumption and argument extensions [CSAD15a],

Theorem 3.17 also proves that for every complete argument labelling that is the trans-

lation of some assumption labelling LabAsm in terms of LabAsm2LabArg, LabAsm is a

complete assumption labelling.

Since LabAsm2LabArg is injective but not generally surjective (see Lemma 3.15), there

may be an argument labelling LabArg that is not the translation of any assumption

labelling in terms of LabAsm2LabArg, so a natural question is whether LabArg may be a

complete argument labelling. The following Proposition shows that this is not the case,

i.e. every complete argument labelling is the translation of some assumption labelling in

terms of LabAsm2LabArg.

Proposition 3.18. Let LabArg be a complete argument labelling. Then there exists a

unique assumption labelling LabAsm such that LabAsm2LabArg(LabAsm) = LabArg.

Proof. By Theorem 9 in [CG09], Args = in(LabArg) is a complete argument extension.

By Theorem 11 in [CG09], Args+ = out(LabArg) and ArABA \ (Args ∪ Args+) =

undec(LabArg).

By Theorem 6.1 in [CSAD15a], Asms = {α | ∃Asms′ : α ∈ Asms′, Asms′ ⊢ s ∈ Args} is

a complete assumption extension.

From Theorem 6.1 and Proposition 1 in [CSAD15a] it also follows that Args = {Asms′ ⊢

s | Asms′ ⊆ Asms}. By Lemma 3.12, Args+ = {Asms′ ⊢ s | ∃α ∈ Asms′ : α ∈ Asms+},

and ArABA \ (Args∪Args+) = {Asms′ ⊢ s | Asms′ * Asms, ∄α ∈ Asms′ : α ∈ Asms+}.

By Theorem 3.4, LabAsm with in(LabAsm) = Asms, out(LabAsm) = Asms+, and

undec(LabAsm) = A \ (Asms ∪Asms+) is a complete assumption labelling.

It follows that, Args = {Asms′ ⊢ s | Asms′ ⊆ in(LabAsm)} = in(LabArg). Fur-

thermore, Args+ = {Asms′ ⊢ s | ∃α ∈ Asms′ : α ∈ out(LabAsm)} = out(LabArg),

and ArABA \ (Args ∪ Args+) = {Asms′ ⊢ s | Asms′ * in(LabAsm), ∄α ∈ Asms′ :

α ∈ out(LabAsm)} = {Asms′ ⊢ s | ∃α ∈ Asms′ : α ∈ undec(LabAsm), Asms′ ∩

out(LabAsm) = ∅} = undec(LabArg).

Thus, LabAsm2LabArg(LabAsm) = LabArg.

Since LabAsm2LabArg is injective by Lemma 3.15, LabAsm is unique.

It follows directly from Theorem 3.17 that LabAsm is a complete assumption labelling.
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We now examine the translation from argument into assumption labellings in terms of

LabArg2LabAsm. Theorem 3.19 below shows that the translation of a complete argument

labelling yields a complete assumption labelling.

Theorem 3.19. Let LabArg be an argument labelling. If LabArg is a complete argument

labelling, then LabArg2LabAsm(LabArg) is a complete assumption labelling.

Proof. By Theorems 9 and 11 in [CG09], Args = in(LabArg) is a complete argument

extension with Args+ = out(LabArg) and ArABA \ (Args ∪Args+) = undec(LabArg).

By Theorem 6.1 in [CSAD15a], Asms = {α | ∃Asms′ : α ∈ Asms′ and Asms′ ⊢ s ∈

in(LabArg)} is a complete assumption extension.

By Lemma 3.13, Asms+ = {α | {α} ⊢ α ∈ Args+} = {α | {α} ⊢ α ∈ out(LabArg)}

and A \ (Asms ∪ Asms+) = {α | {α} ⊢ α /∈ Args, {α} ⊢ α /∈ Args+} = {α | {α} ⊢ α ∈

undec(LabArg)}.

Since for an argument Asms′ ⊢ s ∈ in(LabArg) it holds that all attackers are labelled

out, it follows that ∀α ∈ Asms′: all attackers of {α} ⊢ α are labelled out, so by the

definition of complete argument labellings {α} ⊢ α ∈ in(LabArg). Thus, Asms = {α |

{α} ⊢ α ∈ in(LabArg)}.

By Theorem 3.4, LabAsm with in(LabAsm) = Asms, out(LabAsm) = Asms+ and

undec(LabAsm) = A \ (Asms ∪Asms+) is a complete assumption labelling.

Note that since LabArg2LabAsm is surjective (see Lemma 3.16) the converse of Theo-

rem 3.19 does not hold, i.e. a complete assumption labelling LabAsm may be the trans-

lation of some argument labelling in terms of LabArg2LabAsm that is not a complete

argument labelling, as illustrated by the following example.

Example 3.15. ABA10 from Example 3.14 has only one complete assumption labelling

LabAsm1 = {(ρ,out), (ψ, in)}. The corresponding AA framework of ABA10 has one

complete argument labelling, LabArg1 = {(A1, out), (A2, in), (A3, out)}. It holds that

LabArg2LabAsm(LabArg1) = LabAsm1, but also that for LabArg2 = {(A1, out), (A2, in),

(A3, undec)}, LabArg2LabAsm(LabArg2) = LabAsm1, where LabArg2 is not a complete

argument labelling.

However, a weaker version of the converse of Theorem 3.19 holds: every complete

assumption labelling is the translation of some complete argument labelling in terms of

LabArg2LabAsm.

Lemma 3.20. Let LabAsm be a complete assumption labelling. Then there exists a com-

plete argument labelling LabArg such that LabArg2LabAsm(LabArg) = LabAsm.

Proof. Let LabArg = LabAsm2LabArg(LabAsm), so by Theorem 3.17 LabArg is a com-

plete argument labelling. Now let LabAsm′ = LabArg2LabAsm(LabArg), so in(LabAsm′) =

{α | {α} ⊆ in(LabAsm)} = in(LabAsm), out(LabAsm′) = {α | α ∈ out(LabAsm)} =

out(LabAsm), undec(LabAsm′) = {α | α ∈ undec(LabAsm), {α} ∩ out(LabAsm) =
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∅} = undec(LabAsm). Thus, LabAsm = LabAsm′, so there exists a complete argument

labelling LabArg such that LabArg2LabAsm(LabArg) = LabAsm.

Even though there may be multiple argument labellings that are translated into the

same complete assumption labelling in terms of LabArg2LabAsm, there are no two complete

argument labellings that are translated into the same assumption labelling.

Lemma 3.21. Let LabArg1 6= LabArg2 be two complete argument labellings.

Then LabArg2LabAsm(LabArg1) 6= LabArg2LabAsm(LabArg2).

Proof. Let LabArg2LabAsm(LabArg1) = LabAsm1, LabArg2LabAsm(LabArg2) = LabAsm2.

Assume that LabAsm1 = LabAsm2. Since LabArg1 6= LabArg2, ∃Asms1 ⊢ s1 ∈ ArABA

such that LabArg1(Asms1 ⊢ s1) 6= LabArg2(Asms1 ⊢ s1).

❼ Let Asms1 ⊢ s1 ∈ in(LabArg1), so Asms1 ⊢ s1 /∈ in(LabArg2). Then there exists

some Asms2 ⊢ α attacking Asms1 ⊢ s1 where α ∈ Asms1 and Asms2 ⊢ α /∈

out(LabArg2). However, Asms2 ⊢ α ∈ out(LabArg1) since all attackers of Asms1 ⊢

s1 are labelled out by LabArg1. Thus, {α} ⊢ α /∈ in(LabArg2) but {α} ⊢ α ∈

in(LabArg1), so α∈in(LabAsm1) but α /∈in(LabAsm2). Contradiction.

❼ Let Asms1 ⊢ s1 ∈ out(LabArg1), so Asms1 ⊢ s1 /∈ out(LabArg2). Then there

exists some Asms2 ⊢ α attacking Asms1 ⊢ s1 where α ∈ Asms1 and Asms2 ⊢ α ∈

in(LabArg1). However, Asms2 ⊢ α /∈ in(LabArg2) since no attacker of Asms1 ⊢

s1 is labelled in by LabArg2. Thus, {α} ⊢ α ∈ out(LabArg1) but {α} ⊢ α /∈

out(LabArg2), so LabArg2LabAsm that α ∈ out(LabAsm1) but α /∈ out(LabAsm2).

Contradiction.

❼ Let Asms1 ⊢ s1 ∈ undec(LabArg1), so Asms1 ⊢ s1 /∈ undec(LabArg2). Then

either for all Asms2 ⊢ α attacking Asms1 ⊢ s1 where α ∈ Asms1 it holds that

Asms2 ⊢ α ∈ out(LabArg2) or there exists some Asms3 ⊢ β attacking Asms1 ⊢ s1

where β ∈ Asms1 and Asms3 ⊢ β ∈ in(LabArg2). In the first case for all {α} ⊢ α,

{α} ⊢ α ∈ in(LabArg2) but some {α} ⊢ α ∈ undec(LabArg1) since there exists

an attacker Asms2 ⊢ α of Asms1 ⊢ s1 such that Asms2 ⊢ α /∈ out(LabArg1). It

follows that α ∈ undec(LabAsm1) but α /∈ undec(LabAsm2). Contradiction. In

the second case, {β} ⊢ β ∈ out(LabArg2) but {β} ⊢ β /∈ out(LabArg1) since no

attacker of Asms1 ⊢ s1 is labelled in by LabArg1. Thus, β ∈ out(LabAsm2) but

β /∈ out(LabAsm1). Contradiction.

Lemmas 3.20 and 3.21 imply that every complete assumption labelling is the translation

of a unique complete argument labelling in terms of LabArg2LabAsm.

Corollary 3.22. Let LabAsm be a complete assumption labelling. Then there exists a

unique complete argument labelling LabArg such that LabArg2LabAsm(LabArg) = LabAsm.
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From Theorems 3.17 and 3.19, Proposition 3.18, and Lemmas 3.20 and 3.21, it follows

that there is a one-to-one correspondence between complete argument and assumption

labellings in terms of both LabArg2LabAsm and LabAsm2LabArg. Thus, when restricting

LabArg2LabAsm and LabAsm2LabArg to complete argument and assumption labellings,

they are bijective functions as well as the inverse of one another (see [CSAD15a] for the

analogous result about complete argument and assumption extensions).

Corollary 3.23. Let LAsmComp be the set of all complete assumption labellings of

〈L,R,A, ¯〉 and LArgComp the set of all complete argument labellings of 〈ArABA, AttABA〉.

Let

❼ LabArg2LabAsm′ : LArgComp → LAsmComp such that ∀LabArg ∈ LArgComp :

LabArg2LabAsm′(LabArg) = LabArg2LabAsm(LabArg), and

❼ LabAsm2LabArg′ : LAsmComp → LArgComp such that ∀LabAsm ∈ LAsmComp :

LabAsm2LabArg′(LabAsm) = LabAsm2LabArg(LabAsm).

LabArg2LabAsm′ and LabAsm2LabArg′ are bijective functions and each other’s inverses.

3.4.3 Grounded, Preferred, Ideal, and Stable Semantics

Due to existing correspondence results between grounded, preferred, ideal, and stable

argument labellings and extensions [CG09, Cam11], argument and assumption extensions

[DMT07, Ton12, CSAD15a], and assumption extensions and labellings (see Section 3.2.3),

the one-to-one correspondence between grounded, preferred, ideal, and stable assumption

and argument labellings can be proven in a similar way as for complete assumption and

argument labellings.

Theorem 3.24 states the relationship between a given grounded, preferred, ideal, and sta-

ble assumption labelling and the respective argument labelling in terms of LabAsm2LabArg.

Theorem 3.24. Let LabAsm be an assumption labelling. LabAsm is a grounded / pre-

ferred / ideal / stable assumption labelling if and only if LabAsm2LabArg(LabAsm) is a

grounded / preferred / ideal / stable argument labelling.

Proof. Analogous to the proof of Theorem 3.17 but using Theorem 3.5 instead of Theo-

rem 3.4, Theorem 6.2 / 6.3 / 6.4 / 6.5 in [CSAD15a] instead of Theorem 6.1 in [CSAD15a],

the analogues of Theorems 10 and 11 in [CG09] for the grounded / preferred / stable se-

mantics (only informally given in [CG09]) instead of Theorems 9, 10, and 11 in [CG09],

and Theorem 3.7 in [Cam11] for the ideal semantics instead of Theorems 9, 10, and 11 in

[CG09].

Theorem 3.25 states the relationship between a given grounded, preferred, ideal, and sta-

ble argument labelling and the respective assumption labelling in terms of LabArg2LabAsm.

Theorem 3.25. Let LabArg be an argument labelling. If LabArg is a grounded / preferred

/ ideal / stable argument labelling, then LabArg2LabAsm(LabArg) is a grounded / preferred

/ ideal / stable assumption labelling.

70



Proof. Analogous to the proof of Theorem 3.19 but using Theorem 3.5 instead of Theo-

rem 3.4, Theorem 6.2 / 6.3 / 6.4 / 6.5 in [CSAD15a] instead of Theorem 6.1 in [CSAD15a],

the analogues of Theorems 9 and 11 in [CG09] for the grounded / preferred / stable

semantics (only informally given in [CG09]) instead of Theorems 9 and 11 in [CG09],

and Theorem 3.7 in [Cam11] for the ideal semantics instead of Theorems 9 and 11 in

[CG09].

Note that, analogous to the complete semantics (see Theorem 3.19), the converse of

Theorem 3.25 does not hold. A counter-example is ABA10 from Example 3.15 whose

only grounded, preferred, ideal, and stable assumption labelling is LabAsm1, which is the

translation of the argument labelling LabArg2 in terms of LabArg2LabAsm, but LabArg2

is not a grounded, preferred, ideal, or stable argument labelling.

Due to the one-to-one correspondence between complete assumption and argument

labellings (see Corollary 3.23), it is straightforward that there is also a one-to-one cor-

respondence between grounded, preferred, ideal, and stable argument and assumption

labellings in terms of LabAsm2LabArg and LabArg2LabAsm.

3.4.4 Semi-Stable Semantics

In contrast to the grounded, preferred, ideal, and stable semantics, semi-stable assump-

tion and argument extensions are not in a one-to-one correspondence [CSAD15a]. Since

semi-stable assumption labellings correspond to semi-stable assumption extensions (Theo-

rem 3.5) and semi-stable argument labellings to semi-stable argument extensions [CG09],

it follows that there is no one-to-one correspondence between semi-stable assumption and

argument labellings in terms of LabAsm2LabArg and LabArg2LabAsm. However, since semi-

stable assumption and argument labellings are complete labellings, the translation of

a semi-stable assumption labelling in terms of LabAsm2LabArg is of course a complete

argument labelling and the translation of a semi-stable argument labelling in terms of

LabArg2LabAsm is a complete assumption labelling.

The following example illustrates an ABA framework where all semi-stable argument

labellings are translated into semi-stable assumption labellings by LabArg2LabAsm, but not

all semi-stable assumption labellings are translated into semi-stable argument labellings

by LabAsm2LabArg.

Example 3.16. Let ABA11 be the following ABA framework:

L = {ρ, ψ, χ, x},

R = {x← ψ, χ},

A = {ρ, ψ, χ},

ρ = ψ, ψ = ρ, χ = χ.

ABA11 has three complete assumption labellings: LabAsm1 labels all assumptions as

undec, and LabAsm2 and LabAsm3 are as illustrated in the ABA graphs in Figure 3.11.

Both LabAsm2 and LabAsm3 are semi-stable assumption labellings of ABA11.
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The corresponding AA framework of ABA11 is shown in Figure 3.12, along with two

of its complete argument labellings LabArg2 and LabArg3. The third complete argument

labelling LabArg1 labels all arguments as undec. Only LabArg2 is a semi-stable argu-

ment labelling. Thus, LabArg2LabAsm translates all semi-stable argument labellings into

semi-stable assumption labellings, namely LabArg2LabAsm(LabArg2) = LabAsm2, but

LabAsm2LabArg does not translate all semi-stable assumption labellings into semi-stable

argument labellings since LabAsm2LabArg(LabAsm3) = LabArg3.

{ρin}

{ψout}

{χundec}

{ψout, χundec}

{ρout}

{ψin}

{χundec}

{ψin, χundec}

Figure 3.11: The ABA graph of ABA11 with two of its complete assumption labellings
LabAsm2 (left) and LabAsm3 (right), which are both semi-stable assumption labellings
(see Example 3.16).

{ρ} ⊢ ρ

in

{ψ} ⊢ ψ

out

{χ} ⊢ χ

undec

{ψ, χ} ⊢ x

out

{ρ} ⊢ ρ

out

{ψ} ⊢ ψ

in

{χ} ⊢ χ

undec

{ψ, χ} ⊢ x

undec

Figure 3.12: The AA graph of the corresponding AA framework of ABA11 with two of
its complete argument labellings LabArg2 (left) and LabArg3 (right). Only LabArg2 is a
semi-stable argument labelling (see Example 3.16).

The next example illustrates an ABA framework where all semi-stable assumption

labellings are translated into semi-stable argument labellings by LabAsm2LabArg, but not

all semi-stable argument labellings are translated into semi-stable assumption labellings

by LabArg2LabAsm.

Example 3.17. Let ABA12 be the following ABA framework:

L = {ρ, ψ, χ, ω, x, w},

R = {x← ψ, χ;w ← ω;w ← ψ},

A = {ρ, ψ, χ, ω},

ρ = ψ, ψ = ρ, χ = χ, ω = w.
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ABA12 has three complete assumption labellings: LabAsm1 labels all assumptions as

undec, and LabAsm2 and LabAsm3 are as illustrated in the ABA graphs in Figure 3.13.

Only LabAsm3 is a semi-stable assumption labelling.

The corresponding AA framework of ABA12 is shown in Figure 3.14, along with two

of its complete argument labellings LabArg2 and LabArg3. The third complete argu-

ment labelling LabArg1 labels all arguments as undec. Both LabArg2 and LabArg3 are

semi-stable argument labellings. Thus, LabAsm2LabArg translates all semi-stable assump-

tion labellings into semi-stable argument labellings, namely LabAsm2LabArg(LabAsm3) =

LabArg3, but LabArg2LabAsm does not translate all semi-stable argument labellings into

semi-stable assumption labellings since LabArg2LabAsm(LabArg2) = LabAsm2.

{ρin}

{ψout}

{χundec}

{ψout, χundec}

{ωundec}

{ρout}

{ψin}

{χundec}

{ψin, χundec}

{ωout}

Figure 3.13: The ABA graph of ABA12 with two of its complete assumption labellings
LabAsm2 (left) and LabAsm3 (right). Only LabAsm3 is a semi-stable assumption labelling
(see Example 3.17).

Note that ABA11 and ABA12 are special cases illustrating that semi-stable assumption

and argument labellings do not correspond in general. However, there are also cases

where semi-stable argument and assumption labellings correspond, as demonstrated by

the following example.

Example 3.18. Let ABA13 be the same as ABA12 but with χ = x. Then LabAsm1 and

LabAsm3 are complete assumption labellings as before, but in LabAsm2, χ is labelled in

rather than undec, so both LabAsm2 and LabAsm3 are semi-stable assumption labellings.

The corresponding AA framework of ABA13 has the same complete argument labellings

LabArg1 and LabArg3 as the corresponding AA framework of ABA12, but in LabArg2 the

argument {χ} ⊢ χ is labelled in rather than undec. Thus, LabArg2 and LabArg3 are semi-

stable argument labellings, corresponding to the two semi-stable assumption labellings of

ABA13 in terms of LabAsm2LabArg and LabArg2LabAsm.

3.4.5 Admissible Semantics

We have shown in Theorem 3.1 that admissible assumption extensions and labellings are

in a one-to-one correspondence. Furthermore, we know that admissible assumption and
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{ρ} ⊢ ρ

in

{ψ} ⊢ ψ

out

{χ} ⊢ χ

undec

{ψ, χ} ⊢ x

out

{ψ} ⊢ w
out

{ω} ⊢ ω

undec

{ω} ⊢ w

undec

{ρ} ⊢ ρ

out

{ψ} ⊢ ψ

in

{χ} ⊢ χ

undec

{ψ, χ} ⊢ x

undec

{ψ} ⊢ w
in

{ω} ⊢ ω

out

{ω} ⊢ w

out

Figure 3.14: The AA graph of the corresponding AA framework of ABA12 with two of
its complete argument labellings LabArg2 (top) and LabArg3 (bottom), which are both
semi-stable argument labellings (see Example 3.17).

argument extensions correspond [DMT07], but this correspondence is not one-to-one as

for the complete, grounded, preferred, ideal, and stable semantics, but one-to-many, as

illustrated by the following example.

Example 3.19. Let ABA14 be the following ABA framework, illustrated as an ABA

graph on the left of Figure 3.15:

L = {ρ, ψ, p},

R = {p← ψ},

A = {ρ, ψ},

ρ = ψ, ψ = ρ.

The admissible assumption extensions of ABA14 are Asms1 = {}, Asms2 = {ρ} and

Asms3 = {ψ}. The corresponding AA framework, illustrated on the right of Figure 3.15,

has three arguments, A1 : {ρ} ⊢ ρ, A2 : {ψ} ⊢ ψ, and A3 : {ψ} ⊢ p, and four admissible

argument extensions, Args1 = {}, Args2 = {A1}, Args3 = {A2}, and Args4 = {A2, A3}.

Args3 and Args4 both correspond to the admissible assumption extension Asms3 in the

74



{ρ} {ψ}

A1 : {ρ} ⊢ ρ A2 : {ψ} ⊢ ψ

A3 : {ψ} ⊢ p

Figure 3.15: The ABA graph (left) and the AA graph (right) of ABA14 (see Example 3.19).

sense that Asms3 is the set of all assumptions occurring in the premises of arguments in

both Args3 and Args4 (see Section 2.2.3). Conversely, only Args4 corresponds to Asms3

in the sense that it is the set of all arguments whose premises are contained in Asms3.

In addition, the correspondence between admissible argument extensions and labellings

is one-to-many rather than one-to-one [CG09]. This implies that the correspondence

between admissible assumption and argument labellings is one-to-many rather than one-

to-one. Thus, only some of the correspondence results analogous to those for complete

semantics hold for admissible semantics.

Theorem 3.26. Let LabAsm be an assumption labelling. If LabAsm is an admissible

assumption labelling, then LabAsm2LabArg(LabAsm) is an admissible argument labelling.

Proof. Analogous to the “left to right” part of the proof of Theorem 3.17 but using The-

orem 3.1 instead of Theorem 3.4, Theorem 2.2 in [DMT07] instead of Theorem 6.1 in

[CSAD15a], and Theorem 21 in [CG09] instead of Theorem 10 in [CG09].

Example 3.20. Consider again ABA14 from Example 3.19 (see Figure 3.15). ABA14 has

the same number of admissible assumption labellings and extensions, which correspond

one-to-one:

❼ LabAsm1 = {(ρ,undec), (ψ,undec)} corresponds to Asms1;

❼ LabAsm2 = {(ρ, in), (ψ,out)} corresponds to Asms2;

❼ LabAsm3 = {(ρ,out), (ψ, in)} corresponds to Asms3.

In contrast, the corresponding AA framework of ABA14 has eight admissible argument

labellings, even though it has only four admissible argument extensions:

❼ LabArg11 = {(A1, undec), (A2, undec), (A3, undec)} corresponds to Args1;

❼ LabArg21 = {(A1, in), (A2, undec), (A3, undec)},

LabArg22 = {(A1, in), (A2, undec), (A3, out)},

LabArg23 = {(A1, in), (A2, out), (A3, undec)}, and

LabArg24 = {(A1, in), (A2, out), (A3, out)} all correspond to Args2;

❼ LabArg31 = {(A1, undec), (A2, in), (A3, undec)}, and

LabArg32 = {(A1, out), (A2, in), (A3, undec)} both correspond to Args3;
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❼ LabArg41 = {(A1, out), (A2, in), (A3, in)} corresponds to Args4.

The translation of each admissible assumption labelling in terms of LabAsm2LabArg is an

admissible argument labelling, i.e.

LabAsm2LabArg(LabAsm1) = LabArg11,

LabAsm2LabArg(LabAsm2) = LabArg24, and

LabAsm2LabArg(LabAsm3) = LabArg41.

The following example shows that the converse of Theorem 3.26 does not hold.

Example 3.21. In ABA14 from Example 3.20, LabAsm2LabArg({(ρ, in), (ψ,undec)}) =

LabArg21, which is an admissible argument labelling, but {(ρ, in), (ψ,undec)} is not an

admissible assumption labelling.

It is furthermore not the case that every admissible argument labelling is the translation

of some admissible assumption labelling in terms of LabAsm2LabArg (i.e. the analogous

result of Proposition 3.18 for the admissible semantics does not hold).

Example 3.22. Consider the admissible argument labelling LabArg22 of ABA14 (see

Example 3.20). There exists no admissible assumption labelling such that LabArg22 is

the translation in terms of LabAsm2LabArg since the arguments A2 and A3 have different

labels even though their premises are the same.

Concerning LabArg2LabAsm, it is surprisingly not the case that the translation of every

admissible argument labelling in terms of LabArg2LabAsm is an admissible assumption

labelling (i.e. the analogous result of Theorem 3.19 for admissible semantics does not

hold), as illustrated by the following example.

Example 3.23. Consider the admissible argument labelling LabArg31 of ABA14 (see

Example 3.20). LabArg2LabAsm(LabArg31) = {(ρ,undec), (ψ, in)}, which is not an ad-

missible assumption labelling.

However, it holds that every admissible assumption labelling is the translation of some

admissible argument labelling in terms of LabArg2LabAsm.

Proposition 3.27. Let LabAsm be an admissible assumption labelling. Then there exists

an admissible argument labelling LabArg such that LabArg2LabAsm(LabArg) = LabAsm.

Proof. Analogous to the proof of Lemma 3.20 but using Theorem 3.26 instead of Theo-

rem 3.17.

As in the case of complete assumption and argument labellings, an admissible as-

sumption labelling may also be the translation of some argument labelling in terms of

LabArg2LabAsm that is not an admissible argument labelling.

For example, LabArg2LabAsm({(A1, undec), (A2, undec), (A3, in)}) = LabAsm2, where

LabAsm2 is an admissible assumption labelling, but {(A1, undec), (A2, undec), (A3, in)}

is not an admissible argument labelling (see Example 3.20).
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Committed Admissible Argument Labellings

One of the reasons for the one-to-many correspondence between admissible assumption

and argument labellings is the one-to-many correspondence between admissible argument

extensions and labellings. This arises since admissible argument labellings pose no restric-

tion on arguments labelled undec, so any argument can be labelled undec in an admissible

argument labelling. In contrast, admissible assumption labellings and extensions are in

a one-to-one correspondence since admissible assumption labellings pose restrictions on

assumptions labelled undec (see Section 3.2.1). We now introduce a variant of admis-

sible argument labellings, which follows the spirit of admissible assumption labellings by

restricting undec arguments to arguments that are not attacked by any in-labelled argu-

ments.

Definition 3.13 (Committed Admissible Argument Labelling). Let 〈Ar,Att〉 be an AA

framework and let LabArg be an argument labelling of 〈Ar,Att〉. LabArg is a committed

admissible argument labelling of 〈Ar,Att〉 if and only if for each argument A ∈ Ar it holds

that:

❼ if LabArg(A) = in, then for each B ∈ Ar attacking A, LabArg(B) = out;

❼ if LabArg(A) = out, then there exists someB ∈ Ar attackingA such that LabArg(B) =

in;

❼ if LabArg(A) = undec, then there exists noB ∈ Ar attackingA such that LabArg(B) =

in.

From Definition 3.13 it follows directly that each committed admissible argument la-

belling is an admissible argument labelling.

Corollary 3.28. Let 〈Ar,Att〉 be an AA framework and let LabArg be an argument

labelling of 〈Ar,Att〉. If LabArg is a committed admissible argument labelling of 〈Ar,Att〉,

then it is an admissible argument labelling of 〈Ar,Att〉, but not vice versa.

Example 3.24. The AA framework 〈ArABA14
, AttABA14

〉 (see Examples 3.19 and 3.20)

has four committed admissible argument labellings, namely LabArg11, LabArg24, LabArg32,

and LabArg41. The other admissible argument labellings are not committed admissible

since they violate the third condition in Definition 3.13. For example, LabArg21 is not a

committed admissible argument labelling since argument A2 is labelled undec, but there

exists an argument attacking A2 which is labelled in, namely A1.

Differently from admissible argument labellings, committed admissible argument la-

bellings are in a one-to-one correspondence with admissible argument extensions.

Theorem 3.29. Let 〈Ar,Att〉 be an AA framework.

1. Let Args ⊆ Ar be an admissible argument extension of 〈Ar,Att〉. Then LabArg with

in(LabArg) = Args, out(LabArg) = Args+, and undec(LabArg) = Ar \ (Args ∪

Args+) is a committed admissible argument labelling of 〈Ar,Att〉.
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2. Let LabArg be a committed admissible argument labelling of 〈Ar,Att〉. Then Args =

in(LabArg) is an admissible argument extension of 〈Ar,Att〉 with Args+ =

out(LabArg), and Ar \ (Args ∪Args+) = undec(LabArg).

Proof.

1. First note that Args ∩ Args+ = ∅ since Args does not attack itself. Thus each

A ∈ Ar is either contained in in(LabArg), out(LabArg), or undec(LabArg), so

LabArg is an argument labelling. We prove that LabArg satisfies Definition 3.13.

❼ Let LabArg(A) = in. Then A ∈ Args. Thus, all attackers B of A are attacked

by some C ∈ Args, so B ∈ Args+. Consequently, for each attacker B of A,

LabArg(B) = out.

❼ Let LabArg(A) = out. Then A ∈ Args+. Thus, A is attacked by some B ∈

Args, and therefore there exists someB attackingA such that LabArg(B) = in.

❼ Let LabArg(A) = undec. Then A /∈ Args+. Thus, A is not attacked by any B ∈

Args and consequently there exists no B attacking A such that LabArg(B) =

in.

2. We prove that in(LabArg) is an admissible argument extension.

❼ in(LabArg) is conflict-free: Assume in(LabArg) is not conflict-free. Then

there exist A,B ∈ in(LabArg) such that A attacks B, so B is attacked by an

argument that is not labelled out. Contradiction.

❼ All arguments in in(LabArg) are defended by in(LabArg): LetA ∈ in(LabArg).

Then for each attacker B of A, LabArg(B) = out and therefore for each B there

exists an attacker C such that LabArg(C) = in. Thus, each attacker of A is

attacked by in(LabArg), i.e. in(LabArg) defends A.

❼ Args+ = {A | Args attacks A} = {A | in(LabArg) attacks A}

= {A | A ∈ out(LabArg)} = out(LabArg)

❼ Ar \ (Args ∪Args+) = {A | A /∈ Args,A /∈ Args+}

= {A | A /∈ in(LabArg), A /∈ out(LabArg)} = {A | A ∈ undec(LabArg)} =

undec(LabArg)

Note that the way the sets of arguments labelled in, out, and undec are defined in the

first item of Theorem 3.29 mirrors the Ext2Lab operator of Caminada and Gabbay [CG09].

On the other hand, the second item of Theorem 3.29 extends the Lab2Ext operator in

[CG09], as it not only defines an argument extension based on an argument labelling, but

also the set of arguments attacked by the argument extension and the set of arguments

that are neither contained in nor attacked by the argument extension.

Note also that committed admissible argument labellings are different from other vari-

ations of the admissible semantics, such as strongly admissible argument labellings (and
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extensions) [BG07, Cam14], which require that an accepted argument is defended by ac-

cepted arguments other than itself, and related admissible argument extensions [FT14],

which require that all accepted arguments are “relevant” for defending some accepted

argument.

Given this one-to-one correspondence between committed admissible argument la-

bellings and admissible argument labellings, we now show that there is a “more refined”

one-to-many correspondence between admissible assumption labellings and committed ad-

missible argument labellings as compared to admissible argument labellings, i.e. some ad-

ditional correspondence results hold. Firstly, the converse of Theorem 3.26 is satisfied for

committed admissible argument labellings.

Theorem 3.30. Let LabAsm be an assumption labelling. LabAsm is an admissible as-

sumption labelling if and only if LabAsm2LabArg(LabAsm) is a committed admissible ar-

gument labelling.

Proof. Analogous to the proof of Theorem 3.17, but using Theorem 3.1 instead of The-

orem 3.4, Theorem 3.29 instead of Theorems 10 and 11 in [CG09], and Theorem 2.2 in

[DMT07] instead of Theorem 6.1 in [CSAD15a].

Secondly, the translation of a committed admissible argument labelling in terms of

LabArg2LabAsm is an admissible assumption labelling.

Theorem 3.31. Let LabArg be an argument labelling. If LabArg is a committed ad-

missible argument labelling, then LabArg2LabAsm(LabArg) is an admissible assumption

labelling.

Proof. Analogous to the proof of Theorem 3.19 but using Theorem 3.29 instead of Theo-

rems 9 and 11 in [CG09], Theorem 2.2 in [DMT07] instead of Theorem 6.1 in [CSAD15a],

and Theorem 3.1 instead of Theorem 3.4.

Furthermore, Proposition 3.27 also holds for committed admissible argument labellings.

Proposition 3.32. Let LabAsm be an admissible assumption labelling. Then there exists

a committed admissible argument labelling LabArg such that LabArg2LabAsm(LabArg) =

LabAsm.

Proof. Analogous to the proof of Lemma 3.20 but using Theorem 3.30 instead of Theo-

rem 3.17.

The following example illustrates that due to the additional correspondence results,

the one-to-many correspondence of admissible assumption labellings with committed ad-

missible argument labellings is “more refined” than with admissible argument labellings.

Example 3.25. Consider again ABA14 from Examples 3.19, 3.20, and 3.24.

LabAsm2 is the translation of only one committed admissible argument labelling in terms

of LabArg2LabAsm, namely LabArg24, rather than of two different admissible argument
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labellings LabArg23 and LabArg24. Furthermore, the translations of all committed admis-

sible argument labellings in terms of LabArg2LabAsm are admissible assumption labellings.

In contrast, the translations of the three admissible argument labellings LabArg21, LabArg22,

and LabArg31 in terms of LabArg2LabAsm are not admissible assumption labellings.

The reason that despite the additional correspondence results there is no one-to-one

correspondence between admissible assumption labellings and committed admissible argu-

ment labellings is that a committed admissible argument labelling may not be the trans-

lation of any admissible assumption labelling in terms of LabAsm2LabArg. For example,

the committed admissible argument labelling LabArg32 of ABA14 is not the translation of

any admissible assumption labelling in terms of LabAsm2LabArg (see Examples 3.19, 3.20,

and 3.24).

Note that it would also be straightforward to define a new notion of admissible as-

sumption labellings, which corresponds more closely to admissible argument labellings.

This can be achieved by deleting the restriction on assumptions labelled undec from the

definition of admissible assumption labellings. However, we do not examine this possi-

ble variation further since we believe that the restriction on assumptions labelled undec

is intuitive: it seems reasonable that any assumption attacked by accepted assumptions

cannot be accepted and should thus be rejected (out) rather than neither accepted nor

rejected (undec).

3.5 Non-Flat ABA Frameworks

So far, we only considered flat ABA frameworks. In general however, ABA frameworks may

not be flat, for example the instance of ABA corresponding to auto-epistemic logic [Moo85]

is never flat [BDKT97]. For possibly non-flat ABA frameworks assumption extensions are

defined in a slightly different way than for flat ABA frameworks: they are closed sets of

assumptions and they are based on a more general notion of defence [BDKT97]. A set of

assumptions Asms ⊆ A

❼ is closed if and only if Asms = {α ∈ A | ∃Asms′ ⊆ Asms : Asms′ ⊢ α};

❼ defends α ∈ A if and only if Asms attacks all closed sets of assumptions attacking

α.

Note that in flat ABA frameworks every set of assumptions is closed since in these

frameworks assumptions do not occur as the head of inference rules and therefore, the more

general notion of defence coincides with the notion of defence introduced in Section 2.2.2.

For flat ABA frameworks, the more general definition of assumption extensions for possibly

non-flat ABA frameworks (introduced in the following sections) thus coincides with the

definitions given in Section 2.2.2.

In the remainder of this chapter, and if not specified otherwise, we assume as given

a possibly non-flat ABA framework 〈L,R,A, ¯〉. Furthermore, “defence” refers to the
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more general notion introduced above. Note that the definition of assumption labellings

(Definition 3.1) can be straightforwardly extended to non-flat ABA frameworks.

3.5.1 Admissible Semantics

We recall the definition of admissible assumption extensions for possibly non-flat ABA

frameworks.

A set of assumptions Asms ⊆ A is an admissible assumption extension if and

only if Asms is closed, conflict-free, and defends every α ∈ Asms.

We first illustrate that admissible assumption labellings as introduced for flat ABA

frameworks (Definition 3.2) do not correctly express the semantics of non-flat ABA frame-

works.

Example 3.26. Let ABA15 be the following non-flat ABA framework:

L = {ρ, ψ, χ, p, x},

R = {ρ← χ},

A = {ρ, ψ, χ},

ρ = ψ, ψ = p, χ = x.

According to Definition 3.2, ABA15 has four admissible assumption labellings:

❼ LabAsm1 = {(ρ,undec), (ψ,undec), (χ,undec)},

❼ LabAsm2 = {(ρ,out), (ψ, in), (χ,undec)},

❼ LabAsm3 = {(ρ,undec), (ψ,undec), (χ, in)}, and

❼ LabAsm4 = {(ρ,out), (ψ, in), (χ, in)}.

However, ABA15 has only two admissible assumption extensions (according to the defi-

nition for possibly non-flat ABA frameworks): Asms1 = {}, and Asms2 = {ψ}. Asms1

corresponds to LabAsm1 and Asms2 to LabAsm2 (in terms of Theorem 3.1). The corre-

sponding sets of assumptions (in terms of Theorem 3.1) of LabAsm3 and LabAsm4 are

Asms3 = {χ} and Asms4 = {ψ, χ}, respectively. Neither of them is an admissible as-

sumption extension of ABA15, since neither of them is a closed set of assumptions. Thus,

LabAsm3 and LabAsm4 should not be admissible assumption labellings of the non-flat

ABA framework ABA15.

As illustrated in Example 3.26, a reason that the definition of admissible assumption

labellings of flat ABA frameworks does not correctly express the semantics of non-flat ABA

frameworks is that the set of in-labelled assumptions may not be closed. A straightforward

way of revising the definition of admissible assumption labellings is thus to explicitly

add the condition “in(LabAsm) is a closed set of assumptions”. However, this condition

expresses a restriction on the whole set of in-labelled assumptions, rather than on the
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label of a single assumption, as done by the three conditions of admissible assumption

labellings.

To adhere to the structure of the conditions of admissible assumption labellings, we

instead add an additional restriction to the conditions of undec- and out-labelled as-

sumptions, which ensures that an assumption can only be labelled undec or out if it

is not derivable from the set of in-labelled assumptions using the inference rules. To ex-

press this new restriction, we introduce the notion of a set of assumptions supporting an

assumption.

Definition 3.14 (Support in Non-Flat ABA). Let Asms ⊆ A and α ∈ A. Asms supports

α if and only if there exists an argument Asms′ ⊢ α and Asms′ ⊆ Asms. Equivalently,

we say that α is supported by Asms.

The following definition extends Definition 3.2 to admissible assumption labellings of

possibly non-flat ABA frameworks.

Definition 3.15 (Admissible Assumption Labelling in Non-Flat ABA). Let LabAsm be

an assumption labelling. LabAsm is an admissible assumption labelling if and only if for

each assumption α ∈ A it holds that:

❼ if LabAsm(α) = in, then for each closed set of assumptions Asms attacking α there

exists some β ∈ Asms such that LabAsm(β) = out;

❼ if LabAsm(α) = out, then there exists a closed set of assumptions Asms1 attack-

ing α such that for all β ∈ Asms1, LabAsm(β) = in, and there exists no set of

assumptions Asms2 supporting α such that for all γ ∈ Asms2, LabAsm(γ) = in;

❼ if LabAsm(α) = undec, then for each closed set of assumptions Asms1 attacking α

there exists some β ∈ Asms1 such that LabAsm(β) 6= in, and there exists no set of

assumptions Asms2 supporting α such that for all γ ∈ Asms2, LabAsm(γ) = in.

According to the revised definition, only LabAsm1 and LabAsm2 of ABA15 from

Example 3.26 are admissible assumption labellings. LabAsm3 and LabAsm4 are not ad-

missible assumption labellings since ρ violates the new restriction on undec/out-labelled

assumptions as ρ is supported by {χ} and χ is labelled in.

Note that we also incorporated the more general notion of defence into Definition 3.15,

by only considering closed sets of assumptions attacking the assumption in question.

Observation 3.33. Let LabAsm be an assumption labelling of a flat ABA framework.

Then LabAsm is an admissible assumption labelling according to Definition 3.2 if and

only if it is an admissible assumption labelling according to Definition 3.15.

The following theorem states that Definition 3.15 correctly expresses the admissible

semantics of possibly non-flat ABA frameworks, i.e. that there is a one-to-one correspon-

dence between admissible assumption extensions and labellings of possibly non-flat ABA

frameworks.
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Theorem 3.34.

1. Let Asms be an admissible assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is

an admissible assumption labelling.

2. Let LabAsm be an admissible assumption labelling. Then Asms = in(LabAsm) is

an admissible assumption extension with Asms+ = out(LabAsm) and A\ (Asms ∪

Asms+) = undec(LabAsm).

Proof.

1. First note that Asms ∩ Asms+ = ∅ since Asms does not attack itself. Thus each

α ∈ A is either contained in in(LabAsm), in out(LabAsm), or in undec(LabAsm).

We prove that LabAsm satisfies Definition 3.15.

❼ Let LabAsm(α) = in. Then α ∈ Asms, so Asms defends α, i.e. for all closed

sets of assumptions Asms1 attacking α there exists some β ∈ Asms1 such that

Asms attacks β. Thus, β ∈ Asms+ and consequently LabAsm(β) = out.

Therefore, for each closed set of assumptions Asms1 attacking α there exists

some β ∈ Asms1 such that LabAsm(β) = out.

❼ Let LabAsm(α) = out. Then α ∈ Asms+, so Asms attacks α. Since Asms =

in(LabAsm) and since Asms is a closed set of assumptions, there exists a

closed set of assumptions Asms1 attacking α such that for all β ∈ Asms1,

LabAsm(β) = in. Furthermore, since Asms is a closed set of assumptions, for

all δ supported by Asms it holds that δ ∈ Asms. Since α ∈ Asms+ and since

Asms∩Asms+ = ∅, it follows that α /∈ Asms and therefore α is not supported

by Asms. Thus there exists no set of assumptions Asms2 supporting α such

that for all γ ∈ Asms2, LabAsm(γ) = in.

❼ Let LabAsm(α) = undec. Then α /∈ Asms and α /∈ Asms+, so α is not

attacked and not defended by Asms. Since α is not attacked by Asms, for

each closed set of assumptions Asms1 attacking α there exists some β ∈ Asms1

such that β /∈ Asms, and thus LabAsm(β) 6= in. Furthermore, since Asms is a

closed set of assumptions, it follows from the same reasoning as in the previous

item that there exists no set of assumptions Asms2 supporting α such that for

all γ ∈ Asms2, LabAsm(γ) = in.

2. We first prove that in(LabAsm) is an admissible assumption extension.

❼ in(LabAsm) is closed: Assume in(LabAsm) is not closed. Then There exists

α /∈ in(LabAsm) such that in(LabAsm) supports α. Thus, LabAsm(α) = out

or LabAsm(α) = undec. Contradiction since in either case there exists no set

of assumptions Asms1 supporting α such that for all γ ∈ Asms1, LabAsm(γ) =

in.
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❼ in(LabAsm) is conflict-free: Assume in(LabAsm) is not conflict-free. Then

in(LabAsm) attacks some α ∈ in(LabAsm). By Definition 3.15, for each closed

set of assumptions Asms1 attacking α there exists some β ∈ Asms1 such that

LabAsm(β) = out. Since in(LabAsm) is a closed set of assumptions, there

exists some β ∈ in(LabAsm) such that LabAsm(β) = out. Contradiction.

❼ in(LabAsm) defends all α ∈ in(LabAsm): Let α ∈ in(LabAsm). Then by Def-

inition 3.15, for each closed set of assumptions Asms1 attacking α there exists

some β ∈ Asms1 such that LabAsm(β) = out. Furthermore, for each such

β there exists a closed set of assumptions Asms2 attacking β such that for all

γ ∈ Asms2, LabAsm(γ) = in so Asms2 ⊆ in(LabAsm). Hence, in(LabAsm)

attacks all closed sets of assumptions attacking α.

Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) = undec(LabAsm) as in the

proof of Theorem 3.1.

3.5.2 Complete Semantics

We recall the definition of complete assumption extensions for possibly non-flat ABA

frameworks.

A set of assumptions Asms ⊆ A is a complete assumption extension if and

only if Asms is closed, conflict-free, and consists of all assumptions it defends.

For flat ABA frameworks, complete assumption labellings are defined as admissible

assumption labellings satisfying an additional condition. Analogously, we define complete

assumption labellings of possibly non-flat ABA frameworks.

Definition 3.16 (Complete Assumption Labelling in Non-Flat ABA). Let LabAsm be an

assumption labelling. LabAsm is a complete assumption labelling if and only if LabAsm

is an admissible assumption labelling and for each assumption α ∈ A it holds that:

❼ if LabAsm(α) = undec, then there exists a closed set of assumptions Asms3 at-

tacking α such that for all δ ∈ Asms3, LabAsm(δ) 6= out.

Analogous to the definition of admissible assumption labellings of possibly non-flat

ABA frameworks, the additional condition of complete assumption labellings only takes

into account attacking sets of assumptions that are closed. Without this restriction, the

definition would yield different assumption labellings.

Observation 3.35. Let LabAsm be an assumption labelling of a flat ABA framework.

Then LabAsm is a complete assumption labelling according to Definition 3.3 if and only

if it is a complete assumption labelling according to Definition 3.16.

As intended, complete assumption labellings and extensions of possibly non-flat ABA

frameworks are in one-to-one correspondence.
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Theorem 3.36.

1. Let Asms be a complete assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is

a complete assumption labelling.

2. Let LabAsm be a complete assumption labelling. Then Asms = in(LabAsm) is a

complete assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪

Asms+) = undec(LabAsm).

Proof.

1. Since Asms is a complete assumption extension it is by definition also an admissi-

ble assumption extension [BDKT97]. By Theorem 3.34, LabAsm is an admissible

assumption labelling. It remains to prove that the additional condition of complete

assumption labellings is satisfied. Let LabAsm(α) = undec. Then α /∈ Asms

and α /∈ Asms+, so α is not attacked and not defended by Asms. Since α is

not defended by Asms, there exists a closed set of assumptions Asms1 attacking α

such that Asms1 is not attacked by Asms. Thus, for all γ ∈ Asms1 it holds that

γ /∈ Asms+. Consequently, LabAsm(γ) 6= out.

2. Since LabAsm is a complete assumption labelling it is by Definition 3.16 also an

admissible assumption labelling. Thus, by Theorem 3.34 Asms is an admissible

assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) =

undec(LabAsm). It remains to prove that all assumptions defended by Asms are

contained in Asms. Let α be defended by Asms and thus by in(LabAsm). Then

for each closed set of assumptions Asms1 attacking α, in(LabAsm) attacks Asms1.

Thus, for each such Asms1 there exists some β ∈ Asms1 which is attacked by

in(LabAsm), and therefore LabAsm(β) = out. Since this holds for each Asms1

attacking α, LabAsm(α) = in.

For flat ABA frameworks, we identified two equivalent variations to the definition of

complete assumption labellings. One of them used the converse of each condition in the

definition of a complete assumption labellings (see Lemma 3.3). Extending this alternative

definition of complete assumption labellings of flat ABA frameworks with an additional

condition ensuring that the set of in-labelled assumptions is closed and considering only

attacking sets of assumptions that are closed, makes it equivalent to the definition of

complete assumption labellings for possibly non-flat ABA frameworks.

Proposition 3.37. Let LabAsm be an assumption labelling. The following statements

are equivalent:

1. LabAsm is a complete assumption labelling.
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2. LabAsm is such that for each α ∈ A it holds that:

❼ if there exists a set of assumptions Asms supporting α such that for all β ∈

Asms, LabAsm(β) = in, then LabAsm(α) = in;

❼ if for each closed set of assumptions Asms attacking α there exists some β ∈

Asms such that LabAsm(β) = out, then LabAsm(α) = in;

❼ if there exists a closed set of assumptions Asms attacking α such that for all

β ∈ Asms, LabAsm(β) = in, then LabAsm(α) = out;

❼ if for each closed set of assumptions Asms1 attacking α there exists some β ∈

Asms1 such that LabAsm(β) 6= in, and there exists a closed set of assumptions

Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out, then

LabAsm(α) = undec.

Proof. First item implies second item:

❼ Let α be such that there exists a set of assumptions Asms supporting α such that

for all β ∈ Asms, LabAsm(β) = in. If LabAsm(α) = out or LabAsm(α) = undec,

then the second or third, respectively, condition of complete assumption labellings

is violated. Thus LabAsm(α) = in since it satisfies the first condition.

❼ Let α be such that for each closed set of assumptions Asms attacking α there

exists some β ∈ Asms such that LabAsm(β) = out. If LabAsm(α) = out or

LabAsm(α) = undec, then the second or third, respectively, condition of complete

assumption labellings is violated. Thus LabAsm(α) = in since it satisfies the first

condition.

❼ Let α be such that there exists a closed set of assumptions Asms attacking α such

that for all β ∈ Asms, LabAsm(β) = in. If LabAsm(α) = in or LabAsm(α) =

undec, then the first or third, respectively, condition of complete assumption la-

bellings is violated. Thus LabAsm(α) = out since it satisfies the second condition.

❼ Let α be such that for each closed set of assumptions Asms1 attacking α there

exists some β ∈ Asms1 such that LabAsm(β) 6= in, and there exists a closed set of

assumptions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6= out.

If LabAsm(α) = in or LabAsm(α) = out, then the first or second, respectively,

condition of complete assumption labellings is violated. Thus LabAsm(α) = undec

since it satisfies the third condition.

Second item implies first item.

❼ Let LabAsm(α) = in. Then for each closed set of assumptions Asms1 attacking α

there exists some β ∈ Asms1 such that LabAsm(β) 6= in. Furthermore, it either

holds that there exists a closed set of assumptions Asms2 attacking α such that for all
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γ ∈ Asms2, LabAsm(γ) = in, (contradiction) or that for each closed set of assump-

tions Asms3 attacking α there exists some δ ∈ Asms3 such that LabAsm(δ) = out.

Thus, the second part of the or-statement applies.

❼ Let LabAsm(α) = out. Then there exists no set of assumptions Asms1 supporting

α such that for all β ∈ Asms1, LabAsm(β) = in. Furthermore, there exists a closed

set of assumptions Asms2 attacking α such that for all γ ∈ Asms2, LabAsm(γ) 6=

out. Furthermore, it either holds that there exists a closed set of assumptions

Asms3 attacking α such that for all δ ∈ Asms3, LabAsm(δ) = in, or that for each

closed set of assumptions Asms4 attacking α there exists some ǫ ∈ Asms4 such that

LabAsm(ǫ) = out (contradiction). Thus, the first part of the or-statement applies.

❼ Let LabAsm(α) = undec. Then there exists no set of assumptions Asms1 sup-

porting α such that for all β ∈ Asms1, LabAsm(β) = in. Furthermore, there

exists a closed set of assumptions Asms2 attacking α such that for all γ ∈ Asms2,

LabAsm(γ) 6= out. Furthermore, for each closed set of assumptions Asms3 attack-

ing α there exists some δ ∈ Asms3 such that LabAsm(δ) 6= in.

Note that reversing the conditions in Definition 3.16 does not result in an equivalent

definition of complete assumption labellings for possibly non-flat ABA frameworks. For

example, the assumption labelling LabAsm = {(ρ,undec), (ψ, in), (χ, in)} of ABA15 (see

Example 3.26) satisfies the converse of each condition in Definition 3.16: for both ψ and χ

the converse of the first condition applies and is satisfied, and for ρ none of the converses

of the three conditions applies, so ρ trivially satisfies the converse conditions. However,

LabAsm is not a complete assumption labelling of ABA15 since ABA15 has no complete

assumption labellings.

The other equivalent definition of complete assumption labellings for flat ABA frame-

works we identified was the “if and only if” version of the first and second conditions of a

complete assumption labelling of flat ABA frameworks (see Lemma 3.3). The analogue in

terms of complete assumption labellings of possibly non-flat ABA frameworks does how-

ever not result in an equivalent definition. That is, an assumption labelling satisfying the

following conditions

❼ LabAsm(α) = in if and only if for each closed set of assumptions Asms attacking α

there exists some β ∈ Asms such that LabAsm(β) = out;

❼ LabAsm(α) = out if and only if there exists a closed set of assumptions Asms1

attacking α such that for all β ∈ Asms1, LabAsm(β) = in, and there exists no set

of assumptions Asms2 supporting α such that for all γ ∈ Asms2, LabAsm(γ) = in;

is not generally a complete assumption labelling of a possibly non-flat ABA framework,

since for instance LabAsm = {(ρ,undec), (ψ, in), (χ, in)} of ABA15 (see Example 3.26)

satisfies both conditions, but LabAsm is not a complete assumption labelling of ABA15.
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3.5.3 Grounded, Preferred, Ideal, Semi-Stable, and Stable Semantics

Originally, the grounded, preferred, and stable assumption extensions of possibly non-flat

ABA frameworks were defined as specific admissible rather than complete assumption

extensions. For flat ABA frameworks these two definitions are equivalent, but, as we will

show in this section, for non-flat ABA frameworks they are not.

We first recall the definitions of grounded, preferred, and stable assumption extensions

for possibly non-flat ABA frameworks [BDKT97]. A set of assumptions Asms ⊆ A is

❼ a grounded assumption extension if and only if Asms is the intersection of all com-

plete assumption extensions;1

❼ a preferred assumption extension if and only if Asms is a maximal (w.r.t. ⊆) admis-

sible assumption extension;

❼ a stable assumption extension if and only if Asms is closed, conflict-free, and for all

α ∈ A it holds that if α /∈ Asms, then Asms attacks α.

Since ideal and semi-stable semantics have only been defined for flat ABA frameworks

so far, we will investigate these semantics after dealing with the grounded, preferred, and

stable semantics.

Grounded Semantics

The following example illustrates that for possibly non-flat ABA frameworks, the mini-

mally complete assumption extensions do not generally coincide with the grounded as-

sumption extensions.

Example 3.27. Let ABA16 be the following non-flat ABA framework:

L = {ρ, ψ, χ, ω, x},

R = {x← ρ; x← ψ; χ←},

A = {ρ, ψ, χ, ω},

ρ = ψ, ψ = ρ, χ = ω, ω = x.

ABA16 has two complete assumption extensions: Asms1 = {ρ, χ} and Asms2 = {ψ, χ}.

Asms1 and Asms2 are both minimally complete, but the grounded assumption extension

is Asms3 = {χ}.

In order to express the grounded semantics of possibly non-flat ABA frameworks in

terms of assumption labellings, the set of in-labelled assumptions has to be the intersection

of the sets of in-labelled assumptions of all complete assumption labellings.

Definition 3.17 (Grounded Assumption Labelling in Non-Flat ABA). Let LabAsm be

an assumption labelling. LabAsm is a grounded assumption labelling if and only if for all

α ∈ A it holds that:

1Note that Bondarenko et al. [BDKT97] use the term “well-founded” instead of “grounded”.
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❼ LabAsm(α) = in if and only if for all complete assumption labellings LabAsm′,

LabAsm′(α) = in;

❼ LabAsm(α) = out if and only if there exists a closed set of assumptions Asms

attacking α such that for all β ∈ Asms, LabAsm(β) = in.

The second condition ensures the one-to-one correspondence between grounded as-

sumption labellings and extensions of possibly non-flat ABA frameworks.

Theorem 3.38.

1. Let Asms be a grounded assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is

a grounded assumption labelling.

2. Let LabAsm be a grounded assumption labelling. Then Asms = in(LabAsm) is a

grounded assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪

Asms+) = undec(LabAsm).

Proof.

1. First note that since Asms is the intersection of all complete assumption labellings,

which are all conflict-free, it follows that Asms ∩ Asms+ = ∅ and thus each α ∈ A

is either contained in in(LabAsm), out(LabAsm), or undec(LabAsm), so LabAsm

is an assumption labelling. Furthermore, note that grounded assumption extensions

are always closed, even though this is not explicitly required in their definition.

Since the grounded assumption extension is a subset of every complete assumption

extension, any assumption α supported by the grounded assumption extension is

also supported by each complete assumption extension. Since complete assumption

extensions are closed, α is thus in each complete assumption extension and conse-

quently part of the grounded assumption extension. We prove that LabAsm satisfies

Definition 3.17.

❼ Left to right: Let LabAsm(α) = in. Then α ∈ Asms. Therefore, for all com-

plete assumption extensions Asms′, α ∈ Asms′. By Theorem 3.36, for each

Asms′ it holds that LabAsm′ with in(LabAsm′) = Asms′, out(LabAsm′) =

Asms′+, and undec(LabAsm′) = A\ (Asms′∪Asms′+) is a complete assump-

tion labelling and there are no other complete assumption labellings. Thus, for

all complete assumption labellings LabAsm′, LabAsm′(α) = in.

Right to left: Let α be such that for all complete assumption labellings LabAsm′,

LabAsm′(α) = in. Then by Theorem 3.36, for each LabAsm′ it holds that

Asms′ = in(LabAsm′) is a complete assumption extension and there are no

other complete assumption extensions. Thus, for all complete assumption ex-

tensions Asms′, α ∈ Asms′. Therefore, α ∈ Asms and thus LabAsm(α) = in.
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❼ Left to right: Let LabAsm(α) = out. Then α ∈ Asms+. Thus, α is attacked

by Asms and thus by a set of assumptions Asms1 such that for all β ∈ Asms1,

LabAsm(β) = in.

Right to left: Let α be such that there exists a set of assumptions Asms1 attack-

ing α such that for all β ∈ Asms1, LabAsm(β) = in. Then Asms1 ⊆ Asms, so

α is attacked by Asms. Therefore, α ∈ Asms+ and thus LabAsm(α) = out.

2. Since LabAsm is a grounded assumption labelling, it holds that for all α ∈ A:

LabAsm(α) = in if and only if for all complete assumption labellings LabAsm′,

LabAsm′(α) = in. By Theorem 3.36, for each LabAsm′ it holds that Asms′ =

in(LabAsm′) with Asms′+ = out(LabAsm′) and A \ (Asms′ ∪ Asms′+) =

undec(LabAsm′) is a complete assumption extension and there are no other com-

plete assumption extensions. Thus, for all α ∈ A: α ∈ Asms if and only if for all

complete assumption extensions Asms′, α ∈ Asms′. Therefore, Asms is the inter-

section of all complete assumption extensions.

Asms+ = {α ∈ A | Asms attacks α} = {α ∈ A | in(LabAsm) attacks α}

= {α ∈ A | α ∈ out(LabAsm)} = out(LabAsm)

A \ (Asms ∪ Asms+) = {α ∈ A | α /∈ in(LabAsm), α /∈ out(LabAsm)}

= {α ∈ A | α ∈ undec(LabAsm)} = undec(LabAsm)

Based on the correspondence between grounded assumption labellings and extensions

of possibly non-flat ABA frameworks and results of Bondarenko et al. [BDKT97], we prove

that for flat ABA frameworks Definition 3.17 is equivalent to the definition of grounded

assumption labellings for flat ABA frameworks.

Proposition 3.39. Let LabAsm be an assumption labelling of a flat ABA framework.

Then LabAsm is a grounded assumption labelling according to Definition 3.4 if and only

if it is a grounded assumption labelling according to Definition 3.17.

Proof.

❼ Right to left: Let LabAsm be a grounded assumption labelling according to Def-

inition 3.17. By Theorem 3.38 Asms = in(LabAsm) is a grounded assumption

extension of possibly non-flat ABA frameworks with Asms+ = out(LabAsm) and

A \ (Asms ∪ Asms+) = undec(LabAsm). By Theorem 6.2 in [BDKT97], for

flat ABA frameworks Asms is a minimal (w.r.t. ⊆) complete assumption extension,

and thus Asms is a grounded assumption extension as defined for flat ABA frame-

works. By Theorem 3.5, LabAsm is a grounded assumption labelling according to

Definition 3.4.

❼ Left to right: Let LabAsm be a grounded assumption labelling according to Def-

inition 3.4. By Theorem 3.5 Asms = in(LabAsm) is a grounded assumption ex-

tension as defined for flat ABA frameworks with Asms+ = out(LabAsm) and
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A\(Asms∪Asms+) = undec(LabAsm), i.e. Asms is a minimal (w.r.t. ⊆) complete

assumption extension. Let Asms′ be the intersection of all complete assumption ex-

tensions, i.e. a grounded assumption extension of possibly non-flat ABA frameworks.

Since the grounded extension of a flat ABA framework is unique, Asms is unique

and so is Asms′. Thus, by Theorem 6.2 in [BDKT97] Asms′ = Asms. Then by The-

orem 3.38 LabAsm is a grounded assumption labelling according to Definition 3.17.

Preferred Semantics

The non-flat ABA framework ABA15 from Example 3.26 illustrates that maximally com-

plete assumption extensions do not generally coincide with preferred assumption exten-

sions: ABA15 has no complete assumption extensions, but {ψ} is its preferred assumption

extension as it is maximally admissible. We thus define preferred assumption labellings

of possibly non-flat ABA frameworks as admissible, rather than complete, assumption

labellings with a maximal set of in-labelled assumptions.

Definition 3.18 (Preferred Assumption Labelling in Non-Flat ABA). Let LabAsm be an

assumption labelling. LabAsm is a preferred assumption labelling if and only if LabAsm

is an admissible assumption labelling and in(LabAsm) is maximal (w.r.t. ⊆) among all

admissible assumption labellings.

Since preferred assumption labellings of flat ABA frameworks can be equivalently de-

fined as admissible assumption labellings with a maximal set of in labelled assumptions

(see Proposition 3.7) and since for flat ABA frameworks Definition 3.15 coincides with Def-

inition 3.2 (see Observation 3.33), it follows that for flat ABA frameworks Definition 3.18

coincides with the definition of preferred assumption labellings of flat ABA frameworks.

Proposition 3.40. Let LabAsm be an assumption labelling of a flat ABA framework.

Then LabAsm is a preferred assumption labelling according to Definition 3.4 if and only

if it is a preferred assumption labelling according to Definition 3.18.

As desired, preferred assumption labellings correctly express the preferred semantics

of possibly non-flat ABA frameworks.

Theorem 3.41.

1. Let Asms be a preferred assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is

a preferred assumption labelling.

2. Let LabAsm be a preferred assumption labelling. Then Asms = in(LabAsm) is a

preferred assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪

Asms+) = undec(LabAsm).
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Proof. Analogous to the proof of Theorem 3.5, but using the definition of admissible

assumption extensions and labellings of possibly non-flat ABA frameworks instead of

complete assumption extensions and labellings of flat ABA frameworks, as well as Theo-

rem 3.34 instead of Theorem 3.4.

Stable Semantics

Even though stable assumption extensions of possibly non-flat ABA frameworks are not

defined as specific admissible or complete assumption extensions, it was shown by Bon-

darenko et al. [BDKT97] that stable assumption extensions are always complete assump-

tion extensions. Therefore, we define stable assumption labellings of possibly non-flat

ABA frameworks in the same way as for flat ABA frameworks, i.e. as complete assump-

tion labellings that label no assumption as undec.

Definition 3.19 (Stable Assumption Labelling in Non-Flat ABA). Let LabAsm be an

assumption labelling. LabAsm is a stable assumption labelling if and only if LabAsm is a

complete assumption labelling and undec(LabAsm) = ∅.

From Observation 3.35 and Definition 3.19 it follows straightaway that for flat ABA

frameworks Definition 3.19 is equivalent to the definition of stable assumption labellings

of flat ABA frameworks.

Observation 3.42. Let LabAsm be an assumption labelling of a flat ABA framework.

Then LabAsm is a stable assumption labelling according to Definition 3.4 if and only if it

is a stable assumption labelling according to Definition 3.19.

Furthermore, there is a one-to-one correspondence between stable assumption la-

bellings and extensions of possibly non-flat ABA frameworks.

Theorem 3.43.

1. Let Asms be a stable assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is

a stable assumption labelling.

2. Let LabAsm be a stable assumption labelling. Then Asms = in(LabAsm) is a stable

assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) =

undec(LabAsm).

Proof.

1. By Theorem 5.5 in [BDKT97], Asms is a complete assumption extension. By The-

orem 3.36, LabAsm is a complete assumption labelling. Furthermore, since for all

α ∈ A it holds that if α /∈ Asms, then Asms attacks α, it follows that Asms ∪

Asms+ = A. Then in(LabAsm) ∪ out(LabAsm) = A, so undec(LabAsm) = ∅.

Thus, LabAsm is a stable assumption labelling.
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2. By definition LabAsm is a complete assumption labelling. By Theorem 3.36, Asms

is a complete assumption extension. Since undec(LabAsm) = ∅ it follows that

for all α ∈ A, α ∈ in(LabAsm) of α ∈ out(LabAsm). And thus α ∈ Asms or

α ∈ Asms+. Thus, if α /∈ Asms, then Asms attacks α.

Ideal Semantics

Since the ideal semantics has so far only been defined in the context of flat ABA frame-

works, we define ideal assumption extensions of possibly non-flat ABA frameworks. We

follow the spirit of the original definition for flat ABA frameworks, where ideal assumption

extensions are defined as specific admissible rather than complete assumption extensions

[DMT07].

Definition 3.20 (Ideal Assumption Extension in Non-Flat ABA). A set of assumptions

Asms ⊆ A is an ideal assumption extension if and only if Asms is a maximal (w.r.t. ⊆)

admissible assumption extension satisfying that for all preferred assumption extensions

Asms′, Asms ⊆ Asms′.

Just as for preferred assumption extensions, ideal assumption extensions of possibly

non-flat ABA frameworks do not generally coincide with maximally complete assumption

extensions that are a subset of each preferred assumption extension. We thus define ideal

assumption labellings of possibly non-flat ABA frameworks in terms of admissible rather

than complete assumption labellings.

Definition 3.21 (Ideal Assumption Labelling in Non-Flat ABA). Let LabAsm be an

assumption labelling. LabAsm is an ideal assumption labelling if and only if LabAsm

is an admissible assumption labelling and in(LabAsm) is maximal (w.r.t. ⊆) among all

admissible assumption labellings satisfying that for all preferred assumption labellings

LabAsm′, in(LabAsm) ⊆ in(LabAsm′).

From Proposition 3.7 and Observation 3.33 it follows that for flat ABA frameworks

Definition 3.21 coincides with the definition of ideal assumption labellings of flat ABA

frameworks.

Proposition 3.44. Let LabAsm be an assumption labelling of a flat ABA framework.

Then LabAsm is an ideal assumption labelling according to Definition 3.4 if and only if it

is an ideal assumption labelling according to Definition 3.21.

Furthermore, as desired there is a one-to-one correspondence between ideal assumption

extensions and labellings of possibly non-flat ABA frameworks.
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Theorem 3.45.

1. Let Asms be an ideal assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is

an ideal assumption labelling.

2. Let LabAsm be an ideal assumption labelling. Then Asms = in(LabAsm) is an ideal

assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪ Asms+) =

undec(LabAsm).

Proof. Analogous to the proof of Theorem 3.5, but using the definition of admissible as-

sumption extensions and labellings of possibly non-flat ABA frameworks instead of com-

plete assumption extensions of flat ABA frameworks, as well as the definition of preferred

assumption extensions and labellings of possibly non-flat ABA frameworks instead of pre-

ferred assumption extensions and labellings of flat ABA frameworks, and Theorem 3.34

instead of Theorem 3.4.

Semi-Stable Semantics

Just like the ideal semantics, the semi-stable semantics has so far only been defined for

flat ABA frameworks. Semi-stable assumption extensions are originally defined as specific

complete assumption extensions, but for flat ABA frameworks they can be equivalently

defined as specific admissible assumption extensions. For non-flat ABA frameworks this

is not the case.

Example 3.28. Let ABA17 be the following non-flat ABA framework:

L = {ρ, ψ, χ, ω, p},

R = {p← ρ; p← χ; p← ψ; ψ ← ρ, χ},

A = {ρ, ψ, χ, ω},

ρ = ψ, ψ = p, χ = ψ, ω = χ.

The only complete assumption extension of ABA17 is Asms1 = {}, and thus Asms1 ∪

Asms+1 is maximal among all complete assumption extensions. In contrast, there are three

admissible assumption extensions: Asms1, Asms2 = {ρ}, and Asms3 = {χ}. Among

these, Asms3 ∪Asms
+
3 is maximal.

One of the defining properties of semi-stable assumption extensions of flat ABA frame-

works is that they are preferred assumption extensions [CSAD15a]. To retain this prop-

erty, we define semi-stable assumption extensions and labellings of possibly non-flat ABA

frameworks in terms of admissible rather than complete assumption extensions and la-

bellings.

Definition 3.22 (Semi-Stable Assumption Extension in Non-Flat ABA). A set of as-

sumptions Asms ⊆ A is a semi-stable assumption extension if and only if Asms is an

admissible assumption extension and for all admissible assumption extensions Asms′,

Asms ∪Asms+ 6⊂ Asms′ ∪Asms′+.
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Definition 3.23 (Semi-Stable Assumption Labelling in Non-Flat ABA). Let LabAsm

be an assumption labelling. LabAsm is a semi-stable assumption labelling if and only if

LabAsm is an admissible assumption labelling and undec(LabAsm) is minimal (w.r.t. ⊆)

among all admissible assumption labellings.

By Proposition 3.7, for flat ABA frameworks Definition 3.23 coincides with the defini-

tion of semi-stable assumption labellings of flat ABA frameworks.

Proposition 3.46. Let LabAsm be an assumption labelling of a flat ABA framework.

Then LabAsm is a semi-stable assumption labelling according to Definition 3.4 if and

only if it is a semi-stable assumption labelling according to Definition 3.23.

As desired, there is a one-to-one correspondence between semi-stable assumption ex-

tensions and labellings of possibly non-flat ABA frameworks.

Theorem 3.47.

1. Let Asms be a semi-stable assumption extension. Then LabAsm with in(LabAsm) =

Asms, out(LabAsm) = Asms+ and undec(LabAsm) = A \ (Asms ∪ Asms+) is

a semi-stable assumption labelling.

2. Let LabAsm be a semi-stable assumption labelling. Then Asms = in(LabAsm) is a

semi-stable assumption extension with Asms+ = out(LabAsm) and A \ (Asms ∪

Asms+) = undec(LabAsm).

Proof. Analogous to the proof of Theorem 3.5, but using the definition of admissible as-

sumption extensions and labellings of possibly non-flat ABA frameworks instead of com-

plete assumption extensions and labellings of flat ABA frameworks, and Theorem 3.34

instead of Theorem 3.4.

Finally, we prove that semi-stable assumption labellings of possibly non-flat ABA

frameworks satisfy the property we desired, namely that they are preferred assumption

labellings.

Proposition 3.48. Let LabAsm be a semi-stable assumption labelling. Then LabAsm is

a preferred assumption labelling.

Proof. Since undec(LabAsm) is minimal it follows that in(LabAsm) ∪ out(LabAsm) is

maximal among all admissible assumption labellings. Assume by contradiction that there

exists an admissible assumption labelling LabAsm′ such that in(LabAsm) ⊂ in(LabAsm′).

Then for all α ∈ A such that in(LabAsm) attacks α, in(LabAsm′) also attacks α.

Thus, out(LabAsm) ⊆ out(LabAsm′). It follows that in(LabAsm) ∪ out(LabAsm) ⊂

in(LabAsm′) ∪ out(LabAsm′). Contradiction.
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3.6 Related Work

As discussed in more detail in Section 3.4, assumption labellings are closely related to

argument labellings for AA frameworks [CG09]. Both assumption and argument labellings

use three different labels, one indicating acceptance (in and in), one indicating rejection

(out and out), and one indicating neither acceptance nor rejection (undec and undec).

Using the semantics of AA frameworks in terms of argument labellings has proven useful

for example for the computation of semantics [LLD13, CGVZ14, CVG15, CDG+15], for

studying decomposability of semantics [BBC+14], for judgement aggregation [CP11], as

well as for teaching the semantics of AA frameworks to novices [DS14, SD16].

In addition to AA frameworks – and now ABA frameworks – labellings have also

been introduced for argumentation frameworks with necessities (AFNs). Nouioua [Nou13]

shows how the semantics of AFNs can be defined in terms of labellings and how to apply

the new definitions for the computation of semantics of AFNs.

Besides argument labellings for AA frameworks, which correspond to the semantics

of AA frameworks in terms of argument extensions, new semantics have been defined

in terms of labellings. Thimm and Kern-Isberner [TKI14] introduce stratified labellings,

which rank arguments according to their controversiality and which are determined by

combining various (traditional) argument labellings. Baroni et al. [BGL15] review some

further labelling semantics defined in the literature, focussing on different interpretations

and meanings of the undecided label.

We will see in Chapter 4, that assumption and argument labellings are furthermore

related 3-valued interpretations of logic programs (see Section 2.3 for the definition). Sim-

ilarly to argument and assumption labellings, 3-valued interpretation assign one of three

“labels” to each literal: one indicating acceptance (T), one indicating rejection (F), and

one indicating neither acceptance nor rejection (U).

3.7 Summary

In this chapter, we defined and studied assumption labellings of flat as well as possibly non-

flat ABA frameworks for the admissible, grounded, complete, preferred, ideal, semi-stable,

and stable semantics and proved that there is a one-to-one correspondence with the respec-

tive assumption extensions. We also investigated the relationship of assumption labellings

of flat ABA frameworks and argument labellings of their corresponding AA frameworks,

and found that grounded, complete, preferred, ideal, and stable assumption and argument

labellings are in a one-to-one correspondence, whereas semi-stable assumption and argu-

ment labellings do not generally correspond. Furthermore, admissible assumption and

argument labellings are in a one-to-many correspondence.

In the next chapters, we use assumption labellings to investigate the correspondence

between the semantics of logic programs and ABA frameworks representing the same

knowledge. Assumption labellings lend themselves for the formulation of such correspon-
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dence results since the three labels in, out, and undec of assumptions can be seen as

duals of the three truth values T, F, and U in the semantics of logic programs.
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Chapter 4

Logic Programs as ABA and AA

Frameworks
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4.1 Introduction

One of the main contributions of this thesis is to use ideas from ABA and AA for Answer

Set Programming (ASP). In order to apply methods defined for ABA frameworks to

logic programs, a problem encoded as a logic program must first be represented as an

ABA framework. In this chapter, we recall how the translated ABA framework can be

obtained from a logic program, which can then be used to instantiate the translated AA

framework. We then extend existing correspondence results between the semantics of logic

programs, translated ABA frameworks, and translated AA frameworks by showing a more

fine-grained correspondence and dealing with logic programs that may comprise explicit

negation in addition to NAF. This is aided by the novel definitions of assumption labellings

from Chapter 3.

The chapter is organised as follows. In Section 4.2, we recall how to obtain a translated

ABA framework from a logic program. In Section 4.3, we review existing results on the

correspondence between the semantics of a logic program and the assumption extensions of

the translated ABA framework, and extend and refine these results in terms of assumption

labellings of the translated ABA framework. In Section 4.4, we review and extend existing

results on the correspondence between the semantics of a logic program and its translated

AA framework, using the correspondence results between assumption labellings of an ABA

framework and argument labellings of its corresponding AA framework from Chapter 3

in combination with the results from Section 4.3. In Section 4.5, we discuss related work

and in Section 4.6, we summarise the contributions of this chapter.

4.2 Existing Translations

Even though the semantics of a logic program and an ABA framework are determined in

completely different ways, the two formalisms share structural features. Both represent

knowledge in terms of inference rules comprising defeasible elements, i.e. elements that are

true by default, as long as no contrary information can be proven to hold: NAF literals in

logic programs and assumptions in ABA frameworks. Every assumption α has a contrary

α = x, where x may also be the contrary of other assumptions. A NAF literal not a has a

complement a, but in contrast to contraries in ABA, a is the complement of only one NAF

literal (namely of not a). Therefore, a logic program can be seen as a special instance of

an ABA framework, which means that every logic program can be encoded in an ABA

framework.

We use the approach of Bondarenko et al. [BDKT97] for translating a logic program

into an ABA framework, where the clauses of a logic program form the set of ABA rules

and NAF literals are used as assumptions in ABA.

Definition 4.1 (Translated ABA Framework). Let P be a logic program. ABAP =

〈LP ,RP ,AP , ¯〉 is the translated ABA framework of P where:

❼ RP = P;
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❼ AP = NAFLitP ;

❼ for every not l ∈ AP : not l = l;

❼ LP = LitP ∪ NAFLitP .

Note that translated ABA frameworks are always flat since NAF literals do not occur

in the head of clauses of a logic program. Thus, every translated ABA framework has a

corresponding AA framework, which represents the same information as the underlying

logic program.

Definition 4.2 (Translated AA Framework). Let P be a logic program and let ABAP

be the translated ABA framework of P. The translated AA framework of P, denoted

AAP = 〈ArP , AttP〉, is the corresponding AA framework of ABAP .

4.3 Semantics of Logic Programs and ABA Frameworks

Since a problem encoded as a logic program can also be expressed in terms of the translated

ABA framework, we now investigate the relation between the semantics of logic programs

and their translated ABA frameworks.

4.3.1 Existing Results

In early work on ABA frameworks, various correspondence results between assumption

extensions and the semantics of logic programs without explicit negation were proven

[BTK93, BDKT97]. These correspondence results can be summarised as follows1.

Let P be a logic program with no explicitly negated atoms, ABAP the trans-

lated ABA framework of P, and Asms ⊆ AP .

1. Asms is a complete assumption extension if and only if P ∪ Asms is a

stationary expansion [Prz91a] of P.

2. Asms is a complete assumption extension if and only if P ∪ Asms is a

complete scenario [Dun91] of P.

3. Asms is a grounded assumption extension if and only if {k | Asms′ ⊢

k,Asms′ ⊆ Asms} is a well-founded model of P.

4. Asms is a preferred assumption extension if and only if P ∪ Asms is a

preferred extension [Dun91] of P.

5. Asms is a preferred assumption extension if and only if {k | Asms′ ⊢

k,Asms′ ⊆ Asms} is a 3-valued M-stable model2 of P.

1Note that these results use the notation of 3-valued models of a logic program as a single set, as
explained in Section 2.3.3.

2The original result is in terms of partial stable models of [SZ90], which were later called (3-valued)
M-stable models [Sac95].
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6. S ⊆ HBP is a stable model of P if and only if there exists a stable

assumption extension Asms and S = {a ∈ HBP | Asms
′ ⊢ a,Asms′ ⊆

Asms}.

Example 4.1. Let P2 be the logic program {r ← not r; q ← not p}. The translated

ABA framework ABAP2
has three assumptions: not p, not q, and not r. The grounded

extension of ABAP2
is Asms = {not p}. Then by the third point above, M = {q, not p}

is the well-founded model of P2.

Note that the three correspondence results regarding model-theoretic semantics of

logic programs (points 3., 5., and 6.) are stated in terms of the conclusions of arguments

constructable from an assumption extension, rather than in terms of the assumptions in

the assumption extension. In the following sections, we give direct correspondence results

between models of a logic program and assumptions of the translated ABA framework.

Furthermore, the results regarding model-theoretic semantics of logic programs only

show how a corresponding model can be derived from a given assumption extension. Even

though this can be used to reconstruct an assumption extension from a given model of a

logic program, it is less straightforward. We will provide an explicit mapping from models

of a logic program into assumption labellings of the translated ABA framework.

4.3.2 Translating between Assumption Labellings and 3-Valued Inter-

pretations

We will see in the following sections that when expressing the semantics of an ABA

framework in terms of assumption labellings, there is a straightforward correspondence

between atoms with truth values T, F, and U in a model of a logic program and assumptions

labelled in, out, and undec in a complete assumption labelling of the translated ABA

framework.

For this purpose, we first define a translations LabAsm2Mod from assumption labellings

into 3-valued interpretations and a translation Mod2LabAsm from 3-valued interpreta-

tions into assumption labellings. Throughout this section, and if not stated otherwise,

we assume as given a logic program P and its translated ABA framework ABAP =

〈LP ,RP ,AP , ¯〉.

Definition 4.3 (Mapping an Assumption Labelling into a 3-Valued Interpretation).

LabAsm2Mod maps an assumption labelling LabAsm of ABAP into a 3-valued interpreta-

tion 〈T ,F〉 of P such that:

❼ T =∼out(LabAsm);

❼ F =∼ in(LabAsm);

❼ U =∼undec(LabAsm).
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Instead of defining the interpretation of a logic program in terms of the conclusions

of arguments whose premises are labelled in, as in the previously reviewed existing works

(see points 3., 5., 6. in Section 4.3.1), we use a direct mapping from labels of assumptions

into truth values of literals.

We also define a mapping for the opposite direction, i.e. from 3-valued interpretations

into assumption labellings.

Definition 4.4 (Mapping a 3-Valued Interpretation into an Assumption Labelling).

Mod2LabAsm maps a 3-valued interpretation 〈T ,F〉 of P into an assumption labelling

LabAsm of ABAP such that:

❼ in(LabAsm) =∼F ;

❼ out(LabAsm) =∼T ;

❼ undec(LabAsm) =∼U .

It is easy to see that LabAsm2Mod and Mod2LabAsm are bijective functions and each

other’s inverses since

1) LabAsm2Mod(Mod2LabAsm(〈T ,F〉)) = 〈T ,F〉 and

2) Mod2LabAsm(LabAsm2Mod(LabAsm)) = LabAsm.

Example 4.2. Let LabAsm = {(not p,undec), (not q,out), (not r, in)} be an assump-

tion labelling (which is not a complete assumption labelling) of the translated ABA frame-

work ABAP2
from Example 4.1. LabAsm2Mod(LabAsm) yields the 3-valued interpretation

〈{q}, {r}〉 of P2. Furthermore, Mod2LabAsm(LabAsm2Mod(LabAsm)) = {(not p,undec),

(not q,out), (not r, in)} = LabAsm.

Combining LabAsm2Mod with the conditions of complete assumption labellings (see

Definitions 3.3 and 3.2), we can characterise the 3-valued interpretation obtained by

LabAsm2Mod in terms of the conclusions of arguments whose premises have certain la-

bels. For example, as stated in Definition 4.3, LabAsm2Mod defines the set T as consisting

of the corresponding literals of assumptions labelled out. According to the conditions of

complete assumption labellings, an assumption not l is labelled out if and only if some

argument attacking this assumption is such that all its premises are labelled in, where the

conclusion of the attacking argument is l. Thus, given a complete assumption labelling,

the set T consists of all classical literals l that are conclusions of arguments whose premises

are all labelled in. Similar considerations apply to F and U .

Proposition 4.1. Let LabAsm be a complete assumption labelling of ABAP . Then

LabAsm2Mod(LabAsm) is equivalent to 〈T ,F〉 with:

❼ T = {l ∈ LitP | ∃Asms ⊢ l : Asms ⊆ in(LabAsm)};

❼ F = {l ∈ LitP | ∀Asms ⊢ l : Asms ∩ out(LabAsm) 6= ∅};
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❼ U = {l ∈ LitP | ∃Asms ⊢ l : Asms ∩ out(LabAsm) = ∅, ∀Asms ⊢ l : Asms *

in(LabAsm)}.

Proof. Let T = {l ∈ LitP | ∃Asms ⊢ l : Asms ⊆ in(LabAsm)}. For every l ∈ T

it holds that since Asms ⊢ l attacks not l, by the third item of Theorem 3.3 it fol-

lows that not l ∈ out(LabAsm). Thus, T = {l ∈ LitP | not l ∈ out(LabAsm)} =∼

out(LabAsm). Using the same reasoning, we can show that F = {l ∈ LitP | ∀Asms ⊢

l : Asms ∩ out(LabAsm) 6= ∅} =∼ in(LabAsm) and U = {l ∈ LitP | ∃Asms ⊢ l :

Asms∩out(LabAsm) = ∅, ∀Asms ⊢ l : Asms * in(LabAsm)} =∼undec(LabAsm).

This characterisation refines the translation used in existing results (see Section 4.3.1),

where the 3-valued interpretation is given in terms of the conclusions of arguments whose

premises are all contained in the corresponding assumption extension.

Note that even though the mapping given in Proposition 4.1 may not be the same as

LabAsm2Mod if LabAsm is not a complete assumption labelling, the mapping is well-defined

for any assumption labelling as it ensures that every literal has exactly one truth value.

Example 4.3. Let LabAsm = {(not p,undec), (not q,out), (not r, in)} be the assump-

tion labelling of ABAP2
from Example 4.2, so LabAsm2Mod(LabAsm) = 〈{q}, {r}〉. In

contrast, the mapping from Proposition 4.1 yields the completely different 3-valued inter-

pretation 〈{r}, {p}〉.

4.3.3 Semantic Correspondence between Assumption Labellings and 3-

Valued Interpretations

Having defined mappings between 3-valued interpretations of a logic program and assump-

tion labellings of the translated ABA framework, we now prove that these translations

preserve the semantics. We start by proving that there is a one-to-one correspondence be-

tween 3-valued stable models and complete assumption labellings in terms of LabAsm2Mod

and Mod2LabAsm when considering logic programs without explicitly negated atoms.

Theorem 4.2. Let P be a logic program without explicitly negated atoms, ABAP the trans-

lated ABA framework of P, and LabAsm an assumption labelling of ABAP . If LabAsm

is a complete assumption labelling of ABAP , then 〈T ,F〉 = LabAsm2Mod(LabAsm) is a

3-valued stable model of P.

Proof.

❼ By Theorem 3.4: in(LabAsm) is a complete assumption extension.

❼ By Theorem 5.9 in [BDKT97]: P∪in(LabAsm) is a complete scenario of P as defined

by [Dun91].

❼ By Corollary 4.16(i) in [BLMM92]: E = P ∪ in(LabAsm) ∪ {¬not a | a ∈

HBP ,P∪ in(LabAsm) ⊢MP a} is a stationary expansion of P as defined by [Prz91a].
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❼ By Theorem 3.1 in [Prz91a]: M = {a | E ⊢MP a} ∪ {not a | E ⊢MP not a} is a

partial stable model of P as defined in [Prz91b].

❼ {a | E ⊢MP a} is equivalent to {a | P ∪ in(LabAsm) ⊢MP a} and {not a |

E ⊢MP not a} to {not a | P ∪ in(LabAsm) ⊢MP not a}. Thus, M = {a |

P ∪ in(LabAsm) ⊢MP a} ∪ in(LabAsm).

❼ By Proposition 3.2 in [Prz91b]: M = 〈T ,F〉 with T = {a | P ∪ in(LabAsm) ⊢MP a}

and F =∼ in(LabAsm) is a 3-valued stable model of P.

❼ By definition of arguments and complete assumption labellings: T = {a | AP ⊢

a,AP ⊆ in(LabAsm)} =∼{not a | AP ⊢ a,AP ⊆ in(LabAsm)} =∼out(LabAsm).

❼ By definition of 3-valued model and Definition 4.1: U = HBP \ (T ∪ F) = HBP \ (∼

out(LabAsm) ∪ ∼ in(LabAsm)) =∼AP \ ∼ (out(LabAsm) ∪ in(LabAsm)) =∼

undec(LabAsm).

Theorem 4.3. Let P be a logic program without explicitly negated atoms, ABAP the

translated ABA framework of P, and 〈T ,F〉 a 3-valued interpretation of P. If 〈T ,F〉 is a

3-valued stable model of P, then LabAsm = Mod2LabAsm(〈T ,F〉) is a complete assumption

labelling of ABAP .

Proof.

❼ By definition of 3-valued stable model: M = T ∪ ∼F is a partial stable model of P

as defined in [Prz91b].

❼ By Theorem 3.1 in [Prz91a] E = P ∪ {not a | not a ∈ M} ∪ {¬not a | a ∈ M} is a

stationary expansion of P.

❼ By Corollary 4.16(ii) in [BLMM92]: P ∪ (E∩ ∼HBP) is a complete scenario of P.

❼ By Theorem 5.9 in [BDKT97]: E∩ ∼HBP is a complete assumption extension.

❼ This can be simplified to {not a | not a ∈ M} is a complete assumption extension,

and further to ∼F is a complete assumption extension.

❼ By Theorem 3.4: in(LabAsm) =∼F .

❼ By Theorem 3.4: out(LabAsm) = {not a | AP ⊢ a,AP ⊆∼F} = {not a | P∪ ∼

F ⊢MP a} = {not a | P ∪ {not b | not b ∈M} ⊢MP a} = {not a | a ∈ T } =∼T .

❼ By Theorem 3.4: undec(LabAsm) = AP \ (in(LabAsm) ∪ out(LabAsm)) =∼

HBP \ (∼F ∪ ∼T )=∼U .
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Example 4.4. The only 3-valued stable model of P2 (see Example 4.1) is 〈{q}, {p}〉, so

U = {r}. Applying Mod2LabAsm yields the only complete assumption labelling of ABAP2
,

namely {(not p, in), (not q,out), (not r,undec)}. Conversely, applying LabAsm2Mod to

this complete assumption labelling yields the 3-valued stable model.

Since LabAsm2Mod and Mod2LabAsm are each other’s inverses, Theorems 4.2 and 4.3

can be combined to yield the following results.

Corollary 4.4. Let P be a logic program without explicitly negated atoms, ABAP the

translated ABA framework of P, and LabAsm an assumption labelling of ABAP . LabAsm

is a complete assumption labelling of ABAP if and only if 〈T ,F〉 = LabAsm2Mod(LabAsm)

is a 3-valued stable model of P.

Corollary 4.5. Let P be a logic program without explicitly negated atoms, ABAP the

translated ABA framework of P, and 〈T ,F〉 a 3-valued interpretation of P. 〈T ,F〉 is a

3-valued stable model of P if and only if LabAsm = Mod2LabAsm(〈T ,F〉) is a complete

assumption labelling of ABAP .

For logic programs that may comprise explicitly negated atoms, the correspondence

between 3-valued stable models and complete assumption labellings is not in general one-

to-one. That is, every 3-valued stable model corresponds to a complete assumption la-

belling of the translated ABA framework, but not vice versa. More precisely, 3-valued

stable models correspond to complete assumption labellings where the set of out-labelled

assumptions does not comprise assumptions of the form not a and not ¬a (this follows

directly from Corollaries 4.4 and 4.5 and the definition of 3-valued stable models of logic

programs with explicitly negated atoms as reviewed in Section 2.3.4).

Corollary 4.6. Let LabAsm be an assumption labelling of ABAP . LabAsm is a complete

assumption labelling of ABAP such that

∀a ∈ HBP : not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm)

if and only if 〈T ,F〉 = LabAsm2Mod(LabAsm) is a 3-valued stable model of P.

Corollary 4.7. Let 〈T ,F〉 be a 3-valued interpretation of P. 〈T ,F〉 is a 3-valued stable

model of P if and only if LabAsm = Mod2LabAsm(〈T ,F〉) is a complete assumption la-

belling of ABAP such that ∀a ∈ HBP : not a /∈ out(LabAsm)∨not ¬a /∈ out(LabAsm).

Example 4.5. Let P3 be the following logic program:

{ p← not q;

¬p← not q;

q ← not p }

The translated ABA framework ABAP3
has three complete assumption labellings:
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❼ LabAsm1 = {(not p,undec), (not ¬p,undec), (not q,undec), (not ¬q, in)},

❼ LabAsm2 = {(not p, in), (not ¬p, in), (not q,out), (not ¬q, in)}, and

❼ LabAsm3 = {(not p,out), (not ¬p,out), (not q, in), (not ¬q, in)}.

The translated logic program P ′
3 has three 3-valued stable models: 〈{}, {q′}〉, 〈{q}, {p, p′, q′}〉,

and 〈{p, p′}, {q, q′}〉. In contrast, P3 has only two 3-valued stable models, namely 〈{}, {¬q}〉

and 〈{q}, {p,¬p,¬q}〉 since the corresponding model 〈{p,¬p}, {q,¬q}〉 of 〈{p, p′}, {q, q′}〉

comprises p and ¬p in T . As stated in the two corollaries, only LabAsm1 and LabAsm2

correspond to the 3-valued stable models of P3, since in LabAsm3 both not p and not ¬p

are labelled out.

Based on the correspondence results between 3-valued stable models and complete as-

sumption labellings, we move on to prove correspondence between well-founded, 3-valued

M-stable, ideal, 3-valued L-stable, and stable models and grounded, preferred, ideal, semi-

stable and stable assumption labellings, respectively. The proof requires the following

lemma (and corollary), stating that if the set of assumptions labelled in by some complete

assumption labelling is a subset of the set of assumptions labelled in by some other com-

plete assumption labelling, then the set of assumption labelled out by the former is also

a subset of the set of assumptions labelled out by the latter.

Lemma 4.8. Let 〈L,R,A, ¯〉 be an ABA framework and let LabAsm1 and LabAsm2 be

complete assumption labellings of 〈L,R,A, ¯〉. Then in(LabAsm1) ⊆ in(LabAsm2) if and

only if out(LabAsm1) ⊆ out(LabAsm2).

Proof. Left to right: Assume that in(LabAsm1) ⊆ in(LabAsm2). Let α ∈ out(LabAsm1).

Then, by the definition of a complete assumption labelling (Definition 3.3) there ex-

ists an ABA argument Asms ⊢ α with Asms ⊆ in(LabAsm1). Since in(LabAsm1) ⊆

in(LabAsm2) it follows that Asms ⊆ in(LabAsm2). So by Theorem 3.3 (point 3, item 2),

α ∈ out(LabAsm2).

Right to left: Assume that out(LabAsm1) ⊆ out(LabAsm2). Let α ∈ in(LabAsm1).

Then, by the definition of a complete assumption labelling (Definition 3.3) it holds that

each ABA argument Asms ⊢ α has Asms∩out(LabAsm1) 6= ∅. Since out(LabAsm1) ⊆

out(LabAsm2) it follows that Asms ∩ out(LabAsm2) 6= ∅. So by Theorem 3.3 (point 3,

item 1), α ∈ in(LabAsm2).

Since in(LabAsm1) ⊂ in(LabAsm2) if and only if in(LabAsm1) ⊆ in(LabAsm2) and

in(LabAsm2) * in(LabAsm1), the next corollary follows straightaway from Lemma 4.8.

Corollary 4.9. Let 〈L,R,A, ¯〉 be an ABA framework and let LabAsm1 and LabAsm2 be

complete assumption labellings of 〈L,R,A, ¯〉. It holds that in(LabAsm1) ⊂ in(LabAsm2)

if and only if out(LabAsm1) ⊂ out(LabAsm2).

Using these results, we now prove the correspondence of the other semantics of a logic

program and its translated ABA framework in terms of LabAsm2Mod and Mod2LabAsm. We

straightaway consider logic programs that may comprise explicitly negated atoms.
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Theorem 4.10. Let LabAsm be an assumption labelling of ABAP . LabAsm is a grounded

/ preferred / ideal / semi-stable / stable assumption labelling of ABAP such that

∀a ∈ HBP : not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm)

if and only if 〈T ,F〉 = LabAsm2Mod(LabAsm) is a well-founded / 3-valued M-stable / ideal

/ 3-valued L-stable / (2-valued) stable model of P.

Proof.

❼ Grounded and well-founded:

Left to right: If LabAsm is a grounded assumption labelling such that ∀a ∈ HBP :

not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm), then in(LabAsm) is minimal

among all complete assumption labellings. By Corollary 4.9, out(LabAsm) is mini-

mal among all complete assumption labellings. Since by Corollary 3.6 the grounded

assumption labelling is unique, in(LabAsm) ∪ out(LabAsm) is minimal among all

complete assumption labellings. By the Definition of LabAsm2Mod and Corollary 4.6

T ∪ F is minimal among all 3-valued stable models, or equivalently U is maximal

among all 3-valued stable models, so 〈T ,F〉 is a well-founded model.

Right to left: If 〈T ,F〉 is a well-founded stable model, then T ∪ F is minimal

among all 3-valued stable models, so by the Definition of Mod2LabAsm and Corol-

lary 4.6 in(LabAsm) ∪ out(LabAsm) is minimal among all complete assumption

labellings. If in(LabAsm) is not minimal among all complete assumption labellings,

i.e. there exists LabAsm1 with in(LabAsm1) ⊂ in(LabAsm), then by Corollary 4.8

out(LabAsm1) ⊂ out(LabAsm), so in(LabAsm) ∪ out(LabAsm) is not minimal

among all complete assumption labellings. Contradiction. Thus, in(LabAsm) is

minimal among all complete assumption labellings, so LabAsm is a grounded as-

sumption labelling. By Corollary 4.6, ∀a ∈ HBP : not a /∈ out(LabAsm)∨not ¬a /∈

out(LabAsm).

❼ Preferred and 3-valued M-stable:

If LabAsm is a preferred assumption labelling such that ∀a ∈ HBP : not a /∈

out(LabAsm) ∨ not ¬a /∈ out(LabAsm), then in(LabAsm) is maximal among all

complete assumption labellings. By Corollary 4.9, out(LabAsm) is maximal among

all complete assumption labellings. By the Definition of LabAsm2Mod and Corol-

lary 4.6 both T and F are maximal among all 3-valued stable models, so 〈T ,F〉 is

a 3-valued M-stable model.

Right to left: If 〈T ,F〉 is a 3-valued M-stable model, then T and F are maximal

among all 3-valued stable models, so by the Definition of Mod2LabAsm and Corol-

lary 4.6 in(LabAsm) and out(LabAsm) are maximal among all complete assump-

tion labellings. Thus, LabAsm is a preferred assumption labelling. By Corollary 4.6,

∀a ∈ HBP : not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm).
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❼ Ideal:

Left to right: If LabAsm is an ideal assumption labelling such that ∀a ∈ HBP :

not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm), then in(LabAsm) is maximal

among all complete assumption labellings satisfying that for all preferred assumption

labellings LabAsm′, in(LabAsm) ⊆ in(LabAsm′). By Corollary 4.9, out(LabAsm)

is maximal among all complete assumption labellings satisfying that for all preferred

assumption labellings LabAsm′, out(LabAsm) ⊆ out(LabAsm′). By the Defini-

tion of LabAsm2Mod, Corollary 4.6, and the second item of this proof, T is maximal

among all 3-valued stable models satisfying that for all 3-valued M-stable models

〈TM ,FM 〉, T ⊆ TM . Thus, 〈T ,F〉 is an ideal model.

Right to left: If 〈T ,F〉 is an ideal model, then T is maximal among all 3-valued

stable models satisfying that for all 3-valued M-stable models 〈TM ,FM 〉, T ⊆ TM .

By the Definition of Mod2LabAsm, Corollary 4.6, and the second item of this proof,

out(LabAsm) is maximal among all complete assumption labellings satisfying that

for all preferred assumption labellings LabAsm′, out(LabAsm) ⊆ out(LabAsm′),

and by Corollary 4.9,in(LabAsm) is maximal among all complete assumption la-

bellings satisfying that for all preferred assumption labellings LabAsm′, in(LabAsm)

⊆ in(LabAsm′). Thus, LabAsm is an ideal assumption labelling. By Corollary 4.6,

∀a ∈ HBP : not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm).

❼ Semi-stable and 3-valued L-stable:

Left to right: If LabAsm is a semi-stable assumption labelling such that ∀a ∈ HBP :

not a /∈ out(LabAsm)∨not ¬a /∈ out(LabAsm), then undec(LabAsm) is minimal

among all complete assumption labellings. By the Definition of LabAsm2Mod and

Corollary 4.6, U is minimal among all 3-valued stable models, so 〈T ,F〉 is a 3-

valued L-stable model.

Right to left: If 〈T ,F〉 is a 3-valued L-stable model, then ∄〈T1,F1〉 which is a

3-valued stable model such that U1 ⊂ U . By the Definition of Mod2LabAsm and

Corollary 4.6, there exists no LabAsm′ which is a complete assumption labelling

such that undec(LabAsm′) ⊂ undec(LabAsm). Thus, LabAsm is a semi-stable

assumption labelling. By Corollary 4.6, ∀a ∈ HBP : not a /∈ out(LabAsm) ∨

not ¬a /∈ out(LabAsm).

❼ Stable:

Left to right: If LabAsm is a stable assumption labelling such that ∀a ∈ HBP :

not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm), then undec(LabAsm) = ∅. By

the Definition of LabAsm2Mod and Corollary 4.6, U = ∅ and 〈T ,F〉 is a 3-valued

stable model, so 〈T ,F〉 is a (2-valued) stable model.

Right to left: If 〈T ,F〉 is a (2-valued) stable model, then U = ∅. By the Defi-

nition of Mod2LabAsm and Corollary 4.6, undec(LabAsm) = ∅ and LabAsm is a

complete assumption labelling. Thus, LabAsm is a stable assumption labelling and

by Corollary 4.6, ∀a ∈ HBP : not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm).
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Theorem 4.11. Let 〈T ,F〉 be a 3-valued interpretation of P. 〈T ,F〉 is a well-founded

/ 3-valued M-stable / ideal / 3-valued L-stable / (2-valued) stable model of P if and only

if LabAsm = Mod2LabAsm(〈T ,F〉) is a grounded / preferred / ideal / semi-stable / stable

assumption labelling of ABAP such that ∀a ∈ HBP : not a /∈ out(LabAsm) ∨ not ¬a /∈

out(LabAsm).

Proof. Follows from Theorem 4.10 and the fact that LabAsm2Mod and Mod2LabAsm are each

other’s inverses.

Example 4.6. Let P4 be the following logic program:

{ p← not q;

¬p← not q;

q ← not p;

r ← not r;

r ← not ¬p }

The translated ABA framework ABAP4
has three complete assumption labellings:

❼ LabAsm1 = {(not p,undec), (not ¬p,undec), (not q,undec), (not ¬q, in),

(not r,undec), (not ¬r, in)},

❼ LabAsm2 = {(not p,out), (not ¬p,out), (not q, in), (not ¬q, in),

(not r,undec), (not ¬r, in)}, and

❼ LabAsm3 = {(not p, in), (not ¬p, in), (not q,out), (not ¬q, in),

(not r,out), (not ¬r, in)}.

LabAsm1 is the grounded assumption labelling, LabAsm2 and LabAsm3 are preferred as-

sumption labellings, and only LabAsm3 is a stable assumption labelling. By Theorems 4.10

and 4.11, we deduce that the well-founded model of P4 is LabAsm2Mod(LabAsm1) =

〈{}, {¬q,¬r}〉, and the only 3-valued M-stable and only 2-valued stable model is

LabAsm2Mod(LabAsm3) = 〈{q, r}, {p,¬p,¬q,¬r}〉.

Similar to the results for 3-valued stable models and complete assumption labellings,

the condition ∀a ∈ HBP : not a /∈ out(LabAsm) ∨ not ¬a /∈ out(LabAsm) in Theo-

rems 4.10 and 4.11 can be neglected when dealing with a logic program without explicitly

negated atoms.

4.4 Semantics of Logic Programs and AA Frameworks

In this section, we review and extend semantic correspondence results between logic pro-

grams and their translated AA frameworks (as defined in Section 4.2).

110



4.4.1 Existing Results

In his seminal work on AA frameworks, Dung [Dun95b] introduces a translation from

a logic program without explicitly negated literals into an AA framework, which yields

exactly 〈ArP , AttP〉 as defined here in terms of the translated ABA framework. Dung

then proves the following semantic correspondences.

Let P be a logic program without explicitly negated atoms, AAP = 〈ArP , AttP〉

the translated AA framework of P, and M⊆ HBP ∪ NAFHBP
.

1. M is a (2-valued) stable model of P if and only if there exists a stable

argument extension Args of AAP such that M = {k | ∃Asms ⊢ k ∈

Args}.

2. If M is a (2-valued) stable model of P, then Args = {Asms ⊢ k ∈ ArP |

Asms ⊆M} is a stable argument extension of AAP .

3. M is the well-founded model of P if and only if Args is the grounded

argument extension of AAP and M = {k | ∃Asms ⊢ k ∈ Args}.

Example 4.7. Consider again the logic program P2 from Example 4.2. The translated

AA framework AAP2
has two arguments in addition to the three assumption-arguments:

A1 : {not p} ⊢ not p, A2 : {not q} ⊢ not q, A3 : {not r} ⊢ not r, A4 : {not r} ⊢ r, and

A5 : {not p} ⊢ q. A4 attacks itself and A3, and A5 attacks A2. The grounded argument

extension of AAP2
is Args = {A1, A5}. Then the set of conclusions of arguments in Args

is {not p, q}, which is the well-founded model of P2 (see Example 4.2).

Wu et al. [WCG09] investigate the relation between the semantics of logic programs, in

particular 3-valued stable models, and complete argument labellings of AA frameworks.

They give a translation from a logic program into an AA framework, which amounts

to 〈ArP , AttP〉, and define mappings between 3-valued interpretations and argument la-

bellings, which we recall using a simplified but equivalent notation.

Let P be a logic program without explicitly negated atoms and AAP =

〈ArP , AttP〉 the translated AA framework of P.

1. Let LabArg be an argument labelling of AAP . LabArg2ModWu maps

LabArg into a 3-valued interpretation 〈T ,F〉 of P such that:

❼ T = {a ∈ HBP | ∃Asms ⊢ a ∈ in(LabArg)};

❼ F = {a ∈ HBP | ∀Asms ⊢ a : Asms ⊢ a ∈ out(LabArg)};

❼ U = {a ∈ HBP | ∄Asms ⊢ a ∈ in(LabArg), ∃Asms′ ⊢ a ∈

undec(LabArg)}.

2. Let 〈T ,F〉 be a 3-valued interpretation of P. Mod2LabArgWu maps 〈T ,F〉

into an argument labelling LabArg of AAP such that:
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❼ in(LabArg) = {Asms ⊢ k | for all attackers Asms′ ⊢ k′ of Asms ⊢

k : k′ ∈ F};

❼ out(LabArg) = {Asms ⊢ k | there exists an attacker Asms′ ⊢ k′ of

Asms ⊢ k : k′ ∈ T };

❼ undec(LabArg) = {Asms ⊢ k | there exists an attacker Asms′ ⊢ k′

of Asms ⊢ k : k′ /∈ F , for all attackers Asms′′ ⊢ k′′ of Asms ⊢ k :

k′′ /∈ T }.

Note that the translation from arguments labelled in into T in LabArg2ModWu mirrors

the mapping from stable/grounded argument extensions into stable/well-founded models

by Dung.

Wu et al. prove that there is a one-to-one correspondence between 3-valued stable

models and complete argument labellings in terms of LabArg2ModWu and Mod2LabArgWu.

Let P be a logic program without explicitly negated atoms and AAP the

translated AA framework.

1. If LabArg is a complete argument labelling of AAP , then

LabArg2ModWu(LabArg) is a 3-valued stable model of P.

2. If 〈T ,F〉 is a 3-valued stable model of P, then Mod2LabArgWu(〈T ,F〉) is

a complete argument labelling of AAP .

Wu et al. also note that for complete argument labellings and 3-valued stable models

LabArg2ModWu and Mod2LabArgWu are bijective functions and each other’s inverses.

Example 4.8. The only 3-valued stable model of P2 is 〈{q}, {p}〉 with U = {r}. Apply-

ing Mod2LabArgWu, yields the only complete argument labelling of AAP2
, where A1 and

A5 are labelled in since they have no attackers, A2 is labelled out since it is attacked

by A5 : {not p} ⊢ q and q ∈ T , and A3 and A4 are labelled undec since they are only

attacked by A4 : {not r} ⊢ r and r /∈ F and r /∈ T .

Conversely, when applying LabArg2ModWu, we consider the two arguments with conclu-

sions in HBP , namely A4 and A5. Since A4 ∈ undec(LabArg), it follows that r ∈ U ;

since A5 ∈ in(LabArg), it follows that q ∈ T ; and since there exists no argument with

conclusion p, it follows that p ∈ out(LabArg) since it is satisfied that all arguments with

conclusion p are labelled out. This yields the 3-valued stable model 〈{q}, {p}〉.

Caminada et al. [CSAD15b] introduce a mapping from argument labellings into con-

clusion labellings of a translated AA framework and from conclusion labellings back to

argument labellings. They then prove that the conclusion labellings obtained from com-

plete, grounded, preferred, and stable argument labellings of the translated AA frame-

work coincide, respectively, with the 3-valued stable, well-founded, 3-valued M-stable, and

(2-valued) stable models of the underlying logic program. Since the mappings between

argument labellings and conclusion labellings of arguments mirror LabArg2ModWu and
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Mod2LabArgWu, the correspondence results by Caminada et al. directly extend the results

by Wu et al.

Let P be a logic program without explicitly negated atoms and AAP the

translated AA framework.

1. If LabArg is a grounded / preferred / stable argument labelling of AAP ,

then LabArg2ModWu(LabArg) is a well-founded / 3-valued M-stable / (2-

valued) stable model of P.

2. If 〈T ,F〉 is a well-founded / 3-valued M-stable / (2-valued) stable model

of P, then Mod2LabArgWu(〈T ,F〉) is a grounded / preferred / stable ar-

gument labelling of AAP .

Caminada et al. also point out (in terms of conclusion labellings) that an analogous corre-

spondence does not hold between 3-valued L-stable models of a logic program and semi-

stable argument labellings of the translated AA framework.

4.4.2 Deriving Translations between Argument Labellings and 3-Valued

Interpretations

In Section 4.3.2, we defined mappings between 3-valued interpretations of a logic program

and assumption labellings of the translated ABA framework and in Section 3.4.1 between

assumption labellings of an ABA framework and argument labellings of the corresponding

AA framework. Since mapping a logic program into an ABA framework and then into its

corresponding AA framework yields the translated AA framework of the logic program, we

now obtain mappings between 3-valued interpretations of a logic program and argument

labellings of the translated AA framework by concatenating the aforementioned mappings.

Since our mappings between 3-valued interpretations and assumption labellings are defined

for all logic programs, the following mappings maintain this property.

From here onwards, and if not specified otherwise, we assume as given an arbitrary

logic program P, its translated ABA framework ABAP , and its translated AA framework

AAP = 〈ArP , AttP〉.

Definition 4.5 (Mapping an Argument Labelling into a 3-Valued Interpretation and vice

versa).

❼ LabArg2Mod maps an argument labelling LabArg of 〈ArP , AttP〉 into a 3-valued

interpretation 〈T ,F〉 of P such that

LabArg2Mod(LabArg) = LabAsm2Mod(LabArg2LabAsm(LabArg)).

❼ Mod2LabArg maps a 3-valued interpretation 〈T ,F〉 of P into an argument labelling

LabArg of 〈ArP , AttP〉 such that

Mod2LabArg(〈T ,F〉) = LabAsm2LabArg(Mod2LabAsm(〈T ,F〉)).
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LabArg2Mod thus maps an argument labelling LabArg into a 3-valued interpretation

〈T ,F〉 as follows:

❼ T = {l ∈ LitP | {not l} ⊢ not l ∈ out(LabArg)};

❼ F = {l ∈ LitP | {not l} ⊢ not l ∈ in(LabArg)};

❼ U = {l ∈ LitP | {not l} ⊢ not l ∈ undec(LabArg)}.

Conversely, Mod2LabArg maps a 3-valued interpretation 〈T ,F〉 into an argument la-

belling LabArg as follows:

❼ in(LabArg) = {Asms ⊢ k | Asms ⊆∼F};

❼ out(LabArg) = {Asms ⊢ k | ∃not l ∈ Asms : not l ∈∼T };

❼ undec(LabArg) = {Asms ⊢ k | ∃not l ∈ Asms : not l ∈∼U , Asms∩ ∼T = ∅}.

Note that using the alternative formulation of LabAsm2Mod (from Proposition 4.1) for

LabArg2Mod would yield a more involved definition, for example T would be defined as

{l ∈ LitP | ∃Asms ⊢ l : Asms ⊆ {not m | {not m} ⊢ not m ∈ in(LabArg)}}. Note

also that the translation from literals in F into arguments labelled in using Mod2LabArg

mirrors the mapping from stable models into stable argument extensions by Dung (see

previous section).

We observe that when mapping complete argument labellings into 3-valued interpre-

tation, LabArg2Mod coincides with LabArg2ModWu (extended to logic programs that may

comprise explicitly negated atoms).

Proposition 4.12. Let LabArg be a complete argument labelling of AAP .

Then LabArg2Mod(LabArg) is equivalent to LabArg2ModWu(LabArg).

Proof. Let T = {l ∈ LitP | ∃Asms ⊢ l ∈ in(LabArg)}. For every l it holds that since

Asms ⊢ l attacks {not l} ⊢ not l, by the (reverse) definition of complete argument

labellings (see Section 2.2.1) it follows that {not l} ⊢ not l ∈ out(LabArg). Thus,

T = {l ∈ LitP | {not l} ⊢ not l ∈ out(LabArg)}. Using similar reasoning we show

that F = {l ∈ LitP | ∀Asms ⊢ l : Asms ⊢ l ∈ out(LabArg)} = {l ∈ LitP | {not l} ⊢

not l ∈ in(LabArg)} and U = {l ∈ LitP | ∃Asms ⊢ l ∈ undec(LabArg), ∄Asms′ ⊢ l ∈

in(LabArg)} = {l ∈ LitP | {not l} ⊢ not l ∈ undec(LabArg)}.

Example 4.9. Consider again the only complete argument labelling ofAAP2
, i.e. LabArg =

{(A1, in), (A2, out), (A3, undec), (A4, undec), (A5, in)} (see Example 4.8). According to

LabArg2Mod(LabArg), p ∈ F since A1 : {not p} ⊢ not p ∈ in(LabArg), q ∈ T since A2 :

{not q} ⊢ not q ∈ out(LabArg), and r ∈ U since A3 : {not r} ⊢ not r ∈ undec(LabArg).

This coincides with the 3-valued interpretation obtained by LabArg2ModWu and is the only

3-valued stable model of P2, as discussed in Example 4.8.
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Note however, that this equivalence does not hold for argument labellings that are not

complete.

Example 4.10. Let LabArg = {(A1, out), (A2, out), (A3, undec), (A4, out), (A5, undec)}

be an argument labelling of AAP2
that is not a complete argument labelling.

LabArg2Mod(LabArg) = 〈{p, q}, {}〉, but LabArg2ModWu = 〈{r}, {p}〉.

Concerning Mod2LabArg, we obtain a similar result, namely that for 3-valued stable

models it coincides with Mod2LabArgWu.

Proposition 4.13. Let 〈T ,F〉 be a 3-valued stable model of P. Then Mod2LabArg(〈T ,F〉)

is equivalent to Mod2LabArgWu(〈T ,F〉).

Proof. Let in(LabArg) = {Asms ⊢ k | for all attackers Asms′ ⊢ k′ of Asms ⊢ k : k′ ∈

F}. Thus, for all attacked not k′ ∈ Asms it holds that not k′ ∈∼ F . Furthermore,

for all unattacked not k′ it holds that there exists no argument Asms′ ⊢ k′ ∈ ArP .

Thus, by the definition of 3-valued stable model, k′ ∈ F , so not k′ ∈∼ F . Then

in(LabArg) = {Asms ⊢ k | Asms ⊆∼F}.

Using similar reasoning we show that out(LabArg) = {Asms ⊢ k | there exists an attacker

Asms′ ⊢ k′ of Asms ⊢ k : k′ ∈ T } = {Asms ⊢ k | ∃not l ∈ Asms : not l ∈∼ T } and

undec(LabArg) = {Asms ⊢ k | there exists an attacker Asms′ ⊢ k′ of Asms ⊢ k : k′ /∈

F , for all attackers Asms′′ ⊢ k′′ of Asms ⊢ k : k′′ /∈ T } = {Asms ⊢ k | ∃not l ∈ Asms :

not l ∈∼U , Asms∩ ∼T = ∅}.

This equivalence does not hold for 3-valued interpretations in general.

Example 4.11. Let P5 = {p ← not q, not u; q ← not p} be a logic program and let

〈{p, u}, {q}〉 be a 3-valued interpretation. In addition to the three assumption-arguments

A1, A2, and A3 for assumptions not p, not q, and not u, the translated AA framework

has arguments A4 : {not q, not u} ⊢ p and A5 : {not p} ⊢ q, where A4 and A5 attack

each other. Then Mod2LabArg(〈{p, u}, {q}〉) and Mod2LabArgWu(〈{p, u}, {q}〉) differ in the

labels of A4: Mod2LabArg(A4) = out, but Mod2LabArgWu(A4) = in.

In contrast to the mappings between assumption labellings and 3-valued interpreta-

tions, LabArg2Mod and Mod2LabArg are in general neither bijections nor the inverses of

one another, since they apply the mappings LabArg2LabAsm and LabAsm2LabArg, which

are not bijections or each other’s inverses (see Section 3.4.1). However, we observe the

following relation between LabArg2Mod and Mod2LabArg. Our first result states that trans-

lating an argument labelling into a 3-valued interpretation and then back into an argument

labelling preserves the labels of assumption-arguments.

Proposition 4.14. Let LabArg be an argument labelling of 〈ArP , AttP〉 and LabArg
′ =

Mod2LabArg(LabArg2Mod(LabArg)). Then for all {not l} ⊢ not l ∈ ArP it holds that

LabArg({not l} ⊢ not l) = LabArg′({not l} ⊢ not l).

115



Proof. Let 〈T ,F〉 = LabArg2Mod(LabArg).

If {not l} ⊢ not l ∈ in(LabArg), then l ∈ F , so {not l} ⊢ not l ∈ in(LabArg′).

If {not l} ⊢ not l ∈ out(LabArg), then l ∈ T , so {not l} ⊢ not l ∈ out(LabArg′).

If {not l} ⊢ not l ∈ undec(LabArg), then l ∈ U , so {not l} ⊢ not l ∈ undec(LabArg′).

However, non-assumption-arguments may have different labels in LabArg and LabArg′.

Example 4.12. Let P6 = {p ← not q} be a logic program. AAP6
has three argu-

ments: A1 : {not p} ⊢ not p, A2 : {not q} ⊢ not q, and A3 : {not q} ⊢ p. Let

LabArg = {(A1, in), (A2, out), (A3, undec)} be an argument labelling of AAP6
. Then

〈T ,F〉 = LabArg2Mod(LabArg) = 〈{q}, {p}〉, and LabArg′ = Mod2LabArg(〈T ,F〉) =

{(A1, in), (A2, out), (A3, out)}, so the assumption-arguments A1 and A2 have the same

labels in LabArg and LabArg′, but the non-assumption-argument A3 has a different label

in LabArg and LabArg′.

Conversely, translating a 3-valued interpretation into an argument labelling and then

back into a 3-valued interpretation preserves the initial interpretation.

Proposition 4.15. Let 〈T ,F〉 be a 3-valued interpretation of P and let 〈T ′,F ′〉 =

LabArg2Mod(Mod2LabArg(〈T ,F〉)). Then 〈T ,F〉 = 〈T ′,F ′〉.

Proof. Let LabArg = Mod2LabArg(〈T ,F〉). Then

❼ T ′ = {l ∈ LitP | {not l} ⊢ not l ∈ out(LabArg)} = {l ∈ LitP | not l ∈∼T } = {l ∈

LitP | l ∈ T } = T ,

❼ F ′ = {l ∈ LitP | {not l} ⊢ not l ∈ in(LabArg)} = {l ∈ LitP | {not l} ⊆∼F} =

{l ∈ LitP | l ∈ F} = F ,

❼ U ′ = {l ∈ LitP | {not l} ⊢ not l ∈ undec(LabArg)} = {l ∈ LitP | not l ∈∼

U , {not l}∩ ∼T = ∅} = {l ∈ LitP | not l ∈∼U} = {l ∈ LitP | l ∈ U} = U .

Note that the relationship from Propositions 4.14 and 4.15 does not generally hold for

LabArg2ModWu and Mod2LabArgWu. We thus argue, that our mappings LabArg2Mod and

Mod2LabArg are preferable, as they map an argument labelling “more accurately” into a

3-valued interpretation.

Example 4.13. Let LabArg = {(A1, in), (A2, out), (A3, undec)} be an argument labelling

of AAP6
(see Example 4.12). Let 〈T ,F〉 = LabArg2ModWu(LabArg) = 〈∅, {q}〉, and

let us then translate 〈T ,F〉 back into an argument labelling, which yields LabArg′ =

Mod2LabArgWu(〈T ,F〉) = {(A1, undec), (A2, in), (A3, in)}. This argument labelling is

completely different from the original argument labelling. Furthermore, starting from a 3-

valued interpretation, e.g. 〈T ,F〉, we observe that LabArg2ModWu(Mod2LabArgWu(〈T ,F〉)) =

〈{p}, {q}〉 6= 〈T ,F〉.
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4.4.3 Semantic Correspondence between Argument Labellings and 3-

Valued Models

Since by Propositions 4.12 and 4.13 for complete argument labellings LabArg2Mod co-

incides with LabArg2ModWu and Mod2LabArg with Mod2LabArgWu, the correspondence

results between the semantics of a logic program and its translated AA framework by

Wu et al. [WCG09] and Caminada et al. [CSAD15b] also hold for our mappings. How-

ever, their results are restricted to logic programs without explicit negation. We extend

these results to logic programs that may comprise explicitly negated atoms, and show

that this correspondence furthermore straightforwardly follows from the correspondence

between argument and assumption labellings (see Section 3.4) and assumption labellings

and 3-valued models (see Section 4.3.3), thus considerably simplifying the proofs of Wu et

al. [WCG09] and Caminada et al. [CSAD15b].

Theorem 4.16. Let LabArg be an argument labelling of AAP . If LabArg is a complete

argument labelling of AAP such that

∀a ∈ HBP : {not a} ⊢ not a /∈ out(LabArg) ∨ {not ¬a} ⊢ not ¬a /∈ out(LabArg),

then 〈T ,F〉 = LabArg2Mod(LabArg) is a 3-valued stable model of P.

Proof. Let LabArg be a complete argument labelling of 〈ArP , AttP〉 such that ∀a ∈ HBP :

{not a} ⊢ not a /∈ out(LabArg) ∨ {not ¬a} ⊢ not ¬a /∈ out(LabArg). Then by

Theorem 3.19 LabAsm = LabArg2LabAsm(LabArg) is a complete assumption labelling

of ABAP , where in(LabAsm) = {not l ∈ AP | {not l} ⊢ not l ∈ in(LabArg)},

out(LabAsm) = {not l ∈ AP | {not l} ⊢ not l ∈ out(LabArg)}, undec(LabAsm) =

{not l ∈ AP | {not l} ⊢ not l ∈ undec(LabArg)}. Thus, ∀a ∈ HBP : not a /∈

out(LabAsm) ∨ not ¬a /∈ out(LabAsm). Then by Corollary 4.6, 〈T ,F〉 with T =∼

out(LabAsm) = {l | {not l} ⊢ not l ∈ out(LabArg)} and F =∼ in(LabAsm) =

{l | {not l} ⊢ not l ∈ in(LabArg)} is a 3-valued stable model of P, where U =∼

undec(LabAsm) = {l | {not l} ⊢ not l ∈ undec(LabArg)}.

Given a complete argument labelling LabArg, we say that LabArg2Mod(LabArg) is the

corresponding 3-valued stable model of LabArg.

Note that the correspondence holds one way only. More precisely, it is not the case

that any argument labelling LabArg that is mapped into a 3-valued stable model by

LabArg2Mod is a complete argument labelling. This is because the translation only takes

the labels of assumption-arguments into account. The labels of all other arguments may

thus not satisfy the conditions of a complete argument labelling.

Regarding the mapping from 3-valued stable models into complete argument labellings,

we not only extend the correspondence results of Wu et al. [WCG09] and Caminada et

al. [CSAD15b] to logic programs that may contain explicitly negated atoms, but also prove

the opposite direction of the correspondence. That is, any 3-valued interpretation that is

mapped into a complete argument labelling by Mod2LabArg is a 3-valued stable model.
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Theorem 4.17. Let 〈T ,F〉 be a 3-valued interpretation of P. 〈T ,F〉 is a 3-valued stable

model of P if and only if LabArg = Mod2LabArg(〈T ,F〉) is a complete argument labelling

of AAP such that ∀a ∈ HBP : {not a} ⊢ not a /∈ out(LabArg) ∨ {not ¬a} ⊢ not ¬a /∈

out(LabArg).

Proof. By Corollary 4.7 〈T ,F〉 is a 3-valued stable model of P if and only if LabAsm

with in(LabAsm) =∼F , out(LabAsm) =∼T , and undec(LabAsm) =∼U is a complete

assumption labelling of ABAP such that ∀a ∈ HBP : not a /∈ out(LabAsm) ∨ not ¬a /∈

out(LabAsm). By Theorem 3.17, LabAsm is a complete assumption labelling of ABAP

if and only if LabAsm2LabArg(LabAsm) is a complete argument labelling of 〈ArP , AttP〉,

where in(LabArg) = {Asms ⊢ k | Asms ⊆∼F}, out(LabArg) = {Asms ⊢ k | ∃not l ∈

Asms : not l ∈∼ T }, undec(LabArg) = {Asms ⊢ k | ∃not l ∈ Asms : not l ∈∼

U , Asms ∩ ∼T = ∅}. Thus, ∀a ∈ HBP : {not a} ⊢ not a /∈ out(LabArg) ∨ {not ¬a} ⊢

not ¬a /∈ out(LabArg).

Example 4.14. Consider again the logic program P4 from Example 4.6. The translated

AA framework AAP4
is illustrated in Figure 4.1. It has three complete argument labellings:

❼ LabArg1 = {(A1, undec), (A2, undec), (A3, undec), (A4, in), (A5, undec), (A6, in),

(A7, undec), (A8, undec), (A9, undec), (A10, undec), (A11, undec)},

❼ LabArg2 = {(A1, out), (A2, out), (A3, in), (A4, in), (A5, undec), (A6, in),

(A7, in), (A8, in), (A9, out), (A10, undec), (A11, out)}, and

❼ LabArg3 = {(A1, in), (A2, in), (A3, out), (A4, in), (A5, out), (A6, in),

(A7, out), (A8, out), (A9, in), (A10, out), (A11, in)}.

LabArg2 does not correspond to a 3-valued stable model of P4 since both A1 and A2

are labelled out. LabArg1 and LabArg3 correspond to the two 3-valued stable models

〈{}, {¬q,¬r}〉 and 〈{q, r}, {p,¬p,¬q,¬r}〉, respectively.

Given a 3-valued stable model 〈T ,F〉, we say that Mod2LabArg(〈T ,F〉) is the corre-

sponding complete argument labelling of 〈T ,F〉.

Correspondence between other semantics of a logic program and its translated AA

framework then follows straightaway.

Theorem 4.18. Let LabArg be an argument labelling of AAP . If LabArg is a grounded

/ preferred / ideal / stable argument labelling of AAP such that

∀a ∈ HBP : {not a} ⊢ not a /∈ out(LabArg) ∨ {not ¬a} ⊢ not ¬a /∈ out(LabArg),

then 〈T ,F〉 = LabArg2Mod(LabArg) is a well-founded / 3-valued M-stable / ideal / (2-

valued) stable model of P.

Proof. Analogous to the proof of Theorem 4.16 but using Theorem 3.25 instead of Theo-

rem 3.19 and Theorem 4.10 instead of Corollary 4.6.
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Theorem 4.19. Let 〈T ,F〉 be a 3-valued interpretation of P. 〈T ,F〉 is a well-founded

/ 3-valued M-stable / ideal / (2-valued) stable model of P if and only if LabArg =

Mod2LabArg(〈T ,F〉) is a grounded / preferred / ideal / stable argument labelling of AAP

such that ∀a ∈ HBP : {not a} ⊢ not a /∈ out(LabArg) ∨ {not ¬a} ⊢ not ¬a /∈

out(LabArg).

Proof. Analogous to the proof of Theorem 4.17 but using Theorem 4.11 instead of Corol-

lary 4.7 and Theorem 3.24 instead of Theorem 3.17.

The only semantics that do not correspond in general are semi-stable argument la-

bellings and 3-valued L-stable models (also pointed out by Caminada et al. [CSAD15b])

since semi-stable argument and assumption labellings do not correspond (see Section 3.4.4).

Example 4.15. Let P7 be the following logic program (without explicit negation):

{ p← not q;

q ← not p;

r ← not r;

r ← not p, not r }

The translated AA framework AAP7
is illustrated in Figure 4.2. P7 has three 3-valued

stable models, namely 〈{}, {}〉, 〈{q}, {p}〉, and 〈{p}, {q}〉. Using Mod2LabArg, we obtain

the three complete argument labellings of AAP7
:

❼ LabArg1 = {(A1, undec), (A2, undec), (A3, undec), (A4, undec), (A5, undec),

(A6, undec), (A7, undec)},

❼ LabArg2 = {(A1, in), (A2, out), (A3, undec), (A4, out), (A5, in),

(A6, undec), (A7, undec)}, and

❼ LabArg3 = {(A1, out), (A2, in), (A3, undec), (A4, in), (A5, out),

(A6, undec), (A7, out)}.

Both 〈{q}, {p}〉, and 〈{p}, {q}〉 are 3-valued L-stable models of P7, but only the complete

argument labelling corresponding to the latter is a semi-stable argument labelling of AAP7
,

i.e. LabArg3.

4.4.4 Semantic Correspondence between Stable Argument Extensions

and Answer Sets

In Chapter 5, we present a justification approach for literals with respect to an answer

set of a logic program. This approach relies on the correspondence between answer sets

and the stable semantics of the translated AA framework. Importantly, we will base

these justifications on stable argument extensions instead of labellings, since for stable
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A4 : {not q} ⊢ p

A5 : {not p} ⊢ q

A7 : {not p, not r} ⊢ r

A6 : {not r} ⊢ r

A1 : {not p} ⊢ not p

A2 : {not q} ⊢ not q A3 : {not r} ⊢ not r

Figure 4.2: The translated AA framework AAP7
from Example 4.15.

argument labellings the labels of all arguments are directly characterised by the respective

stable argument extension, i.e. all arguments contained in the stable argument extension

are labelled in and all arguments not in the stable argument extension are labelled out3.

Therefore, we reformulate the correspondence results between (2-valued) stable models

and stable argument labellings from the previous section to state correspondence between

answer sets and stable argument extensions.

Usually, answer sets only contain classical literals. However, if l /∈ S for an answer set

S of P and some classical literal l ∈ LitP , then not l is considered satisfied with respect

to S. Thus, we introduce the notion of Answer Sets with NAF literals, i.e. answer sets

which also comprise all true NAF literals.

Definition 4.6 (Answer Set with NAF Literals). Let S ⊆ LitP be a set of classical literals.

∆S = {not l ∈ NAFLitP | l /∈ S} consists of all NAF literals not l whose corresponding

classical literal l is not contained in S. If S is an answer set of P, then SNAF = S ∪ ∆S

is an answer set with NAF literals of P.

Since for consistent logic programs the answer set semantics coincides with the (2-

valued) stable semantics [GL91, Prz90], the correspondence results from Theorems 4.18

and 4.19 concerning (2-valued) stable models also hold between answer sets and stable

argument labellings and can be reformulated in terms of stable argument extensions.

We reformulate the “consistency” condition for argument labellings, which is stated

in terms of assumption-arguments labelled out, namely ∀a ∈ HBP : {not a} ⊢ not a /∈

out(LabArg) ∨ {not ¬a} ⊢ not ¬a /∈ out(LabArg), as a condition on arguments in the

stable extension, namely ∀a ∈ HBP : ∄Asms ⊢ a ∈ E ∨ ∄Asms ⊢ ¬a ∈ E , where E is a

stable extension.

3This is in general not the case for, e.g., complete extensions. In order to determine the labels of
all arguments according to a complete extension, the attacks between arguments need to be taken into
account.
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Corollary 4.20. Let P be a consistent logic program and 〈ArP , AttP〉 the translated AA

framework of P. If E ⊆ ArP is a stable argument extension of 〈ArP , AttP〉 such that

∀a ∈ HBP : ∄Asms ⊢ a ∈ E ∨ ∄Asms ⊢ ¬a ∈ E ,

then SNAF = {k | ∃Asms ⊢ k ∈ E} is an answer set with NAF literals of P.

This follows from Theorem 4.18 and the correspondence between LabArg2Mod and

LabArg2ModWu from Proposition 4.12. Note that this Corollary extends the correspon-

dence result of Dung [Dun95b] (see Section 4.4) to answer sets, i.e. to logic programs that

may comprise explicitly negated atoms.

Corollary 4.21. Let P be a consistent logic program and 〈ArP , AttP〉 the translated AA

framework of P. S ⊆ LitP is an answer set of P if and only if E = {Asms ⊢ k | Asms ⊆

∆S} is a stable argument extension of 〈ArP , AttP〉 such that ∀a ∈ HBP : ∄Asms ⊢ a ∈

E ∨ ∄Asms ⊢ ¬a ∈ E.

This follows from Theorem 4.19. Note that this Corollary also extends the correspon-

dence result of Dung [Dun95b] (see Section 4.4) to answer sets, i.e. to logic programs that

may comprise explicitly negated atoms.

Given an answer set S, we call E = {Asms ⊢ k | Asms ⊆ ∆S} the corresponding stable

argument extension of S.

4.5 Related Work

Throughout this chapter, we mentioned various closely related works: Bondarenko et

al. [BTK93, BDKT97] present some correspondences between the semantics of logic pro-

grams and their translated ABA frameworks (see Section 4.3.1), which we extended using

our new assumption labellings. Concerning the correspondence between the semantics of

logic programs and AA frameworks, both Dung [Dun95b] and Wu et al. [WCG09] present

various results, which we extended too.

We focussed on the translation of logic programs into ABA and AA frameworks,

whereas other authors have investigated the opposite direction. Dung [Dun95b] gives

a translation of AA frameworks into logic programs and proves some semantic corre-

spondence, which is (among others) extended by Osorio et al. [OZNC05] and Wu et

al. [WCG09]. Furthermore, Caminada and Schulz [CS15] present a translation of ABA

frameworks into logic programs and show semantic correspondence.

More generally, the question whether different non-monotonic reasoning formalism can

be translated into one another and how their semantics relate has received considerable

attention. Early work focussed on formalisms such as default logic, circumscription, and

autoepistemic logic [Imi87, Got95, Jan99] and the formulation of the answer set semantics

in other logical formalisms, such as equilibrium logic [Pea96]. More recently, work has been
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done regarding translations between argumentation frameworks and other non-monotonic

logics.

Thimm and Kern-Isberner [TKI08] investigate the correspondence between defeasible

logic programming (DeLP), which is commonly classified as an argumentation framework,

and answer set programming. Lam et al. [LGR16] study the relation between the AS-

PIC+ argumentation framework and defeasible logic, and Young et al. [YMR16] between

ASPIC+ and prioritised default logic. Heyninck and Straßer [HS16] give translations and

correspondence results between ASPIC+, ABA frameworks, and adaptive logics. Further-

more, Bochman [Boc16] studies a translation from abstract dialectical frameworks (ADFs)

into causal calculus.

Furthermore, various authors investigate mappings between different argumentation

frameworks. Oren et al. [ORL10] present a mapping between AA frameworks and eviden-

tial argumentation frameworks (EAFs) and prove semantic correspondence. Polberg and

Oren [PO14] investigate mappings between EAFs and argumentation frameworks with ne-

cessities and show that there exists no natural translation between the two which preserves

the semantics. Polberg [Pol17] extends that work and additionally investigates mappings

with ADFs.

4.6 Summary

In this chapter, we reviewed and extended existing correspondence results between the

semantics of a logic program and its translated ABA and AA frameworks.

Concerning the translated ABA framework, existing results only showed how to derive

a corresponding 3-valued interpretation from an assumption extension, but not vice versa.

Furthermore, the corresponding 3-valued interpretations were defined based on the argu-

ments supported by the assumption extension, rather than on the assumption extension

itself. We introduced direct mappings between 3-valued interpretations of a logic program

and assumption labellings of the translated ABA framework, which do not require to con-

struct arguments. We then proved that the mapping of complete assumption labellings

yields 3-valued stable models (analogous to existing results), and that the mapping of

3-valued stable models yields complete assumption labellings. These results can be ex-

tended to the correspondence between grounded, preferred, ideal, semi-stable, and stable

assumption labellings and, respectively, well-founded, 3-valued M-stable, ideal, 3-valued

L-stable, and (2-valued) stable models.

With regards to the translated AA framework of a logic program, various mappings

and correspondence results exist, both regarding argument extensions and labellings. We

compared these mappings with new mappings obtained by concatenating our mappings

between 3-valued interpretations and assumption labellings and between assumption la-

bellings and argument labellings. We showed that for complete assumption labellings and

3-valued stable models, our mappings yield the same outcome as existing mappings. Thus,

existing correspondence results between complete, grounded, preferred, ideal, and stable
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argument labellings and, respectively, 3-valued stable, well-founded, 3-valued M-stable,

ideal, and (2-valued) stable models also hold for our mappings. However, in the general

case the outcome of our mappings and existing mappings may not be the same. We also

show that in contrast to existing mappings, our mappings always preserve the labels/truth

values of certain assumptions/literals when translating back and forth between 3-valued

interpretations and assumption labellings.

In the next chapter, we introduce a justification approach for logic programs under the

answer set semantics, which is based upon the correspondence results presented in this

chapter.
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Chapter 5

Justifying Answer Sets using

Argumentation
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5.1 Introduction

If ASP is used for applications in real-world scenarios involving non-experts, it is useful to

have an explanation as to why a literal does or does not belong to an answer set. Answer

set justification has thus been identified as an important but not yet sufficiently studied

research area [LD04, BD08]. In this chapter, we present two methods for justifying literals

with respect to an answer set of a consistent logic program by applying the notions of

arguments and attacks of the translated ABA and AA framework of a logic program. Our

approach is based upon the semantic correspondence results between logic programs and

their translated ABA and AA frameworks presented in Chapter 4. Of particular impor-

tance for this chapter is the result that every answer set of a logic program corresponds to

a stable argument extension of the translated AA framework (Corollaries 4.20 and 4.21).

Our first justification approach, an Attack Tree, expresses how to construct an argu-

ment for a literal in question (the supporting argument) as well as which arguments attack

the argument for the literal in question (the attacking arguments); the same information

is provided for all arguments attacking the attacking arguments, and so on. The second

justification approach, an ABA-Based Answer Set (ABAS) Justification of a literal, rep-

resents the same information as an Attack Tree, but expressed in terms of literals rather

than arguments. An ABAS Justification comprises facts and NAF literals necessary to

derive the literal in question (the “supporting literals”) as well as information about lit-

erals that are in conflict with the literal in question (the “attacking literals”). The same

information is provided for all supporting and attacking literals of the literal in question,

for all their supporting and attacking literals, and so on.

The chapter is organised as follows. In Section 5.2, we give some definitions specific

to this chapter and in Section 5.3 we introduce a motivating (medical) example and a

technical example, which will serve as the running examples throughout this chapter.

In Section 5.4, we introduce Attack Trees as our first justification method, show their

relationship with abstract dispute trees of the translated AA framework, and characterise

the explanations they provide as admissible fragments of the answer set in question. Based

on Attack Trees, we define two forms of ABAS Justifications: Basic ABA-Based Answer

Set Justifications, introduced in Section 5.5, illustrate how to flatten Attack Trees, yielding

a justification in terms of literals and their relations. Labelled ABA-Based Answer Set

Justifications, introduced in Section 5.6, constitute a more elaborate version of Basic ABA-

Based Answer Set Justifications, following the same flattening strategy, but additionally

using labels to solve some deficiencies of the basic variant. In Section 5.7, we present a web-

platform implementing Attack Trees and Labelled ABA-Based Answer Set Justifications.

In Section 5.8, we compare ABAS Justifications to related work and in Section 5.9 we

summarise the contributions of this chapter.
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5.2 Preliminaries

Throughout this chapter we use a slightly modified notion of arguments constructible from

an ABA framework. In addition to the set of assumptions supporting an argument, the

modified version also explicitly comprises the set of facts used in the construction of the

argument.

Definition 5.1 (Argument). Let 〈L,R,A, ¯〉 be an ABA framework. An argument for

(the conclusion) s ∈ L supported by the set of assumption-premises AP ⊆ A and the set

of fact-premises FP ⊆ {t | t← ∈ R} is a finite tree, where every node holds a sentence in

L, such that:

❼ the root node holds s;

❼ for every node N

– if N is a leaf, then N holds either an assumption or a fact;

– if N is not a leaf and N holds the sentence s0, then there is an inference rule

s0 ← s1, . . . , sm (m > 0) and N has m children, holding s1, . . . , sm respectively;

❼ AP is the set of all assumptions held by leaves;

❼ FP is the set of all facts held by leaves.

We use an analogous notation as for the definition of arguments from Section 2.2.2.

Notation 5.2. Let 〈L,R,A, ¯〉 be an ABA framework. An argument for s supported

by AP and FP is denoted (AP,FP ) ⊢ s. We often use a unique name to denote an

argument, e.g. A : (AP,FP ) ⊢ s is an argument with name A. With an abuse of notation,

the name of an argument sometimes stands for the whole argument. An argument of the

form ({α}, ∅) ⊢ α is called assumption-argument, and similarly an argument of the form

(∅, {t}) ⊢ t is called fact-argument. Given some argument A : (AP,FP ) ⊢ s with α ∈ AP

and t ∈ FP , we say that ({α}, ∅) ⊢ α is the assumption-argument of the assumption-

premise α of argument A and that (∅, {t}) ⊢ t is the fact-argument of the fact-premise t

of A.

We note that Definition 5.1 generates the notion of argument as introduced in Sec-

tion 2.2.2: If (AP,FP ) ⊢ s is an argument according to Definition 5.1, then AP ⊢ s is an

argument as defined in Section 2.2.2. Conversely, if Asms ⊢ s is an argument as defined

in Section 2.2.2, then there exists some FP ⊆ {t | t← ∈ R} such that (Asms, FP ) ⊢ s is

an argument according to Definition 5.1.

Based on the modified notion of arguments, we also reformulate attacks between ar-

guments.

Definition 5.3 (Attacks). Let 〈L,R,A, ¯〉 be an ABA framework.

An argument (AP1, FP1) ⊢ s1 attacks an argument (AP2, FP2) ⊢ s2 if and only if

127



∃α ∈ AP2 such that s1 = α. Equivalently, we say that (AP2, FP2) ⊢ s2 is attacked

by (AP1, FP1) ⊢ s1 or that (AP1, FP1) ⊢ s1 is an attacker of (AP2, FP2) ⊢ s2.

Attacks between sets of arguments are then defined as for AA frameworks in Sec-

tion 2.2.1

Clearly, attacks between the modified notion of arguments and arguments as defined

in Section 2.2.3 correspond. That is, if an argument (AP1, FP1) ⊢ s1 attacks an argu-

ment (AP2, FP2) ⊢ s2 according to Definition 5.3, then AP1 ⊢ s1 attacks AP2 ⊢ s2 as

defined in Section 2.2.3. Conversely, if Asms1 ⊢ s1 attacks Asms2 ⊢ s2 as defined in

Section 2.2.3, then there exist FP1, FP2 ⊆ {t | t ← ∈ R} such that (Asms1, FP1) ⊢ s1

attacks (Asms2, FP2) ⊢ s2 according to Definition 5.3.

Based on the correspondence results from Section 4.4.4, we show that for every literal

k in an answer set with NAF literals there is at least one argument with conclusion k in

the corresponding stable argument extension. Conversely, if a literal k is not contained

in an answer set with NAF literals, then no argument with conclusion k is part of the

corresponding stable argument extension.

Proposition 5.1. Let P be a logic program, S an answer set of P, and E the corresponding

stable argument extension of S in 〈ArP , AttP〉. Let k ∈ LitP ∪ NAFLitP .

1. If k ∈ SNAF, then there exists an argument A ∈ E such that A : (AP,FP ) ⊢ k with

AP ⊆ ∆S and FP ⊆ S.

2. If k /∈ SNAF, then there exists no A : (AP,FP ) ⊢ k in ArP such that A ∈ E.

Proof.

1. By Corollary 4.20, SNAF = {k1 | ∃(AP,FP ) ⊢ k1 ∈ E}, so if k ∈ SNAF, then

there exists at least one argument A : (AP,FP ) ⊢ k ∈ E . By Corollary 4.21,

E = {(AP1, FP1) ⊢ k1 | AP1 ⊆ ∆S}, so it follows that for argument A, AP ⊆ ∆S .

Furthermore, FP ⊆ S because FP ⊆ {t | t←∈ P} and for consistent logic programs

it trivially holds that { t | t←∈ P} ⊆ S.

2. Assume that there exists A : (AP,FP ) ⊢ k in 〈ArP , AttP〉 such that A ∈ E . Then

according to Corollary 4.20, k ∈ SNAF. Contradiction.

Given an answer set S of P, the corresponding stable argument extension E of AAP ,

and a literal k ∈ SNAF, an argument A ∈ E with conclusion k is called a corresponding

argument of k.

Note that the first part of Proposition 5.1 only states that for a literal k in the answer

set with NAF literals there exists a corresponding argument in the corresponding stable

argument extension. However, there might be further arguments (AP,FP ) ⊢ k that are

not part of the corresponding stable argument extension, where AP * ∆S . Note also
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that the second part of Proposition 5.1 does not exclude the existence of arguments with

conclusion k. It merely states that no such argument is contained in the corresponding

stable argument extension.

5.3 Running Examples

We now introduce two running examples used throughout this chapter. The first one is

an intuitive medical example, which extends the example from Chapter 1, whereas the

second one is more technical and is used to illustrate some details of our approach.

5.3.1 Intuitive Medical Example

Let Dr. Smith be an ophtalmologist (an eye doctor) and let one of his patients be Peter,

who is diagnosed by Dr. Smith as being short-sighted. Based on this diagnosis, Dr. Smith

has to decide on the most suitable treatment for Peter, taking into account all information

he has about his patient, namely that Peter is afraid to touch his own eyes, that he is a

student, and that he likes to do sports. Based on this information and his specialist knowl-

edge, Dr. Smith decides that the most appropriate treatment for Peter’s short-sightedness

is laser surgery. Dr. Smith now checks whether this decision is in line with the recommen-

dation of his decision support system, which is implemented in ASP.

The following logic program Pdoctor represents the decision support system used by

Dr. Smith. It encodes some general world knowledge as well as an ophtalmologist’s spe-

cialist knowledge about the possible treatments of short-sightedness. Pdoctor also captures

the additional information that Dr. Smith has about his short-sighted patient Peter.

{ tightOnMoney ← student, not richParents;

caresAboutPracticality ← likesSports;

correctiveLenses← shortSighted, not laserSurgery;

laserSurgery ← shortSighted, not tightOnMoney, not correctiveLenses;

glasses← correctiveLenses, not caresAboutPracticality,

not contactLenses;

contactLenses← correctiveLenses, not afraidToTouchEyes,

not longSighted, not glasses;

intraocularLenses← correctiveLenses, not glasses, not contactLenses;

shortSighted← ;

afraidToTouchEyes← ;

student← ;

likesSports← }

Pdoctor has only one answer set, namely Sdoctor = {shortSighted, afraidToTouchEyes,
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student, likesSports, tightOnMoney, correctiveLenses, caresAboutPracticality,

intraocularLenses}.

To Dr. Smith’s surprise, the answer set computed by the decision support system con-

tains the literal intraocularLenses but not laserSurgery, suggesting that Peter should

get intraocular lenses instead of having laser surgery. Dr. Smith now finds himself in the

difficult situation to determine whether to trust his own decision or adopt the system’s

suggestion. Providing Dr. Smith with an explanation of the system’s suggestion or with

an explanation as to why his own intended decision might be wrong would make it con-

siderably easier for Dr. Smith to decide whether to trust himself or the decision support

system.

We will use this example of Dr. Smith and his patient Peter to demonstrate our jus-

tification approaches and to show how they can be applied to explain the solutions of a

decision support system that is based on ASP.

5.3.2 Technical Example

Let P8 be the following logic program, where LitP8
= {p,¬p, q,¬q, u,¬u,w,¬w}:

{ p← not ¬p;

p← ¬p, not q, not w;

¬p← not q, not u;

q ← not w;

u← not ¬p;

w ← }

P8 has two answer sets: S1 = {w, u, p} and S2 = {w,¬p}. The respective sets of satisfied

NAF literals are

∆S1
= {not ¬p, not q, not ¬q, not ¬u, not ¬w} and

∆S2
= {not p, not q, not ¬q, not u, not ¬u, not ¬w}.

In order to use ABA and AA for the justification of literals with respect to an answer

set of a logic program, we construct the translated ABA and AA frameworks of the logic

program. The translated ABA framework of P8 is ABAP8
= 〈LP8

,RP8
,AP8

, ¯〉 with:

❼ RP8
= P8,

❼ AP8
= NAFP8

= {not p, not ¬p, not q, not ¬q, not u, not ¬u, not w, not ¬w},

❼ not p = p; not ¬p = ¬p; not q = q; not ¬q = ¬q; not u = u; not ¬u = ¬u;

not w = w; not ¬w = ¬w,

❼ LP8
= LitP8

∪ NAFP8
.

Fourteen arguments can be constructed inABAP8
, including eight assumption-arguments

(A1 - A8) and one fact-argument (A14):
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A1 : ({not p}, ∅) ⊢ not p

A2 : ({not ¬p}, ∅) ⊢ not ¬p

A3 : ({not q}, ∅) ⊢ not q

A4 : ({not ¬q}, ∅) ⊢ not ¬q

A5 : ({not u}, ∅) ⊢ not u

A6 : ({not ¬u}, ∅) ⊢ not ¬u

A7 : ({not w}, ∅) ⊢ not w

A8 : ({not ¬w}, ∅) ⊢ not ¬w

A9 : ({not ¬p}, ∅) ⊢ p

A10 : ({not q, not u, not w}, ∅) ⊢ p

A11 : ({not q, not u}, ∅) ⊢ ¬p

A12 : ({not w}, ∅) ⊢ q

A13 : ({not ¬p}, ∅) ⊢ u

A14 : (∅, {w}) ⊢ w

The translated AA framework 〈ArP8
, AttP8

〉 of P8 is given in Figure 5.1.

Two stable argument extensions can be determined for 〈ArP8
, AttP8

〉:

E1 = {A2, A3, A4, A6, A8, A9, A13, A14} and

E2 = {A1, A3, A4, A5, A6, A8, A11, A14}.

As expected, the conclusions of arguments in the stable argument extensions coincide with

S1NAF
and S2NAF

, as stated in Corollary 4.20, where the conclusions are:

{not ¬p, not q, not ¬q, not ¬u, not ¬w, p, u, w} of E1 and

{not p, not q, not ¬q, not u, not ¬u, not ¬w,¬p, w} of E2.

Conversely, the two sets of arguments whose assumption-premises are subsets of ∆S1
and

∆S2
, respectively, coincide with the two stable argument extensions E1 and E2, respectively,

as stated in Corollary 4.21.

When taking a closer look at S1NAF
, we can verify that every literal has a corresponding

argument in E1: w has A14, u has A13, p has A9, not ¬p has A2, not q has A3, and so on.

Furthermore, for all literals not contained in S1NAF
, there exists no argument with this

conclusion in the stable argument extension E1, e.g. ¬p /∈ S1NAF
and A11 /∈ E1. The same

holds for S2 and E2.

5.4 Attack Trees

Proposition 5.1, part 1, provides the starting point for our justification approaches as

it allows us to explain why a literal is in an answer set based on the reasons for a cor-

responding argument to be in the corresponding stable argument extension. Similarly,

Proposition 5.1, part 2, is a starting point for justifying why a literal is not contained in

an answer set based on arguments for that literal, all of which are not contained in the

corresponding stable argument extension. In AA it is easy to explain why an argument

is or is not contained in a stable argument extension: an argument is part of a stable

argument extension if it is not attacked by it. Since the stable argument extension attacks
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all arguments that are not part of it, this entails that an argument in the stable argument

extension is defended by the stable argument extension, i.e. the stable argument extension

attacks all attackers of this argument. Conversely, an argument is not part of a stable

argument extension if it is attacked by this stable argument extension. In this section,

we will make use of these results in order to develop a justification method that provides

explanations in terms of arguments and attacks between them.

Our first justification approach explains why arguments are or are not contained in a

stable argument extension by constructing an Attack Tree of this argument with respect to

the stable argument extension. This tree of attacking arguments is later used to construct

a justification in terms of literals. Due to the correspondence between answer sets and

stable argument extensions, a justification of a literal k with respect to an answer set can be

obtained from an Attack Tree of an argument with conclusion k constructed with respect

to the corresponding stable argument extension. In this section we define the notion of

Attack Trees and show their relationship with abstract dispute trees, characterising the

explanations they provide as admissible fragments of the stable argument extension as

well as of the answer set.

From here onwards, and if not specified otherwise, we assume as given a consistent

logic program P and its translated AA framework AAP = 〈ArP , AttP〉.

5.4.1 Constructing Attack Trees

Nodes in an Attack Tree hold arguments which are labelled either ✬+✬ or ✬−✬. An Attack

Tree of an argument A has A itself in the root node, where either one or all attackers of A

form(s) the child node(s) of this root. In the same way, each of these child nodes holding

some argument B have either all or one of B’s attackers as children, and so on. Whether

only one or all attackers of an argument are considered as child nodes depends on the

argument’s label in the Attack Tree, which is determined with respect to a given set of

arguments (typically a stable argument extension of the translated AA framework). If an

argument is part of given set, it is labelled ✬+✬ and has all its attackers as child nodes.

If the argument is not contained in the set, it is labelled ✬−✬ and has exactly one of its

attackers as a child node.

Definition 5.4 (Attack Tree). Let Args ⊆ ArP and A ∈ ArP . An Attack Tree of A

(constructed) w.r.t. Args, denoted attTreeArgs(A), is a (possibly infinite) tree such that:

1. every node in attTreeArgs(A) holds an argument in ArP , labelled ✬+✬ or ✬−✬;

2. the root node is A+ if A ∈ Args or A− if A /∈ Args;

3. for every node A+
N and for every argument Ai attacking AN in AAP , there exists a

child node A−
i of A+

N ;

4. every node A−
N
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(i) has no child node if AN is not attacked in AAP or if for all attackers Ai of AN :

Ai /∈ Args; or else

(ii) has exactly one child node A+
i for some Ai ∈ Args attacking AN ;

5. there are no other nodes in attTreeArgs(A) except those given in 1-4.

If attTreeArgs(A) is an Attack Tree of A w.r.t. Args, we also say that A has the Attack

Tree attTreeArgs(A). Note that due to condition 4(ii), where only one of possibly many

arguments Ai is chosen, an argument can have more than one Attack Tree. Furthermore,

note the difference between 3, where Ai is any argument attacking AN , and 4(ii), where

Ai has to be an attacking argument contained in Args.

Notation 5.5. If A ∈ Args, and thus the root node of attTreeArgs(A) is A+, we denote

the Attack Tree as attTree+Args(A) and call it a positive Attack Tree. If A /∈ Args, and

thus the root node of attTreeArgs(A) is A−, we denote the Attack Tree as attTree−Args(A)

and call it a negative Attack Tree.

The following example illustrates the notion of Attack Trees w.r.t. a set of arguments

which is a stable argument extension.

Example 5.1. We consider the logic program P8 and its translated AA framework AAP8

from Section 5.3. Figure 5.2 shows the two negative Attack Trees of argumentA10 w.r.t. the

stable argument extension E1 = {A2, A3, A4, A6, A8, A9, A13, A14}, i.e. attTree−E1(A10)1 and

attTree−E1(A10)2. Since A10 /∈ E1, the root node of all Attack Trees of A10 holds A−
10, and

consequently has exactly one or no attacker of A10 as a child node. A10 is attacked by the

three arguments A12, A13, and A14 (see Figure 5.1), so these are the candidates for being

a child node of A−
10. However, A+

12 cannot serve as a child node of A−
10 as A12 /∈ E1 (see

condition 4(ii) in Definition 5.4). Since both A13 and A14 are contained in E1, either of

them can be used as a child node of A−
10, leading to two possible Attack Trees of A10. The

left of Figure 5.2 depicts the negative Attack Tree attTree−E1(A10)1 where A+
14 is chosen as

the child node of A−
10, whereas the right of Figure 5.2 illustrates attTree−E1(A10)2 where

A+
13 is chosen. attTree−E1(A10)1 ends with A+

14 since A14 is not attacked in AAP8
. In

contrast, choosing A+
13 as the child node of A−

10 leads to an infinite negative Attack Tree

attTree−E1(A10)2: A
+
13 has a single child A−

11 since A11 is the only argument attacking A13;

A11 is attacked by both A12 and A13 in P8, but only A+
13 can serve as a child node of A−

11

as A12 /∈ E1; at this point, the Attack Tree starts to repeat itself, since the only possible

child node of A−
11 is A+

13, whose only child node is A−
11, and so on.

With respect to the stable argument extension E2 = {A1, A3, A4, A5, A6, A8, A11, A14} of

AAP8
, A10 has a unique negative Attack Tree attTree−E2(A10), which is exactly the same

as attTree−E1(A10)1. The reason is that only A+
14 can serve as a child node of A−

10 since

both A12 /∈ E2 and A13 /∈ E2.

Figure 5.2 illustrates that an argument might have more than one Attack Tree, as

well as that Attack Trees can be infinite. Figure 5.3 depicts another negative Attack
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A−
10 : ({not q, not u, not w}, ∅) ⊢ p

A+
14 : (∅, {w}) ⊢ w

A−
10 : ({not q, not u, not w}, ∅) ⊢ p

A+
13 : ({not ¬p}, ∅) ⊢ u

A−
11 : ({not q, not u}, ∅) ⊢ ¬p

A+
13 : ({not ¬p}, ∅) ⊢ u

...

Figure 5.2: The two negative Attack Trees attTree−E1(A10)1 (left) and attTree−E1(A10)2
(right) of A10 w.r.t. E1, as described in Example 5.1. The left Attack Tree is also the
unique negative Attack Tree attTree−E2(A10) of A10 w.r.t. E2.

A−
9 : ({not ¬p}, ∅) ⊢ p

A+
11 : ({not q, not u}, ∅) ⊢ ¬p

A−
12 : ({not w}, ∅) ⊢ q A−

13 : ({not ¬p}, ∅) ⊢ u

A+
14 : (∅, {w}) ⊢ w A+

11 : ({not q, not u}, ∅) ⊢ ¬p

A−
12 : ({not w}, ∅) ⊢ q A−

13 : ({not ¬p}, ∅) ⊢ u

A+
14 : (∅, {w}) ⊢ w

...

Figure 5.3: The unique negative Attack Tree attTree−E2(A9) of A9 w.r.t. the stable argu-
ment extension E2 of AAP8

(see Section 5.3).

Tree, illustrating the case where a node labelled ✬+✬ has more than one child node. Note

that every argument in an AA framework has at least one Attack Tree. However, an

Attack Tree may solely consist of the root, for example the unique positive Attack Tree

attTree+E1(A14) of A14 w.r.t. the stable argument extension E1 consists of only one node,

namely the root node A+
14 as this argument has no attackers.

From the definition of Attack Trees it follows that the Attack Trees of an argument

are either all positive or all negative.

Lemma 5.2. Let Args ⊆ ArP be a set of arguments.

1. If A ∈ Args, then all Attack Trees of A w.r.t. Args are positive Attack Trees

attTree+Args(A).

2. If A /∈ Args, then all Attack Trees of A w.r.t. Args are negative Attack Trees
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attTree−Args(A).

Proof. This follows directly from Definition 5.4 and Notation 5.5.

Intuitively, an Attack Tree of an argument w.r.t. a set of arguments explains why the

argument is or is not contained in the set by showing either that the argument is defended

by the set, i.e. the set attacks all attackers of the argument, or that the argument is

attacked by the set and cannot defend itself against it.

5.4.2 Attack Trees with respect to Stable Extensions

For justification purposes we construct Attack Trees w.r.t. stable argument extensions

rather than an arbitrary set of arguments. This enables us to later extract a justification

of a literal w.r.t. an answer set from an Attack Tree constructed w.r.t. the corresponding

stable argument extension. In this section we show some characteristics of Attack Trees

when constructed w.r.t. a stable argument extension, which hold for both positive and

negative Attack Trees.

One of these characteristics is that we can deduce whether or not an argument held by

a node in an Attack Tree constructed w.r.t. a stable argument extension is contained in

this stable argument extension: all arguments labelled ✬+✬ in the Attack Tree are contained

in the stable argument extension, whereas all arguments labelled ✬−✬ are not in the stable

argument extension.

Lemma 5.3. Let E be a corresponding stable argument extension of some answer set of

P and let Υ = attTreeE(A) be an Attack Tree of A ∈ ArP w.r.t. E. Then

1. for each node A+
i in Υ: Ai ∈ E;

2. for each node A−
i in Υ: Ai /∈ E.

Proof.

1. A+
i is either the root node, then by definition Ai ∈ E , or it is the only child node of

some A−
N , meaning that by definition Ai ∈ E .

2. A−
i is either the root node, then by definition Ai /∈ E , or A−

i is a child node of some

A+
N , and Ai attacks AN . From part 1 we know that AN ∈ E , hence Ai /∈ E because

E does not attack itself.

Another interesting characteristic of an Attack Tree constructed w.r.t. a stable argu-

ment extension is that all nodes holding arguments labelled ✬−✬ have exactly one child

node, rather than none. Furthermore, all leaf nodes hold arguments labelled ✬+✬.

Lemma 5.4. Let E be a corresponding stable argument extension of some answer set of

P and let Υ = attTreeE(A) be an Attack Tree of A ∈ ArP w.r.t. E . Then
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1. every node A−
N in Υ has exactly one child node;

2. all leaf nodes in Υ hold arguments labelled ✬+✬.

Proof.

1. By condition 4 in Definition 5.4, any node A−
N in an Attack Tree has either no

or exactly one child node. By Lemma 5.3 AN /∈ E . Assume that A−
N has no child

node. Then AN is not attacked in 〈ArP , AttP〉. But by definition of stable argument

extension all arguments not contained in a stable argument extension are attacked

by the stable argument extension. Contradiction.

2. This follows directly from part 1 as nodes holding an argument labelled ✬−✬ always

have a child node and thus cannot be a leaf node.

Note that infinite branches of Attack Trees do not have leaf nodes, in which case the

second part of Lemma 5.4 is trivially satisfied.

Lemma 5.4 highlights how an Attack Tree justifies an argument A w.r.t. a stable

argument extension. If the argument A is part of the stable argument extension, the Attack

Tree shows that the reason is that A is defended by the stable argument extension. This

means that any attackers of A are counter-attacked by an argument in the stable argument

extension, defending A against the attacker, and even if the defending argument is further

attacked, there will be another argument in the stable argument extension defending this

defender, until eventually the defending arguments from the stable argument extension

are not further attacked, forming the leaf nodes of the Attack Tree. If an argument A is

not part of the stable argument extension, the leaf nodes of the Attack Tree again hold

arguments from the stable argument extension, but this time these leaf nodes defend the

argument attacking A, meaning that this attacker is contained in the stable argument

extension. Thus, A is attacked by the stable argument extension and consequently A is

not part of the stable argument extension.

Lemma 5.4 also emphasises the idea that to justify an argument that is not in the

stable argument extension, it is enough to show that one of its attackers is contained in

the stable argument extension, even if there might be more than one such attacker. This

follows the general concept of proof by counter-example. Thus, an Attack Tree disproves

that the argument held by the root node is in the stable argument extension by showing

one way in which the argument is attacked by the stable argument extension.

From these considerations is follows directly that the subtree of any negative Attack

Tree obtained by removing the root node is a positive Attack Tree of the argument at-

tacking the root node.

Lemma 5.5. Let E be a corresponding stable argument extension of some answer set of

P. Let Υ = attTree−E (A) be an Attack Tree of A ∈ ArP such that A /∈ E and let A+
i be
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A−
1 : ({not tightOnMoney, not correctiveLenses}, {shortSighted}) ⊢ laserSurgery

A+
2 : ({not richParents}, {student}) ⊢ tightOnMoney

Figure 5.4: A negative Attack Tree of the argument A1 w.r.t. the corresponding stable
argument extension of the answer set Sdoctor of the logic program Pdoctor (see Example 5.2).

the (only) child node of the root node A− in attTree−E (A). Let Υ′ be the subtree of Υ with

root node A+
i obtained from Υ by removing its root node A−. Then Υ′ is a positive Attack

Tree of Ai.

Proof. This follows directly from Definition 5.4 and Notation 5.5.

This observation will be useful when comparing Attack Trees to abstract dispute trees

in the next section. Example 5.2 demonstrates how an Attack Tree can be used to explain

why a literal is or is not contained in an answer set in terms of an argument for this literal.

Example 5.2. Consider Dr. Smith, his patient Peter, and the decision support system

introduced in Section 5.3. In order to explain to Dr. Smith why laserSurgery is not a

suggested treatment of the decision support system, an Attack Tree for an argument with

conclusion laserSurgery w.r.t. the corresponding stable argument extension of the answer

set Sdoctor can be constructed. Figure 5.4 displays such an Attack Tree, which expresses

that Peter should not have laser surgery as the decision to use laser surgery is based on

the assumption that the patient is not tight on money; however there is evidence that

Peter is tight on money as he is known to be a student and there is no evidence against

the assumption that his parents are not rich. Note that this is not the only Attack Tree

for A1 and therefore not the only possible explanation why Peter should not have laser

surgery. A second Attack Tree can be constructed using an argument with conclusion

correctiveLenses as an attacker of A1.

On the other hand, Dr. Smith might want to know why the treatment recommended

by the decision support system is intraocularLenses. The respective Attack Tree is

illustrated in Figure 5.5. It expresses that Peter should get intraocular lenses because for

every possible evidence against intraocular lenses (A1, A4, A6) there is counter-evidence

(A2, A5, and A7 respectively): for example, receiving intraocular lenses is based on the

assumption that it has not been decided that the patient should have glasses. Even

though there is some evidence that Peter could have glasses, this evidence is based on the

assumption that he does not care about the practicality of his treatment. However, it is

known that Peter cares about practicality since he likes to do sports.

5.4.3 Relationship between Attack Trees and Abstract Dispute Tress

In order to further characterise Attack Trees, we prove that Attack Trees constructed

w.r.t. stable argument extensions are special cases of abstract dispute trees (see Sec-
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A+
3 : ({not laserSurgery, not glasses, not contactLenses}, {shortSighted})

⊢ intraocularLenses

A−
1 : (. . .) ⊢ laserSurgery

A+
2 : (. . .) ⊢ tightOnMoney

A−
6 : ({not laserSurgery,

not caresAboutPracticality,
not contactLenses}, {shortSighted})

⊢ glasses

A+
7 : (∅, {likesSports})

⊢ caresAboutPracticality

A−
4 : ({not laserSurgery, not afraidToTouchEyes, not longSighted,

not glasses}, {shortSighted}) ⊢ contactLenses

A+
5 : (∅, {afraidToTouchEyes}) ⊢ afraidToTouchEyes

Figure 5.5: A positive Attack Tree of the argument A3 w.r.t. the corresponding stable
argument extension of the answer set Sdoctor of the logic program Pdoctor (see Example 5.2).
The nodes holding A−

1 and A+
2 are abbreviated as they are the same as in Figure 5.4.

tion 2.2.1). Using this correspondence, we show that Attack Trees provide explanations

of an argument in terms of an admissible fragment of the stable argument extension.

This result is then extended, proving that given a literal k and an answer set, an Attack

Tree of an argument with conclusion k w.r.t. the corresponding stable argument extension

provides a justification in terms of an admissible fragment of the answer set.

We first define a translation of the nodes holding arguments labelled ✬+✬ and ✬−✬ in

Attack Trees into the status of proponent and opponent nodes in abstract dispute trees.

Definition 5.6 (Translated Abstract Dispute Tree). Let Args ⊆ ArP be a set of argu-

ments and let attTreeArgs(A) be an Attack Tree of A ∈ ArP w.r.t. Args. The translated

abstract dispute tree TArgs(A) is obtained from attTreeArgs(A) by assigning the status

of proponent to all nodes holding an argument labelled ✬+✬, the status of opponent to

all nodes holding an argument labelled ✬−✬, and dropping the labels ✬+✬ and ✬−✬ of all

arguments in the tree.

If Attack Trees are constructed w.r.t. a stable argument extension, they correspond to

abstract dispute trees in the following way.

Lemma 5.6. Let E be a corresponding stable argument extension of some answer set of

P. Let attTreeE(A) be an Attack Tree of A ∈ ArP w.r.t. E and let TE(A) be the translated

abstract dispute tree. Then

1. if A ∈ E, then TE(A) is an abstract dispute tree for A;
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2. if A /∈ E, then the subtree of TE(A) with root node Ai, where A
+
i is the only child of

the root A− in attTreeE(A), is an abstract dispute tree for Ai.

Proof. This follows directly from the definition of abstract dispute trees and Lemma 5.4.

Note that the converse of the first item in Lemma 5.6 does not hold, i.e. it is not the

case that every abstract dispute tree for an argument A corresponds to an Attack Tree

attTreeE(A).

Example 5.3. Let P9 be the following logic program:

{ p← not p, not q;

q ← not p, not u;

u← not q }

The translated AA framework AAP9
has six arguments:

A1 : ({not p}, ∅) ⊢ not p A4 : ({not p, not q}, ∅) ⊢ p

A2 : ({not q}, ∅) ⊢ not q A5 : ({not p, not u}, ∅) ⊢ q

A3 : ({not u}, ∅) ⊢ not u A6 : ({not q}, ∅) ⊢ u

The only stable argument extension of AAP9
, corresponding to the only answer set of P9,

is E = {A1, A3, A5}. Figure 5.6 illustrates the unique negative Attack Tree attTree−E (A4)

of A4 w.r.t. E . Constructing the translated abstract dispute tree of attTree−E (A4) results

in the tree shown in Figure 5.7. As stated by the second item in Lemma 5.6, deleting

the opponent root node of the translated abstract dispute tree TE(A4) yields an abstract

dispute tree for A5. Figure 5.8 gives an example of an abstract dispute tree that does not

correspond to an Attack Tree, showing that the converse of Lemma 5.6 does not hold. The

abstract dispute tree for A6 starts with a proponent node, which corresponds to the label

✬+✬ in an Attack Tree. However, any Attack Tree of A6 is negative since A6 /∈ E , so the

root node is always A−
6 . Thus, there is no Attack Tree that corresponds to the abstract

dispute tree for A6.

Using the correspondence with abstract dispute trees, we can further characterise At-

tack Trees constructed w.r.t. a stable argument extension as representing admissible frag-

ments of this stable argument extension. Starting with positive Attack Trees, we show

that translated abstract dispute trees of positive Attack Trees w.r.t. a stable argument

extension are admissible.

Lemma 5.7. Let E be a corresponding stable argument extension of some answer set of

P and let A ∈ E. For every positive Attack Tree attTree+E (A) of A w.r.t. E, TE(A) is an

admissible abstract dispute tree.
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A−
4 : ({not p, not q}, ∅) ⊢ p

A+
5 : ({not p, not u}, ∅) ⊢ q

A−
4 : ({not p, not q}, ∅) ⊢ p A−

6 : ({not q}, ∅) ⊢ u

A+
5 : ({not p, not u}, ∅) ⊢ q

...

...

Figure 5.6: The unique negative Attack Tree attTree−E (A4) ofA4 w.r.t. the stable argument
extension E of 〈ArP9

, AttP9
〉 (see Example 5.3).

opponent: A4 : ({not p, not q}, ∅) ⊢ p

proponent: A5 : ({not p, not u}, ∅) ⊢ q

opponent: A4 : ({not p, not q}, ∅) ⊢ p opponent: A6 : ({not q}, ∅) ⊢ u

proponent: A5 : ({not p, not u}, ∅) ⊢ q proponent: A5 : ({not p, not u}, ∅) ⊢ q
...

...

Figure 5.7: The translated abstract dispute tree TE(A4) of attTree−E (A4) (see Example 5.3
and Figure 5.6). As the root of TE(A4) is an opponent node, it is not an abstract dispute
tree. However, the subtree with root node A5 is an abstract dispute tree A5.

Proof. According to Lemma 5.3, for each A+
i in attTree+E (A), Ai ∈ E , and for each A−

j

in attTree+E (A), Aj /∈ E . By definition of stable argument extension, for all arguments

B in 〈ArP , AttP〉 either B ∈ E or B /∈ E . Thus, Ai 6= Aj for all i, j, and therefore by

Definition 5.6 no argument labels both a proponent and an opponent node in TE(A),

satisfying the condition for admissibility. By Lemma 5.6, TE(A) is an abstract dispute

tree.

Since a positive Attack Tree constructed w.r.t. a stable argument extension corresponds

to an admissible abstract dispute tree, the set of all arguments labelled ✬+✬ in the Attack

Tree forms an admissible argument extension, in particular one that is a subset of this

stable argument extension.

Theorem 5.8. Let E be a corresponding stable argument extension of some answer set of

P, and attTree+E (A) a positive Attack Tree of A ∈ E. Then the set Args of all arguments

labelled ✬+✬ in attTree+E (A) is an admissible argument extension of AAP and Args ⊆ E.

Proof. Let Args denote the set of all arguments labelled ✬+✬ in attTree+E (A). Then Args

is the set of arguments held by proponent nodes in the translated abstract dispute tree
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proponent: A6 : ({not q}, ∅) ⊢ u

opponent: A5 : ({not p, not u}, ∅) ⊢ q

proponent: A6 : ({not q}, ∅) ⊢ u
...

Figure 5.8: An abstract dispute tree for A6 in AAP9
(see Example 5.3).

TE(A) of attTree+E (A). By Lemma 5.7, TE(A) is an admissible abstract dispute tree. By

Theorem 3.2(i) in [DMT07], Args is an admissible argument extension, and by Lemma 5.3,

Args ⊆ E .

This result characterises Attack Trees as a way of justifying an argument by means

of an admissible fragment of the stable argument extension. In other words, an Attack

Tree does not use the whole stable argument extension to explain that an argument is in

the stable argument extension, but only provides an admissible subset sufficient to show

that it defends the argument in question. Furthermore, we can express this result in logic

programming terms: given a literal and an answer set, an Attack Tree of an argument

for this literal constructed w.r.t. the corresponding stable argument extension justifies the

argument using an admissible fragment of the answer set.

Theorem 5.9. Let S be an answer set of P, k ∈ SNAF, and E the corresponding sta-

ble argument extension of S in AAP . Let A ∈ E be a corresponding argument of k,

attTree+E (A) a positive Attack Tree of A, and Asms = {α | α ∈ AP,A+
1 : (AP,FP ) ⊢

k1 in attTree+E (A)}. Then

1. P ∪ Asms is an admissible scenario of P in the sense of [DR91];

2. {k1 | A
+
1 : (AP,FP ) ⊢ k1 in attTree+E (A)} ⊆ SNAF.

Proof.

1. By Theorem 5.8 and Theorem 2.2(ii) in [DMT07], Asms is an admissible set of

assumptions. Then by Theorem 4.5 in [BDKT97], P ∪ Asms is an admissible

scenario of P in the sense of [DR91].1

2. By Theorem 5.8 and Corollary 4.20.

The following example illustrates the characteristics of positive Attack Trees and how

they can be used for justifying an argument for a literal in an answer set.

1Theorem 4.5 refers to [Dun95a] where admissible scenarios are defined for logic programs without
classical negation. This result can be easily extended to the definition of admissible scenarios of logic
programs with both classical negation and NAF as we are only concerned with consistent logic programs.
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Example 5.4. Consider again the logic program P8 and its answer set S1 = {w, u, p}

with the corresponding stable argument extension E1 = {A2, A3, A4, A6, A8, A9, A13, A14}

(see Section 5.3). To justify that not q ∈ S1NAF
, we can construct an Attack Tree of an

argument for not q, i.e. of A3, w.r.t. E1. The resulting positive Attack Tree attTree+E1(A3)

is depicted on the left of Figure 5.9. Translating this Attack Tree into an abstract dis-

pute tree as given in Definition 5.6, yields the translated abstract dispute tree TE1(A3)

illustrated on the right of Figure 5.9. This abstract dispute tree is admissible as stated in

Lemma 5.7. The set of arguments labelled ✬+✬ in attTree+E1(A3) is {A3, A14} ⊆ E1, which is

an admissible argument extension of AAP8
, and the set of conclusions of these arguments

is {not q, w} ⊆ S1NAF
, as stated by Theorems 5.8 and 5.9. The Attack Tree attTree+E1(A3)

explains that the literal not q is in the answer set S1 because it is supported and defended

by an admissible subset of S1, namely by {not q, w}. In terms of literals, the Attack

Tree expresses that not q is “attacked” by the literal q, which is “counter-attacked” by w,

thereby “defending” not q.

A+
3 : ({not q}, ∅) ⊢ not q

A−
12 : ({not w}, ∅) ⊢ q

A+
14 : (∅, {w}) ⊢ w

proponent: A3 : ({not q}, ∅) ⊢ not q

opponent: A12 : ({not w}, ∅) ⊢ q

proponent: A14 : (∅, {w}) ⊢ w

Figure 5.9: The positive Attack Tree attTree+E1(A3) of A3 w.r.t. the corresponding stable
argument extension E1 of S1 (left) and the translated abstract dispute tree TE1(A3) of
attTree+E1(A3) (right) (see Example 5.4).

Similarly to positive Attack Trees, we can characterise the explanations given by neg-

ative Attack Trees using the correspondence between the subtree of a negative Attack

Tree and an abstract dispute tree: negative Attack Trees justify that an argument is not

in a stable argument extension because it is attacked by an admissible fragment of this

stable argument extension. We first prove that when deleting the opponent root node of

the translated abstract dispute tree of a negative Attack Tree constructed w.r.t. a stable

argument extension, the resulting abstract dispute tree is admissible.

Lemma 5.10. Let E be a corresponding stable argument extension of some answer set

of P, and A ∈ ArP such that A /∈ E. For every negative Attack Tree attTree−E (A) of A

w.r.t. E, the subtree of TE(A) with root node Ai, where A
+
i is the only child of the root

A− in attTree−E (A), is an admissible abstract dispute tree.

Proof. By Lemma 5.5, the subtree of Υ′ of attTree−E (A) with root node Ai is a positive

Attack Tree of Ai. By Lemma 5.7, Υ′ is an admissible abstract dispute tree. Trivially, the

subtree of TE(A) with root node Ai coincides with the translated abstract dispute tree of

Υ′.
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We now prove that a negative Attack Tree constructed w.r.t. a stable argument exten-

sion justifies the root by showing that it is attacked by an admissible argument extension

of AAP , and in particular by an admissible argument extension that is a subset of the

stable argument extension.

Theorem 5.11. Let E be a corresponding stable argument extension of some answer set

of P, and attTree−E (A) a negative Attack Tree of A ∈ ArP . Then the set Args of all

arguments labelled ✬+✬ in attTree−E (A) is an admissible argument extension of AAP and

Args ⊆ E.

Proof. Let Args denote the set of all arguments labelled ✬+✬ in attTree−E (A). Then Args

is the set of arguments held by proponent nodes in the translated abstract dispute tree

TE(A) of attTree−E (A). By Lemma 5.10, the subtree of TE(A) with root node Ai, where

A+
i is the only child of the root A− in attTree−E (A), is an admissible abstract dispute tree.

By Theorem 3.2(i) in [DMT07], Args is an admissible argument extension. By Lemma 5.3,

Args ⊆ E .

It follows, that a negative Attack Tree justifies an argument for a literal that is not in

the answer set in question in terms of an admissible fragment of the answer set “attacking”

the literal.

Theorem 5.12. Let S be an answer set of P, k /∈ SNAF, and E the corresponding stable

argument extension of S in AAP . Let A be some argument for k, attTree−E (A) an Attack

Tree of A, and Asms = {α | α ∈ AP,A+
1 : (AP,FP ) ⊢ k1 in attTree−E (A)}. Then

1. P ∪ Asms is an admissible scenario of P in the sense of [DR91];

2. {k1 | A
+
1 : (AP,FP ) ⊢ k1 in attTree−E (A)} ⊆ SNAF.

Proof.

1. By Theorem 5.11 and Theorem 2.2(ii) in [DMT07], Asms is an admissible set of

assumptions. Then by Theorem 4.5 in [BDKT97], P ∪ Asms is an admissible

scenario of P in the sense of [DR91].

2. By Theorem 5.11 and Corollary 4.20.

This result provides the basis for the construction of a justification of a literal not con-

tained in an answer set, which provides a meaningful explanation in terms of an admissible

subset of the answer set.

Example 5.5. Consider the logic program P9 and its only answer set S = {q} with the

corresponding stable argument extension E = {A1, A3, A5} (see Example 5.3). To justify

why p /∈ S we can construct an Attack Tree of an argument with conclusion p, i.e. of

A4, w.r.t. E . The resulting negative Attack Tree attTree−E (A4) is depicted in Figure 5.6
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and the translated abstract dispute tree TE(A4) in Figure 5.7. When deleting the root

opponent node A4 of TE(A4), the resulting abstract dispute tree is admissible as observed

in Lemma 5.10. Furthermore, the set of arguments labelled ✬+✬ in attTree−E (A4) is {A5},

which is a subset of the corresponding stable argument extension E and an admissible

argument extension of AAP9
(by Theorem 5.11). Moreover, the set of conclusions of

arguments in this admissible argument extension is {q} ⊆ S, which is an admissible

scenario of P as stated in Theorem 5.12. Therefore, the negative Attack Tree attTree−E (A4)

explains that the argument A4 is not in the corresponding stable argument extension

because it is attacked by an admissible fragment of this stable argument extension, namely

by {A5}. Even though A4 together with A6 counter-attacks this attack, A5 defends itself

against this counter-attack. This explanation can also be interpreted in terms of literals:

p is not in the answer set S because its derivation is “attacked” by a derivation of q, which

is an admissible fragment of S. Even though the derivation of p and the derivation of u

both “counter-attack” the derivation of q, attempting to defend p, the derivation of q can

attack both counter-attacks and thus the derivation of q defends itself. Consequently, the

attack of the derivation of q on the derivation of p “succeeds”, which is the reason that p

is not part of the answer set.

Using argumentation-theoretic concepts for the explanation of literals w.r.t. an answer

set, may seem unintuitive to ASP-experts. Thus, we now define a second type of jus-

tification, which provides explanations in terms of literals and relations between them,

rather than in terms of arguments as used in Attack Trees. The new type of justification

is constructed from Attack Trees by flattening the structure of arguments occurring in

an Attack Tree as well as of the attack relation between these arguments. In addition to

reflecting logic programming concepts, an advantage of the new justifications is that they

are finite even if constructed from infinite Attack Trees.

5.5 Basic ABA-Based Answer Set Justifications

In this section we define the basic concepts for constructing justifications of a literal k in

terms of literals and their relations, based on Attack Trees of arguments with conclusion

k. The idea is to extract the assumption- and fact-premises of each argument in the At-

tack Tree to express a support-relation between each of the premise-literals and the literal

forming the conclusion of the argument. Furthermore, the attacks between arguments in

an Attack Tree are translated into attack-relations between the literals forming the con-

clusions of these arguments. We first introduce some terminology to refer to the structure

of an Attack Tree.

Notation 5.7. Let Υ be an Attack Tree and let N be a node in Υ. arg(N) denotes

the argument held by node N . If arg(N) is A : (AP,FP ) ⊢ k, then name(N) = A,

conc(N) = k, AP (N) = AP , FP (N) = FP , and label(N) is either ✬+✬ or ✬−✬, depending

on the label of A in Υ. The set of all child nodes of N in Υ is denoted children(N).
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5.5.1 Basic Justifications

We now define how to express the structure of an Attack Tree as a set of relations between

literals.

Definition 5.8 (Basic Justification). Let Args ⊆ ArP , A ∈ ArP , and Υ = attTreeArgs(A)

an Attack Tree of A w.r.t. Args. The Basic Justification of A w.r.t. Υ, denoted justBΥ(A),

is obtained as follows:

justBΥ(A) =
⋃

N in Υ

{supp rel(k, conc(N)) | k ∈ AP (N) ∪ FP (N)\{conc(N)}} ∪

{att rel(conc(M), k) |M ∈ children(N), conc(M) = k}

Example 5.6. Consider the logic program P8 from Section 5.3 and the Attack Trees

discussed in Example 5.1. Since Υ1 = attTree+E1(A14) comprises only the node A+
14, the

Basic Justification of A14 w.r.t. Υ1 is justBΥ1
(A14) = ∅.

Now consider the negative Attack Tree Υ2 = attTree−E2(A10) of A10 w.r.t. E2 depicted

on the left of Figure 5.2. The Basic Justification of A10 w.r.t. Υ2 is:

justBΥ2
(A10) = {supp rel(not q, p), supp rel(not u, p), supp rel(not w, p)} ∪

{att rel(w, not w)}

= {supp rel(not q, p), supp rel(not u, p), supp rel(not w, p),

att rel(w, not w)}

The following Basic Justification is obtained from the negative Attack Tree Υ3 =

attTree−E2(A9) of A9 w.r.t. the stable argument extension E2 (see Figure 5.3):

justBΥ3
(A9) = {supp rel(not ¬p, p), att rel(¬p, not ¬p), supp rel(not q,¬p),

supp rel(not u,¬p), att rel(q, not q), att rel(u, not u),

supp rel(not w, q), att rel(w, not w), supp rel(not ¬p, u)}

Note that even though Υ3 is an infinite Attack Tree, the Basic Justification of A9 w.r.t. Υ3

is finite. In particular, when A11 reoccurs in the Attack Tree as an attacker of A13, no new

att rel or supp rel pairs are added to the Basic Justification: even though A11 attacks A9

with conclusion p at its first occurrence and A13 with conclusion d at its second occurrence,

no new att rel pair is added since the attacked assumption is in both cases not ¬p.

In Basic Justifications, attacks between arguments are translated into “attacks” be-

tween literals, and supports of premises into “supports” of literals. In other words, a

Basic Justification is the flattened version of an Attack Tree. Even though it provides

an explanation in terms of literals rather than arguments, it is not sufficient to justify a

literal w.r.t. an answer set for two reasons, as explained below.

Firstly, a Basic Justification does not contain the literal being justified, which is for

example a problem when justifying a fact. When justifying a fact k, we construct an Attack

146



Tree of the fact-argument for k, which consists of only the root node A+ : (∅, {k}) ⊢ k,

leading to an empty Basic Justification. An empty set is not meaningful, so it would be

useful if the literal in question was contained in the justification. Furthermore, a problem

arises when trying to justify a literal for which no argument exists in the translated AA

framework, i.e. a literal that cannot be derived in any way from the logic program. For

such a literal, which is trivially not part of any answer set, it is not possible to construct an

Attack Tree as no argument for this literal exists in the translated AA framework. Since

a Basic Justification is constructed from an Attack Tree, there is no Basic Justification

for such a literal. This is unsatisfying, so we would like to have some kind of justification,

rather than to fail.

The second shortcoming of a Basic Justification is that it only provides one reason why

a literal is not in an answer set as it is constructed from a single negative Attack Tree,

which provides one explanation how the root argument is attacked by the set of arguments

in question. However, it is more meaningful to capture all different explanations of how

a literal “failed” to be in the answer set in question. Thus, we want the justification of a

literal not in the answer set to consist of all possible Basic Justifications of this literal.

In order to overcome these two deficiencies, we introduce BABAS Justifications, which

add the literal being justified to the Basic Justification set and provide a collection of all

Basic Justifications for a literal that is not contained in an answer set.

5.5.2 BABAS Justifications

We now define the Basic ABA-Based Answer Set (BABAS) Justification of a literal

w.r.t. an answer set, which is based on the Basic Justifications of an argument w.r.t. an

Attack Tree. If a literal k is contained in an answer set, its BABAS Justification is con-

structed from one Basic Justification of one of the corresponding arguments of k. This is

inspired by the result in Proposition 5.1 that if a literal k is part of an answer set, there

exists some argument with conclusion k in the corresponding stable argument extension.

Conversely, if k is not contained in an answer set, its BABAS Justification is constructed

from all Basic Justifications of all arguments with conclusion k, expressing all reasons why

k is not part of this answer set. Again, this choice is based on Proposition 5.1, stating

that if a literal k is not part of an answer set, all arguments with conclusion k are not

contained in the corresponding stable argument extension.

Definition 5.9 (Basic ABA-Based Answer Set Justification). Let S be an answer set of

P and let E be the corresponding stable argument extension of S in AAP .

1. Let k ∈ SNAF, A ∈ E a corresponding argument of k, and Υ = attTree+E (A) some

positive Attack Tree of A w.r.t. E . A Positive BABAS Justification of k w.r.t. S is:

justB+
S (k) = {k} ∪ justBΥ(A).

2. Let k /∈ SNAF, A1, . . . , An (n ≥ 0) all arguments with conclusion k in ArP , and

Υ11, . . . ,Υ1m1
, . . . ,Υn1, . . . ,Υnmn (m1, . . . ,mn ≥ 0) all negative Attack Trees of
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A1, . . . , An w.r.t. E .

(a) If n = 0, then the Negative BABAS Justification of k w.r.t. S is:

justB−
S (k) = ∅.

(b) If n > 0, then the Negative BABAS Justification of k w.r.t. S is:

justB−
S (k) = {{k} ∪ justBΥ11

(A1), . . . , {k} ∪ justBΥ1m1
(A1), . . . ,

{k} ∪ justBΥnmn
(An)}.

Note that there can be more than one Positive BABAS Justification of a literal con-

tained in an answer set, but only one Negative BABAS Justification of a literal not con-

tained in an answer set. Note also that the Positive BABAS Justification is a set of

supp rel and att rel pairs (plus the literal that is justified), whereas the Negative BABAS

Justification is a set of sets containing these pairs (where each set also contains the literal

that is justified).

A BABAS Justification can be represented as a graph, where all literals occurring in

a supp rel or att rel pair form nodes, and the supp rel and att rel relations are edges

between these nodes. For Negative BABAS Justifications, a separate graph for each set

in the justification is given. In contrast, Positive BABAS Justifications are illustrated as

a single graph.

Example 5.7. Based on the Basic Justifications in Example 5.6, we illustrate the con-

struction of BABAS Justifications. Consider w ∈ S1, where the corresponding stable

argument extension of S1 is E1 (see Section 5.3). There is only one corresponding ar-

gument of w in E1, namely A14 : (∅, {w}) ⊢ w, which has a unique Basic Justification

justBΥ1
(A14) = ∅. Therefore, a unique Positive BABAS Justification of w w.r.t. S1 is

justB+
S1

(w) = {w}. This justification expresses that w is in the answer set S1 because it

is supported only by itself, in other words, it is a fact.

We now consider the BABAS Justification of p /∈ S2, where the corresponding stable

argument extension of S2 is E2. Since p /∈ S2, we examine all arguments with conclusion p

in ArP8
, that is A9 and A10. Both A9 and A10 have a unique negative Attack Tree w.r.t. E2,

Υ3 = attTree−E2(A9) (see Figure 5.3) and Υ2 = attTree−E2(A10) (see left of Figure 5.2).

From the Basic Justifications justBΥ3
(A9) and justBΥ2

(A10) explained in Example 5.6,

the BABAS Justification of p w.r.t. S2 is obtained as follows:

justB−
S2

(p) = {{p, supp rel(not ¬p, p), att rel(¬p, not ¬p), supp rel(not q,¬p),

supp rel(not u,¬p), att rel(q, not q), att rel(u, not u),

supp rel(not w, q), att rel(w, not w), supp rel(not ¬p, u)},

{p, supp rel(not q, p), supp rel(not u, p), supp rel(not w, p),

att rel(w, not w)}}

Figure 5.10 depicts the graphical representation of the Negative BABAS Justification

justB−
S2

(p), where the left of the figure represents the first set in justB−
S2

(p), and the
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p

not ¬p

¬p

not q not u

q u

not w

w

p

not q not u not w

w

Figure 5.10: Graphical representation of the Negative BABAS Justification justB−
S2

(p) in
Example 5.7. Dashed lines stand for supp rel pairs in the BABAS Justification, whereas
solid lines represent att rel pairs.

right of the figure the second set.

So far, we only illustrated BABAS Justifications of literals k for which at least one

argument exists. In general, the BABAS Justification of literals that do not have such an

argument is the empty set.

Example 5.8. Consider the literal ¬q /∈ S1 in the logic program P8 (see Section 5.3).

There is no clause with head ¬q in P8, and consequently ArP8
does not comprise an

argument with conclusion ¬q. Thus, there is no Attack Tree of an argument for ¬q and

no Basic Justification of an argument for ¬q. As a consequence, the Negative BABAS

Justification of ¬q w.r.t. S1 is justB−
S1

(¬q) = ∅.

5.5.3 Shortcomings of BABAS Justifications

A BABAS Justification is a flat structure, which loses some information as compared

to the underlying Attack Trees. Attack Trees label arguments w.r.t. a stable argument

extension, expressing whether or not an argument is part of the stable argument extension.

However, a BABAS Justification does not provide any information about whether or not

a literal is contained in the answer set in question. Whether or not a literal is part of an

answer set is important to know, since attacks and supports by literals contained in the

answer set “succeed”, whereas attacks and supports by literals not in the answer set do

not “succeed”.

Example 5.9. Consider the Negative BABAS Justification justB−
S2

(p) from Example 5.7

(see Figure 5.10). justB−
S2

(p) does not express whether or not the “attacking” literal ¬p

is part of S2, neither in set notation nor in the graphical representation. In contrast, the

underlying Attack Tree attTree−E2(A9) in Figure 5.3 specifies that the argument A11 for

¬p is in the corresponding stable argument extension E2, by labelling A11 as ✬+✬.
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The next example illustrates another shortcoming of BABAS Justifications, which

arises if the underlying Attack Tree contains different arguments that have the same

conclusion and occur as child nodes of the same parent node.

Example 5.10. Consider the two logic programs P10 (left) and P11 (right):

{ p← not u;

p← not w;

q ← not p;

u← ;

w ← }

{ p← not u, not w;

q ← not p;

u← ;

w ← }

Both logic programs have only one answer set, SP10
= SP11

= {u,w, q}. The translated

AA frameworks AAP10
(left) and AAP11

(right) have the following arguments:

A1 : ({not u}, ∅) ⊢ not u

A2 : ({not ¬u}, ∅) ⊢ not ¬u

A3 : ({not w}, ∅) ⊢ not w

A4 : ({not ¬w}, ∅) ⊢ not ¬w

A5 : ({not p}, ∅) ⊢ not p

A6 : ({not ¬p}, ∅) ⊢ not ¬p

A7 : ({not q}, ∅) ⊢ not q

A8 : ({not ¬q}, ∅) ⊢ not ¬q

A9 : ({not p}, ∅) ⊢ q

A10 : (∅, {u}) ⊢ u

A11 : (∅, {w}) ⊢ w

A12 : ({not u}, ∅) ⊢ p

A13 : ({not w}, ∅) ⊢ p

A1 : ({not u}, ∅) ⊢ not u

A2 : ({not ¬u}, ∅) ⊢ not ¬u

A3 : ({not w}, ∅) ⊢ not w

A4 : ({not ¬w}, ∅) ⊢ not ¬w

A5 : ({not p}, ∅) ⊢ not p

A6 : ({not ¬p}, ∅) ⊢ not ¬p

A7 : ({not q}, ∅) ⊢ not q

A8 : ({not ¬q}, ∅) ⊢ not ¬q

A9 : ({not p}, ∅) ⊢ q

A10 : (∅, {u}) ⊢ u

A11 : (∅, {w}) ⊢ w

A14 : ({not u, not w}, ∅) ⊢ p

AAP10
and AAP11

share arguments A1 to A11. In addition, AAP10
has arguments A12 and

A13, whereas AAP11
has only one additional argument A14. Both AA frameworks have

a unique stable argument extension, EP10
= EP11

= {A2, A4, A5, A6, A8, A9, A10, A11}.

EP10
is the corresponding stable argument extension of SP10

and EP11
the correspond-

ing stable argument extension of SP11
. We now examine the BABAS Justifications of q

w.r.t. SP10
and SP11

by constructing Attack Trees of the corresponding arguments of q

w.r.t. EP10
and EP11

, respectively. In both AAP10
and AAP11

, the only corresponding ar-

gument of q is A9, which has a unique positive Attack Tree w.r.t. EP10
(attTree+EP10

(A9)),

depicted in Figure 5.11, and two positive Attack Trees w.r.t. EP11
(attTree+EP11

(A9)1 and

attTree+EP11

(A9)2), depicted in Figure 5.12. The unique Positive BABAS Justification

of q w.r.t. SP10
constructed from attTree+EP10

(A9) and the two possible Positive BABAS

Justifications of q w.r.t. SP11
constructed from attTree+EP11

(A9)1 and attTree+EP11

(A9)2,
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A+
9 : ({not p}, ∅) ⊢ q

A−
12 : ({not u}, ∅) ⊢ p A−

13 : ({not w}, ∅) ⊢ p

A+
10 : (∅, {u}) ⊢ u A+

11 : (∅, {w}) ⊢ w

Figure 5.11: The unique positive Attack Tree attTree+EP10

(A9) of A9 w.r.t. EP10
(see Ex-

ample 5.10).

A+
9 : ({not p}, ∅) ⊢ q

A−
14 : ({not u, not w}, ∅) ⊢ p

A+
10 : (∅, {u}) ⊢ u

A+
9 : ({not p}, ∅) ⊢ q

A−
14 : ({not u, not w}, ∅) ⊢ p

A+
11 : (∅, {w}) ⊢ w

Figure 5.12: The two positive Attack Trees attTree+EP11

(A9)1 (left) and attTree+EP11

(A9)2

(right) of A9 w.r.t. EP11
(see Example 5.10).

respectively, are:

justB+
SP10

(q) = {q, supp rel(not p, q), att rel(p, not p), supp rel(not u, p),

att rel(u, not u), supp rel(not w, p), att rel(w, not w)}

justB+
SP11

(q) = {q, supp rel(not p, q), att rel(p, not p), supp rel(not u, p),

supp rel(not w, p), att rel(u, not u)}

justB+
SP11

(q) = {q, supp rel(not p, q), att rel(p, not p), supp rel(not u, p),

supp rel(not w, p), att rel(w, not w)}

The graphical representations of these BABAS Justifications are depicted in Figure 5.13.

All of them give the impression that p is supported by not u and not w together, which

is only correct in the case of P11. In P10, there are two different ways of concluding p, one

supported by the NAF literal not u, and the other one by not w, which is not clear from

justB+
SP10

(q).

Example 5.10 suggests that if a node in an Attack Tree has various children holding

arguments with the same conclusion, these child nodes should be distinguished in a justi-

fication. We address this problem in the next section by defining a more elaborate version

of ABA-Based Answer Set Justifications.
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q

not p

p

not u not w

u w

q

not p

p

not u not w

u

q

not p

p

not u not w

w

Figure 5.13: The unique Positive BABAS Justification justB+
SP10

(q) (left) and the two pos-

sible Positive BABAS Justifications justB+
SP11

(q) (middle and right) from Example 5.10.

5.6 Labelled ABA-Based Answer Set Justifications

We now introduce Labelled ABA-Based Answer Set (LABAS) Justifications, which address

the shortcomings of BABAS Justifications by labelling the relations and literals in the

justification as either ✬+✬ or ✬−✬, depending on the labels of arguments in the underlying

Attack Trees. In addition, literals can have an asm or fact tag, indicating that they

are used as assumptions or facts, respectively. Non-assumption and non-fact literals are

tagged with their argument’s name in order to distinguish between different arguments

with the same conclusion occurring in an Attack Tree. We refer to the structure of nodes

in an Attack Tree as introduced in Notation 5.7. Similarly to BABAS Justifications,

LABAS Justifications are defined in terms of Labelled Justifications, which are a flattened

version of Attack Trees. In contrast to Basic Justifications, Labelled Justifications label

the literals and relations extracted from an Attack Tree, and extract only relevant support

relations.

5.6.1 Labelled Justifications

A Labelled Justification assigns the label ✬+✬ to all facts and NAF literals occurring as

premises of an argument labelled ✬+✬ in the Attack Tree, as well as to this argument’s

conclusion. A Labelled Justification assigns the label ✬−✬ to the conclusion of an argument

labelled ✬−✬ in the Attack Tree as well as to some NAF literals supporting this argument,

namely to those NAF literals whose contrary is the conclusion of a child node of this

argument in the Attack Tree. Attack and support relations are labelled ✬+✬ if the first

literal in the relation is labelled ✬+✬, and labelled ✬−✬ if the first literal in the relation is

labelled ✬−✬. Since the labels in a Labelled Justification depend on the labels of arguments

in an Attack Tree, the definition is split into two cases: one for nodes holding arguments

labelled ✬+✬ in the Attack Tree, and the other for nodes holding arguments labelled ✬−✬ in

the Attack Tree.

Definition 5.10 (Labelled Justification). Let Args ⊆ ArP , A ∈ ArP , and let Υ =

attTreeArgs(A) be an Attack Tree of A w.r.t. Args. The Labelled Justification of A
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w.r.t. Υ, denoted justLΥ(A), is obtained as follows:

justLΥ(A) =
⋃

N in Υ, label(N)=+

{supp rel+(k+asm, conc(N)+AN
) | k ∈ AP (N)\conc(N), name(N) = AN} ∪

{supp rel+(k+fact, conc(N)+AN
) | k ∈ FP (N)\conc(N), name(N) = AN} ∪

{att rel−(conc(M)−AM
, k+asm) |M ∈ children(N), conc(M) = k,

name(M) = AM} ∪

⋃
N in Υ, label(N)=−

{supp rel−(k−asm, conc(N)−AN
) | k ∈ AP (N)\conc(N), children(N) = {M},

conc(M) = k, name(N) = AN} ∪

{att rel+(conc(M)+fact, k
−
asm) | children(N) = {M}, conc(M) = k,

FP (M) = {conc(M)}, AP (M) = ∅} ∪

{att rel+(conc(M)+AM
, k−asm) | children(N) = {M}, conc(M) = k,AP (M) 6= ∅

or FP (M) 6= {conc(M)}, name(M) = AM}

To illustrate Labelled Justifications and the differences with Basic Justification, we

construct the Labelled Justifications for some of the arguments we used for Basic Justifi-

cations in Example 5.6.

Example 5.11. The Labelled Justification of A14 : (∅, {w}) ⊢ w w.r.t. the positive At-

tack Tree Υ1 = attTree+E1(A14) is the empty set, exactly as for the Basic Justification:

justLΥ1
(A14) = justBΥ1

(A14) = ∅. The reason is that A14 is labelled ✬+✬ in Υ1, but none

of the three conditions for nodes with label ✬+✬ in Definition 5.10 is satisfied.

Now consider the Labelled Justification of A10 w.r.t. the negative Attack Tree Υ2 =

attTree−E2(A10):

justLΥ2
(A10) = {supp rel−(not w−

asm, p
−
A10

)} ∪ {att rel+(w+
fact, not w

−
asm)}

= {supp rel−(not w−
asm, p

−
A10

), att rel+(w+
fact, not w

−
asm)}

This Labelled Justification contains fewer literal-pairs than the Basic Justification of A10

w.r.t. Υ2 (see Example 5.6), which additionally comprises supports of not q and not u for

p. Since these two supports are not necessary to explain why p is not in S2 (the explanation

is that the supporting literal not w is attacked by the fact w), they are omitted in the

Labelled Justification.

The procedure of extracting attack and support relations from an Attack Tree in the

construction of a Labelled Justification is similar to the method of Basic Justifications,

where the relations are extracted step by step for every node in the Attack Tree. The
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main difference of Labelled Justifications is that nodes holding arguments labelled ✬+✬ and

nodes holding arguments labelled ✬−✬ in an Attack Tree are handled separately in order to

obtain the correct labelling of literals and relations in the justification. Furthermore, the

extraction of the support relation is divided into two cases: one for assumption-premises,

and one for fact-premises. Similarly, there are two cases for the extraction of the attack

relation: the attacker can be a fact or another (non-fact and non-assumption) literal. Note

that not all supporting literals of an argument with label ✬−✬ are extracted for a Labelled

Justification, but only the “attacked” ones.

5.6.2 LABAS Justifications

In this section, we define the Labelled ABA-Based Answer Set (LABAS) Justification of a

literal w.r.t. an answer set, which is based on the Labelled Justifications of an argument

for this literal w.r.t. an Attack Tree. We also prove that a LABAS Justification provides

an explanation for a literal using an admissible fragment of the answer set in question.

Just as for BABAS Justifications, if a literal k is contained in an answer set, its LABAS

Justification is constructed from one Labelled Justification of one of the corresponding

arguments of k. Conversely, if k is not in an answer set, its LABAS Justification is

constructed from all Labelled Justifications of all arguments with conclusion k. The only

difference in the construction is that the literal being justified is labelled before it is added

to the justification.

Recall that the translated ABA framework of P is ABAP .

Definition 5.11 (Labelled ABA-Based Answer Set Justification). Let S be an answer set

of P and E the corresponding stable argument extension of S in AAP .

1. Let k ∈ SNAF, A ∈ E a corresponding argument of k, and Υ = attTree+E (A) some

positive Attack Tree of A w.r.t. E . Let lab(k) = k+asm if k ∈ AP , lab(k) = k+fact if

k ← ∈ RP , and lab(k) = k+A else. A Positive LABAS Justification of k w.r.t. S is:

justL+
S (k) = {lab(k)} ∪ justLΥ(A).

2. Let k /∈ SNAF, A1, . . . , An (n ≥ 0) all arguments with conclusion k in ArP , and

Υ11, . . . ,Υ1m1
, . . . ,Υn1, . . . ,Υnmn (m1, . . . ,mn ≥ 0) all negative Attack Trees of

A1, . . . , An w.r.t. E .

(a) If n = 0, then the Negative LABAS Justification of k w.r.t. S is:

justL−
S (k) = ∅.

(b) If n > 0, then let lab(k1) = . . . = lab(kn) = k−asm if k ∈ AP and lab(k1) =

k−A1
, . . . , lab(kn) = k−An

else. The Negative LABAS Justification of k w.r.t. S is:

justL−
S (k) = {{lab(k1)} ∪ justLΥ11

(A1), . . . , {lab(kn)} ∪ justLΥnmn
(An)}.

Example 5.12. We illustrate the advantages of LABAS Justifications as compared to

BABAS Justifications by justifying the same literal as in Example 5.10, i.e. q ∈ SP10
and

q ∈ SP11
of the logic programs P10 and P11. The LABAS Justifications are constructed

154



from the same Attack Trees as the BABAS Justifications (see Figures 5.11 and 5.12). The

unique Positive LABAS Justification of q w.r.t. SP10
and the two possible Positive LABAS

Justifications of q w.r.t. SP11
are:

justL+
SP10

(q) = {q+A9
, supp rel+(not p+asm, q

+
A9

), att rel−(p−A12
, not p+asm),

att rel−(p−A13
, not p+asm), supp rel−(not u−asm, p

−
A12

),

att rel+(u+fact, not u
−
asm), supp rel−(not w−

asm, p
−
A13

),

att rel+(w+
fact, not w

−
asm)}

justL+
SP11

(q) = {q+A9
, supp rel+(not p+asm, q

+
A9

), att rel−(p−A14
, not p+asm),

supp rel−(not u−asm, p
−
A14

), att rel+(u+fact, not u
−
asm)}

justL+
SP11

(q) = {q+A9
, supp rel+(not p+asm, q

+
A9

), att rel−(p−A14
, not p+asm),

supp rel−(not w−
asm, p

−
A14

), att rel+(w+
fact, not w

−
asm)}

The graphical representations of these LABAS Justifications are depicted in Figure 5.14.

The differences between BABAS and LABAS Justifications can be easily spotted when

comparing the BABAS Justification graphs in Figure 5.13 with the LABAS Justification

graphs in Figure 5.14, both of which explain why q is part of SP10
and SP11

. In contrast

to the BABAS Justifications, the LABAS Justifications express that in P10 there are

two different ways of deriving p, one supported by not u (yielding A12) and the other

one by not w (yielding A13), but in P11 there is only one way of deriving p, supported

by both not u and not w (yielding A14). The reason that neither of the two LABAS

Justifications of q w.r.t. SP11
comprises both of these supporting NAF literals is that

LABAS Justifications only contain the supporting NAF literals that are “attacked”; in

the first case not u is “attacked” by u, in the second case not w is “attacked” by w.

As illustrated by Example 5.12, LABAS Justifications solve the shortcomings of BABAS

Justifications: They indicate whether or not support and attack relations “succeed”,

as well as which literals are facts or assumptions. Furthermore, tagging literals with

argument-names makes it possible to distinguish between different ways of deriving the

same literal. In addition, a LABAS Justification is sometimes shorter than the respective

BABAS Justification, only comprising relevant supporting literals of a literal not in the

answer set in question.

Example 5.13. Recall Dr. Smith who has to determine whether to follow his own decision

to treat the short-sightedness of his patient Peter with laser surgery or whether to act

according to the suggestion of his decision support system and treat Peter with intraocular

lenses (see Section 5.3). In Example 5.2, we illustrated how Attack Trees can be used to

explain the suggestion of the decision support system as well as why Dr. Smith’s decision
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q+A9

not p+asm

+

p−A12
p−A13

− −

not u−asm not w−
asm

− −

u+fact w+
fact

+ +

q+A9

not p+asm

+

p−A14

−

not u−asm

−

u+fact

+

q+A9

not p+asm

+

p−A14

−

not w−
asm

−

w+
fact

+

Figure 5.14: The unique Positive LABAS Justification justL+
SP10

(q) (left) and the two

Positive LABAS Justifications justL+
SP11

(q) (middle and right) from Example 5.12.

is wrong. Here, we demonstrate the LABAS Justifications explaining this.

Figure 5.15 displays the Negative LABAS Justification of the literal laserSurgery,

which is not contained in the answer set Sdoctor of the logic program Pdoctor (see Sec-

tion 5.3). This LABAS Justification is constructed from all Labelled Justifications of all

arguments with conclusion laserSurgery, i.e. from all Attack Trees for arguments with

conclusion laserSurgery. There is only one argument with conclusion laserSurgery, but

there are two different negative Attack Trees for this argument (see Example 5.2). The

negative Attack Tree underlying the left part of the LABAS Justification in Figure 5.15

was illustrated in Figure 5.4. The Negative LABAS Justification of laserSurgery ex-

presses that Peter should not have laser surgery for two reasons: first (left part), because

laser surgery should only be used if the patient is not tight on money, but Peter is tight

on money as he is a student and as there is no evidence that his parents are rich; and

second (right part), because laser surgery should only be used if it has not been decided

that the patient should have corrective lenses, but there is evidence that Peter should have

corrective lenses since he is short-sighted and since there is evidence against having laser

surgery (and assuming that the patient does not have laser surgery is a prerequisite for

having corrective lenses).

A Positive LABAS Justification explaining why Peter should get intraocular lenses is

displayed in Figure 5.16. This LABAS Justification expresses that all supporting assump-

tions needed to draw the conclusion that Peter should have intraocular lenses are satisfied,

namely Peter is short-sighted, he should not have laser surgery, he should not have glasses,

and he should not have contact lenses. The explanation also illustrates why these other

treatments are not applicable.

Using the LABAS Justifications, Dr. Smith can now understand why the decision

support system suggested intraocular lenses as the best treatment for Peter and why Peter

should not have laser surgery. Dr. Smith can therefore easily revise his original decision
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laserSurgery−A1

not tightOnMoney−asm

−

tightOnMoney+A2

+

student+fact not richParents+asm

+ +

laserSurgery−A1

not correctiveLenses−asm

−

correctiveLenses+A8

+

shortSighted+fact not laserSurgery+asm

+ +

−

Figure 5.15: The Negative LABAS Justification of laserSurgery w.r.t. Sdoctor of the logic
program Pdoctor as explained in Example 5.13.

that Peter should have laser surgery, realising that he forgot to consider that Peter is a

student and that consequently Peter has not enough money to pay for laser surgery.

In the following, we show that LABAS Justifications explain a literal w.r.t. an an-

swer set in terms of an admissible fragment of this answer set. We first introduce some

terminology to refer to the literals in a LABAS Justification.

Notation 5.12. Let justL+
S (k) be a Positive LABAS Justification. We say that a literal

k1 occurs in justL+
S (k) if and only if k1 = k or k1 is one of the literals in a support- or

attack-pair in justL+
S (k). We say that k1 occurs positively in justL+

S (k) if and only if it

occurs as k+1asm , k+1fact , or k+1A (where A is some argument with conclusion k1).

We use analogous terminology for Negative LABAS Justifications.

The following theorem characterises the explanations given by Positive LABAS Justi-

fications.

Theorem 5.13. Let justL+
S (k1) be a Positive LABAS Justification of some literal k1

w.r.t. an answer set S of P. Let NAF+ = {k | k+asm occurs in justL+
S (k1)} be the set of

all NAF literals occurring positively in justL+
S (k1). Then

❼ P ∪ NAF+ is an admissible scenario of P in the sense of [DR91];

❼ NAF+ ⊆ SNAF.

Proof. By Definitions 5.10 and 5.11 and Notation 5.12, NAF+ is the union of all as-

sumptions supporting arguments labelled ✬+✬ in the Attack Tree attTree+E (A) used for

the construction of justL+
S (k1), where E is the corresponding stable argument extension

of S and A ∈ E is a corresponding argument of k1. So NAF+ = Asms as defined in

Theorem 5.12.
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intraocularLenses+A3

shortSighted+fact
not laserSurgery+asm not glasses+asm

not contactLenses+asm

+

+ +

+

laserSurgery−A1

−

not tightOnMoney−asm

−

tightOnMoney+A2

+

student+fact not richParents+asm

+ +

glasses−A6

−

not caresAboutPracticality−asm

−

caresAboutPracticality+A7

+

likesSports+fact

+

contactLenses−A4

−

not afraidToTouchEyes−asm

−

afraidToTouchEyes+fact

+

Figure 5.16: A Positive LABAS Explanation of intraocularLenses w.r.t. Sdoctor of the
logic program Pdoctor as explained in Example 5.13.

This result expresses that LABAS Justifications explain that a literal is contained in

an answer set because this literal is supported and defended by the answer set. However,

LABAS Justifications do not simply provide the whole answer set as an explanation, but

instead use an admissible fragment of it. A similar result can be formulated for Negative

LABAS Justifications.

Theorem 5.14. Let justL−
S (k1) be a Negative LABAS Justification of a literal k1 w.r.t. an

answer set S of P. Let NAF+
11, . . . ,NAF

+
1m1

, . . . ,NAF+
n1, . . . ,NAF

+
nmn

be the sets of

all NAF literals occurring positively in the subsets of justL−
S (k1), i.e. NAF+

ij = {k |

k+asm occurs in lab(k1i) ∪ justLΥij
(Ai)} where 0 ≤ i ≤ n and 0 ≤ j ≤ mn. Then for each

NAF+
ij

❼ P ∪ NAF+
ij is an admissible scenario of P in the sense of [DR91];

❼ NAF+
ij ⊆ SNAF.

Proof. Analogous to the proof of Theorem 5.13.

This means that the LABAS Justification of a literal that is not part of an answer set

explains all different ways in which this literal is “attacked” by an admissible fragment of

the answer set.

In summary, LABAS Justifications use the same information for an explanation as

Attack Trees, namely an admissible fragment of an answer set, but expressing these infor-

mation in terms of literals and the support and “attack” relations between them rather

than in terms of arguments and attacks. Thus, LABAS Justifications are more suitable

explanations if logic programming concepts are desired.
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Figure 5.17: LABAS Justifier home page.

5.7 The LABAS Justifier

We implemented LABAS Justifications and Attack Trees in a web platform, called the

LABAS Justifier2, as a proof of concept and to allow users to gain a better understanding

of our justification methods. The LABAS Justifier is hosted on the Heroku cloud platform

[MS13, Han14], making it easily accessible and independent of the user’s operating system.

5.7.1 Functionality

On the home page (see Figure 5.17), the user can either input a logic program manually in

a text box or upload a logic program as a “.lp” file, as required by the ASP solver clingo

[GKK+11, GKKS14].

2http://labas-justification.herokuapp.com/
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Figure 5.18: Main justification interface of the LABAS Justifier.

As is standard for ASP solvers, the implication (←) in clauses is written as “:-” and

every clause has to be followed by a full stop. Furthermore, facts such as a← are written

without implication symbol as “a.”, explicit negation ¬ is denoted by “-” and NAF not

by “not”. Note that the LABAS Justifier currently does not support logic programs with

variables.

After uploading a logic program, the user is taken to the main justification interface,

shown in Figure 5.18. It displays the answer sets of the given logic program and allows

the user to specify the desired justifications to be constructed:

❼ LABAS Justifications versus Attack Trees: By default, LABAS Justifications

are constructed. The user can choose Attack Trees instead by clicking the respective

button.

❼ Answer Set: By default, justifications are constructed w.r.t. “Answer Set 1”. A

different answer set can be chosen in the “Select Answer Set” drop-down menu.

❼ Number of justifications: By default, all justifications for a chosen literal w.r.t. the

selected answer set are constructed, no matter if the literal is or is not contained

in the answer set. In the “Generate all” drop-down menu, the user can choose a

maximum of 1, 5, 10, or 20 justifications to be constructed instead.

❼ Similarity of justifications: If various justifications are constructed for a literal,

justifications with successive indices are often more similar than justifications with

non-successive indices, as will be discussed in Section 5.7.4. The user can thus choose

to only view justifications with odd or even indices in the “Generate odd and even”

drop-down menu (by default both odd and even justifications are displayed).

❼ Justified literal: The user has to type in the literal to be justified in the “Choose
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Figure 5.19: Attack Tree constructed by the LABAS Justifier.

Literal” text box. The format used is the same as previously described for logic

programs.

The only input required from the user is thus the literal to be justified. All other

options have a default value and do therefore not require any action from the user.

After clicking the “Build Justification” button, Attack Trees or LABAS Justifications

are constructed as specified by the user and the first justification is displayed below the

main justification interface. The top part of the justification (see top of Figure 5.19)

provides some basic information, in particular, which literal is being justified w.r.t. which

answer set, how many justifications were computed, and which justification is currently

displayed (by default, the first justification is displayed). A drop-down menu is used to

select which of the computed justifications to display. Note that in contrast to our theory of

justifications, we construct all justifications (unless a different number is chosen) even for

a literal contained in the chosen answer set, since the user may be interested to investigate

alternative justifications.

Attack Trees

An example Attack Tree created by the LABAS Justifier is displayed in Figure 5.19. The

LABAS Justifier uses the colours green and red, respectively, rather than the labels ✬+✬

and ✬−✬ for nodes in Attack Trees. To provide the user with some additional information

about the structure of arguments, the clauses used to construct an argument are given

in addition to its premises. For example, “r2” in argument “A3” in Figure 5.19 refers to
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the second clause in the given logic program shown in Figure 5.18, where facts are not

counted when indexing the clauses3.

To simplify large Attack Trees and focus on important parts, nodes in an Attack Tree

can be collapsed by clicking on them. Collapsed nodes can be expanded by clicking on

them again. The “Reset Attack Tree” button is used to re-create the original state of the

Attack Tree, where no nodes are collapsed.

Infinite Attack Trees are indicated by dots labelling the last node of an Attack Tree,

as shown on the right of Figure 5.20. We chose to always indicate infinite Attack Trees

after a node labelled ✬+✬ (green) has been repeated.

Note that in theory there may be infinitely many Attack Trees for a chosen literal.

However, for simplicity the LABAS Justifier does not construct infinitely many Attack

Trees if these trees follow the same repetitive pattern, as illustrated by Example 5.14.

Example 5.14. Let P12 be the following logic program, whose only answer set is S = {a}:

{ a ← not b;

b ← not a;

a ← }

The LABAS Justifier constructs three Attack Trees for a w.r.t. S, illustrated in Figure 5.20.

However, in theory there are infinitely many Attack Trees, which repeat arguments A2

and A3 different numbers of times before ending with argument A1, for example A2 – A3

– A2 – A3 – A1, A2 – A3 – A2 – A3 – A2 – A3 – A1, A2 – A3 – A2 – A3 – A2 – A3 – A2

– A3 – A1, and so on (where each argument has one child node, namely the succeeding

argument, similar to the Attack Trees in Figure 5.20).

LABAS Justifications

Due to the advantages of LABAS Justifications over BABAS Justifications discussed in

Section 5.6.2, the LABAS Justifier only constructs LABAS Justifications. Similarly to

Attack Trees, the colours red and green are used to respectively indicate the + and −

labels of literals and relations in LABAS Justifications.

As given by our theory, the LABAS Justifier constructs LABAS Justifications from

Attack Trees. It may thus seem surprising that the LABAS Justifier is able to construct

all LABAS Justifications, even though not all Attack Trees are created. This is due to the

fact that each Attack Tree that is not constructed by the LABAS Justifier repeats parts of

itself, parts which are also present in an Attack Tree constructed by the LABAS Justifier

not comprising these repetitions. Since LABAS Justifications are constructed by extract-

ing information from arguments in Attack Trees, the LABAS Justifications of a repetitive

3“r” stands for “rule” since the clauses of a logic program are referred to as “rules” in the translated
ABA framework.
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Figure 5.20: The three Attack Trees constructed by the LABAS Justifier for literal a in
Example 5.14.

Attack Tree not constructed by the LABAS Justifier is the same as the LABAS Justifica-

tion of some non-repetitive Attack Tree constructed by the LABAS Justifier. For example,

the LABAS Justifications shown in Figure 5.21 are extracted from the three Attack Trees

in Figure 5.20. These are the only LABAS Justifications of literal a w.r.t. the answer set

S (see Example 5.14) since the additional Attack Trees mentioned in Example 5.14 all

yield the third LABAS Justification.

The literal nodes of a LABAS Justification can be dragged horizontally, enabling the

user to customise the layout of the justification. Vertical dragging is not allowed to ensure

that the hierarchical structure of the LABAS Justification is preserved, with the top node

being the justified literal. Similarly to Attack Trees, the “Reset LABAS Justification”

button is used to recreate the initial layout of the LABAS Justification.

5.7.2 Architecture

The overall architecture of the LABAS Justifier is displayed in Figure 5.22. As standard

for web-applications, we distinguish between server and client side.

We use Node.js4, a JavaScript runtime environment, to build the server, which com-

municates with the client side, and combine it with Express.js5, a flexible Node.js web

application framework equipped with a robust set of features. The computation of answer

sets is done using the clingo answer set solver provided by Potassco6 (Potsdam Answer Set

4http://nodejs.org/
5http://expressjs.com/
6http://potassco.org/
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Figure 5.21: The three LABAS Justification constructed by the LABAS Justifier from the
three Attack Trees in Figure 5.20.

Solving Collection), whereas the construction of justifications is implemented in Python7.

In addition to the standard HTML, CSS, and JavaScript8, the client side also makes

use of the D3 JavaScript library9 for graphically displaying Attack Trees and LABAS

Justifications. We furthermore use Bootstrap10 to improve the design of the LABAS

Justifier.

7http://www.python.org/
8http://www.javascript.com/
9http://d3js.org/

10http://getbootstrap.com/

Figure 5.22: Architecture of the LABAS Justifier.
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Figure 5.23: Computing, parsing, and displaying answer sets (AS) of a logic program (LP)
as performed by the LABAS Justifier, where solid arrows indicate communication/calls
between the components and dotted arrows denote information transfer.

5.7.3 Work Flow

The LABAS Justifier performs three tasks: 1) parsing a logic program provided by the

user and computing its answer sets, 2) constructing justifications for the literal and answer

set specified by the user, and 3) displaying justifications as requested by the user. In the

following, we describe the work flow of each task in more detail, with a particular focus

on the interaction between the different components of the LABAS Justifier.

When a user enters the LABAS Justifier homepage, the Node.js server creates a

cookie11, which is used throughout all tasks and component communications to ensure

that the user is provided with the justification requested, rather than with those requested

by another user.

Parsing a Logic Program and Computing Answer Sets

Figure 5.23 illustrates the interaction between the client and the server when the user

provides a logic program.

After the user inputs or uploads a logic program on the home page of the LABAS

Justifier (see Figure 5.17), the Node.js server receives the plain text or .lp file (1), respec-

tively, and saves the logic program to a new text file (2) to be parsed by JavaScript later

in order to display the logic program on the main justification page (see Figure 5.18).

11http://www.npmjs.com/package/cookie-parser
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The server then calls the answer set solver clingo with the given logic program (3), which

saves its output to a temporary file (4). Subsequently, the server calls a Python script

(5), which takes the temporary clingo output file (6) and extracts the answer sets from

irrelevant information such as warnings and solving time. The Python script saves the

extracted answer sets in a text file (7), formatted such that they can be easily displayed

in the web browser on the main justification page. If no answer sets could be extracted,

i.e. if the given logic program has no answer sets, the whole clingo output is saved (7)

to be displayed to the user later. The Python script also saves the range (i.e. the total

number) of answer sets to a text file (7), which is later used to populate the drop-down

menu for selecting which answer set to use for the justification on the main justification

page. Finally, the Python script creates a temporary file containing the number 1 or 0 (8),

the former indicating that answer sets were computed, the latter that clingo was unable to

compute answer sets for the given logic program. This temporary file is then read by the

Node.js server (9) to either direct the browser to the main justification page or to an error

page (10) displaying the clingo output previously saved. JavaScript is used to display the

previously saved logic program and answer sets in the browser, and populate the answer

set drop-down menu (11).

Constructing and Displaying Justifications

Figure 5.24 illustrates the interaction between the server and the client of the LABAS

Justifier after the user specifies a literal and answer set to be justified.

After the user has input a literal to be justified and provided the justification pa-

rameters (the default values if the user does not change the parameters, as explained in

Section 5.7.1), the Node.js server receives the literal as well as the parameters (1) and

saves the literal and the index of the answer set to be justified in files (2), which will

be parsed by JavaScript later in order to display justification information in the browser.

The Node.js server then calls the main Python justification script (3), which reads the files

containing the answer sets and logic program (4) that were created during the parsing and

answer set computation stage, and computes Attack Trees. Depending on the justification

parameters chosen by the user, the Python script may subsequently create LABAS Justi-

fications. It then saves the respective justifications in a JSON file (5). In the next step the

Node.js server directs the browser to the LABAS Justifications or the Attack Trees page

(6), based on the user’s choice of justification parameters. The respective browser page

loads the graphical representations of the (first) justification using the D3.js library (7),

which reads the necessary information from the previously created JSON files (8). The

graphs as well as the previously saved literal and chosen answer set are then displayed in

the browser using JavaScript (9).
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Figure 5.24: Computing and displaying justifications as performed by the LABAS Justi-
fier, where solid arrows indicate communication/calls between the components and dotted
arrows denote information transfer.

Displaying a Particular Justification

The third task of the LABAS Justifier, i.e. displaying justifications other than the first one,

chosen by the user from the drop-down menu, involves only the client side, in particular

the last steps from the “constructing and displaying justifications” task are repeated: The

browser displays the graphical representation of the chosen justification using the D3.js

library, which reads the respective JSON file (that has the respective index chosen by the

user) and constructs the Attack Tree graph. JavaScript then displays the graphs in the

browser along with the respective information, such as the updated index of the displayed

justification.

5.7.4 Construction of Attack Trees and LABAS Justifications

We now describe the algorithm for constructing Attack Trees and LABAS Justifications

in more detail and point out various design choices as well as deviations from the theory.

The Attack Tree Algorithm and Argument Construction

Algorithm 1 outlines the method for constructing the set attackTrees consisting of all

Attack Trees for a given literal k w.r.t. answer set S.

According to the theory (see Section 5.4), Attack Trees for k w.r.t. S are constructed

by computing the translated AA framework of the given logic program and identifying
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the corresponding stable argument extension of S. Arguments labelled ✬+✬ and ✬−✬ are

then determined based on their (non-) membership in the stable argument extension.

Computing all arguments and attacks in the translated AA framework and subsequently

determining stable argument extensions is computationally expensive. We thus neither

construct all arguments nor compute stable argument extensions. Instead, we make use

of the correspondence between arguments in stable argument extensions and literals in

answer sets (see Section 4.4.4).

The constructAttackTrees algorithm (see Algorithm 1) first determines whether the

Attack Trees to be constructed are positive or negative, i.e. whether the argument held

by the root node should be labelled ✬+✬ or ✬−✬. Diverting from the theory, this is done

by checking if k is contained in the answer set S, since we know from Corollaries 4.20

and 4.21 that the conclusion of an argument that is in the corresponding stable argument

extension of S is contained in S. In the next step, all arguments for k with the correct

label are constructed to serve as root nodes of Attack Trees.

The argConstruction method constructs all arguments with conclusion k by applying

the clauses in the logic program until a finite argument tree is obtained. In addition, the

desired label of the argument is taken into account to ensure that no arguments with the

wrong label are constructed. In particular, if the label of an argument for k should be ✬+✬,

i.e. the argument is contained in the corresponding stable argument extension, there may

exist other arguments with conclusion k that are not contained in the stable argument

extension, so the argConstruction method needs to ensure that only arguments contained

in the stable argument extension are constructed. This is achieved by using the following

result.

Lemma 5.15. Let S be an answer set of P, E the corresponding stable argument extension

of S in AAP , and k ∈ SNAF. If an argument for k is in E, then every child node of the

root holding k holds a literal kN such that kN ∈ SNAF.

Proof. Let A be an argument for k contained in E and let k1, . . . kn (n ≥ 0) be all literals

held by child nodes of the root node holding k in A. Then every subtree of A with root

node k1, . . . kn is an argument A1, . . . An for k1, . . . kn, respectively. Assume that some

ki /∈ SNAF. Then by the second item in Proposition 5.1, there exists no argument with

conclusion ki in E , so argument Ai /∈ E . Thus, by Corollary 4.21 there exists not l in

the assumption premises of Ai such that l ∈ S, so not l /∈ ∆S . Since Ai is a sub-tree

of argument A, not l is in the assumption premises of A, so by Corollary 4.21, A /∈ E .

Contradiction, so all ki ∈ SNAF.

Thus, when constructing an argument tree for k which should be contained in the

corresponding stable argument extension of S, the argConstruction method checks after

each application of a clause from the logic program if all body literals are contained in

SNAF. If not, the construction of the respective argument is stopped and an argument

not applying the problematic clause is constructed, again checking the body literals of all

clauses applied.
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Algorithm 1 constructAttackTrees(k, S, justificationMode, no of justifications):
construct Attack Trees for literal k w.r.t. answer set S, with justification parameters
justificationMode (even or odd) and no of justifications

1: attackTrees = [ ]
2: if k ∈ S then

3: label = +
4: else

5: label = −
6: end if

7: arguments = argConstruction(k, label)
8: for arg ∈ arguments do

9: root = AttackTree(arg, label)
10: if label == + then

11: trees = extendTreeNode(root, [arg])
12: else

13: trees = extendTreeNode(root, [ ])
14: end if

15: attackTrees = attackTrees+ trees
16: if justificationMode == even then

17: delete odd indices from attackTrees
18: end if

19: if justificationMode == odd then

20: delete even indices from attackTrees
21: end if

22: if length(attackTrees) ≥ no of justifications then

23: break

24: end if

25: end for

26: if length(attackTrees) > no of justifications then

27: attackTrees = attackTrees[0 : no of justifications]
28: end if

29: return attackTrees

If the label of arguments for k should be ✬−✬, no checks are required since by Propo-

sition 5.1 no argument for k is contained in the corresponding stable argument extension

of k. The argConstruction method thus constructs all arguments for k.

Deviating from the theory, the argConstruction method does not construct “looping”

arguments, i.e. arguments where the same rule is applied more than once in a branch

of the argument tree. This prevents the construction of infinitely many arguments that

repeat parts of themselves, thus providing no additional information compared to the

same argument without the repetition. However, various arguments with the same sets

of assumptions, facts, and applied rules may be constructed if their tree structure is

different. Note that, except for their names, these arguments look exactly the same in

Attack Trees constructed by the LABAS Justifier since arguments are displayed in terms

of their abbreviation rather than as argument trees.

Example 5.15. Let P13 be the following logic program, whose only answer set is S =
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Figure 5.25: The four arguments for p constructed by the argConstruction method (see
Example 5.15).

{p, q, u}:

{ p← q, u;

q ← u;

u← w;

w ← u;

u← }

The LABAS Justifier constructs four arguments for p w.r.t. S, illustrated in Figure 5.25.

However, in theory there are infinitely many arguments since the third and fourth clause

can be applied repeatedly to extend the leaf nodes, before ending both branches of the

argument tree with fact u. Note that except the first argument (leftmost in Figure 5.25),

all arguments have the same abbreviation in the LABAS Justifier when disregarding their

names, namely (∅, {u}) ⊢ (r1, r2, r3, r4) p. Thus, in an Attack Tree these arguments will

only be distinguishable by their names.

After constructing all arguments for k that are (not) contained in the corresponding

stable argument extension of S, an Attack Tree node is created for each of the arguments

(see line 8 in Algorithm 1), which is then extended into full Attack Trees in all possible

ways using the extendTreeNode method outlined in Algorithm 2. The second argument

taken by the extendTreeNode method is the set of all arguments held by nodes labelled

✬+✬ in the Attack Tree so far. This is used to ensure that if an argument is repeated, the

Attack Tree is not further extended but marked as being infinite. Thus, if the root node

of an Attack Tree holds an argument for k that is labelled ✬+✬, this argument is passed as

the set of already used arguments, whereas if the root node holds an argument labelled

✬−✬, an empty set of already used arguments is passed.

After extending the root node holding an argument for k into all possible full Attack
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Trees, these trees are added to the final set of all attackTrees for k (see line 15 in

Algorithm 1). The constructAttackTrees algorithm then checks the parameters specified

for the justifications. If the user indicated that only justifications with odd (even) indices

are to be constructed, all Attack Trees with even (respectively odd) indices constructed

so far are deleted. Furthermore, the algorithm checks whether the user restricted the

total number of justifications to be constructed and, if so, whether the maximal number

of Attack Trees has already been reached, in which case we stop the construction of

additional trees.

In the last step, the algorithm ensures that at most the number of Attack Trees specified

by the user is returned, by pruning the set of attackTrees to the maximum number if

required.

Extending a Root Node into Full Attack Trees

Algorithm 2 outlines the recursive extendTreeNode method for extending a given root

node of an Attack Tree into all possible full Attack Trees. The idea is to find all attackers

of the argument held by the given root node and to then appropriately extend the root

node with child nodes holding the attackers, where the way of extending the Attack

Tree depends on the label of the root argument. If the root argument is labelled ✬+✬,

all attacking arguments are added as child nodes of the root node. In contrast, if the

root argument is labelled ✬−✬, it should have exactly one child node holding an attacking

argument (see Definition 5.4). Thus, for each argument attacking the root argument, a

new Attack Tree is created whose root node holds the given root argument and has only

one child node, holding the respective attacking argument. In both cases, each branch of

every extended Attack Tree is then further extended in the same way.

The extendTreeNode method starts by identifying the desired label of the root node’s

children and initialising the set of all extendedTrees to be returned (see lines 1-7 in

Algorithm 2). In case the root node is labelled ✬+✬, the set is initialised to consist of the

root node rather than being the empty set as one may expect. The reason for this will

become apparent when we explain how the algorithm extends a root node labelled ✬+✬

with child nodes for all attacking arguments.

In the next step (see Lines 8-17), the extendTreeNode method finds all arguments

attacking the given root argument. Since we do not construct all arguments and attacks

in the translated AA framework upfront, the extendTreeNode method has to construct

these attackers. This is done by determining the conclusions of all potential attackers,

i.e. the corresponding literals of all NAF literals occurring as assumption premises of the

root argument, and then finding all arguments with this conclusion and the correct label.

Since the argConstruction method saves arguments that have been constructed for a

literal, the extendTreeNode method first checks for each identified literal if arguments for

this literal have previously been constructed, and if so adds them to the set attackingArgs

of all arguments attacking the root argument. If no arguments for a literal have been
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Algorithm 2 extendTreeNode(root, usedArguments): extend a single root node into
full Attack Trees without using arguments from the set of usedArguments

1: if getLabel(root) == + then

2: attackerLabel = −
3: extendedTrees = [root]
4: else

5: attackerLabel = +
6: extendedTrees = [ ]
7: end if

8: attackingArgs = [ ]
9: for assumption ∈ getAssumptions(root) do

10: literal =∼assumption
11: if arguments for literal have already been constructed then

12: retrieve those arguments
13: else

14: arguments = argConstruction(literal, attackerLabel)
15: end if

16: attackingArgs = attackingArgs+ arguments
17: end for

18: for attacker ∈ attackingArgs do

19: attackerNode = AttackTree(attacker, attackerLabel)
20: if attacker ∈ usedArguments then

21: treesOfOneAttacker = [attackerNode]
22: else

23: if attackerLabel == + then

24: usedArgumentsNew = usedArguments+ [attacker]
25: else

26: usedArgumentsNew = usedArguments
27: end if

28: treesOfOneAttacker = extendTreeNode(attackerNode, usedArgumentsNew)
29: end if

30: if getLabel(root) == + then

31: tmpTrees = [ ]
32: for attackerTree ∈ treesOfOneAttacker do

33: for extendedTree ∈ extendedTrees do

34: tree = addAsChild(attackerTree, extendedTree)
35: tmpTrees = tmpTrees+ [tree]
36: end for

37: end for

38: extendedTrees = tmpTrees
39: else

40: for attackerTree ∈ treesOfOneAttacker do

41: tree = addAsChild(attackerTree, root)
42: extendedTrees = extendedTrees+ [tree]
43: end for

44: end if

45: end for

46: return extendedTrees
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constructed so far, arguments with the correct label are constructed using the previously

described argConstruction method and added to the attackingArgs set.

Having found all attacking arguments (see line 16 in Algorithm 2), the main part of

the Attack Tree extension starts, which handles every attacker separately by creating the

set treesOfOneAttacker, consisting of of all possible Attack Trees holding the attacker

in the root node, and then appropriately appending these Attack Trees to the root node.

For this purpose, a new Attack Tree node holding the attacker is created, which we call

attackerNode. Then, the extendTreeNode method checks if the attacker occurs in the

set of usedArguments, i.e. if the argument already occurs “higher up” in the Attack

Tree. If so, the newly created attackerNode will be the last node displayed in an infinite

Attack Tree, so it does not have to be further extended. Therefore, the set of all possible

Attack Trees holding the attacker in the root node contains only one Attack Tree made

of one node, namely the the newly created attackerNode (see Line 21 in Algorithm 2).

If the attacker is not part of the usedArguments, the newly created attackerNode is

further extended into all possible Attack Trees having this node as the root, by recursively

applying the extendTreeNode method. When calling the extendTreeNode method for

the attackerNode, the set of usedArguments is passed, potentially adding the attacker

in case it is labelled ✬+✬, to ensure that if the attacker re-occurs in an extended Attack

Tree, the Attack Tree is marked as “infinite” (see Line 24 in Algorithm 2).

When adding the attackerNode as a child of the root node to construct a full At-

tack Tree, the treesOfOneAttacker set, containing all possible ways of extending the

attackerNode, provides alternatives for extending the attackerNode branch of the At-

tack Tree. If the root argument is labelled ✬+✬, it has a child node for each attacking

argument (see Line 30 in Algorithm 2). These children can then be extended with all

possible combinations of extensions from the sets treesOfOneAttacker of each attacker.

Thus, for the first attacker, each Attack Tree from its treesOfOneAttacker set is added

to a copy of the root node (the only node contained in the set extendedTrees). These

Attack Trees are then saved as the new set of extendedTrees. For the second attacker,

each Attack Tree from its treesOfOneAttacker set is then added to a copy of each of

the previously created trees (stored in the set of extendedTrees), thus creating Attack

Trees with every combination of extending the root node when it has only the first and

the second attacker as child nodes. This procedure is repeated for all attackers, creating

Attack Trees for all combinations of extending each child node of the root holding an

attacking argument. In contrast, if the root node is labelled ✬−✬, the extension of At-

tack Trees is much simpler since each Attack Tree has only one child node holding one

attacker (see line 39 in Algorithm 2). Thus, for each attacker and each way of extending

the attackerNode as given by the Attack Trees in the treesOfOneAttacker set, a new

Attack Tree with the root node is created, which is extended with one of the Attack Trees

from the treesOfOneAttacker. Each of these new Attack Trees is a full Attack Tree, thus

added to the set of final extendedTrees, which is returned after processing every attacker.
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5.8 Related Work

According to Pontelli et al. [PSEK09], a justification should “provide only the informa-

tion that are relevant to the item being explained”, making it easier to understand. We

incorporate this in ABAS Justifications12 by not using the whole derivation of a literal,

but only the underlying facts and NAF literals necessary to derive the literal in question.

The two approaches for justifying why a literal is or is not part of an answer set that are

most related to ABAS Justifications are Argumentation-Based Answer Set Justifications

and off-line justifications. Argumentation-Based Answer Set Justifications [SST13] are a

“predecessor” of ABAS Justifications, which uses the ASPIC+ argumentation framework

[Pra10] instead of ABA. In contrast, off-line justifications [PSEK09] explain why a literal

is or is not part of an answer set by making use of the well-founded model semantics for

logic programs.

5.8.1 Off-line Justifications

The off-line justification for a classical literal l is a graph of classical literals with root node

l. The child nodes of l are the literals on which l is positively or negatively dependent. In

other words, the justified literal l has the body literals of an applicable clause in the logic

program as its child nodes, and the justifications of these body literals as subgraphs.

Example 5.16. Consider the following logic program P14 (taken from [PSEK09]), which

has two answer sets S1 = {b, e, f} and S2 = {a, e, f}:

{ a← f, not b;

b← e, not a;

f ← e;

d← c, e;

c← d, f ;

e← }

The off-line justification for b ∈ S1 is depicted on the top right of Figure 5.26. It is

constructed using the second clause in P14, yielding a positive dependency of b on e, and

a negative dependency of b on a. This expresses that b is in the answer set because it

depends on e being part of the answer set and on a not being part of it. Whether or not a

classical literal l occurring in the off-line justification is part of the answer set in question

is indicated by the labels ✬+✬ (if l is in the answer set) or ✬−✬ (if l is not in the answer set).

The dependency conditions of b on e and a are satisfied, since e is labelled ✬+✬ and a is

labelled ✬−✬. The off-line justification graph also expresses that e is known to be true since

it is a fact (indicated by ⊤ in the graph) and that a is assumed to be false (indicated by

assume in the graph). It is important to note that NAF literals are represented indirectly

12We will use the term ABAS Justification as shorthand for both BABAS and LABAS Justifications.
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Figure 5.26: The two graphs at the top illustrate the LABAS Justification (left) and the
Off-line Justification (right) of b ∈ S1 of P14, whereas the graphs at the bottom represent
the justifications of a /∈ S1 of P14.

in an off-line justification by means of their corresponding classical literal. For example

in the off-line justification of b (top right of Figure 5.26), the classical literal a is used to

represent the dependency of b on the NAF literal not a.

Off-line justifications treat the relationship between literals in a proof-oriented way,

that is as top-down dependencies, whereas ABAS Justifications (and Attack Trees) provide

explanations in a bottom-up manner in terms of assumptions and underlying knowledge

supporting the conclusion. We argue that our bottom-up approach might be clearer for

non-experts, as human decision making seems to involve starting from what is known along

with some kind of assumptions, and then drawing conclusions from that. Instead of saying

that b is dependent on e in P14 as done by an off-line justification, a LABAS Justification

expresses that e supports b, as shown on the top left of Figure 5.26. Especially with

respect to NAF literals, we believe that a bottom-up support relation is more intuitive

than a top-down dependency relation: instead of saying that b negatively depends on a

not being in the answer set as done by an off-line justification, the LABAS Justification

states that not a supports b (compare the two graphs at the top of Figure 5.26).

175



The well-founded model semantics is used in the construction of off-line justifications to

determine literals that are “assumed” to be false with respect to an answer set, as opposed

to literals that are always false. These assumed literals are not further justified, i.e. they

are leaf nodes in an off-line justification graph. In contrast, LABAS Justifications further

justify these “assumed” literals. They are usually true NAF literals that are part of a

dependency cycle. An example is the literal a in the logic program P14, which is assumed

to be false in the off-line justification of b w.r.t. S1 (bottom right of Figure 5.26). In

contrast, the LABAS Justification further explains that a is not in the answer set because

the support by not b does not “succeed” since the attack by b on not b “succeeds” (bottom

left of Figure 5.26).

An off-line justification graph includes all intermediate literals in the derivation of the

literal in question. However, following Brain and De Vos [BD08] we argue that it is suf-

ficient for a justification to include the most basic relevant literals, without considering

intermediate steps. Especially in the case of large logic programs, where derivations in-

clude many steps, an off-line justification will be a large graph with many positive and

negative dependency relations, which is hard to understand for humans. In contrast, an

ABAS Justification only contains the basic underlying literals, i.e. facts and NAF literals

necessary to derive the literal in question, making the justification clearer. However, if

the intermediate steps were required, they could be easily extracted from the arguments

in the Attack Trees underlying an ABAS Justification.

In contrast to off-line justifications, where in addition to answer sets the well-founded

model has to be computed, for the construction of ABAS Justifications the computation

of answer sets is sufficient. Even though the definitions of ABAS Justifications refer to

the corresponding stable argument extensions of the translated AA framework, it is not

necessary to compute these stable argument extensions, as explained in Section 5.7.

5.8.2 Argumentation-Based Answer Set Justifications

Argumentation-Based Answer Set Justifications [SST13] constitute the first approach that

applies argumentation theory to answer set programming in order to justify answer sets.

There, the ASPIC+ argumentation framework [Pra10] is used instead of ABA.

Similarly to ABAS Justifications, in Argumentation-Based Answer Set Justifications

literals are justified with respect to an answer set by means of ASPIC+ arguments

w.r.t. the stable argument extension corresponding to the answer set in question. For

the translation of a logic program into an ASPIC+ framework only a fraction of ASPIC+

features are needed; defeasible rules, issues, and preference orders are redundant. This is

to say that the ASPIC+ framework is too complex for the purpose of a justification and

a more lightweight framework like ABA is more suitable.

The method for constructing a justification in Argumentation-Based Answer Set Jus-

tification is slightly different from the ABAS Justification approach. Instead of extracting

support- and attack-pairs from Attack Trees, Argumentation-Based Answer Set Justifica-
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Figure 5.27: Argumentation-Based Answer Set Justification of b ∈ S1 of P14 from Exam-
ple 5.16.

tions are defined recursively: For an assumption-argument its attackers are investigated,

whereas for non-assumption- and non-fact-arguments supports by assumption- and fact-

arguments are examined. The recursion terminates when fact-arguments or non-attacked

assumption-arguments are encountered.

Argumentation-Based Answer Set Justifications have the same deficiencies as BABAS

Justifications; it is not clear which literals are facts or assumptions, and whether or not

support and attack relations “succeed”. The implementation of Argumentation-Based

Answer Set Justification colours the relations and literals similarly to the labels ✬+✬ and

✬−✬ on relations and literals in LABAS Justifications, where green corresponds to ✬+✬ and

red to ✬−✬. However, facts and assumptions cannot be distinguished from other literals,

as depicted in Figure 5.27.

In summary, ABAS Justifications are an improvement of Argumentation-Based An-

swer Set Justifications, both with respect to the elegance of the justification definition

and the appropriateness of the argumentation framework used. LABAS Justifications also

solve the deficiencies of Argumentation-Based Answer Set Justifications by providing more

information about the literals in the explanation as well as about their relationship. Fur-
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thermore, Argumentation-Based Answer Set Justifications were introduced without any

characterisation. In contrast, here we prove that ABAS Justifications provide an expla-

nation in terms of an admissible fragment of the answer set in question, and show their

relationship with abstract dispute trees.

5.8.3 Other Related Explanation Approaches

In addition to the two explanations approaches for answer sets discussed in the previ-

ous sections, Erdem and Öztok [EÖ15] introduce a formalism for explaining biomedical

queries expressed in ASP. Similarly to ABAS Justifications, they construct trees for the

explanation, but in contrast to our justifications these trees carry rules in the nodes rather

than literals. Another difference is that their explanation trees comprise every step in the

derivation of a literal (similar to off-line justifications explained in Section 5.8.1) rather

than abstracting away from intermediate derivation steps between the literal in question

and the underlying facts and NAF literals.

Brain and De Vos [BD05] try to answer a similar question as the one we address with

ABAS Justifications, i.e. why a set of literals is or is not a subset of an answer. Their

explanations are presented in text form, but they point out that it might be possible to

use a tree representation instead. Just like [EÖ15], all intermediate steps in a derivation

are considered in the explanation, thus differing from ABAS Justifications.

Further justification approaches for logic programs include the causal justifications of

Cabalar and Fandinno [CFF14, CF17], the why-provenance of Damásio et al. [DAA13],

the justifications of Denecker et al. [DBS15], and the rule-based justifications of Béatrix

et al. [BLGS16].

Related to the explanation of ASP is the visualisation of the structure of logic programs

in general. ASPIDE [FRR11] is an Integrated Development Environment for ASP, which,

among other features, displays the dependency graph of a logic program, i.e. it visualises

all positive and negative dependencies between literals. It is thus similar to the previously

mentioned approaches in that it illustrates every step in a derivation.

The problem of constructing explanations has been addressed for logic programs with-

out NAF by Arora et al. [ARR+93] and Ferrand et al. [FLT06]. In the early work by

Arora et al. [ARR+93] explanations of atoms in a logic program are constructed as simple

derivations of these atoms. Thus, this approach is closer to [EÖ15] and [BD05] than to

ABAS Justifications, as it provides all intermediate derivation steps. Similarly, Ferrrand

et al. [FLT06] show how to use proof trees as explanations for least fixpoint operators,

such as the semantics of constraint logic programs, where proof trees are derivations.

The comparison with these existing approaches demonstrates the novelty of ABAS

Justifications as they only provide the facts and NAF literals necessary for the derivation

of a literal in question rather than the whole derivation with all its intermediate steps.

Explanations have also received attention in other areas in the field of knowledge

representation and reasoning, and it has been emphasised that any expert system should
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provide explanations for its solutions (see [LD04] for an overview of explanations in heuris-

tic expert systems). Furthermore, it has been pointed out that even though argumentation

and other knowledge-based systems have been studied mostly separately in the past, ar-

gumentation could serve as a useful tool for the explanation of other knowledge-based

systems [MIBD02]. In fact, Bench-Capon et al. [BCLM91] provide an early account of

explanations for logic programs in terms of arguments, where Toulmin’s argument scheme

is applied. However, a meta-program encoding the argument scheme has to be created

by hand for any logic program that needs explanation, making it infeasible for automatic

computation.

Related to argumentation as an explanation method, Garćıa et al. [GCRS13] intro-

duce explanations in argumentative terms for argumentation-based reasoning methods,

such as Defeasible Logic Programming [GS04], explaining why an argument with a cer-

tain conclusion is or is not deemed to be “winning”. Similar to ABAS Justifications and

Attack Trees, the motivation behind their approach is to provide explanations in terms of

attacking and defending relations between arguments. Explanations are given in terms of

argument trees similar to Attack Trees, where arguments held by child nodes in the tree

attack the argument held by the parent node. In contrast to Attack Trees, however, every

node in the tree is extended with all its attackers and the tree is labelled with respect

to the grounded argument extension, instead of stable argument extensions. Another dif-

ference to our justifications is that Garćıa et al. explain why a literal l is not a winning

conclusion in terms of an explanation why the contrary literal ¬l is a winning conclusion.

In contrast, ABAS Justifications explain why a literal l is not a winning conclusion by

pointing out why it cannot possibly be winning. Arioua et al. [ATC15, ACP+16] also

use the dialectical structure of argumentation frameworks for explanation. Their applica-

tion area is ontologies. More recently, argumentation has been used for explanations in

Bayesian Networks [VPRV16, TMP+17]

5.9 Summary

In this chapter, we presented two approaches for justifying why a literal is or is not con-

tained in an answer set of a consistent logic program by translating the logic program

into an AA framework and using the structure of arguments and attacks for the expla-

nation. Attack Trees, our first justification approach, provide an explanation for a literal

in argumentation-theoretic terms, i.e. in terms of arguments and attacks between them.

ABA-Based Answer Set Justifications, our second justification approach, flatten the struc-

ture of Attack Trees, yielding a set of literal-pairs in a support or attack relation. This

justification approach is more aligned with logic programming concepts as it uses literals

rather than arguments as an explanation. Both justification approaches are based on the

correspondence between answer sets of a logic program and stable argument extensions of

the translated AA framework presented in Chapter 4.

Importantly, both Attack Trees and ABAS Justifications explain why a literal is or is
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not in an answer set in terms of an admissible fragment of this answer set. The justification

that a literal is in an answer set is that a derivation of this literal is supported by an

admissible fragment of this answer set. In contrast, the justification that a literal is not

contained in an answer set is that all derivations of this literal are “attacked” by an

admissible fragment of this answer set. In comparison to existing explanation methods

for answer sets, ABAS Justifications take an argumentative premise-conclusion approach,

i.e. a literal is explained in terms of the facts and NAF literals necessary for its derivations,

rather than in terms of the whole derivation.

In this chapter, we only dealt with explanations of consistent logic programs, i.e. logic

programs with meaningful answer sets. In Chapter 7, we investigate inconsistent logic

programs that have no answer set or whose only answer set is the set of all literals, and

introduce explanations of the inconsistency using concepts similar to Attack Trees.

180



Chapter 6

On the Non-Existence and

Restoration of Stable Labellings in

AA
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6.1 Introduction

In the previous chapter, we investigated answer sets of consistent logic programs, which

correspond to stable argument extensions, or equivalently stable argument labellings, of

the translated AA framework. Stable argument labellings (and equivalently stable argu-

ment extensions) are not guaranteed to exist for an AA framework, a problem which has

mostly been addressed through the usage of semantics that are “as decisive as possible”

and guaranteed to exist, such as as the preferred and semi-stable semantics. In contrast,

in this chapter we aim to characterise reasons for the non-existence of stable argument

labellings.

Dung [Dun95b] gives a characterisation of AA frameworks without stable argument

extensions, proving that an AA framework that comprises no odd-length cycle of attacking

arguments has at least one stable argument extension (and thus at least one stable argu-

ment labelling). Consequently, any AA framework that has no stable argument labellings

must comprise an odd-length cycle of attacking arguments. However, an AA framework

may comprise many odd-length cycles and, as we will show in this chapter, it may be that

not all of them should be deemed responsible for the non-existence of stable argument

labellings.

We investigate the non-existence of stable argument labellings by characterising parts

of an AA framework that are responsible for a preferred argument labelling not being a

stable argument labelling. We propose two different approaches: a labelling-based ap-

proach and a structural approach. In the labelling-based approach, we give two char-

acterisations of responsible parts in terms sets of arguments that are labelled undec by

a preferred argument labelling and that are illegally labelled if their labels are changed

to in or out. In contrast, in the structural approach we characterise responsible parts

as initial strongly connected components (SCCs) of the AA framework restricted to ar-

guments labelled undec by a preferred argument labelling. We call such parts strongly

connected undec parts (SCUPs) and prove that they always comprise an odd-length cycle

of attacking arguments.

In addition to proposing characterisations of responsible parts of an AA framework, we

take our investigations of the non-existence problem of stable argument labellings further

by showing how to turn a preferred argument labelling into a stable argument labelling.

We propose to re-label certain arguments labelled undec by a preferred argument labelling

as in or out and enforcing1 these new labels to be legal. Since our labelling-based approach

characterises responsible arguments as illegally labelled in or out, we propose to enforce

these illegal labels of responsible arguments, i.e. to structurally revise the AA framework

such that the (illegal) labels of responsible arguments become legal. We show that this

method results in a stable argument labelling. Note that we are here not interested in

the exact structural change of an AA framework as long as it ensures that arguments are

1Baumann and Brewka [BB10] introduce the term “enforcement” as a structural change of an AA
framework that makes a desired set of arguments an argument extension. We here use the term differently,
to refer to a structural change that makes desired labels of arguments legal.
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legally labelled according to the desired labels. With respect to our structural approach,

we propose to enforce the label in or out onto all arguments in SCUPs. Again, we are not

concerned with the exact structural revision of SCUPs as long as it results in all arguments

in a SCUP being legally labelled in or out. In general, enforcing the labels in and out

onto arguments in SCUPs may not result in a stable argument labelling of the revised AA

framework. Nevertheless, we prove that iteratively enforcing the labels in and out onto

arguments in SCUPs results in a stable argument labelling.

The chapter is organised as follows. We provide some additional background on AA

frameworks used throughout this chapter in Section 6.2 and introduce an intuitive run-

ning example and some preliminary definitions in Section 6.3. In Section 6.4, we define

three labelling-based characterisations of parts of an AA framework responsible that no

stable argument labelling exists and prove that two of them provide necessary and suffi-

cient conditions for the (non-)existence of stable argument labellings. In Section 6.5, we

introduce three structural characterisations of responsible parts: a basic characterisation,

odd-length cycles of attacking arguments, and SCUPs. We furthermore propose an itera-

tive method for revising SCUPs, which guarantees to result in a stable argument labelling.

We then investigate the relation between our labelling-based and structural characterisa-

tions in Section 6.6. In Section 6.7, we discuss some of the design choices underlying our

approach and compare our approach to related work. In Section 6.8, we summarise the

contributions of this chapter.

6.2 Background

Since this chapter is solely about AA frameworks and there is no risk of confusion, we will

call argument labellings simply “labellings” and argument extensions simply “extensions”.

Furthermore, we call a labelling LabArg with undec(LabArg) = ∅ an in-out labelling.

Throughout this chapter, we identify complete labellings based on the legality of ar-

guments’ labels, which is equivalent to the conditions given in Section 2.2.1. Given a

labelling LabArg of AA and an argument A ∈ Ar:

❼ A is legally labelled in by LabArg (in AA) if and only if A ∈ in(LabArg) and

∀B ∈ Ar attacking A it holds that B ∈ out(LabArg);

❼ A is legally labelled out by LabArg (in AA) if and only if A ∈ out(LabArg) and

∃B ∈ Ar attacking A such that B ∈ in(LabArg);

❼ A is legally labelled undec by LabArg (in AA) if and only if A ∈ undec(LabArg)

and ∃B ∈ Ar attacking A such that B ∈ undec(LabArg), and ∀C ∈ Ar attacking A

it holds that C /∈ in(LabArg).

A is legally labelled by LabArg (in AA) if and only if it is legally labelled in, out, or undec

by LabArg (in AA); otherwise A is illegally labelled by LabArg (in AA). Equivalently we

say that a label is legal/illegal w.r.t. LabArg (in AA).
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A labelling LabArg of AA is a complete labelling of AA if and only if all arguments

A ∈ Ar are legally labelled by LabArg (in AA). Preferred and stable labellings are defined

based on complete labellings as in Section 2.2.1.

Given a set of arguments Args ⊆ Ar, AA↓Args = 〈Args,AttArgs〉 denotes the restric-

tion of AA to Args, where AttArgs = Att∩ (Args×Args). Furthermore, given a labelling

LabArg of AA, LabArg↓Args = LabArg∩(Args×{in, out, undec}) denotes the restriction

of LabArg to Args [BBC+14].

Example 6.1. Let AA2 be the AA framework on the left of Figure 6.1, which has only

one complete labelling, also illustrated on the left of the figure. Given the set of argu-

ments {a, b}, AA2↓{a,b} is depicted on the right of Figure 6.1 along with the labelling

LabArg↓{a,b}.

a b c

in out in

a b

in out

Figure 6.1: Left – AA2 and its only complete labelling LabArg. Right – AA2↓{a,b} and
the labelling LabArg↓{a,b}.

Given a set of arguments Args, we denote by parents(Args) the set of all arguments

that are not contained in Args and attack Args, i.e. parents(Args) = {A ∈ Ar | (A,B) ∈

Att, A /∈ Args,B ∈ Args}.

A path from argument A ∈ Ar to argument B ∈ Ar is a sequence of arguments

A0, A1, . . . , An (n > 0, ∀i ∈ {0, . . . , n} : Ai ∈ Ar) with A0 = A and An = B such that

∀i ∈ {0, . . . , n− 1} : Ai attacks Ai+1. A cycle is a path A0, A1, . . . , An where An = A0. It

is an odd-length cycle if n is odd. With an abuse of notation, we denote a cycle as a set

of arguments C , where Ai ∈ C means that argument Ai occurs in cycle C .

Path-equivalence between two arguments A ∈ Ar and B ∈ Ar holds if and only if

A = B or there exists a path both from A to B and from B to A. The equivalence classes of

arguments under the relation of path-equivalence are called strongly connected components

(SCCs) of AA [BGG05]. Since SCCs are sets of arguments, the notion of attacks between

sets of arguments can be straightforwardly lifted to a notion of attacks between SCCs.

Given an SCC Args ⊆ Ar, the set of parent SCCs is parentSCCs(Args) = {Args′ ⊆ Ar |

Args′ is an SCC of AA, Args′ ∩ parents(Args) 6= ∅}. If parentSCCs(Args) = ∅, then

Args is an initial SCC. Furthermore, the set of ancestor SCCs of Args is

ancestorSCCs(Args) = parentSCCs(Args)∪
⋃

Args′∈parentSCCs(Args) ancestorSCCs(Args
′).

Example 6.2. AA2 (see left of Figure 6.1) has one odd-length cycle, namely {b}, and two

SCCs, namely {a} and {b, c}, where the former attacks the latter. parentSCCs({a}) =

ancestorSCCs({a}) = ∅ and parentSCCs({b, c}) = ancestorSCCs({b, c}) = {a}, so {a}

is an initial SCC.
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An AA framework with input [BBC+14] is a tupleAAI = (AA, I, LabArgI , AttI) where

I is a set of input arguments such that I ∩ Ar = ∅, LabArgI is the input labelling of I

(i.e. a labelling of I), and AttI is an attack relation between I and Ar, i.e. AttI ⊆ (I×Ar).

We say that argument A ∈ I attacks argument B ∈ Ar if (A,B) ∈ AttI .

The semantics of an AA framework with input is defined as follows. A labelling LabArg

of AA is a complete labelling w.r.t. AAI if and only if for all A ∈ Ar it holds that2:

❼ if A ∈ in(LabArg), then ∀B ∈ Ar attacking A it holds that B ∈ out(LabArg) and

∀B ∈ I attacking A it holds that B ∈ out(LabArgI);

❼ if A ∈ out(LabArg), then ∃B ∈ Ar attacking A such that B ∈ in(LabArg) or

∃B ∈ I attacking A such that B ∈ in(LabArgI);

❼ if A ∈ undec(LabArg), then ∃B ∈ Ar attacking A such that B ∈ undec(LabArg) or

∃B ∈ I attacking A such that B ∈ undec(LabArgI), and ∀B ∈ Ar attacking A it

holds that B /∈ in(LabArg) and ∀B ∈ I attacking A it holds that B /∈ in(LabArgI).

A labelling LabArg of AA is a stable labelling w.r.t. AAI if and only if LabArg is a

complete labelling w.r.t. AAI and undec(LabArg) = ∅. We sometimes say that LabArg

is a complete/stable labelling of AA w.r.t. its input I.

Example 6.3. An AA framework with input (AA2, I, LabArgI , AttI) is depicted in Fig-

ure 6.2, where the set of input arguments is I = {a′, b′}, the labelling of input arguments is

LabArgI = {(a′, in), (b′, undec)}, and AttI = {(a′, a)}. There are two complete labellings

w.r.t. (AA2, I, LabArgI , AttI), namely {(a, out), (b, undec), (c, undec)} and {(a, out),

(b, out), (c, in)}, where the latter is a stable labelling w.r.t. (AA2, I, LabArgI , AttI).

a b ca′b′

inundec

Figure 6.2: The AA framework with input from Example 6.3.

6.3 Preliminaries

6.3.1 Running Example

Throughout this chapter, we will use an intuitive medical example, which illustrates why

the non-existence of stable labellings is problematic in situations which require to make a

definite decision. Consider a physician who needs to decide which of five possible therapies

to recommend to her patient. She first reads a study praising therapy A and concluding

that therapy A is way more effective than therapy B. This study thus provides an argument

2Baroni et al. [BBC+14] call this the “canonical local function” of the complete semantics.
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for the effectiveness of therapy A and positions it as a counterargument against any argu-

ment stating that therapy B is effective. A second article recommends therapy B, showing

that it is more reliable than therapy C and much more effective than therapy D. The

physician reviews a third study, which describes the enormous success of therapy C and

the poor performance of therapy A compared to C. Another article advocates therapy D,

but also reveals that therapy D is controversial, sometimes scoring high effectiveness and

sometimes poor performance. Finally, a fifth article discusses therapy E, recommending

not to apply this therapy. The AA framework representing the physician’s reasoning on

the effectiveness of the five therapies, which we denote AAtherapy and which is illustrated

in Figure 6.3), has no stable labelling, so no conclusion about any of the therapies can be

drawn.

ther. A is very effective ther. B is very effective

ther. C is very effective

ther. D is very effective

ther. E is not effective

Figure 6.3: AAtherapy representing the physician’s reasoning about therapies according to
information from scientific articles.

The only preferred labelling (and also the only semi-stable labelling) of AAtherapy

labels all arguments as undec except the argument “therapy E is not effective”, which is

labelled in. Thus, even using a semantics that is “as decisive as possible”, the physician

cannot make any decision as to which therapy to prescribe. The only conclusion she can

draw is that therapy E is definitely not effective. The non-existence of stable labellings

thus poses a problem.

From here onwards, we use a shorthand notation for each argument according to the

letter of the respective therapy, e.g. A denotes the argument “therapy A is very effective”.

6.3.2 Preliminary Definitions and Results

The aim of this chapter is to give characterisations of parts of an AA framework that are

responsible for the non-existence of stable labellings and to provide methods for obtaining

a stable labelling. We start with the observation that if an AA framework has no stable

labellings, then none of its preferred labellings is a stable labelling.3 This observation is

used for our characterisations by defining responsibility that no stable labelling exists in

terms of responsibility that a preferred labelling is not a stable labelling. Similarly, we

define methods for obtaining a stable labelling in terms of turning a preferred labelling

into a stable labelling. This is achieved by re-labelling arguments labelled undec by a

3This follows from the fact that every stable labelling is a preferred labelling [CG09].
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preferred labelling as in or out, in particular arguments identified as responsible that this

preferred labelling is not a stable labelling.

It is however not sufficient to simply re-label arguments to obtain a stable labelling;

in addition, we have to ensure that the new labels are legal. This will be achieved by “en-

forcing” the new labels, i.e. by structurally revising the AA framework in such a way that

the new labels become legal. Since we are only interested in enforcing the labels of certain

arguments (usually those with new labels, which have been identified as responsible), we

restrict structural revisions to these arguments.

We therefore introduce set-driven revisions, which ensure that labels (according to

some desired labelling) of arguments in a given set become legal, while not making any

structural changes affecting arguments not in the set.

Definition 6.1 (Set-Driven Revision and Revision Labelling). Let LabArg be a labelling

of AA and let Args ⊆ Ar. A (set-driven) revision of AA w.r.t. Args by LabArg is

AA⊛ = 〈Ar⊛, Att⊛〉 such that:

❼ Ar ⊆ Ar⊛;

❼ {(A,B) ∈ Att | B ∈ Ar \Args} = {(A,B) ∈ Att⊛ | B ∈ Ar \Args};

❼ ∃LabArg⊛ of AA⊛ satisfying that:

– ∀C ∈ Ar: LabArg⊛(C) = LabArg(C);

– ∀D ∈ Ar⊛ \Ar: D is legally labelled in or out by LabArg⊛ in AA⊛.

– ∀E ∈ Args: E is legally labelled by LabArg⊛ in AA⊛;

Any such LabArg⊛ is called a revision labelling of AA⊛.

Since a set-driven revision enforces desired labels onto arguments in the given set Args,

we do not allow the deletion of arguments in Args. A set-driven revision may thus only

include the addition of new arguments (specified by the first bullet in Definition 6.1). Fur-

thermore, structural changes which may affect (the legality of labels of) arguments not in

Args are not allowed. Thus, all attacks on arguments not in Args have to remain the same

in the revision (specified by the second bullet). Since LabArg specifies the desired labels of

all arguments, a revision labelling is a simple “enlargement” of LabArg to include (legal)

labels of new arguments; the labels of all other arguments remain unchanged (specified

by the first and second item of the third bullet). Furthermore, and most importantly, a

revision labelling ensures that all arguments in Args are legally labelled in the revision

(specified by the third item of the third bullet).

From here onwards, we will refer to set-driven revisions simply as revisions.

Example 6.4. Let LabArg be the labelling of AAtherapy illustrated in Figure 6.4. Fig-

ure 6.5 depicts a revision of AAtherapy w.r.t. {A} by LabArg, which we denote AA⊛

therapy,

and the labelling in Figure 6.5 is a revision labelling of AA⊛

therapy. Note that AA⊛

therapy is

also a revision of AAtherapy w.r.t. any superset of {A} by LabArg.
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ther. A is very effective

out

ther. B is very effective

in

ther. C is very effective

out

ther. D is very effective

out

ther. E is not effective

in

Figure 6.4: AAtherapy and a labelling LabArg (underlined labels are illegal).

ther. A is very effective

out

ther. B is very effective

in

ther. C is very effective

out

ther. D is very effective

out

ther. E is not effective

in

ther. A is not effective

in

Figure 6.5: A revision of AAtherapy w.r.t. {A} by LabArg.

Example 6.4 anticipates how we will use revisions in the context of turning a preferred

labelling into a stable labelling. As previously explained, the only preferred labelling

of AAtherapy labels all arguments as undec except argument E, which is labelled in.

In order to turn this preferred labelling into a stable labelling, we may thus change all

undec labels to in or out labels. One such option is the labelling LabArg illustrated

in Figure 6.4. However, since in this labelling not all arguments are legally labelled, in

particular argument A is illegally labelled, we perform a revision w.r.t. {A} by the desired

labelling LabArg, obtaining an AA framework where A is legally labelled, as illustrated in

Figure 6.5. The desired labelling LabArg (plus the label in of the newly added argument)

is now a stable labelling of the structurally revised AA framework. Throughout this

chapter, we will characterise different sets of arguments that are good choices for revisions,

in particular sets of arguments that are responsible that the preferred labelling in question

is not a stable labelling.

In the following lemma, we show that a revision exists for any given set of arguments

and labelling. This means that any labelling can be “enforced” onto a set of arguments

through a structural change as given by Definition 6.1.

Lemma 6.1. Let LabArg be a labelling of AA and let Args ⊆ Ar. Then there exists a

revision of AA w.r.t. Args by LabArg.

Proof. Let AA⊛ = 〈Ar⊛, Att⊛〉 be such that Ar⊛ = Ar ∪ {X} where X /∈ Ar and Att⊛ =
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(Att \ {(B,A) ∈ Att | A ∈ Args,A ∈ in(LabArg) ∪ undec(LabArg)}) ∪ ({(X,A) | A ∈

Args,A ∈ out(LabArg)} ∪ {(A,A) | A ∈ Args,A ∈ undec(LabArg)}). Let LabArg⊛ =

LabArg ∪ {(X, in)}. Then clearly Ar ⊆ Ar⊛ and {(A,B) ∈ Att | B ∈ Ar \ Args} =

{(A,B) ∈ Att⊛ | B ∈ Ar \Args}, and ∀C ∈ Ar: LabArg⊛(C) = LabArg(C).

Let A ∈ Args. If A ∈ in(LabArg⊛), then A is not attacked by any argument B in

AA⊛, so trivially for all attackers B of A in AA⊛, B ∈ out(LabArg⊛). Thus, A is

legally labelled in by LabArg⊛ in AA⊛. If A ∈ out(LabArg⊛), then A is attacked by

X in AA⊛ and X ∈ in(LabArg⊛), so A is legally labelled out by LabArg⊛ in AA⊛. If

A ∈ undec(LabArg⊛), then A is only attacked by itself in AA⊛. Thus, there exists an

attacker of A in AA⊛ labelled undec by LabArg⊛ and there exists no attacker of A in

AA⊛ labelled in by LabArg⊛, so A is legally labelled undec by LabArg⊛ in AA⊛.

Since furthermore X ∈ Ar⊛ \ Ar is legally labelled in by LabArg⊛ in AA⊛, AA⊛ and

LabArg⊛ satisfy the conditions in Definition 6.1, so AA⊛ is a revision of AA w.r.t. Args

by LabArg.

Note that we are not concerned with the exact structural change of a revision compared

to the original AA framework. We simply use the structural change of an AA framework

as a tool to ensure that labels of arguments are legal. As a result, there may be various

revisions of an AA framework w.r.t. a given set of arguments and labelling. Furthermore, a

revision may have various different revision labellings. It is in general up to the preference

of users to decide which of these revisions and revision labellings to use. For example,

a user may be interested in revisions with “minimal” structural changes as in [Bau12,

CMKMM14b].

Example 6.5. Let AA3 be the AA framework depicted on the left of Figure 6.6 and

LabArg the labelling of AA3 illustrated on the left of Figure 6.6, which is the labelling we

desire. Argument a is illegally labelled by LabArg, so a revision can be used to enforce

the desired label onto argument a. A possible revision of AA3 w.r.t. {a} by LabArg is

illustrated on the right of Figure 6.6 alongside a revision labelling. Another revision of

AA3 w.r.t. {a} by LabArg is illustrated in Figure 6.7 alongside two different revision

labellings.

Next, we extend the comparison notion of commitment of two labellings of an AA

framework [CG09] to the comparison of labellings of potentially different AA frameworks,

where the arguments of one AA framework form a superset of the arguments of the other.

Definition 6.2 (Commitment of Labellings). Let LabArg be a labelling of AA and let

LabArg′ be a labelling of AA′ = 〈Ar′, Att′〉, where Ar ⊆ Ar′.

❼ LabArg′ is more or equally committed than LabArg, denoted LabArg ⊑ LabArg′, if

and only if in(LabArg) ⊆ in(LabArg′), out(LabArg) ⊆ out(LabArg′) and

undec(LabArg′) ⊆ undec(LabArg).

❼ LabArg′ is more committed than LabArg, denoted LabArg ⊏ LabArg′, if and only

if LabArg ⊑ LabArg′ and undec(LabArg′) ⊂ undec(LabArg).
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a
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Figure 6.6: Left – AA3 and a labelling LabArg, where the underline indicates that the
argument is illegally labelled. Right – A revision of AA3 and its only revision labelling
(see Example 6.5).

a

out

a′ a′′

in out

a

out

a′ a′′

out in

Figure 6.7: A revision ofAA3, which has two different revision labellings (see Example 6.5).

Since the set of arguments of a revision is a subset of or equal to the set of arguments

of the original AA framework, and since a revision labelling of the revision labels all

arguments of the original AA framework the same as the original labelling used to obtain

the revision and new arguments as in or out, a revision labelling is more or equally

committed than the original labelling.

Observation 6.2. Let LabArg be a labelling of AA and Args ⊆ Ar. Then, for all

revisions AA⊛ of AA w.r.t. Args by LabArg and all revision labellings LabArg⊛ of AA⊛

it holds that LabArg ⊑ LabArg⊛.

For instance, the two revision labellings of the revision of AA3 illustrated in Figure 6.7

(see Example 6.5) are more committed than the original labelling of AA3, depicted on the

left of Figure 6.6.

In the remainder, and if not stated otherwise, we assume that AA = 〈Ar,Att〉 has

no stable labelling and that LabArgpref is a preferred labelling4 of AA. When talking

about the preferred labelling, we therefore do not suggest that AA has only one preferred

labelling, but rather we refer to the preferred labelling LabArgpref in question.

4By Corollary 12 in [Dun95b] AA has at least one preferred extension, and therefore, by the correspon-
dence between extensions and labellings [CG09], AA has at least one preferred labelling.
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6.4 Labelling-Based Characterisations

As previously explained, we aim to 1) characterise sets of arguments responsible for the

non-existence of stable labellings in terms of sets of arguments responsible that a preferred

labelling is not a stable labelling, and 2) use these responsible sets to turn the preferred

labelling in question into a stable labelling. In this section, we give three declarative char-

acterisations of sets of arguments that are responsible for LabArgpref not to be a stable

labelling. These characterisations are labelling-based, which means that they identify re-

sponsible sets based on labellings that are more or equally committed than LabArgpref .

In other words, the characterisations rely purely on changing undec labels in the preferred

labelling to in or out labels and checking which of the new labels are illegal. The structure

of the AA framework is not explicitly taken into account. We also investigate how our

characterisations relate to revisions of the AA framework which (do not) have a stable

labelling that is more committed than LabArgpref . In particular, we show that our two

non-naive characterisations, which we introduce in Sections 6.4.2 and 6.4.3, define neces-

sary and sufficient conditions for the existence and non-existence of a stable labelling of

a revision.

6.4.1 The Basic Approach

A naive way to characterise arguments responsible for LabArgpref not being a stable

labelling is in terms of all arguments labelled undec by LabArgpref , since these are the

arguments violating the definition of stable labelling.

Definition 6.3 (Labelling-Based Characterisation 1). undec(LabArgpref ) is the labelling-

based responsible set w.r.t. LabArgpref .

It is straightforward to use this characterisation of a set of arguments responsible for

the non-existence of stable labellings to obtain a stable labelling. The following proposition

proves that re-labelling all arguments in the labelling-based responsible set as in or out

and ensuring that these new labels are legal by constructing a revision, results in a stable

labelling of the revision. Thus, the labelling-based responsible set provides a sufficient

condition for obtaining a stable labelling through a revision.

Proposition 6.3. Let Args be the labelling-based responsible set w.r.t. LabArgpref and

let LabArg be a labelling such that LabArgpref ⊏ LabArg and undec(LabArg) = ∅. Then,

for all revisions AA⊛ of AA w.r.t. Args by LabArg and all revision labellings LabArg⊛

of AA⊛, LabArg⊛ is a stable labelling of AA⊛.

Proof. Since undec(LabArg) = ∅, it follows from Observation 6.2 that undec(LabArg⊛) =

∅. Furthermore, by Definition 6.1 all A ∈ Ar⊛ \ Ar are legally labelled by LabArg⊛ in

AA⊛. Let B ∈ Ar. If B ∈ Args, then by Definition 6.1 B is legally labelled by LabArg⊛

in AA⊛. If B /∈ Args, then B ∈ in(LabArgpref )∪out(LabArgpref ), so B is legally labelled

by LabArgpref in AA. By Lemma A.2 in Appendix A, B is legally labelled by LabArg
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in AA, and by Lemma A.1 in Appendix A, B is legally labelled by LabArg⊛ in AA⊛.

Since all arguments in AA⊛ are legally labelled by LabArg⊛ and undec(LabArg⊛) = ∅,

LabArg⊛ is a stable labelling of AA⊛.

Example 6.6. Consider again AAtherapy from Example 6.4 and its only preferred labelling

LabArgpref , which labels all arguments undec except for argument E, which is labelled in.

Thus, the labelling-based responsible set w.r.t. LabArgpref is {A,B,C,D}. Let LabArg be

the labelling of AAtherapy illustrated in Figure 6.4. The revision labelling of the revision

AA⊛

therapy of AAtherapy w.r.t. {A,B,C,D} by LabArg (see Figure 6.5) is a stable labelling

of AA⊛

therapy.

Since by Lemma 6.1 a revision exists w.r.t. any set of arguments and any labelling,

it follows that there exists a revision w.r.t. the labelling-based responsible set, and in

particular (by Proposition 6.3) a revision that has a stable labelling.

Corollary 6.4. Let Args be the labelling-based responsible set w.r.t. LabArgpref and let

LabArg be labelling such that LabArgpref ⊏ LabArg and undec(LabArg) = ∅. Then, there

exists a revision AA⊛ of AA w.r.t. Args by LabArg and and a revision labelling LabArg⊛

of AA⊛ such that LabArg⊛ is a stable labelling of AA⊛.

Note that, by Observation 6.2, a stable labelling obtained through such a revision is

more committed than LabArgpref . Thus, as desired, the labelling-based responsible set

can be used to turn a preferred labelling into a stable labelling.

6.4.2 Enforcement Sets

The definition of labelling-based responsible set is a rather naive characterisation of argu-

ments responsible for the preferred labelling not to be a stable labelling, since it is often

possible to legally label some of its arguments in or out. For example, considering the

arguments A, B, C, and D labelled undec by the preferred labelling of AAtherapy (see Fig-

ure 6.3), we observe that three out of these four arguments can in fact be legally labelled

in or out, as illustrated in Figure 6.4 (only argument A is illegally labelled).

Our next characterisation takes this observation into account, characterising specific

subsets of the labelling-based responsible set as responsible. In particular, arguments that

are legally labelled by an in-out labelling that is more committed than LabArgpref will

not be deemed responsible. More precisely, a set of responsible arguments according to

our second labelling-based characterisation is defined as a minimal subset of arguments

labelled undec by LabArgpref satisfying that some in-out labelling that is more commit-

ted than LabArgpref legally labels all non-responsible arguments (i.e. all arguments not

contained in this set).

Definition 6.4 (Labelling-Based Characterisation 2). Args is an enforcement set w.r.t.

LabArgpref if and only if it is a minimal set of arguments (w.r.t. ⊆) such that

Args ⊆ undec(LabArgpref ) and
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∃LabArg of AA with LabArgpref ⊏ LabArg and undec(LabArg) = ∅ such that

∀A ∈ undec(LabArgpref ) \Args: A is legally labelled by LabArg.

Any such LabArg is an enforcement labelling w.r.t. Args.

Example 6.7. Consider again AAtherapy and its only preferred labelling LabArgpref (see

Example 6.6). Then {A} is an enforcement set w.r.t. LabArgpref , where the labelling shown

in Figure 6.4 is an enforcement labelling as it is an in-out labelling that is more com-

mitted than LabArgpref and it legally labels all arguments labelled undec by LabArgpref

except for argument A (i.e. arguments B, C, and D). Furthermore, {A} is a minimal set

satisfying this condition, since for its only subset {} there exists no in-out labelling that

is more committed than LabArgpref and that legally labels all arguments labelled undec

by LabArgpref . There are two more enforcement sets w.r.t. LabArgpref , namely {B}, and

{C}. Note that {D} is not an enforcement set since there exists no in-out labelling that

legally labels A, B, and C.

In Example 6.7, all enforcement sets are disjoint. The following example illustrates

that different enforcement sets may contain the same arguments and that an enforcement

set may have various different enforcement labellings.

Example 6.8. Let AA4 be the AA framework on the left of Figure 6.8, whose only pre-

ferred labelling LabArgpref labels all arguments as undec. There are three enforcement sets

w.r.t. LabArgpref : {a, e}, {b, e}, and {c, e}. Note that for all of them various enforcement

labellings exist, e.g. the labelling illustrated on the left of Figure 6.8 is an enforcement

labelling of {b, e}, and so is {(a, out), (b, out), (c, in), (d, in), (e, in)} (among others).

a

in

b

in

c

out

d

out

e

out

a

in

b

in

c

out

d

out

e

out

e′

in

Figure 6.8: Left – AA4 and labelling LabArg, where underlined labels are illegal. Right
– A revision AA⊛

4 of AA4 by LabArg and a revision labelling that is a stable labelling of
AA4 (see Examples 6.8 and 6.9).

It follows from Definition 6.4 that all arguments in an enforcement set are illegally

labelled by an enforcement labelling. For example, arguments b and e are illegally labelled

by both enforcement labellings discussed in Example 6.8. It is important to note that,

nevertheless, enforcement labellings cannot be equivalently defined as minimal sets of

arguments that are illegally labelled by an enforcement labelling, as this would always

yield the empty set as the only enforcement set. Rather, an enforcement set is a minimal

set of arguments consisting of all the illegally labelled arguments w.r.t. an enforcement

labelling.
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In the following lemma, we show that at least one enforcement set exists and that

enforcement sets are always non-empty. Both are important properties for sets of argu-

ments characterising parts of an AA framework responsible for the non-existence of stable

labellings.

Lemma 6.5.

1. There exists an enforcement set w.r.t. LabArgpref .

2. If Args is an enforcement set w.r.t. LabArgpref , then Args 6= ∅.

Proof.

1. LetArgs = undec(LabArgpref ). Clearly there exists some LabArg with LabArgpref ⊏

LabArg and undec(LabArg) = ∅. Then trivially, ∀A ∈ undec(LabArgpref )\Args = ∅

it holds that A is legally labelled by LabArg. Thus, Args and LabArg satisfy the

conditions in Definition 6.4, but Args may not be a minimal set satisfying the con-

ditions. If for all Args1 ⊂ Args and for all LabArg′ of AA with LabArgpref ⊏

LabArg′ and undec(LabArg′) = ∅ there exists some A ∈ undec(LabArgpref ) \Args1

which is illegally labelled by LabArg′, then Args is a minimal set satisfying the

conditions in Definition 6.4, so it is an enforcement set (and LabArg an enforce-

ment labelling w.r.t. Args). Else, there is a smallest Args1 ⊂ Args satisfying

that ∃LabArg1 with LabArgpref ⊏ LabArg1 and undec(LabArg1) = ∅ such that

∀A ∈ undec(LabArgpref ) \ Args1: A is legally labelled by LabArg1. Thus, Args1 is

an enforcement set (and LabArg1 an enforcement labelling).

2. Let LabArg be an enforcement labelling w.r.t.Args. IfArgs = ∅, then by Lemma A.3

in Appendix A it holds that all arguments in Ar are legally labelled by LabArg, so

since undec(LabArg) = ∅, LabArg is a stable labelling. Contradiction since AA has

no stable labellings.

Responsibility of Enforcement Sets

The reason for naming our second labelling-based characterisation “enforcement sets”

is illustrated by Theorem 6.6: “enforcing” the labels of an enforcement labelling onto

arguments in an enforcement set in terms of a revision, results in a stable labelling. An

enforcement set is thus a sufficient condition for obtaining a stable labelling through a

revision, which is more refined than the condition given by the labelling-based responsible

set (since every enforcement set is a subset of the labelling-based responsible set).

Theorem 6.6. Let Args ⊇ Argsenf where Argsenf is an enforcement set w.r.t. LabArgpref

and let LabArg be an enforcement labelling w.r.t. Argsenf . Then, for all revisions AA⊛

of AA w.r.t. Args by LabArg and all revision labellings LabArg⊛ of AA⊛, LabArg⊛ is a

stable labelling of AA⊛.
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Proof. Since by Definition 6.4, undec(LabArg) = ∅, it follows from Observation 6.2 that

undec(LabArg⊛) = ∅. By Definition 6.1, all A ∈ Ar⊛ \Ar are legally labelled by LabArg⊛

in AA⊛. Let B ∈ Ar. If B ∈ Args, then by Definition 6.1 B is legally labelled by LabArg⊛

in AA⊛. If B /∈ Args, and thus B /∈ Argsenf , then by Lemma A.3 in Appendix A, B

is legally labelled by LabArg in AA, so by Lemma A.1 in Appendix A, B is legally

labelled by LabArg⊛ in AA⊛. Since all arguments are legally labelled by LabArg⊛ and

undec(LabArg⊛) = ∅, LabArg⊛ is a stable labelling of AA⊛.

Example 6.9. Consider the enforcement set {b, e} and the enforcement labelling LabArg

of AA4 illustrated on the left of Figure 6.8. The AA framework on the right of Figure 6.8

is a revision AA⊛

4 of AA4 w.r.t. {b, e} by LabArg and the revision labelling LabArg⊛

illustrated in the figure is a stable labelling of AA⊛

4 .

Since by Lemma 6.1 a revision exists w.r.t. any set of arguments and labelling, it

follows that there exists a revision w.r.t. an enforcement set by an enforcement labelling

and that the revision has a stable labelling which is more committed than LabArgpref .

Corollary 6.7. Let Args ⊇ Argsenf where Argsenf is an enforcement set w.r.t. LabArgpref

and let LabArg be an enforcement labelling w.r.t. Argsenf . Then there exists a revision

AA⊛ of AA w.r.t. Args by LabArg and a revision labelling LabArg⊛ of AA⊛ such that

LabArg⊛ is a stable labelling of AA⊛.

6.4.3 Preventing Sets

Enforcement sets characterise a responsible set of arguments with respect to a specific

more committed labelling, which labels all arguments in this set illegally. Our second

non-naive characterisation instead defines a responsible set of arguments as containing at

least one illegally labelled argument with respect to every in-out labelling that is more

committed than LabArgpref .

Definition 6.5 (Labelling-Based Characterisation 3). Args is a preventing set w.r.t.

LabArgpref if and only if it is a minimal set of arguments (w.r.t. ⊆) such that

Args ⊆ undec(LabArgpref ) and

∀LabArg of AA with LabArgpref ⊏ LabArg and undec(LabArg) = ∅ it holds that

∃A ∈ Args such that A is illegally labelled by LabArg.

Example 6.10. Consider again AAtherapy and its only preferred labelling LabArgpref (see

Example 6.6). The only preventing set w.r.t. LabArgpref is {A,B,C}, since no matter

how the labels in and out are assigned to this set of arguments, at least one argument is

illegally labelled. In contrast, for all subsets there exists some in-out labelling that labels

all arguments legally. For instance, for the set {A,B}, an in-out labelling that labels A

as in and B and C as out legally labels both A and B.

Similarly to enforcement sets, at least one preventing set exists w.r.t. LabArgpref and

preventing sets are always non-empty.
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Lemma 6.8.

1. There exists a preventing set w.r.t. LabArgpref .

2. If Args is a preventing set w.r.t. LabArgpref , then Args 6= ∅.

Proof.

1. Let Args = undec(LabArgpref ) and let LabArg be such that LabArgpref ⊏ LabArg

and undec(LabArg) = ∅. Since LabArgpref is a maximal complete labelling, ∃A ∈

Args such that A is illegally labelled by LabArg. Since this holds for all such

labellings LabArg, Args satisfies the conditions in Definition 6.5. However, Args

may not be a minimal set satisfying these conditions. If for all Args1 ⊂ Args there

exists LabArg1 with LabArgpref ⊏ LabArg1 and undec(LabArg1) = ∅ such that all

A ∈ Args1 are legally labelled by LabArg1, then Args is a minimal set satisfying the

conditions in Definition 6.5, so it is a preventing set w.r.t. LabArgpref . Else, there is

a smallest Args1 ⊂ Args satisfying that ∀LabArg′ with LabArgpref ⊏ LabArg′ and

undec(LabArg′) = ∅ it holds that ∃A ∈ Args1 such that A is illegally labelled by

LabArg′. Then Args1 is a preventing set w.r.t. LabArgpref .

2. Assume Args = ∅ is a preventing set w.r.t. LabArgpref . By Definition 6.5, ∃A ∈ Args

such that A is illegally labelled. Contradiction since ∄A ∈ Args.

Responsibility of Preventing Sets

Theorem 6.9 illustrates the reason for naming our third labelling-based characterisation

“preventing sets”: any revision w.r.t. a set of arguments not comprising any argument

from some preventing set has no stable labelling that is more committed than LabArgpref .

Thus, preventing sets define a sufficient condition for “preventing” the existence of a stable

labelling that is more committed than LabArgpref .

Theorem 6.9. Let Args ⊆ Ar\Argsprev where Argsprev is a preventing set w.r.t. LabArgpref .

Then for all labellings LabArg of AA such that LabArgpref ⊏ LabArg and undec(LabArg) =

∅, there exists no revision AA⊛ of AA w.r.t. Args by LabArg such that some revision

labelling LabArg⊛ of LabArg⊛ is a stable labelling of AA⊛.

Proof. Assume there exists a revision AA⊛ of AA w.r.t. Args by LabArg and a revi-

sion labelling LabArg⊛ of AA⊛ such that LabArg⊛ is a stable labelling of AA⊛. By

Definition 6.5, ∃A ∈ Argsprev such that A is illegally labelled by LabArg in AA. Since

A ∈ Ar \ Args, it follows from Lemma A.1 in Appendix A that A is illegally labelled by

LabArg⊛ in AA⊛. Contradiction.

Example 6.11. Recall AA4, depicted on the left of Figure 6.8, and its only preferred

labelling LabArgpref , which labels all arguments as undec. There are two preventing sets
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w.r.t. LabArgpref , namely {a, b, c} and {e}. Consider the preventing set {e} and some

in-out labelling of AA4, e.g. LabArg illustrated on the left of Figure 6.8. In order to

ensure that e is legally labelled by LabArg, an attack on e from an argument labelled in

has to be added (e.g. as on the right of Figure 6.8). Conversely, if e was labelled in by

an in-out labelling, the self-attack of e would have to be deleted in order to ensure that

e was legally labelled. Thus, no revision w.r.t. a set of arguments not containing e can

result in e being legally labelled.

6.4.4 Enforcement versus Preventing Sets

Theorems 6.6 and 6.9 hint at a connection between enforcement and preventing sets: one

provides a sufficient condition for the existence of a stable labelling after revision, the other

a sufficient condition for the non-existence. In this section, we investigate the relationship

between enforcement and preventing sets in more detail.

We first show that a preventing set is a minimal set containing exactly one argument

from each enforcement set.

Theorem 6.10. Let Senf be the set of all enforcement sets w.r.t. LabArgpref . Then S =

{Args ⊆ Ar | Args is a minimal set satisfying that ∀Argsenf ∈ Senf : Args ∩ Argsenf 6=

∅} is the set of all preventing sets w.r.t. LabArgpref .

Proof. We prove that all Args ∈ S are preventing sets and that all preventing sets are

contained in S. We note that, by Lemma 6.5, Senf 6= ∅ and ∀Argsenf ∈ Senf : Argsenf 6= ∅.

❼ Let Args ∈ S and assume that Args is not a preventing set. Then either Args is

not a minimal set satisfying the conditions in Definition 6.5 or Args does not satisfy

the conditions at all.

– In the first case, ∃Argsprev ⊂ Args such that Argsprev is a preventing set. Since

Args is a minimal set satisfying that ∀Argsenf ∈ Senf : Args ∩ Argsenf 6= ∅,

it follows that ∃Args′enf ∈ Senf such that Argsprev ∩ Args
′
enf = ∅. Since

Args′enf is an enforcement set there exists an enforcement labelling LabArg. By

Lemma A.3 in Appendix A it holds that ∀B ∈ Ar\Args′enf , B is legally labelled

by LabArg. Since Argsprev is a preventing set it holds that ∃C ∈ Argsprev such

that C is illegally labelled by LabArg. Contradiction since C ∈ Ar \Args′enf .

– In the second case, we note that Args ⊆ undec(LabArgpref ) since ∀A ∈ Args :

∃Argsenf such that A ∈ Argsenf and Argsenf ⊆ undec(LabArgpref ) by Def-

inition 6.4. Thus, Args violates Definition 6.5 because ∃LabArg such that

LabArgpref ⊏ LabArg, undec(LabArg) = ∅, and ∀A ∈ Args it holds that A is

legally labelled by LabArg. Let Args′ = Ar \ Args. Then ∀A ∈ Ar \ Args′ =

Args, A is legally labelled by LabArg, in particular all A ∈ undec(LabArgpref )\

Args′ are legally labelled by LabArg. Thus, Args′ satisfies the conditions of an

enforcement set (disregarding minimality). Since by definition of Args′ it holds
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that Args∩Args′ = ∅, Args′ is not an enforcement set (by definition of Args).

Thus, Args′ is not a minimal set satisfying the conditions of an enforcement

set, i.e. ∃Argsenf ∈ Senf such that Argsenf ⊂ Args′. Then, by definition of

Args it holds Args ∩Argsenf 6= ∅ and thus Args ∩Args′ 6= ∅. Contradiction.

Thus, Args is a preventing set.

❼ Let Argsprev be a preventing set and assume that Argsprev /∈ S. Then either

∃Argsenf ∈ Senf such that Argsprev ∩ Argsenf = ∅ or there exists a minimal set

Args ⊂ Argsprev satisfying that Args ∩Argsenf 6= ∅ for all Argsenf ∈ Senf .

– In the first case, since Argsenf is an enforcement set there exists an enforce-

ment labelling LabArg. By Lemma A.3 in Appendix A it holds that ∀A ∈

Ar \ Argsenf , A is legally labelled by LabArg. Since Argsprev is a preventing

set it holds that ∃B ∈ Argsprev such that B is illegally labelled by LabArg.

Contradiction since B ∈ Ar \Argsenf .

– In the second case, Args ∈ S, so it follows from the first item of this proof that

Args is a preventing set. Contradiction since Argsprev is a preventing set (and

thus minimal).

Thus, Argsprev ∈ S.

Example 6.12. From Example 6.8, we know that for AA4 the set of all enforcement sets

is Senf = {{a, e}, {b, e}, {c, e}}. Then both {a, b, c} and {e} are minimal sets containing

an argument from each enforcement set. Indeed, {a, b, c} and {e} are the two preventing

sets w.r.t. LabArgpref of AA4 (see Example 6.11).

Conversely, an enforcement set is a minimal set containing exactly one argument from

each preventing set.

Theorem 6.11. Let Sprev the set of all preventing sets w.r.t. LabArgpref . Then S =

{Args ⊆ Ar | Args is a minimal set satisfying that ∀Argsprev ∈ Sprev : Args∩Argsprev 6=

∅} is the set of all enforcement sets w.r.t. LabArgpref .

Proof. Analogous to the proof of Theorem 6.10.

Example 6.13. From Example 6.11, we know that Sprev = {{a, b, c}, {e}} for AA4.

Then, {a, e}, {b, e}, and {c, e} are all the minimal sets containing one argument from each

preventing set. Indeed, these three sets are the enforcement sets of AA4 w.r.t. LabArgpref

(see Example 6.8).

These results, together with the results in previous sections, mean that enforcement and

preventing sets are two sides of the same coin. The different enforcement sets characterise

minimal sets of arguments that, if appropriately revised, yield a stable labelling. Thus, if
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we take an argument from each enforcement set, then at least one of these arguments needs

to be revised in order to obtain a stable labelling; in other words, if none of these arguments

is revised then no stable labelling will be obtained. So as stated in Theorem 6.10, these

arguments form exactly a preventing set. The same duality holds when considering all

preventing sets and selecting one argument from each of them.

6.4.5 Necessary Conditions for the (Non-)Existence of Stable Labellings

Based on the correspondence results between enforcement and preventing sets, we now

further investigate their role regarding revisions. We prove that both enforcement and

preventing sets define not only sufficient but also necessary conditions for the existence

and non-existence, respectively, of a stable labelling of a revision.

Firstly, Theorem 6.12 states that any revision whose revision labelling is a stable

labelling that is more committed than the preferred labelling was obtained using a superset

of some enforcement set. In other words, enforcement sets define a necessary condition

for obtaining a stable labelling that is more committed than LabArgpref .

Theorem 6.12. Let Args ⊆ Ar and let LabArg be a labelling of AA such that LabArgpref ⊏

LabArg, undec(LabArg) = ∅, and there exists a revision AA⊛ of AA w.r.t. Args by

LabArg and a revision labelling LabArg⊛ of AA⊛ such that LabArg⊛ is a stable la-

belling of AA⊛. Then there exists an enforcement set Argsenf w.r.t. LabArgpref such

that Argsenf ⊆ Args.

Proof. Let Args ⊆ Ar. By (the contrapositive of) Theorem 6.9 it holds that: if there exists

a labelling LabArg of AA such that LabArgpref ⊏ LabArg, undec(LabArg) = ∅, and there

exists a revision AA⊛ of AA w.r.t. Args by LabArg and a revision labelling LabArg⊛

of AA⊛ such that LabArg⊛ is a stable labelling of AA⊛, then Args * Ar \ Argsprev

where Argsprev is a preventing set w.r.t. LabArgpref . Thus, ∃A ∈ Args such that A /∈

Ar \ Argsprev, and consequently A ∈ Argsprev. Furthermore, let Args′prev be another

preventing set and assume that ∄B ∈ Args such that B ∈ Args′prev, so Args ⊆ Ar \

Args′prev. Then by Theorem 6.9, LabArg⊛ is not a stable labelling of AA⊛. Contradiction,

so for all Args′prev there exists B ∈ Args such that B ∈ Args′prev. Let Args′ be the set

of all such B ∈ Args′prev. By Theorem 6.11, Argsenf ⊆ Args′, where Argsenf is an

enforcement set, and since Args′ ⊆ Args, it follows that Argsenf ⊆ Args.

Example 6.14. Consider AA5 and its only preferred labelling LabArgpref , illustrated on

the left of Figure 6.9. Let LabArg be the labelling illustrated on the right of Figure 6.9 and

let Args = {d, g}. Then AA⊛

5 on the left of Figure 6.10 is a revision of AA5 w.r.t. Args

by LabArg, where the labelling LabArg⊛ on the left of Figure 6.10 is a revision labelling

of AA⊛

5 . We note that LabArg⊛ is a stable labelling of AA⊛. As stated by Theorem 6.12,

Args is a superset of some enforcement set, in fact, it is a superset of both enforcement

set {d} and enforcement set {g}.
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Figure 6.9: AA5 with its only preferred labelling LabArgpref (left) and with a labelling
LabArg that is more committed than LabArgpref , where arguments d and g are illegally
labelled (right).
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Figure 6.10: Left – A revision AA⊛

5 of AA5 and a revision labelling LabArg⊛ (see Ex-
ample 6.14). Right – The only enforcement labelling of the enforcement set {d} of AA5

w.r.t. LabArgpref .

Note that even if a set of arguments used to revise an AA framework is a superset of an

enforcement set, the labelling used for the revision may be different from all enforcement

labellings of the enforcement set. For example, LabArg from Example 6.14 (see right

of Figure 6.9) is used for the revision of AA5 w.r.t. Args, but it is not an enforcement

labelling of either of the two enforcement sets that are subsets of Args. For instance,

the only enforcement labelling of the enforcement set {d} is illustrated on the right of

Figure 6.10.

The next Corollary follows directly from Theorem 6.12 and states that the converse of

Theorem 6.6 holds.

Corollary 6.13. Let Args ⊆ Ar and let LabArg be a labelling of AA such that LabArgpref ⊏

LabArg, undec(LabArg) = ∅, and for all revisions AA⊛ of AA w.r.t. Args by LabArg and

all revision labellings LabArg⊛ of AA⊛ it holds that LabArg⊛ is a stable labelling of AA⊛.

Then there exists an enforcement set Argsenf w.r.t. LabArgpref such that Argsenf ⊆ Args.

Theorem 6.14 proves that the converse of Theorem 6.9 holds. That is, if no revision

w.r.t. a set of arguments Args is such that some revision labelling is a stable labelling of

the revision, then there exists a preventing set that is disjoint from Args. In other words,
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preventing sets define a necessary condition for the non-existence of a stable labelling that

is more committed than LabArgpref .

Theorem 6.14. Let Args ⊆ Ar be such that for all labellings LabArg of AA with

LabArgpref ⊏ LabArg and undec(LabArg) = ∅ there exists no revision AA⊛ of AA

w.r.t. Args by LabArg such that some revision labelling LabArg⊛ of AA⊛ is a stable la-

belling of AA⊛. Then there exists a preventing set Argsprev w.r.t. LabArgpref such that

Args ⊆ Ar \Argsprev.

Proof. Let Args ⊆ Ar. By (the contrapositive of) Corollary 6.7 it holds that: if for all

labellings LabArg of AA such that LabArgpref ⊏ LabArg and undec(LabArg) = ∅, there

exists no revision AA⊛ of AA w.r.t. Args by LabArg such that some revision labelling

LabArg⊛ of AA⊛ is a stable labelling of AA⊛, then Args + Argsenf where Argsenf is an

enforcement set. Thus, ∃A ∈ Argsenf such that A /∈ Args. Furthermore, assume that for

some other enforcement set Args′enf it holds that Args ⊇ Args′enf . Then by Corollary 6.7,

there exists a revision AA⊛ of AA w.r.t. Args by the enforcement labelling LabArg′ of

Args′enf such that some revision labelling LabArg⊛ of AA⊛ is a stable labelling of AA⊛.

Contradiction, so for all enforcement sets Args′enf , it holds that ∃A ∈ Args′enf such that

A /∈ Args. Let Args′ be the set of all such arguments A ∈ Args′enf which are not in

Args. By Theorem 6.10, Args′ ⊇ Argsprev where Argsprev is a preventing set. Clearly,

Args ⊆ Ar \Args′, so Args ⊆ Ar \Argsprev where Argsprev is a preventing set.

Example 6.15. Consider again AA4 = 〈Ar4, Att4〉 illustrated on the left of Figure 6.8

and the set of arguments Args = {c, d}. Then for any in-out labelling LabArg of AA4

that is more committed than LabArgpref , there exists no revision AA⊛

4 of AA4 w.r.t. Args

by LabArg such that a revision labelling of AA⊛

4 is a stable labelling of AA⊛

4 , since any

revision labelling will illegally label e (as no attacks can be added to or deleted from e).

As stated by Theorem 6.14, it holds that for the preventing set {e}, Args ⊂ Ar4 \ {e}.

Theorems 6.6 and 6.12 as well as Theorems 6.9 and 6.14 show that enforcement and

preventing sets indeed characterise sets of arguments that are responsible that a preferred

labelling is not a stable labelling. Enforcement sets are responsible since they are minimal

sets of arguments that all need to be revised in order to obtain a stable labelling, whereas

preventing sets are responsible because if no argument from the set is revised, no stable

labelling exists.

6.5 Structural Characterisations

Determining responsible sets of arguments according to the declarative labelling-based

characterisations from Section 6.4 involves guessing sets of arguments and checking if

they satisfy the respective definition by changing undec labels to in or out labels in the

preferred labelling. In this section, we instead characterise sets of arguments as respon-

sible that a preferred labelling is not a stable labelling based on the structure of the AA
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framework. We thereby aim at characterisations that allow to constructively determine

responsible sets of arguments.

6.5.1 Odd-Length Cycles

Our first structural characterisation is inspired by the work of Dung [Dun95b], who proves

that if an AA framework has no odd-length cycles, then a stable extension, and thus a

stable labelling, exists. Consequently, the non-existence of stable labellings implies the

existence of an odd-length cycle.

Building upon this result, we define odd-length cycles of arguments labelled undec by

LabArgpref as responsible that LabArgpref is not a stable labelling. The reason to exclude

odd-length cycles of arguments labelled in or out is that such cycles do not violate the

definition of a stable labelling.

Definition 6.6 (Structural Characterisation 1). C is a responsible cycle w.r.t. LabArgpref

if and only if C is an odd-length cycle of AA and for all A ∈ C it holds that A ∈

undec(LabArgpref ).

Example 6.16. Let AA6 be the AA framework illustrated in Figure 6.11 and LabArgpref

its only preferred labelling also depicted in the figure. AA6 has three odd-length cycles,

but only one of them is a responsible cycle w.r.t. LabArgpref , namely C = {c}.

a b c d e

in out undec out in

Figure 6.11: AA6 and its only preferred labelling (see Example 6.16).

As for our labelling-based characterisations, we prove that at least one responsible cycle

w.r.t. LabArgpref exists, showing that responsible cycles are well-defined characterisations

of parts of an AA framework responsible for LabArgpref not being a stable labelling.

Proposition 6.15. There exists a responsible cycle w.r.t. LabArgpref .

Proof. Assume there exists no odd-length cycle of arguments labelled undec by LabArgpref .

Then AAu = AA↓
undec(LabArgpref )

comprises no odd-length cycle. By Corollary 36 in

[Dun95b], AAu has a stable labelling LabArgu. We observe that for all arguments A ∈

in(LabArgpref )∪out(LabArgpref ) which are attacking some argument in undec(LabArgpref )

it holds that A ∈ out(LabArgpref ) and that for all arguments B ∈ in(LabArgpref ) ∪

out(LabArgpref ) which are attacked by some argument in undec(LabArgpref ) it holds that

B ∈ out(LabArgpref ). Let LabArg = LabArgpref ↓in(LabArgpref )∪out(LabArgpref )
∪ LabArgu,

so undec(LabArg) = ∅ and LabArgpref ⊏ LabArg. We show that LabArg is a complete

labelling of AA:
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❼ Let A ∈ in(LabArg). If A ∈ in(LabArgpref ), then by Lemma A.2 in Appendix A

A is legally labelled by LabArg. If A ∈ in(LabArgu), then for all attackers B of

A such that B ∈ in(LabArgpref ) ∪ out(LabArgpref ), B ∈ out(LabArgpref ) (by the

above observation), and thus B ∈ out(LabArg). Furthermore, for all attackers C of

A such that C ∈ undec(LabArgpref ), C ∈ out(LabArgu) since LabArgu is a stable

labelling of AAu, and thus C ∈ out(LabArg). Thus, A is legally labelled in by

LabArg.

❼ Let A ∈ out(LabArg). If A ∈ out(LabArgpref ), then by Lemma A.2 in Appendix A

A is legally labelled by LabArg. If A ∈ out(LabArgu), then there exists an attacker

B of A such that B ∈ undec(LabArgpref ) and B ∈ in(LabArgu) since LabArgu is a

stable labelling of AAu, and thus B ∈ in(LabArg). Thus, A is legally labelled out

by LabArg.

Thus, LabArg is a stable labelling of AA. Contradiction. It follows that there exists an

odd-length cycle of arguments all labelled undec by LabArgpref .

We are again interested how our characterisation of responsible arguments can be used

to obtain a stable labelling. The following proposition states that a revision w.r.t. the set of

all responsible cycles can yield a stable labelling that is more committed than LabArgpref

if the labelling used for the revision is chosen appropriately.

Proposition 6.16. Let S = {A ∈ Ar | C is a responsible cycle w.r.t. LabArgpref , A ∈ C }.

Then there exists a labelling LabArg of AA with LabArgpref ⊏ LabArg and undec(LabArg)

= ∅ such that for all revisions AA⊛ of AA w.r.t. S by LabArg and all revision labellings

LabArg⊛ of AA⊛, LabArg⊛ is a stable labelling of AA⊛.

Proof. Since AA↓
undec(LabArgpref )\S

comprises no odd-length cycles, by Corollary 36 in

[Dun95b] it has a stable labelling LabArgstable. Let LabArg′ = LabArgstable ∪LabArgo be

a labelling of AA↓
undec(LabArgpref )

where LabArgo is a labelling of arguments in AA↓S such

that out(LabArgo) = S, and let LabArg = LabArg′∪LabArgpref ↓in(LabArgpref )∪out(LabArgpref )
.

Clearly LabArg is a labelling ofAA such that LabArgpref ⊏ LabArg and undec(LabArg) =

∅.

❼ Let A ∈ in(LabArgpref ) ∪ out(LabArgpref ). By Lemma A.2 in Appendix A, A is

legally labelled by LabArg.

❼ Let A ∈ undec(LabArgpref ) \S and LabArg(A) = in. Then for all attackers B of A

such that B ∈ undec(LabArgpref )\S, LabArgstable(B) = out and thus LabArg(B) =

out. Furthermore, for all attackers C of A such that C ∈ S, LabArgo(C) = out

and thus LabArg(C) = out. Additionally, for all attackers D of A such that D ∈

in(LabArgpref ) ∪ out(LabArgpref ), LabArgpref (D) = out and thus LabArg(D) =

out. Hence, A is legally labelled in by LabArg.
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❼ Let A ∈ undec(LabArgpref )\S and LabArg(A) = out. Then there exists an attacker

B of A such that B ∈ undec(LabArgpref ) \ S and LabArgstable(B) = in and thus

LabArg(B) = in. Hence, A is legally labelled out by LabArg.

Thus, all A ∈ Ar\S are legally labelled by LabArg. Let AA⊛ be a revision of AA w.r.t. S

by LabArg and LabArg⊛ a revision labelling of AA⊛. By Definition 6.1, all A ∈ S and all

B ∈ Ar⊛ \ Ar are legally labelled by LabArg⊛ in AA⊛. Furthermore, by Lemma A.1 in

Appendix A, all A ∈ Ar \S are legally labelled by LabArg⊛ in AA⊛. Therefore, LabArg⊛

is a stable labelling of AA⊛.

Example 6.17. Consider again AA5 illustrated on the left of Figure 6.9. The set of

arguments occurring in responsible cycles w.r.t. LabArgpref is S = {d, g}. Consider the

labelling LabArg depicted on the right of Figure 6.9, which is more committed than

LabArgpref and labels no arguments as undec. A revision AA⊛

5 of AA5 w.r.t. S by LabArg

is shown on the left of Figure 6.10, along with a revision labelling that is a stable labelling

of AA⊛

5 .

Since by Lemma 6.1 a revision exists w.r.t. any set of arguments and any labelling, it

follows that there exists a revision w.r.t. responsible cycles which has a stable labelling

that is more committed than the preferred labelling.

Corollary 6.17. Let S = {A ∈ Ar | C is a responsible cycle w.r.t. LabArgpref , A ∈ C }.

Then there exists a labelling LabArg of AA with LabArgpref ⊏ LabArg and undec(LabArg)

= ∅, and there exists a revision AA⊛ of AA w.r.t. S by LabArg and a revision labelling

LabArg⊛ of AA⊛ such that LabArg⊛ is a stable labelling of AA⊛.

6.5.2 Strongly Connected Components

Our second structural characterisation is based upon a result on the composition of stable

labellings, namely that stable labellings can be computed along the SCCs [BGG05] of

the AA framework. That is, the stable labellings of initial SCCs are computed, and then

the stable labellings of the following SCCs are iteratively determined taking the labels of

arguments in their parent SCCs into account. It follows that if the AA framework has

no stable labelling, some SCC in this iterative computation has no stable labelling (when

taking the labels in parent SCCs into account).

Our second structural characterisation of sets of arguments responsible for the non-

existence of stable labellings refines this observation. It defines the “first” SCCs that

have no stable labelling in the iterative computation of a stable labelling of the whole AA

framework as responsible. More precisely, responsible sets are SCCs satisfying that: 1)

the SCC has no stable labelling w.r.t. the input from its parent SCCs, i.e. w.r.t. the labels

of attackers in parent SCCs according to LabArgpref ; and 2) all parent SCCs have a stable

labelling w.r.t. the input from their parent SCCs that coincides with the labels assigned

by LabArgpref .

204



Definition 6.7 (Structural Characterisation 2). Args ⊆ Ar is a responsible SCC w.r.t.

LabArgpref if and only if Args is an SCC of AA such that

1. there exists no stable labelling w.r.t.

(AA↓Args, parents(Args), LabArgpref ↓parents(Args), Att ∩ (parents(Args)×Args))

that is more or equally committed than LabArgpref ↓Args, and

2. for all Args′ ∈ parentSCCs(Args), LabArgpref ↓Args′ is a stable labelling w.r.t.

(AA↓Args′ , parents(Args
′), LabArgpref ↓parents(Args′), Att∩(parents(Args′)×Args′)).

Example 6.18. The only responsible SCC of AAtherapy (see Figure 6.3) w.r.t. its only

preferred labelling LabArgpref (see Example 6.6) is {A,B,C}. Since this is an initial SCC,

it is trivially satisfied that its parent SCCs have a stable labelling.

The following example illustrates an AA framework where a responsible SCC is not

an initial SCC of the AA framework.

Example 6.19. Consider again AA5 and its only preferred labelling LabArgpref , illus-

trated on the left of Figure 6.9. The only responsible SCC w.r.t. LabArgpref is the SCC

{b, c, d, e, f, g, h} since: 1) there exists no stable labelling w.r.t. the AA framework with

input (AA↓{b,c,d,e,f,g,h}, {a}, {(a, in)}, {(a, b)}), which is depicted in Figure 6.12; and 2)

{b, c, d, e, f, g, h} only has one parent SCC, namely {a}, and LabArgpref restricted to {a},

i.e {(a, in)}, is a stable labelling w.r.t. (AA↓{a}, ∅, ∅, ∅).

a b c d e

fgh

in

Figure 6.12: The AA framework with input made of the SCC {b, c, d, e, f, g, h} of AA5

(right of dashed line) and the input arguments from its parent SCCs (left of dashed line)
with the input labelling (given by the preferred labelling of AA5).

Note that Definition 6.7 does not require a responsible SCC to not have a stable la-

belling at all (w.r.t. its parent SCCs), but rather that it has no stable labelling that is more

committed than the labels assigned to the SCC by LabArgpref . This is because we aim to

define responsibility for the non-existence of stable labellings in terms of responsibility for

LabArgpref not being a stable labelling. Therefore, Definition 6.7 characterises the “first”

SCCs in which the labels assigned by the preferred labelling do not form a stable labelling

of the SCC.

205



a b

c

d

e

in out

undec

undec

undec

Figure 6.13: AA7 and a preferred labelling LabArgpref .

Example 6.20. Let AA7 be the AA framework in Figure 6.13, which has no stable la-

bellings, and consider the depicted preferred labelling LabArgpref . AA7 has three SCCs,

namely {a, b, c}, {d}, and {e}. The SCC {a, b, c} has a stable labelling w.r.t. (AA↓{a,b,c}, ∅,

∅, ∅), namely {(a, out), (b, in), (c, out)}, but this stable labelling is not more or equally

committed than LabArgpref ↓{a,b,c} = {(a, in), (b, out), (c, undec)} (a would have to be la-

belled out and b would have to be labelled in in LabArgpref ↓{a,b,c}). This illustrates the

importance of the comparison with LabArgpref in the first condition of Definition 6.7: due

to the comparison, {a, b, c} satisfies the condition; without the comparison, {a, b, c} would

not satisfy the condition. Thus, without the comparison {a, b, c} would not be identified

as a responsible SCC. However, {a, b, c} should be identified as responsible since it is the

“first” SCC that provides a reason why LabArgpref is not a stable labelling.

Of similar importance is the comparison with LabArgpref in the second condition of Defini-

tion 6.7. Consider the SCC {d} and its parent SCC {a, b, c}. {a, b, c} has a stable labelling

w.r.t. (AA↓{a,b,c}, ∅, ∅, ∅), namely {(a, out), (b, in), (c, out)}, so without the comparison

with LabArgpref , the SCC {d} would be identified as a responsible SCC. However, since

the stable labelling w.r.t. (AA↓{a,b,c}, ∅, ∅, ∅) does not coincide with LabArgpref ↓{a,b,c}, {d}

is not a responsible SCC.

As for previous characterisations of sets of arguments responsible for the non-existence

of stable labellings, we prove that at least one responsible SCC exists w.r.t. LabArgpref .

Proposition 6.18. There exists a responsible SCC w.r.t. LabArgpref .

Proof. Since the attacks between SCCs are by definition unidirectional, there exists a

sequence of SCCs Args1, . . . , Argsn (∀i 6= k : Argsi 6= Argsk) such that if Argsi is

attacked by Argsk (i 6= k), then k < i. By Corollary A.6 in Appendix A, LabArgpref =

LabArg1 ∪ . . . ∪ LabArgn where LabArgi is a labelling of Argsi, LabArg1 is a complete

labelling of Args1, and for all j ∈ {2 . . . n} it holds that LabArgj is compatible with

LabArg1 ∪ . . . ∪ LabArgj−1. If LabArg1 is not a stable labelling of Args1, then Args1

satisfies Definition 6.7, so there exists a responsible SCC w.r.t. LabArgpref . Else, there

exists LabArgi such that for all LabArgj with j < i it holds that undec(LabArgj) = ∅

and undec(LabArgi) 6= ∅. Since by the construction of our sequence of SCCs, for all

Args′ ∈ parentSCCs(Argsi) it holds that Args′ = Argsj for some j < i, it follows that

for all these Args′, LabArgpref ↓Args′ is a stable labelling w.r.t.
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(AA↓Args′ , parents(Args
′), LabArgpref ↓parents(Args′), Att ∩ (parents(Args′)×Args′)).

Furthermore, since undec(LabArgi) 6= ∅, it follows that there exists no stable labelling

w.r.t.

(AA↓Argsi
, parents(Argsi), LabArgpref ↓parents(Argsi), Att ∩ (parents(Argsi)×Argsi))

that is more committed than LabArgi. (If there was such a labelling, then LabArgpref

would not be a preferred labelling.)

Differently from our previous characterisations, we do not investigate how to use re-

sponsible SCCs to obtain a stable labelling, since our next structural characterisation

refines responsible SCCs. We will then study how to obtain a stable labelling using our

refined characterisation.

6.5.3 Strongly Connected undec Parts (SCUPs)

Our characterisation of responsible SCCs relies on the decomposability of stable labellings

with regards to the SCCs of an AA framework. In this section, we refine this notion by

using another decomposability result. Baroni et al. [BBC+14] show that the complete

labellings of an AA framework can be obtained by splitting the AA framework into any

partition and then determining complete labellings of the different parts in such a way

that they are compatible. We can thus think of LabArgpref as a combination of two

compatible labellings: a labelling of the part of the AA framework whose arguments are

labelled in or out by LabArgpref , and a labelling of the part of the AA framework whose

arguments are labelled undec by LabArgpref . We call these two parts the in/out-part and

the undec-part, respectively.

The fact that all arguments in the undec-part are labelled undec by LabArgpref im-

plies that this is the only labelling that is compatible with the in and out labels in the

in/out-part (if there was another labelling, the preferred labelling would not be maximal).

Proposition 6.19 proves that, furthermore, labelling all arguments in the undec-part as

undec is the only complete labelling of this part on its own (disregarding the in/out-part).

In other words, the labels of arguments in the in/out-part are not responsible that all

arguments in the undec-part are labelled undec. Rather, the structure of the undec-part

itself is responsible that the arguments cannot be legally labelled in or out.

Proposition 6.19. The only complete labelling of AA↓
undec(LabArgpref )

labels all arguments

as undec.

Proof. LetArgsIO = in(LabArgpref )∪out(LabArgpref ) andArgsU = undec(LabArgpref ).

We observe that since arguments labelled undec are not attacked by arguments labelled

in by a complete labelling, ∀B ∈ ArgsIO attacking some A ∈ ArgsU , it holds that

B ∈ out(LabArgpref ↓ArgsIO).

We first prove that LabArgpref ↓ArgsU is a complete labelling of AA↓ArgsU . Since by

Lemma A.8 in Appendix A, LabArgpref ↓ArgsU is a complete labelling w.r.t.

(AA↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO × ArgsU)), it follows that ∀A ∈
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ArgsU and ∀B ∈ ArgsU attacking A, B /∈ in(LabArgpref ↓ArgsU ), and ∃C ∈ ArgsU at-

tacking A such that C ∈ undec(LabArgpref ↓ArgsU ) since by our above observation ∄D ∈

ArgsIO attacking A such that D ∈ undec(LabArgpref ↓ArgsIO). Thus, all A ∈ ArgsU

are legally labelled by LabArgpref ↓ArgsU , so LabArgpref ↓ArgsU is a complete labelling of

AA↓ArgsU .

We now prove that there exists no other complete labelling of AA↓ArgsU . Assume there

exists a complete labelling LabArgU of AA↓ArgsU such that undec(LabArgU) 6= ArgsU .

Clearly, LabArgpref ⊏ LabArgpref ↓ArgsIO ∪ LabArgU .

By Lemma A.10 in Appendix A, LabArgpref ↓ArgsIO is compatible with LabArgU .

Furthermore, LabArgU is compatible with LabArgpref ↓ArgsIO:

❼ If A ∈ in(LabArgU), then ∀B ∈ ArgsU attacking A, B ∈ out(LabArgU) since

LabArgU is a complete labelling of AA↓ArgsU . Furthermore ∀B ∈ ArgsIO attacking

A, B ∈ out(LabArgpref ↓ArgsIO) as previously noted.

❼ If A ∈ out(LabArgU), then ∃B ∈ ArgsU attacking A such that B ∈ in(LabArgU)

since LabArgU is a complete labelling of AA↓ArgsU .

❼ If A ∈ undec(LabArgU), then ∀B ∈ ArgsU attacking A, B /∈ in(LabArgU), and

∃B ∈ ArgsU attacking A such that B ∈ undec(LabArgU) since LabArgU is a

complete labelling of AA↓ArgsU . Furthermore, ∀B ∈ ArgsIO attacking A, B /∈

in(LabArgpref ↓ArgsIO) as previously noted.

It follows by Lemma A.4 in Appendix A, that LabArgpref ↓ArgsIO∪LabArgU is a complete

labelling of AA. Contradiction, since LabArgpref ⊏ LabArgpref ↓ArgsIO ∪ LabArgU and

LabArgpref is a preferred labelling.

Since the undec-part has only one complete labelling, which labels all arguments as

undec, this labelling is also its only preferred labelling. Thus, the question as to why

LabArgpref is not a stable labelling can be reduced to the question as to why the preferred

labelling of the undec-part is not a stable labelling.

Applying our notion of responsible SCCs, we obtain that the preferred labelling of the

undec-part is not a stable labelling because of its “first” SCCs that have no stable labelling.

These “first” SCCs are the initial SCCs of the undec-part since no SCC in the undec-part

has a stable labelling. This observation results in the following new characterisation of sets

of arguments responsible for LabArgpref not being a stable labelling: a set of arguments

is responsible if it is an initial SCC of the undec-part.

Definition 6.8 (Structural Characterisation 3). Args ⊆ Ar is a strongly connected undec

part (SCUP) w.r.t. LabArgpref if and only if Args is an initial SCC of AA↓
undec(LabArgpref )

.

Example 6.21. AAtherapy from Section 6.1 has only one SCUP w.r.t. its only preferred

labelling (see Example 6.6), namely {A,B,C}.

Importantly, at least one SCUP exists w.r.t. LabArgpref , which shows that SCUPs

provide a well-defined characterisation of responsible sets of arguments.
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Proposition 6.20. There exists a SCUP w.r.t. LabArgpref .

Proof. Since every AA framework has an initial SCC, AA↓
undec(LabArgpref )

has an initial

SCC, which by Definition 6.8 is a SCUP w.r.t. LabArgpref .

The following example illustrates that an AA framework may have various SCUPs

w.r.t. a preferred labelling.

Example 6.22. Let AA8 and its only preferred labelling LabArgpref be as illustrated in

Figure 6.14. There are two SCUPs w.r.t. LabArgpref , namely {c} and {d}.

a b

c

d e

in out

undec

undec undec

Figure 6.14: AA8 and its only preferred labelling LabArgpref (see Example 6.22).

We now prove that SCUPs are indeed refinements of responsible SCCs in the sense

that every responsible SCC comprises a SCUP.

Proposition 6.21. Let Args be a responsible SCC w.r.t. LabArgpref . Then ∃Args′ ⊆

Args such that Args′ is a SCUP w.r.t. LabArgpref .

Proof. By Definition 6.7, there exists no stable labelling w.r.t.

(AA↓Args, parents(Args), LabArgpref ↓parents(Args), Att ∩ (parents(Args)×Args)) that is

more or equally committed than LabArgpref ↓Args. Thus, undec(LabArgpref ↓Args) 6= ∅.

Let Args′ = undec(LabArgpref ↓Args). Since Args is an SCC of AA, Args′ is an SCC of

AA↓
undec(LabArgpref )

.

By Definition 6.7, for all Argsp ∈ parentSCCs(Args) it holds that LabArgpref ↓Argsp is a

stable labelling w.r.t.

(AA↓Argsp , parents(Argsp), LabArgpref ↓parents(Argsp), Att ∩ (parents(Argsp)×Argsp)).

Thus, ∄A ∈ parents(Args), B ∈ Args such that A attacks B and A ∈ undec(LabArgpref ).

Since Args′ ⊆ Args and since Args\Args′ ⊆ in(LabArgpref )∪out(LabArgpref ), it follows

that ∄A ∈ parents(Args′), B ∈ Args′ such that A attacks B and A ∈ undec(LabArgpref ).

Thus, inAA↓
undec(LabArgpref )

it holds that Args′ is an SCC and Args′ is not attacked by any

arguments not contained in Args′. Thus, Args′ is an initial SCC of AA↓
undec(LabArgpref )

,

so it is a SCUP w.r.t. LabArgpref .

Example 6.23. Consider AA5 and its only preferred labelling LabArgpref illustrated on

the left of Figure 6.9. By Example 6.19, the only responsible SCC w.r.t. LabArgpref is

{b, c, d, e, f, g, h}. As expected, there exists a SCUP that is a subset of this responsible

SCC, namely {c, d, e, f, g, h}, which is the only SCUP of AA5 w.r.t. LabArgpref .
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Note that the converse of Proposition 6.21 does not hold in general, i.e. it is not the

case that every SCUP is a subset of some responsible SCC. For example, {d} is a SCUP

of AA8 w.r.t. LabArgpref (see Figure 6.14), but the SCC containing d, i.e. {b, d}, is not a

responsible SCC, since the parent SCC {c} has no stable labelling.

Even though SCUPs are defined based on the structure of the AA framework rather

than based on labellings that are more committed than LabArgpref as our labelling-based

characterisations, we prove that SCUPs constitute sets of arguments that cannot all be

legally labelled in or out. More precisely, with respect to all in-out labellings that are

more committed than LabArgpref , at least one argument in every SCUP is illegally labelled.

Lemma 6.22. Let Args be a SCUP w.r.t. LabArgpref . Then for all labellings LabArg

of AA with LabArgpref ⊏ LabArg and undec(LabArg) = ∅ it holds that there exists

A ∈ Args such that A is illegally labelled by LabArg.

Proof. Assume ∃LabArg of AA with LabArgpref ⊏ LabArg and undec(LabArg) = ∅ such

that ∀A ∈ Args, A is legally labelled by LabArg in AA. Let Args1 = in(LabArgpref ) ∪

out(LabArgpref ) ∪ Args, Args2 = Ar \ Args1, and LabArg1 = LabArg↓Args1
. Since

Args is a SCUP, it holds that ∀A ∈ Args and ∀B attacking A, B ∈ Args1. Thus,

A being legally labelled by LabArg only depends on LabArg1. Let LabArg2 be some

labelling of Args2. Then ∀A ∈ Args, A is legally labelled by LabArg1 ∪ LabArg2 in

AA. Furthermore, clearly LabArgpref ⊏ LabArg1 ∪ LabArg2. Then by Lemma A.2 in

Appendix A, ∀A ∈ in(LabArgpref )∪out(LabArgpref ) it holds that A is legally labelled by

LabArg1∪LabArg2 in AA. Thus, ∀A ∈ Args1, A is legally labelled by LabArg1∪LabArg2

in AA. Then by Lemma A.7 in Appendix A, LabArg1 is compatible with LabArg2 (for

any labelling LabArg2 of Args2). Furthermore, by Lemma A.9 in Appendix A, there

exists a labelling LabArg′2 that is compatible with LabArg1. Then by Lemma A.4 in

Appendix A, LabArg1 ∪ LabArg
′
2 is a complete labelling of AA. Contradiction since

LabArgpref ⊏ LabArg1 ∪ LabArg
′
2.

Since by Proposition 6.21 every responsible SCC comprises a SCUP, an analogous

result to Lemma 6.22 also holds for responsible SCCs. That is, with respect to all in-

out labellings that are more committed than LabArgpref , at least one argument in every

responsible SCC is illegally labelled.

6.5.4 Revising SCUPs

In this section, we investigate how SCUPs can be used to turn LabArgpref into a stable

labelling. We first prove that, similarly to preventing sets, SCUPs provide a sufficient

condition for “preventing” the existence of a stable labelling that is more committed than

LabArgpref . That is, any revision w.r.t. a set of arguments not containing any arguments

from some SCUP has no stable labelling that is more committed than LabArgpref .

Theorem 6.23. Let Args ⊆ Ar\ArgsSCUP where ArgsSCUP is a SCUP w.r.t. LabArgpref

and let LabArg be a labelling such that LabArgpref ⊏ LabArg and undec(LabArg) = ∅.
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Then there exists no revision AA⊛ of AA w.r.t. Args by LabArg such that some revision

labelling LabArg⊛ of AA⊛ is a stable labelling of AA⊛.

Proof. Assume there exists a revision AA⊛ of AA w.r.t. Args by LabArg and a revi-

sion labelling LabArg⊛ of AA⊛ such that LabArg⊛ is a stable labelling of AA⊛. By

Lemma 6.22, ∃A ∈ ArgsSCUP such that A is illegally labelled by LabArg in AA. Since

A ∈ Ar \Args, by Lemma A.1 in Appendix A, A is illegally labelled by LabArg⊛ in AA⊛.

Contradiction.

Example 6.24. Consider again the SCUPs of AA8 w.r.t. its only preferred labelling

LabArgpref (see Example 6.22). Let LabArg be the in-out labelling illustrated in Fig-

ure 6.15, which is more committed than LabArgpref . The set {a, b, d, e} does not contain

any argument from the SCUP {c}. It is easy to see that there exists no revision AA⊛

8

of AA8 w.r.t. {a, b, d, e} by LabArg such that a revision labelling is a stable labelling of

AA⊛

8 since c will always be illegally labelled out.

a b

c

d e

in out

out

in out

Figure 6.15: AA8 and a labelling LabArg (see Example 6.24), where illegal labels are
underlined.

Therefore, if we are to obtain a stable labelling, a revision has to involve arguments

from every SCUP. In what follows, we thus investigate if revising all SCUPs yields a stable

labelling. For this purpose, we define a SCUP revision as a revision w.r.t. the set of all

arguments in all SCUPs by a labelling that is more committed than LabArgpref and labels

all arguments in all SCUPs as in or out.

Notation 6.9. Let Args1, . . . , Argsn be all SCUPs w.r.t. LabArgpref . SCUPS = Args1∪

. . . ∪Argsn denotes the set of all arguments in SCUPs.

Definition 6.10 (SCUP Revision and SCUP Revision Labelling). Let LabArgSCUPS be a

labelling of AA↓SCUPS with undec(LabArgSCUPS) = ∅ and let LabArg = LabArgSCUPS ∪

LabArgpref ↓Ar\SCUPS . AA⊛ is a SCUP revision of AA if and only if AA⊛ is a revision

of AA w.r.t. SCUPS by LabArg. A revision labelling LabArg⊛ of AA⊛ is called a SCUP

revision labelling of AA⊛.

Example 6.25. Consider again AA8 from Example 6.22 (see Figure 6.14). A SCUP

revision of AA8 along with a SCUP revision labelling is depicted on the left of Figure 6.16.

The labelling of arguments in SCUPS used for the SCUP revision is LabArgSCUPS =

{(c, out), (d, in)}.
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a b

c

d e

in out

out

in undec

c′ in

a b

c

d e

in out

out

in out

c′ in

Figure 6.16: Left – AA⊛

8 and a SCUP revision labelling LabArg⊛ (see Example 6.25),
where illegal labels are underlined. Right – AA⊛

8 and a preferred labelling that is more
committed than LabArg⊛ (see Example 6.26).

Since by Lemma 6.1, a revision exists w.r.t. any set of arguments and labelling and

since by Proposition 6.20 there exists a SCUP w.r.t. the preferred labelling, a SCUP

revision exists.

Corollary 6.24. There exists a SCUP revision AA⊛ of AA.

The SCUP revision from Example 6.25 illustrates that a SCUP revision labelling may

not be a complete labelling of the SCUP revision (see the left of Figure 6.16). We prove

that, nevertheless, there exists a preferred labelling of the SCUP revision that is more or

equally committed than the SCUP revision labelling.

Theorem 6.25. Let AA⊛ be a SCUP revision of AA and LabArg⊛ a SCUP revision

labelling of AA⊛. Then there exists a preferred labelling LabArg⊛pref of AA⊛ such that

LabArg⊛ ⊑ LabArg⊛pref.

Proof. Let SCUPS⊛ = {A ∈ Ar⊛ | A ∈ SCUPS∨A /∈ Ar}. Let Args1 = in(LabArgpref )∪

out(LabArgpref ) ∪ SCUPS⊛, Args2 = Ar⊛ \Args1, and LabArg1 = LabArg⊛↓Args1
.

By Definitions 6.10 and 6.1 it holds that ∀A ∈ SCUPS⊛, A is legally labelled by LabArg⊛

in AA⊛. Since SCUPS consists of arguments in SCUPs, it holds that ∀A ∈ SCUPS⊛ and

∀B attacking A in AA⊛, B ∈ Args1. Thus, A being legally labelled by LabArg⊛ only

depends on LabArg1. Let LabArg2 be some labelling of Args2. Then ∀A ∈ SCUPS⊛, A

is legally labelled by LabArg1 ∪ LabArg2 in AA⊛. Note that for any LabArg2 of Args2

it holds that LabArg⊛↓Args2
⊑ LabArg2 since undec(LabArg⊛↓Args2

) = Args2, because

Args2 ⊆ undec(LabArgpref ) \ SCUPS. Then LabArg⊛ ⊑ LabArg1 ∪ LabArg2.

Let LabArg = LabArgSCUPS ∪ LabArgpref ↓Ar\SCUPS be the labelling used for the SCUP

revision. By Lemma A.2 in Appendix A, ∀A ∈ in(LabArgpref ) ∪ out(LabArgpref ) it

holds that A is legally labelled by LabArg in AA since LabArgpref ⊏ LabArg. Then

by Lemma A.1 in Appendix A, ∀A ∈ in(LabArgpref ) ∪ out(LabArgpref ) it holds that

A is legally labelled by LabArg⊛ in AA⊛. Since LabArg⊛ ⊑ LabArg1 ∪ LabArg2, by

Lemma A.2 in Appendix A it holds that ∀A ∈ in(LabArgpref ) ∪ out(LabArgpref ), A is

legally labelled by LabArg1 ∪ LabArg2 in AA⊛.

Thus, ∀A ∈ Args1, A is legally labelled by LabArg1 ∪ LabArg2 in AA⊛. Then by

Lemma A.7 in Appendix A, LabArg1 is compatible with LabArg2 (for any labelling
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LabArg2 of Args2). Furthermore by Lemma A.9 in Appendix A, there exists a la-

belling LabArg′2 that is compatible with LabArg1. Then by Lemma A.4 in Appendix A,

LabArg1 ∪ LabArg
′
2 is a complete labelling of AA⊛. Then either LabArg1 ∪ LabArg

′
2

is a preferred labelling of AA⊛ or there exists a preferred labelling LabArg⊛
′

such that

LabArg1 ∪ LabArg
′
2 ⊏ LabArg⊛

′
and thus LabArg⊛ ⊏ LabArg⊛

′
.

Example 6.26. Given the SCUP revision AA⊛

8 and the SCUP revision labelling LabArg⊛

from Example 6.25 (see left of Figure 6.16), there exists a preferred labelling of AA⊛

8 that

is more committed than LabArg⊛, as illustrated on the right of Figure 6.16.

Since a SCUP revision labelling is more committed than LabArgpref (because all ar-

guments in SCUPs are labelled in or out by the SCUP revision labelling, but are labelled

undec by LabArgpref ), it follows that there exists a preferred labelling of the SCUP revision

that is more committed than LabArgpref .

Corollary 6.26. Let AA⊛ be a SCUP revision of AA. Then there exists a preferred

labelling LabArg⊛pref of AA
⊛ such that LabArgpref ⊏ LabArg⊛pref.

In Example 6.26, there exists a preferred labelling of the SCUP revision that is more

committed than the SCUP revision labelling and that is also a stable labelling of the

SCUP revision. However, in general a SCUP revision may not have a stable labelling that

is more committed than the SCUP revision labelling.

Example 6.27. Let AA9 and its only preferred labelling LabArgpref be as illustrated

on the left of Figure 6.17. There are two SCUPs w.r.t. LabArgpref , namely {a} and {e}.

A SCUP revision AA⊛

9 of AA9 is depicted on the right of Figure 6.17 (it coincides with

AA6), along with the SCUP revision labelling. A preferred labelling LabArg⊛pref of AA⊛

9

that is more committed than the revision labelling is illustrated in Figure 6.11. However,

LabArg⊛pref is not a stable labelling of AA⊛

9 . Furthermore, in this example there exists no

SCUP revision and SCUP revision labelling which result in a stable labelling that is more

committed than LabArgpref .

a b c d e

undec undec undec undec undec

a b c d e

in undec undec undec in

Figure 6.17: Left – AA9 and its only preferred labelling LabArgpref . Right – A SCUP
revision AA⊛

9 of AA9 (see Example 6.27) and the SCUP revision labelling, where illegal
labels are underlined.

To summarise, differently from enforcement sets, revisions w.r.t. SCUPs are not guar-

anteed to have a stable labelling that is more committed than LabArgpref . Nevertheless,

they yield a more committed preferred labelling.

If a SCUP revision has a preferred labelling that is not a stable labelling, then by

Proposition 6.20 there exists a SCUP w.r.t. this preferred labelling. In order to obtain a
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stable labelling of the whole AA framework, these “new” SCUPs thus have to be revised.

We therefore define an iterative procedure of SCUP revisions w.r.t. preferred labellings.

Definition 6.11 (Iterative SCUP Revision). A sequence 〈AA1, LabArg1〉, . . . ,

〈AAn, LabArgn〉 (n > 1) is an iterative SCUP revision of AA if and only if

❼ AA1 = AA and LabArg1 = LabArgpref , and

❼ ∀i (1 ≤ i < n) it holds that AAi+1 is a SCUP revision of AAi with LabArg⊛
i+1

a

SCUP revision labelling of AAi+1, and LabArgi+1 is a preferred labelling of AAi+1

such that LabArg⊛
i+1
⊑ LabArgi+1.

We are, of course, most interested in iterative SCUP revisions that result in a stable

labelling.

Definition 6.12 (Stable Iterative SCUP Revision). An iterative SCUP revision

〈AA1, LabArg1〉, . . . , 〈AAn, LabArgn〉 of AA is a stable iterative SCUP revision of AA if

and only if LabArgn is a stable labelling of AAn.

Example 6.28. Consider again AA9 and its preferred labelling, illustrated on the left of

Figure 6.17. An example of a stable iterative SCUP revision of AA9 is 〈AA1
9, LabArg

1〉,

〈AA2
9, LabArg

2〉, 〈AA3
9, LabArg

3〉, where AA2
9 and LabArg2 are depicted in Figure 6.11,

and AA3
9 and LabArg3 are as illustrated in Figure 6.18.

a b c d e

in out in out in

Figure 6.18: The AA framework obtained from a stable iterative SCUP revision of AA9

(see Example 6.28).

Since a SCUP revision has a preferred labelling that is more committed than LabArgpref ,

each iteration in the iterative SCUP revision reduces the set of arguments labelled undec.

Since there are only finitely many arguments, there exists an iterative SCUP revision that

results in a stable labelling.

Theorem 6.27. There exists a stable iterative SCUP revision of AA.

Proof. By Proposition 6.20, there exists a SCUP w.r.t. LabArgpref and thus by Corol-

lary 6.26 there exists a preferred labelling LabArg2 of AA2 such that LabArgpref ⊏

LabArg2. If LabArg2 is not a stable labelling, then by Proposition 6.20 there exists a

SCUP w.r.t. LabArg2 and thus a SCUP revision AA3 of AA2, and by Corollary 6.26

a preferred labelling LabArg3 of AA3 such that LabArg2 ⊏ LabArg3. The same then

applies to AA3, and so on. Thus, the set of undec arguments in LabArgi monotonically

decreases, and since there are only finitely many arguments, the sequence terminates with

some AAn such that undec(LabArgn) = ∅.
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Our results show that SCUPs provide a sufficient condition for the non-existence of a

stable labelling that is more committed than LabArgpref , and thus characterise parts of

an AA framework that necessarily need to be revised in order to obtain a stable labelling.

Furthermore, SCUPs can be used for a well-directed revision of the AA framework which

leads to a stable labelling that is more committed than LabArgpref .

Since by Proposition 6.21 every responsible SCC comprises a SCUP, responsible SCCs

also define a sufficient condition for the non-existence of a stable labelling that is more

committed than LabArgpref , and consequently need to be revised in order to obtain a

stable labelling. However, the condition provided by responsible SCCs is less refined than

the notion of SCUPs. Therefore, we do not investigate the revision w.r.t. responsible SCCs

in more detail.

6.5.5 Responsible Cycles versus Responsible SCCs and SCUPs

The characterisation of responsible arguments in terms of responsible cycles differs consid-

erably from our second and third structural characterisations, which are based on SCCs.

Nevertheless, we prove that the three characterisations are connected. In particular, every

SCUP comprises a responsible cycle.

Proposition 6.28. Let Args be a SCUP w.r.t. LabArgpref . Then there exists a responsible

cycle C w.r.t. LabArgpref such that C ⊆ Args.

Proof. By Proposition 6.19 and the SCC recursiveness of complete labellings [BGG05],

AA↓Args has no stable labelling. Then by Corollary 36 in [Dun95b], there exists an odd-

length cycle in Args.

Example 6.29. The only SCUP of AA5 (see left of Figure 6.9) is {c, d, e, f, g, h}. Here,

there are two responsible cycles that form subsets of the SCUP, namely {d} and {g} (see

Example 6.17).

Note that the converse of Proposition 6.28 does not hold, i.e. it is not the case that every

responsible cycle is a subset of some SCUP. For instance, in AA9 (see left of Figure 6.17)

each of the five self-attacking arguments is a responsible cycle. However, there are only

two SCUPs, namely {a} and {e}, so for instance the responsible cycle {b} is not a subset

of any SCUP.

Since by Proposition 6.21 every responsible SCC comprises a SCUP, it follows that

every responsible SCC contains a responsible cycle.

Corollary 6.29. Let Args be a responsible SCC w.r.t. LabArgpref . Then there exists a

responsible cycle C w.r.t. LabArgpref such that C ⊆ Args.

Note that Propositions 6.16 and 6.28 imply that rather than defining a SCUP revision

w.r.t. all arguments in SCUPs, we could only revise the responsible cycles in the SCUPs.

This is illustrated by Example 6.17, where a revision w.r.t. the responsible cycles contained

in the only SCUP is illustrated.
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On the other hand, the responsible cycles in a SCUP do not have to be revised in order

to legally label all arguments in the SCUP. Instead, the SCUP may be revised w.r.t. a

subset of the SCUP not containing arguments from responsible cycles. For instance, a

SCUP revision of AA5 w.r.t. LabArgpref (see left of Figure 6.9) where no responsible

cycles are revised is illustrated in Figure 6.19, along with a preferred labelling that is

more committed than the SCUP revision labelling.

a b c d e

fghi

in out in out out

inoutoutin

e′

h′

in

in

Figure 6.19: A SCUP revision of AA5 and a preferred labelling that is more committed
than the SCUP revision labelling.

It is therefore up to the user to decide what type of SCUP revision is most suitable.

6.6 Labelling-Based versus Structural Characterisations

In the previous sections, we presented two different approaches to characterising sets of

arguments responsible for LabArgpref not being a stable labelling: the labelling-based and

the structural approach. We proved that the labelling-based characterisations in terms of

enforcement and preventing sets define necessary and sufficient conditions for the (non-)

existence of a stable labelling that is more committed than LabArgpref . However, these

characterisations are not constructive. On the other hand, our structural characterisations

are constructive. They can also be used to guide the revision of an AA framework in such

a way that a stable labelling is obtained, but they do not define necessary conditions for

the (non-) existence of a stable labelling.

In this section, we examine the connection between our labelling-based and struc-

tural characterisations in more detail. Note that we neglect the naive characterisation

of labelling-based responsible sets, since both enforcement and preventing sets are re-

finements of this characterisation. Similarly, we do not include responsible SCCs in our

comparison since SCUPs provide a more refined characterisation than responsible SCCs.

6.6.1 SCUPs versus Preventing Sets

SCUPs and preventing sets share the property that if none of their arguments is involved in

a revision, then the revision has no stable labelling that is more committed than LabArgpref

(see Theorems 6.9 and 6.23). These results hint at a close connection between SCUPs and

preventing sets. Indeed, Theorem 6.30 proves that a SCUP comprises a preventing set.
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Theorem 6.30. Let ArgsSCUP be a SCUP w.r.t. LabArgpref . Then there exists a pre-

venting set Argsprev w.r.t. LabArgpref such that Argsprev ⊆ ArgsSCUP .

Proof. By Lemma 6.22, for all labellings LabArg of AA with LabArgpref ⊏ LabArg and

undec(LabArg) = ∅ it holds that there exists A ∈ ArgsSCUP such that A is illegally

labelled by LabArg. Then either ArgsSCUP is a minimal set satisfying this property, and

thus ArgsSCUP is a preventing set, or there exists a minimal set Argsprev ⊂ ArgsSCUP

satisfying this property, so Argsprev is a preventing set.

Example 6.30. Consider again AA5 illustrated on the left of Figure 6.9. As discussed

in Example 6.23, the only SCUP w.r.t. the LabArgpref is {c, d, e, f, g, h}. Here, two dif-

ferent preventing sets w.r.t. LabArgpref are subsets of the SCUP, namely {c, d, g, h} and

{d, e, f, g}.

Note that, conversely, it is not the case that every preventing set is a subset of some

SCUP.

Example 6.31. Consider again AA9, illustrated on the left of Figure 6.17. There are

three preventing sets w.r.t. LabArgpref : {a}, {e}, and {b, c, d}. The first two coincide with

the two SCUPs w.r.t. LabArgpref , but the latter is not the subset of any SCUP.

Since SCUPs only characterise the “first” problematic sets of arguments, whereas pre-

venting sets define “all” problematic sets, it is not surprising that some preventing sets are

disjoint from SCUPs. However, when considering all SCUPs in a stable iterative SCUP

revision, every preventing set shares an argument with some SCUP.

Notation 6.13. Let 〈AA1, LabArg1〉, . . . , 〈AAn, LabArgn〉 be an iterative SCUP revision.
⊎
SCUPS = {SCUPSi | SCUPSi is the set of all arguments in SCUPs w.r.t. LabArgi, 1 ≤

i ≤ n} consists of the sets of arguments in SCUPs at every step in the iterative SCUP

revision.

Theorem 6.31. Let 〈AA1, LabArg1〉, . . . , 〈AAn, LabArgn〉 be a stable iterative SCUP

revision. Then for all preventing sets Argsprev w.r.t. LabArgpref it holds that ∃SCUPS ∈
⊎
SCUPS such that SCUPS ∩Argsprev 6= ∅.

Proof. Let Argsprev be a preventing set w.r.t. LabArgpref . By (the contrapositive of)

Theorem 6.9, it holds that if AA⊛ is a revision of AA w.r.t. some Args ⊆ Ar by some

LabArg such that some revision labelling LabArg⊛ of AA⊛ is a stable labelling of AA⊛,

then Args ∩Argsprev 6= ∅. Since AAn has a stable labelling LabArgn and since AAn is a

revision of AA w.r.t.
⋃

SCUPS∈
⊎

SCUPS SCUPS by LabArgn ∩ (Ar × {in, out, undec}) it

holds that ∃SCUPS ∈
⊎
SCUPS such that SCUPS ∩Argsprev 6= ∅.

Example 6.32. Consider again AA9 illustrated on the left of Figure 6.17 and the stable

iterative SCUP revision of AA9 discussed in Example 6.28. The set of arguments in

SCUPs in every step of the stable iterative SCUP revision is
⊎
SCUPS = {{a, e}, {c}}.
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For the preventing set {b, c, d} w.r.t. LabArgpref , which is not a subset of any SCUP

w.r.t. LabArgpref (see Example 6.31), there exists the set {c} in
⊎
SCUPS which shares

an argument with the preventing set {b, c, d}. Clearly, the preventing sets {a} and {e},

which are subsets of SCUPs w.r.t. LabArgpref , also have a non-empty intersection with a

set in
⊎
SCUPS, namely with {a, e}.

6.6.2 SCUPs versus Enforcement Sets

Next, we investigate the relationship between SCUPs and enforcement sets. We first show

that a SCUP contains an argument from each enforcement set.

Theorem 6.32. Let ArgsSCUP be a SCUP w.r.t. LabArgpref . Then for all enforcement

sets Argsenf w.r.t. LabArgpref it holds that ArgsSCUP ∩Argsenf 6= ∅.

Proof. By Theorem 6.30, there exists a preventing set Argsprev w.r.t. LabArgpref such

that Argsprev ⊆ ArgsSCUP . Since by Theorem 6.10 it holds that for all enforcement sets

Argsenf w.r.t. LabArgpref , Argsprev ∩Argsenf 6= ∅, it follows that ArgsSCUP ∩Argsenf 6=

∅.

Example 6.33. AA9, illustrated on the left of Figure 6.17, has two SCUPs w.r.t. LabArgpref ,

namely {a} and {e} (see Example 6.27). Both SCUPs contain an argument from each of

the three enforcement sets w.r.t. LabArgpref , i.e. {a, b, e}, {a, c, e}, {a, d, e}. In fact, both

SCUPs are subsets of each enforcement set.

In contrast, AA5 illustrated on the left of Figure 6.9 has one SCUP w.r.t. LabArgpref ,

namely {c, d, e, f, g, h}. Again the SCUP contains an argument from each enforcement set

w.r.t. LabArgpref , i.e. from {d}, {g}, {c, e}, {c, f}, {e, h}, and {f, h}. In fact, here each

enforcement set is a subset of the SCUP.

Note that in general, SCUPs are not subsets of enforcement sets or vice versa. For

instance, the SCUP {a, b, c} of AA4 (see left of Figure 6.8) is not a subset of any of the

enforcement sets {a, e}, {b, e}, or {c, e}, and none of the enforcement sets is a subset of

this SCUP.

By Theorem 6.12, we know that if a revision has a stable labelling that is more com-

mitted than LabArgpref , the set of arguments used for the revision must be a superset

of some enforcement set. Since a stable iterative SCUP revision results in such a stable

labelling, it follows that there exists an enforcement set that is a subset of the set of all

arguments occurring in SCUPs of the iterative SCUP revision.

Theorem 6.33. Let 〈AA1, LabArg1〉, . . . , 〈AAn, LabArgn〉 be a stable iterative SCUP

revision. Then there exists an enforcement set Argsenf w.r.t. LabArgpref such that ∀A ∈

Argsenf : ∃SCUPS ∈
⊎
SCUPS with A ∈ SCUPS.

Proof. By Theorem 6.31, for each preventing set Argsprev it holds that ∃A ∈ Argsprev such

that ∃SCUPS ∈
⊎
SCUPS with A ∈ SCUPS. It then follows from Theorem 6.11 that
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there exists an enforcement set Argsenf such that such that ∀A ∈ Argsenf : ∃SCUPS ∈
⊎
SCUPS with A ∈ SCUPS.

Example 6.34. Consider again AA9 illustrated in Figure 6.17 and the stable iterative

SCUP revision of AA9 discussed in Example 6.28.
⊎
SCUPS = {{a, e}, {c}}, so there

exists an enforcement set whose arguments are all contained in a set in
⊎
SCUPS, namely

the enforcement set {a, c, e}.

The relation between enforcement sets and SCUPs implies that even though a stable

iterative SCUP revision is not a minimal way of revising the AA framework to obtain a

stable labelling, it includes the arguments that definitely have to be revised.

6.6.3 Responsible Cycles versus Enforcement and Preventing Sets

We now turn to the comparison of responsible cycles with enforcement and preventing

sets. We first prove that there exists an enforcement set that consists of arguments from

responsible cycles.

Theorem 6.34. Let S = {A ∈ Ar | C is a responsible cycle w.r.t. LabArgpref , A ∈ C }.

Then there exists an enforcement set Args w.r.t. LabArgpref such that Args ⊆ S.

Proof. By Proposition 6.16, there exists a labelling LabArg of AA with LabArgpref ⊏

LabArg and undec(LabArg) = ∅ such that for all revisions AA⊛ of AA w.r.t. S by LabArg

and all revision labellings LabArg⊛ of AA⊛, LabArg⊛ is a stable labelling of AA⊛. It then

follows from Theorem 6.12 that there exists an enforcement set Args w.r.t. LabArgpref

such that Args ⊆ S.

Example 6.35. Consider again AA5, illustrated on the left of Figure 6.9. The set of

arguments in responsible cycles w.r.t. LabArgpref is S = {d, g}. There are two different

enforcement sets that are subsets of S, namely {d} and {g}. This example also illustrates

that not all enforcement sets contain arguments that are part of a responsible cycle, e.g. the

enforcement set {c, e} is disjoint from S.

Note that not every responsible cycle shares arguments with an enforcement set. For

instance, the responsible cycle {e} w.r.t. the preferred labelling LabArgpref of AA8, illus-

trated in Figure 6.14, and the only enforcement set w.r.t. LabArgpref , namely {c, d}, do

not have any arguments in common.

Next, we show the connection between responsible cycles and preventing set. In par-

ticular, every preventing set comprises a responsible cycle.

Theorem 6.35. Let Args be a preventing set w.r.t. LabArgpref . Then there exists a

responsible cycle C w.r.t. LabArgpref such that C ⊆ Args.

Proof. Let ArgsIO = in(LabArgpref )∪ out(LabArgpref ). Assume there exists no respon-

sible cycle C w.r.t. LabArgpref such that C ⊆ Args. Thus, AA↓Args comprises no odd-

length cycles, so by Corollary 36 in [Dun95b] AA↓Args has a stable labelling LabArgArgs.
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By Lemma A.10 in Appendix A, LabArgpref ↓ArgsIO is compatible with LabArgArgs. Fur-

thermore, by the same reasoning as in the proof of Proposition 6.19, LabArgArgs is

compatible with LabArgpref ↓ArgsIO. It follows from Lemma A.4 in Appendix A that

LabArgArgs ∪LabArgpref ↓ArgsIO is a complete labelling of AA↓Args∪ArgsIO. Let LabArg′

be a labelling of Args′ = Ar \ (Args ∪ ArgsIO) such that out(LabArg′) = Args′. Let

LabArg = LabArgArgs ∪ LabArgpref ↓ArgsIO ∪ LabArg
′. Clearly LabArgpref ⊏ LabArg.

Furthermore, ∀A ∈ Args it holds that A is legally labelled by LabArg. Contradiction,

since by Definition 6.5, ∀LabArg with LabArgpref ⊏ LabArg and undec(LabArg) = ∅ it

holds that ∃A ∈ Args such that A is illegally labelled by LabArg.

Example 6.36. Consider again AA5, illustrated on the left of Figure 6.9. The two pre-

venting sets w.r.t. the preferred labelling LabArgpref of AA5 are {c, d, g, h} and {d, e, f, g}.

Both contain a responsible cycle w.r.t. LabArgpref , in this case even two responsible cycles,

namely {d} and {g}.

These results imply that odd-length cycles of arguments labelled undec by LabArgpref

are an important characteristic of sets of arguments that prevent LabArgpref from being a

stable labelling (Theorem 6.35). Furthermore, it is sufficient to revise (specific) arguments

in odd-length cycles to obtain a stable labelling that is more committed than LabArgpref

(Theorem 6.34).

6.7 Discussion and Related Work

In this section, we first discuss why we chose to investigate the non-existence of stable

labellings in terms of preferred labellings not being stable labellings. We then compare

our approach to related work.

6.7.1 Preferred versus Semi-Stable Labellings

We investigated the question as to why an AA framework has no stable labellings in terms

of why a preferred labelling is not a stable labelling. We also considered to use semi-stable

labellings instead, as they are even closer to the notion of stable labelling.

However, with regards to SCUPs, semi-stable labellings lead to a problem: even though

SCUPs can be defined with respect to a semi-stable instead of a preferred labelling, stable

iterative SCUP revisions may not exist when defining SCUPs with respect to a semi-stable

labelling. The reason is that Theorem 6.25 and Corollary 6.26 are not guaranteed to hold

for semi-stable labellings, i.e. a SCUP revision may not have a semi-stable labelling that

is more committed than the semi-stable labelling of the original AA framework.

Example 6.37. Let AA10 be the AA framework on the left of Figure 6.20, which also

illustrates the only preferred and only semi-stable labelling LabArgpref of AA10. The

only SCUP w.r.t. LabArgpref is {a}. A SCUP revision AA⊛

10 of AA10 and its SCUP

revision labelling LabArg⊛ are shown on the right of Figure 6.20. The left of Figure 6.21
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illustrates the only preferred labelling of AA⊛

10 that is more committed than LabArg⊛ and

LabArgpref . Note that this preferred labelling is not a semi-stable labelling of AA⊛

10. The

only semi-stable labelling of AA⊛

10 is illustrated on the right of Figure 6.21. It is not more

(or equally) committed than LabArg⊛. The same problem arises if the SCUP is revised in

such a way that a is labelled out in the SCUP revision labelling, as illustrated on the left

of Figure 6.22. The only semi-stable labelling of the SCUP revision is shown on the right

of Figure 6.22, which is not more or equally committed than the SCUP revision labelling

or LabArgpref .

a

b

c d e

f

undec

undec

undec

out in

undec

a

b

c d e

f

in

undec

undec

out in

undec

Figure 6.20: Left – The only preferred and semi-stable labelling of AA10. Right – A SCUP
revision AA⊛

10 of AA10 and a SCUP revision labelling.
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c d e

f

in

out

out

out in

undec

a

b

c d e

f

in

out

out

in out

out

Figure 6.21: A preferred labelling of AA⊛

10 that is more committed than LabArgpref (left)
and the only semi-stable labelling of AA⊛

10 (right).

The problem with defining SCUPs with respect to semi-stable rather than preferred

labellings is thus that iterative SCUP revisions cannot be applied unless we are prepared

to change the labels of arguments already labelled in and out by the semi-stable labelling

of the original AA framework. However, this would defeat the spirit of our work as we

are interested in why a particular labelling is not a stable labelling and how to turn this

particular labelling into a stable labelling.
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a′

in

a

b

c d e

f

out

in

out

in out

out

a′

in

Figure 6.22: Another SCUP revision of AA10 and a SCUP revision labelling (left), and
the only semi-stable labelling of this SCUP revision (right).

6.7.2 Related Work

Related to our work on stable semantics, Baumann and Strass [BS13] focus on the ques-

tion how many stable extensions an AA framework has on average and what the maximal

number of stable extensions is. Furthermore, Dunne and Bench-Capon [DBC02] inves-

tigate AA frameworks whose stable and preferred extensions coincide, so-called coherent

AA frameworks, and thus deal with AA frameworks that always have a stable extension.

To the best of our knowledge, the only work investigating the non-existence of stable

extensions or labellings is by Nouioua and Würbel [NW14], who propose a revision oper-

ator which transforms an AA framework without stable extensions into one with a stable

extension. Their setting is different from ours as they assume that the AA framework

in question, which has no stable extension, was obtained from an addition of arguments

and attacks to some original AA framework. Assuming that the added arguments and

attacks are “correct”, they restrict the structural change performed by the revision oper-

ator to the original AA framework. Furthermore, Nouioua and Würbel’s approach differs

from ours in various ways: Firstly, they revise an AA framework through a particular

structural change, namely the deletion of attacks, whereas in our approach the addition

of arguments and attacks is allowed, too. Furthermore, their approach is not concerned

with preserving a particular preferred, or even the grounded, labelling when performing

the structural change. Most importantly, their work does not aim to characterise which

part of the AA framework is responsible for the non-existence of stable extensions, but

222



simply to find minimal (regarding cardinality) changes that guarantee the existence of a

stable extension. In our approach minimality also plays a role, as enforcement sets are

minimal (regarding set inclusion) sets of arguments used to obtain a stable labelling.

Like us, Baroni et al. [BGL15] are interested in arguments labelled undec. However,

rather than investigating how undec labels can be turned into definite in or out labels,

they argue that undecidedness is desirable in some situations and review various semantics

that include different notions of “undecidedness”.

In the following sections, we review some further strands of research sharing particular

aspects with our work.

Cycles in Argumentation Frameworks

Recently, cycles (of attacking arguments) in AA frameworks have received considerable at-

tention, including a special issue of the Journal of Logic and Computation [BGG16]. Many

authors regard the behaviour of preferred semantics with respect to cycles as “problem-

atic”, as it treats odd-length and even-length cycles differently. In particular, arguments

in odd-length cycles can often only be labelled undec, as is the case for our responsible

cycles, whereas arguments in even-length cycles can alternately be labelled in and out.

Baroni et al. [BGG05] discuss this “problematic” behaviour of preferred semantics

and introduce the CF2 semantics for AA frameworks, which “correctly” handles odd-

and even-length cycles. Dvořák and Gaggl [DG16] extend the CF2 semantics to the so-

called stage2 semantics, which fulfils some additional properties. Arieli [Ari16] introduces

a new family of conflict-tolerant semantics, where the conflict-freeness requirement for

extensions is dropped. Therefore, odd- and even-length cycles are treated the same by the

new semantics. Gabbay [Gab16b] defines another family of new semantics able to handle

the “problematic” behaviour of the preferred semantics concerning cycles. In the new loop

busting semantics no argument is labelled undec. The procedure for computing the new

semantics has similarities with ideas used in our approach, since it iteratively applies a

specific type of revision of initial SCCs. More precisely, an argument in an initial SCC

of the undec-part with respect to the grounded extension is chosen and a new attacker

is added. Then the grounded labelling of the new AA framework is computed and the

same procedure is performed iteratively for the new AA framework restricted to arguments

labelled undec. The iterative SCUP revision introduced here applies a similar approach

since an initial SCC of the undec-part (i.e. a SCUP) is revised and the revision is then

repeated on the AA framework restricted to arguments still labelled undec. However, we

allow for any revision and use the preferred rather than grounded semantics. Bodanza

and Tohmé [BT09] propose two new semantics for handling odd-length cycles: the first

one allows to accept arguments attacked by an odd-length cycle, and the second one

additionally allows to accept single arguments in an odd-length cycle. Both types of

semantics yield labellings which are more committed than preferred labellings.

In contrast to the aforementioned works, Bench-Capon [BC16] argues that the way the

223



preferred semantics handles cycles is not “problematic” by providing an interpretation of

even-length cycles as dilemmas and odd-length cycles as paradoxes. He argues that using

this point of view, it is reasonable that arguments in odd-length cycles are neither true

nor false, and that consequently their justification status cannot be decided.

Note that the motivation of our approach is completely different from the motivations of

the works reviewed above. We do not make any claims about whether or not the preferred

semantics handles cycles “correctly”, and are therefore not concerned with new semantics.

Instead, we characterise specific parts of an AA framework comprising odd-length cycles

as responsible for the non-existence of stable labellings and define a procedure for turning

a preferred labelling into a stable labelling by structurally revising the AA framework.

Like us, Baumann and Woltran [BW16] are not concerned with the “correct” or “in-

correct” behaviour of semantics regarding odd-length cycles. Instead, they study the role

of self-attacking arguments, i.e. cycles of length one, with regards to the equivalence of

AA frameworks.

Splitting Argumentation Frameworks

Two of our structural characterisations build upon the idea of SCCs introduced in [BGG05].

We investigate a particular type of SCCs, namely specific initial SCCs, and use Baroni

et al.’s results [BGG05] that the preferred and stable semantics are SCC-recursive, i.e.

that the preferred or stable extensions (or equivalently labellings) of an AA framework

can be obtained by computing the respective extensions for initial SCCs and using them

recursively for computing the extensions of the following SCCs. Liao [Lia13] shows how

the semantics of an AA framework can be computed by the step-wise computation of se-

mantics of SCCs and Baroni et al. [BBC+14] generalise the results about SCCs, showing

how complete labellings of an AA framework can be computed by combining complete

labellings of arbitrary parts of the AA framework. We apply and extend Baroni et al.’s

results for a particular partitions of an AA framework into the set of arguments labelled

in or out by a preferred labelling, and (a subset of the) arguments labelled undec.

Our results about combining a labelling of a SCUP with the in and out labels in a pre-

ferred labelling are also related to the splitting results of Baumann [Bau11] and Baumann

et al. [BBDW12]. They show that for the stable semantics, extensions of an AA framework

can be obtained by splitting the AA framework into two parts and computing the exten-

sions of the two parts using a method that takes the extensions of the respective other

part into account. Another related approach was introduced by Rienstra et al. [RPV+11],

who propose multi-sorted extensions as a new semantics of an AA framework with respect

to a partition of the AA framework. A multi-sorted extension is such that its restriction

to a part coincides with a given semantics for this part. This approach is conceptually

related to our work, which combines the stable labellings of parts of the AA framework,

namely SCUPs, with in and out labels from a preferred labelling.
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Dynamics in Argumentation Frameworks

The study of dynamics in AA frameworks has received considerable attention in recent

years. Our work investigates the dynamics of AA frameworks from a special angle since we

are not concerned with the exact structural change of an AA framework and its effect (as

e.g. in [CdSCLS10]), but rather with effects that may be obtained through various different

structural changes. Importantly, which structural change is chosen is not of importance

for our work as long as it results in arguments being legally labelled as desired.

Liao et al. [LJK11] introduce a general approach for computing extensions of an AA

framework that has been structurally changed, allowing for any number of additions and

deletions of arguments and attacks. The idea is that in order to compute the semantics

of the new AA framework only the semantics of the part of the AA framework that is

affected by the structural change has to be re-computed. The semantics of the unaffected

part stays the same as before the structural change and only “conditions” the extensions

of the affected part. This idea is related to our iterative SCUP revisions, where we do not

change the labels of arguments labelled in or out in the SCUP revision labelling (they are

“unaffected”), but only of those labelled undec, which are “conditioned” by the in and

out labels of the SCUP revision labelling.

The work of Booth et al. [BKRvdT13] is of similar spirit to our work, but concerned

with the complete rather than the stable semantics: they investigate how to turn a non-

complete labelling into a complete one through a structural change. In contrast to our

work, Booth et al. assume an intended complete labelling, whereas for our approach no

intended stable labelling is required.

Baumann and Brewka [BB10] were the first to investigate whether certain sets of argu-

ments can be enforced as an extension according to a chosen semantics. In contrast to our

general revisions, they only allow structural changes called “expansions”, where arguments

and attacks can be added, and new attacks must involve a new argument. Baumann and

Brewka prove that for certain kinds of expansions, all arguments that are part of extensions

before the structural change are also part of extensions after the structural change. In line

with their work, we show that for any revision w.r.t. an enforcement set by an enforcement

labelling, a stable labelling is obtained in which all previously in- and out-labelled argu-

ments keep their labels. Baumann [Bau12] as well as Coste-Marquis et al. [CMKMM14b]

study how to enforce a set of arguments through a minimal structural change of adding or

deleting attacks. Similarly, we prove that enforcement sets are minimal sets of arguments

that, when used for a revision, yield a stable labelling. Coste-Marquis et al. [CMKMM15]

introduce a whole family of revision operators which can be used for enforcement, general-

ising revision operators defined by others, e.g. [KBM+13, BGK+14, CMKMM14a]. Other

authors [BCdSCLS13, DHP14, BGP+11] study enforcements as logical formulae to be sat-

isfied through structural change. It is important to note that even though enforcement is a

related problem, we do not assume a set of arguments to be “enforced” as an extension of

the SCUP. In contrast, we only require that some stable extension exists after the revision.
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However, the previously mentioned approaches could be used for enforcing a certain set

of arguments as a stable extension of a SCUP.

6.8 Summary

We gave three labelling-based and three structural characterisations of sets of arguments

responsible for the non-existence of stable argument labellings. These sets characterise

reasons why a preferred argument labelling is not a stable argument labelling and are

thus defined with respect to a chosen preferred argument labelling. We also investigated

revisions of the AA framework using our different notions of responsible sets, and in

particular whether or not such revisions can turn the chosen preferred argument labelling

into a stable argument labelling.

In the basic labelling-based characterisation, the set of all arguments labelled undec by

the chosen preferred argument labelling is deemed responsible, since arguments labelled

undec violate the definition of stable argument labelling. Our two non-naive labelling-

based approaches characterise responsible sets of arguments with respect the legality of

labels in argument labellings that are more committed than the chosen preferred argument

labelling. We also proved that these two characterisations define necessary and sufficient

conditions for the existence and non-existence, respectively, of a stable argument labelling

(that is more committed than the chosen preferred argument labelling) after revising the

AA framework with respect to such a responsible set of arguments.

Since the labelling-based characterisations are declarative rather than constructive,

we also give constructive characterisations of responsible sets of arguments based on the

structure of the AA framework. Two characterisations define special types of SCCs as

responsible that the preferred argument labelling in question is not a stable argument

labelling. The first one characterises the “first” SCCs that have no stable argument

labelling (that is more or equally committed than the preferred argument labelling). Our

second structural characterisation refines this notion to initial SCCs of the AA framework

restricted to arguments labelled undec by the chosen preferred argument labelling. We

call the sets of arguments thus characterised as responsible SCUPs (Strongly Connected

undec Parts). We also introduce an iterative procedure for revising SCUPs, which yields

a revised AA framework that has a stable argument labelling which is more committed

than the chosen preferred argument labelling. Following findings by Dung [Dun95b], our

third structural characterisation defines odd-length cycles of arguments labelled undec by

the chosen preferred argument labelling as responsible. Even though each SCUP contains

an odd-length cycle, we show that the cycles may not have to be revised in the iterative

revision of SCUPs to obtain a stable argument labelling.

We compared our labelling-based and structural characterisations, proving that SCUPs

provide a constructive approximation of our precise labelling-based characterisations. In

other words, even though SCUPs do not define necessary conditions for the (non-) existence

of a stable argument labelling after revising the AA framework, they are sufficient for
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obtaining a stable argument labelling. Furthermore, our comparison shows that odd-

length cycles are an important characteristic of all our characterisations.

In the next chapter, we will transfer our notion of SCUPs to inconsistent logic programs

without explicitly negated atoms and show that this characterises parts of a logic program

which are responsible for the inconsistency. Whether or not our additional results on

obtaining a stable argument labelling using our notions of responsible sets of arguments

can also be transferred to inconsistent logic programs in order to restore consistency is left

for future work.
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Chapter 7

Classifying and Explaining

Inconsistency in Answer Set

Programming
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7.1 Introduction

A logic program may comprise two kinds of negation: explicit negation and negation as

failure (NAF). If no negation of either kind is present, a logic program will always be

consistent under the answer set semantics [GL91]. However, if negation is used in a logic

program, inconsistency may arise in one of two different ways: either the only answer set

of the logic program is the set of all literals, or the logic program has no answer sets at

all.

In the case of an inconsistent logic program, answer set solvers do not provide any

classification of the inconsistency, or explanation thereof. Especially when dealing with a

large inconsistent logic program or if the inconsistency is unexpected, understanding why

the inconsistency arises and which part of the logic program is responsible for it is an

important first step towards debugging the logic program in order to restore consistency.

Various approaches have been developed for finding the source of inconsistency, and even

for suggesting ways of debugging the logic program. These approaches assume explicitly

or implicitly the existence of an intended answer set.

We propose a new method for identifying the reason of inconsistency in a logic program

without the need of an intended answer set, which is based on the well-founded and 3-

valued M-stable models of the logic program in question. Based on our results on the

non-existence of stable argument labellings in AA frameworks from Chapter 6, we first

investigate inconsistency in logic programs without explicitly negated atoms, since their

stable models correspond one-to-one to the stable argument labellings of the translated

AA framework (see Section 4.4). We show that the concept of SCUPs can be transferred

to logic programs. We then prove that the two ways in which a logic program with both

NAF literals and explicitly negated atoms may be inconsistent (no answer set or the only

answer set is the set of all literals) are further divided into four inconsistency cases, which

have different reasons for the inconsistency: one where only explicit negation is responsible

and the only answer set is the set of all literals, one where only NAF is responsible and

the logic program has no answer sets, and two where an interplay of explicit negation and

NAF is responsible and the logic program has no answer sets.

We show how in each of these inconsistency cases the reason of the inconsistency can

be refined to a characteristic set of “culprit literals”. These “culprit literals” can then be

used to construct trees whose nodes hold derivations that explain why the inconsistency

arises and which part of the logic program is responsible.

The chapter is organised as follows. In Section 7.2, we define SCUPs of an incon-

sistent logic program without explicit negation and characterise them as responsible for

the inconsistency. In Section 7.3, we characterise inconsistency in logic programs with

explicit negation, distinguishing three inconsistency cases. We then show in Section 7.4,

that the third cases can be further divided into two different sub-cases, and characterise

sets of literals that are responsible for the inconsistency in each case. In Section 7.5, we

illustrate how to construct explanation trees for the responsible literals and in Section 7.7
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we summarise the contributions of this chapter.

7.2 Inconsistency in Logic Programs without Explicit Nega-

tion

In this section, we characterise sets of literals that can be deemed responsible for the

non-existence of answer sets of a logic program without explicitly negated atoms. More

precisely, we show that the concept of SCUPs, as defined for AA frameworks in Chapter 6,

can be transferred to logic programs without explicitly negated atoms. Throughout this

section, we assume as given a logic program P without explicitly negated atoms that has

no (2-valued) stable model (equivalently, no answer set – see Section 2.3.4), and a 3-valued

M-stable model 〈T ,F〉 of P.1

We first define a special kind of negative dependency graph, whose nodes consist of all

atoms in U with respect to a chosen 3-valued M-stable model and whose edges indicate

negative dependencies between these atoms. Importantly, a negative dependency of an

atom a2 on an atom a1 is excluded if the derivation of a2 dependent on a1 is also dependent

on an atom a ∈ T .

Definition 7.1 (Negative Undefined Dependency Graph). The negative undefined depen-

dency graph of P w.r.t. 〈T ,F〉 is (V,E) with

❼ V = U , and

❼ E = {(a1, a2) ∈ V × V | ∃P ∪∆ ⊢MP a2 s.t. not a1 ∈ ∆ and ∄not a ∈ ∆ with a ∈

T }.

Example 7.1. Let P15 be the following logic program:

{ u← not w, not z;

u← not z;

u← not p, not q;

w ← not u;

z ← not w;

p← not p;

q ← }

The only 3-valued stable model of P15 is 〈{q}, ∅〉 with U = {u,w, z, p}. The negative unde-

fined dependency graph of P15 w.r.t. the 3-valued stable model is displayed in Figure 7.1.

Note that there is no negative dependency between u and p since P15∪{not p, not q} ⊢MP

u is such that q ∈ T .

1Note that P has at least one 3-valued M-stable model as noted in Section 2.3.4.
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u w

z

p

Figure 7.1: The negative undefined dependency graph of P15 w.r.t. its only 3-valued stable
model (see Example 7.1).

The reason that derivations of an atom a2 ∈ U that are negatively depended on an

atom in T are not taken into account is that these derivations are not the reason why the

truth value of a2 is U. Consider for instance the clause u ← not p, not q. Since q ∈ T ,

val(not q) = F, and therefore the clause is satisfied independently of the truth value of u.

If this was the only clause with head u, then the truth value of u in 3-valued stable models

would be F rather than U. However, the truth value of u is U, which is, consequently, due

to one of the other clauses with head u.

7.2.1 SCUPs of a Logic Program

We define SCUPs of a logic program based on a negative undefined dependency graph

w.r.t. a 3-valued M-stable model. Similarly to AA frameworks, SCUPs of a logic program

are initial SCCs.

Definition 7.2 (Strongly Connected Undefined Part). S ⊆ HBP is a strongly connected

undefined part (SCUP) w.r.t. 〈T ,F〉 of P if S is an initial SCC of the negative undefined

dependency graph of P w.r.t. 〈T ,F〉.

Example 7.2. Consider again P15 from Example 7.1 and the negative undefined depen-

dency graph of P15 w.r.t. its only 3-valued M-stable model 〈{q}, ∅〉 shown in Figure 7.1.

It is easy to see from the graph that there are two SCUPs w.r.t. 〈{q}, ∅〉, namely {u,w, z}

and {p}.

If we add not p to the body of the second clause of P15, obtaining the new logic program

P16, we obtain the negative undefined dependency graph in Figure 7.2 w.r.t. 〈{q}, ∅〉,

which is the only 3-valued stable model of P16. Then only SCUP w.r.t. 〈{q}, ∅〉 of P16 is

{p}.

u w

z

p

Figure 7.2: The negative undefined dependency graph of P16 w.r.t. its only 3-valued stable
model (see Example 7.2).

Importantly, SCUPs characterise parts of an inconsistent logic program (without ex-

plicit negation) that always exist.
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Proposition 7.1. There exists a SCUP w.r.t. 〈T ,F〉 of P.

Proof. Since U 6= ∅, the negative undefined dependency graph of P w.r.t. 〈T ,F〉 has a

non-empty set of vertices. Thus, it has an initial SCC, which is a SCUP w.r.t. 〈T ,F〉.

7.2.2 SCUPs of a Logic Program versus SCUPs of an AA framework

In this section, we investigate the relationship between SCUPs of logic programs and

SCUPs of their translated AA frameworks. This relies on the correspondence between

3-valued M-stable models of the logic program and preferred argument labellings of the

translated AA framework discussed in Chapter 4.

We first prove that a SCUP of a logic program consists of the conclusions of the

arguments in a corresponding SCUP of the translated AA framework.

Theorem 7.2. Let 〈ArP , AttP〉 be the translated AA framework of P and LabArg the cor-

responding preferred argument labelling of 〈T ,F〉 in AAP . If Args is SCUP w.r.t. LabArg

of AAP , then S = {a ∈ HBP | Asms ⊢ a ∈ Args} is a SCUP w.r.t. 〈T ,F〉 of P.

Proof.

❼ We first show that S ⊆ U : Let Asmsa ⊢ a ∈ Args. Then ∃Asmsb ⊢ b ∈ Args such

that Asmsa ⊢ a ∈ Args attacks Asmsb ⊢ b ∈ Args since Args is strongly connected.

Thus, ∀Asms′ ⊢ a 6= Asmsa ⊢ a it holds that Asms′ ⊢ a attacks Asmsb ⊢ b ∈ Args.

Since Args is an initial SCC of 〈ArP , AttP〉↓undec(LabArg), no argument in Args is

attacked by an argument labelled in by LabArg or by an argument labelled undec

by LabArg which is not contained in Args. Therefore, Asms′ ⊢ a ∈ out(LabArg) or

Asms′ ⊢ a ∈ undec(LabArg) and Asms′ ⊢ a ∈ Args. It follows by LabArg2ModWu

(see Section 4.4) that a ∈ U . Since this holds for all arguments in Args, we conclude

that S ⊆ U .

❼ We now show that all a ∈ S are strongly connected in the negative undefined de-

pendency graph (V,E) of P w.r.t. 〈T ,F〉: Let Asmsa ⊢ a,Asmsb ⊢ b ∈ Args

and Asmsa ⊢ a attacks Asmsb ⊢ b ∈ Args. By Mod2LabArg (see Section 4.4),

∄not x ∈ Asmsa, Asmsb with x ∈ T since Args ⊆ undec(LabArg). Therefore,

(a, b) ∈ V . Since this holds for all arguments in Args and since Args is strongly

connected, it follows that S is strongly connected in (V,E).

❼ Lastly, we show that S is an initial SCC, i.e. that ∄a ∈ U such that a /∈ S but

S is negatively dependent on a in (V,E): Let a ∈ U and a /∈ S. Assume S neg-

atively depends on a in (V,E), i.e. ∃s ∈ S such that (a, s) ∈ E. Thus, by Def-

inition 7.1 ∃Asmss ⊢ s with not a ∈ Asmss and ∄not x ∈ Asmss with x ∈ T .

Then by Mod2LabArg it holds that Asmss ⊢ s /∈ out(LabArg). Since s ∈ S it

holds that ∃Asms′s ⊢ s ∈ Args. By the first item of this proof, it follows that

Asmss ⊢ s ∈ undec(LabArg) and Asmss ⊢ s ∈ Args. Since a ∈ U it follows by
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LabArg2ModWu that ∃Asmsa ⊢ a ∈ undec(LabArg). Then clearlyAsmsa ⊢ a attacks

Asmss ⊢ s ∈ Args, so Args is attacked by an argument labelled undec(LabArg)

in 〈ArP , AttP〉. Therefore, Asmsa ⊢ a ∈ Args since Args is an initial SCC of

〈ArP , AttP〉↓undec(LabArg). Thus, by definition of S, it follows that a ∈ S. Contra-

diction.

Note that the last item also proves that there exists no a ∈ U such that a /∈ S but a and

S are strongly connected in (V,E). In other words, S comprises all a that are strongly

connected with S in (V,E).

Conversely, we prove that a SCUP of the translated AA framework consists of those

undec-labelled arguments whose conclusion is in a corresponding SCUP of the logic pro-

gram.

Theorem 7.3. Let AAP be the translated AA framework of P and LabArg the corre-

sponding preferred argument labelling of 〈T ,F〉 in AAP . If S is SCUP w.r.t. 〈T ,F〉 of P,

then Args = {Asms ⊢ a ∈ undec(LabArg) | a ∈ S} is a SCUP w.r.t. LabArg of AAP .

Proof. By definition of Args it holds that Args ⊆ undec(LabArg).

❼ We show that all arguments in Args are attacked by some argument in Args: Assume

∃Asmsa ⊢ a ∈ Args such that ∄Asmsb ⊢ b ∈ Args and Asmsb ⊢ b attacks Asmsa ⊢

a. By Mod2LabArg (see Section 4.4), ∃not c ∈ Asms such that c ∈ U and ∄not x ∈

Asms such that x ∈ T . Then by Definition 7.1, (c, a) ∈ E. It follows that c ∈ S

since a ∈ S and S is an initial SCC of (V,E). By LabArg2ModWu, ∃Asmsc ⊢ c ∈

undec(LabArg), so by the definition of Args, Asmsc ⊢ c ∈ Args. Furthermore,

clearly, Asmsc ⊢ c attacks Asmsa ⊢ a. Contradiction.

❼ Next, we show that if an argument in Args is attacked by an argument contained

in Args other than itself, then it also attacks an in Args other than itself: Let

Asmsa ⊢ a,Asmsb ⊢ b ∈ Args, Asmsa ⊢ a 6= Asmsb ⊢ b, and Asmsa ⊢ a attacks

Asmsb ⊢ b. Since Asmsb ⊢ b ∈ undec(LabArg), it follows from Mod2LabArg that

∄not x ∈ Asmsb with x ∈ T . Thus, by Definition 7.1, (a, b) ∈ E and by the definition

of Args, a, b ∈ S. Since S is strongly connected it follows that there exists some

c ∈ S such that c 6= b and (b, c) ∈ E. Therefore, ∃Asmsc ⊢ c with not b ∈ Asmsc, so

Asmsb ⊢ b attacks Asmsc ⊢ c. Furthermore, since ∄not x ∈ Asmsc with x ∈ T , it

follows from Mod2LabArg that Asmsc ⊢ c ∈ undec(LabArg). Then by the definition

of Args, Asmsc ⊢ c ∈ Args.

It follows from these two items that Args is strongly connected.

It remains to prove that Args is an initial SCC of 〈ArP , AttP〉↓undec(LabArg): Assume that

∃Asmsa ⊢ a ∈ undec(LabArg) with Asmsa ⊢ a /∈ Args and ∃Asmsb ⊢ b ∈ Args such that

Asmsa ⊢ a attacks Asmsb ⊢ b. Since Asmsb ⊢ b ∈ Args it follows that ∄not x ∈ Asms

such that x ∈ T . Thus, a /∈ T . Since it is not the case that ∀Asms′ ⊢ a : Asms′ ⊢
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a ∈ out(LabArg), we conclude by LabArg2ModWu that a ∈ U . Then by Definition 7.1,

(a, b) ∈ E. Since by the definition of Args, b ∈ S, and since S is an initial SCC, it follows

that a ∈ S. Therefore, Asmsa ⊢ a ∈ Args. Contradiction.

Example 7.3. Consider the translated AA framework AAP15
of P15, illustrated in Fig-

ure 7.3 with its assumption-arguments omitted, since assumption-arguments are never

part of a SCUP as they do not attack any argument. Let A1, . . . , A5 be the assumption-

arguments of not u, not w, not z, not p, not q, respectively. The only complete (and

thus only preferred) argument labelling of AAP15
is LabArg, where in(LabArg) = {A12},

out(LabArg) = {A5, A10}, and undec(LabArg) consists of all other arguments. AAP15
has

two SCUP w.r.t. its only preferred argument labelling LabArg, namely {A6, A7, A8, A9}

and {A11}. The conclusions of arguments in these SCUPs coincide with the SCUPs of

P15, i.e. {u,w, z} and {p} (see Example 7.2). Furthermore, the SCUP {A6, A7, A8, A9}

consists of the arguments with conclusion u, w, and z that are labelled undec by LabArg.

Note that argument A10, whose conclusion is u, is not part of the SCUP since it is labelled

out by LabArg.

A6 : {not z} ⊢ u

A7 : {not w} ⊢ z A8 : {not u} ⊢ w

A9 : {not w, not z} ⊢ u

A10 : {not p, not q} ⊢ u

A11 : {not p} ⊢ p A12 : {} ⊢ q

undec

undec undec

undec

out

undec in

Figure 7.3: The translated AA framework of P15 from Example 7.1 (without assumption-
arguments) and its only complete argument labelling.
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7.2.3 Properties of SCUPs of a Logic Program

Due to these correspondence results, we can deduce some properties of SCUPs of a logic

program from our results about SCUPs of AA frameworks. One such property is that

every SCUP of a logic program comprises an odd-length negative dependency cycle.

Theorem 7.4. Let S be a SCUP w.r.t. 〈T ,F〉 of P. Then there exists an odd-length

negative dependency cycle a0, . . . an such that for all ai (0 ≤ i ≤ n) it holds that ai ∈ S.

Proof. Let 〈ArP , AttP〉 be the translated AA framework of P and LabArg the corre-

sponding preferred argument labelling of 〈T ,F〉 in 〈ArP , AttP〉. By Theorem 7.3, Args =

{Asms ⊢ a ∈ undec(LabArg) | a ∈ S} is a SCUP w.r.t. LabArg of 〈ArP , AttP〉. Then

by Proposition 6.28, there exists an odd-length cycle C ⊆ Args. That is, there ex-

ists a path Asms0 ⊢ a0, Asms1 ⊢ a1, Asmsm ⊢ am of arguments in Args such that

Asms0 ⊢ a0 = Asmsm ⊢ am with m ≥ 0 and Asmsi ⊢ ai attacks Asmsi+1 ⊢ ai+1

(0 ≤ i ≤ m−1). By Mod2LabArg from Section 4.4 it holds that ∄not x ∈ Asmsi such that

x ∈ T . Therefore, (ai, ai+1) ∈ E in the negative undefined dependency graph (V,E) of P

w.r.t. 〈T ,F〉. If for all i 6= j (0 ≤ j ≤ m − 1) it holds that ai 6= aj , then a0, . . . , am is a

negative dependency path such that m is odd and ai ∈ S. Else, assume that ∃j 6= i such

that ai = aj with i < j (i.e. two arguments in the odd-length cycle of arguments have the

same conclusion). Then either j − i is odd, so ai, . . . , aj is an odd-length negative depen-

dency path with all atoms in S, or j− i is even, so a0, . . . , ai, aj+1, . . . am is an odd-length

negative dependency path with all atoms in S.

Arguably the most important property of SCUPs of a logic program is that they indeed

characterise parts of a logic program that are responsible that the logic program has no (2-

valued) stable models. To this end, we show that the set of responsible clauses, i.e. clauses

that are used to derive the atoms in a SCUP (and which are responsible that the truth

value of the atom is U as previously explained), has no 2-valued stable model.

Theorem 7.5. Let S be a SCUP w.r.t. 〈T ,F〉 of P and let PS = {r | r ∈ P ′ : P ′ ⊆

P is a minimal set (w.r.t. ⊆ ) s.t. P ′ ∪∆ ⊢MP a, a ∈ S, ∄not x ∈ ∆ with x ∈ T }. Then

PS has no (2-valued) stable model.

Proof. Let 〈ArP , AttP〉 be the translated AA framework of P and LabArg the corre-

sponding preferred argument labelling of 〈T ,F〉 in 〈ArP , AttP〉. By Theorem 7.3, Args =

{Asms ⊢ a ∈ undec(LabArg) | a ∈ S} is a SCUP w.r.t. LabArg of 〈ArP , AttP〉.

We first note that PS consists of all clauses necessary to derive the arguments in Args

(but there may be more arguments derivable from PS which are not in Args) since

by Mod2LabArg from Section 4.4 for all arguments Asms ⊢ a ∈ Args it holds that

∄not x ∈ Asms such that x ∈ T . Thus, for 〈ArPS
, AttPS

〉 it holds that Args ⊆ ArPS
.

Let Asmsa ⊢ a ∈ ArPS
\ Args. We show that Asms ⊢ a does not attack Args: Since

all clauses used to construct Asmsa ⊢ a are also used to construct some argument in
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Args, it follows that ∀not b ∈ Asmsa, ∃Asmsc ⊢ c ∈ Args with not b ∈ Asmsc. As-

sume that Asmsa ⊢ a attacks Args. Then Asmsa ⊢ a ∈ out(LabArg) since Args is

a SCUP w.r.t. LabArg. This means that ∃Asmsx ⊢ x ∈ in(LabArg) which attacks

Asmsa ⊢ a, so not x ∈ Asmsa. Thus, ∃Asmsc ⊢ c ∈ Args such that not x ∈ Asmsc,

so Asmsc ⊢ c ∈ out(LabArg). Contradiction since Args ⊆ undec(LabArg). Therefore,

Asmsa ⊢ a does not attacks Args.

Assume that PS has a 2-valued stable model 〈T ′,F ′〉. By Theorem 4.19, LabArg′ =

Mod2LabArg(〈T ′,F ′〉) is a stable argument labelling of 〈ArPS
, AttPS

〉. Since no arguments

in ArPS
\ Args attack Args, it follows that LabArg′↓Args is a stable argument labelling

of Args. Contradiction since by Proposition 6.19 the only complete argument labelling of

undec(LabArg) labels all arguments as undec, so by the SCC-recursiveness of the com-

plete semantics [BGG05] it holds that the only complete argument labelling of Args labels

all arguments as undec. In other words, Args has no stable argument labelling. Thus, PS

has no (2-valued) stable model.

Example 7.4. Consider again the logic program P15 from Example 7.1 and the two

SCUPs w.r.t. the 3-valued M-stable model 〈{q}, ∅〉, namely {u,w, z} and {p}. For the

first of the two SCUPs, the set of responsible clause P15{u,w,z} is:

{u← not w, not z;

u← not z;

w ← not u;

z ← not w }

This logic program has no 2-valued stable models. Similarly, the set of responsible clauses

of the second SCUP has no 2-valued stable models.

It follows that the set of responsible clauses with respect to SCUPs definitely have to

be revised in order to obtain a 2-valued stable model of the overall logic program.

Note that we here only characterise inconsistency of logic programs without explicit

negation. Revisions and debugging for transforming an inconsistent logic program into a

consistent ones is left for future work.

7.3 Inconsistency in Logic Programs with Explicit Negation

We now investigate inconsistency of logic programs that may comprise explicitly negated

atoms. From here onwards, and if not stated otherwise, we assume as given an inconsistent

logic program P and its translated logic program P ′, where a′, a′i, a are the translated

literals of ¬a, ¬ai, and a, respectively (as explained in Section 2.3.4).

We first show how to identify in which way a logic program is inconsistent, i.e. if its

only answer set is the set of all literals or if it has no answer sets at all, assuming that we

only know what an answer set solver gives us, i.e. that the logic program is inconsistent.
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This identification is based on whether or not the logic program has a well-founded model,

which can be computed in polynomial time [VRS91]. Our results show that even though

a logic program can only be inconsistent in two ways, in fact there are three different

inconsistency cases, which arise due to different reasons. The three inconsistency cases

are:

❼ P has no well-founded model and

1. the only answer set of P is LitP ;

2. P has no answer sets.

❼ P has a well-founded model and

3. P has no answer sets.

In the following, we prove that these three cases are the only ones, and characterise

them in more detail.

7.3.1 Inconsistency Cases 1 and 2

We start by illustrating the first inconsistency case.

Example 7.5. Let P17 be the following logic program:

{ p← q;

u← not t;

q ← r, s;

t← not u;

r ← ;

¬p← ;

s← }

P17 has no well-founded model and its only answer set is LitP17
, so P17 falls into incon-

sistency case 1. The reason that the only answer set is LitP17
is that for any S ⊆ LitP17

satisfying the conditions of an answer set, s, r,¬p ∈ S, so q, p ∈ S, and thus S contains

the complementary literals p and ¬p. Note that NAF literals do not play any role in the

inconsistency of P17; an atom and its explicitly negated atom, both strictly derivable, are

responsible for the inconsistency.

The observations in Example 7.5 agree with a well-known result about logic programs

whose only answer set it the set of all literals (Proposition 6.7 in [Ino93]).

Lemma 7.6. The only answer set of P is LitP if and only if ∃a ∈ HBP such that P ⊢MP a

and P ⊢MP ¬a.
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Next, we illustrate the second inconsistency case.

Example 7.6. Let P18 be the following logic program:

{ q ← not r;

¬q ← ¬s, not p;

r ← not ¬t;

¬s← ;

¬t← }

P18 has no well-founded model and no answer sets, so P18 falls into inconsistency case 2.

The reason that P18 has no answer sets is an interplay of explicit negation and NAF:

for any S ⊆ LitP18
satisfying the conditions of an answer set, ¬t,¬s ∈ S, and thus

r ← not ¬t is always deleted in P18
S and both q ← and ¬q ← ¬s are always part of

P18
S . Consequently, for any such S it holds that q,¬q ∈ AS(P18

S), meaning that the

only possible answer set is LitP18
. However, since r, p,¬t ∈ LitP18

the reduct will only

consist of ¬t ← and ¬s ←, so that AS(P18
LitP18 ) = {¬t,¬s}, which does not contain

complementary literals. Consequently, P18 has no answer sets at all.

Even though both in P17 and in P18 the inconsistency arises due to complementary

literals, the difference lies in their derivations: in P17, complementary literals are strictly

derivable, whereas in P18, the complementary literals are defeasibly derivable, i.e. not

only explicit negation but also NAF is involved in the derivations of literals causing the

inconsistency.

The following Theorem characterises inconsistency cases 1 and 2 in terms of derivations

of complementary literals.

Theorem 7.7. If P has no well-founded model, then

1. the only answer set of P is LitP if and only if ∃a ∈ HBP such that P ⊢MP a and

P ⊢MP ¬a;

2. P has no answer sets if and only if ∄a ∈ HBP such that P ⊢MP a and P ⊢MP ¬a.

Proof. From Lemma 7.6.

7.3.2 Inconsistency Case 3

The following example illustrates the third inconsistency case.
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Example 7.7. Let P19 be the following logic program:

{ r ← not s;

s← not r;

q ← not s;

¬q ← not s;

p← not r;

¬p← not r }

The well-founded model of P19 is 〈∅, ∅〉, but P19 has no answer sets. Thus, it falls into

inconsistency case 3. The reason that P19 has no answer sets is an interplay of explicit

negation and NAF similar to Example 7.6. From the first two clauses, it follows that any

potential answer set S ⊆ LitP19
cannot contain both s and r. If r /∈ S, then p,¬p ∈ S;

if s /∈ S, then q,¬q ∈ S, and thus the only possible answer set is LitP19
. However,

P19
LitP19 does not comprise any clauses, so AS(P19

LitP19 ) = ∅, which does not contain

complementary literals. Thus, P19 has no answer sets. As in P18 (see Example 7.6),

the inconsistency is due to defeasibly derivable complementary literals, but in contrast

to P18 here the derivations of complementary literals involve NAF literals that form an

even-length negative dependency cycle, namely s and r.

Theorem 7.8 characterises inconsistency case 3.

Theorem 7.8. If P has a well-founded model, then P has no answer sets.

Proof. Assume that ∃a ∈ HBP s.t. P ⊢MP a and P ⊢MP ¬a. Then a and a′ are in the

well-founded model of P ′ (by the alternating fixpoint definition of well-founded models

[Van93]) and thus a and ¬a are contained in the corresponding well-founded model of P,

so P has no well-founded model (contradiction). Thus, ∄a ∈ HBP s.t. P ⊢MP a and

P ⊢MP ¬a, so by Lemma 7.6 it is not the case that the only answer set of P is LitP .

Consequently, P has no answer sets.

In summary, if P has no well-founded model, then its only answer set is LitP – caused

by explicit negation – or it has no answer sets – caused by the interplay of explicit negation

and NAF. If P has a well-founded model, then it has no answer sets – caused by the

interplay of explicit negation and NAF.

7.4 Characterising Culprits

In the examples in the previous section, we already briefly discussed that the reasons for

the inconsistency are different in the three inconsistency cases: either only explicit negation

or the interplay of explicit negation and NAF. In this section, we show that inconsistency

case 3 can, in fact, be further split into two sub-cases: one where the interplay of explicit
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negation and NAF is responsible as seen in Example 7.7 (case 3a), and one where only

NAF is responsible for the inconsistency (case 3b), corresponding to the inconsistency

of logic programs without explicit negation. Furthermore, we characterise the different

reasons of inconsistency in more detail in terms of “culprit” sets, which are sets of literals

included in the well-founded (cases 1,2) or 3-valued M-stable (case 3b) model of P, or in

the answer sets of P ′ (case 3a). In other words, culprits can be found in “weaker” models.

Definition 7.3 (Culprit Set). Let 〈T ′
w,F

′
w〉 be the well-founded model of P ′, S′

1, . . . , S
′
n

(n ≥ 0) its answer sets, and 〈T ′
M ,F

′
M 〉 one of its 3-valued M-stable models with U ′

M the

set of undefined atoms.

❼ If P has no well-founded model, then

– {a,¬a} is a culprit set of P if and only if a, a′ ∈ T ′
w and a and a′ are strictly

derivable from P ′ (case 1);

– {a,¬a} is a culprit set of P if and only if a, a′ ∈ T ′
w and one of them is defeasibly

derivable from P ′ and the other one is derivable from P ′ (case 2).

❼ If P has a well-founded model and

– P ′ has n answer sets (n ≥ 1), then {a1,¬a1, . . . , an,¬an} is a culprit set of P

if and only if ∀ai,¬ai (1 ≤ i ≤ n): ai, a
′
i ∈ S′

i and one of them is defeasibly

derivable from P ′ and the other one is derivable from P ′ (case 3a);

– P ′ has no answer sets, then C is a culprit set of P if and only if there ex-

ists an odd-length negative dependency cycle a0, . . . , an in P ′ and a SCUP S

w.r.t. 〈T ′
M ,F

′
M 〉 such that for all ai (0 ≤ i ≤ n) it holds that ai ∈ S, and C

consists of the original literals of the translated literals a0, . . . , an (case 3b).

We now show that for every inconsistency case at least one culprit set exists.

7.4.1 Inconsistency Case 1

Example 7.8. The well-founded model of the translated logic program P17
′ (see P17 in

Example 7.5) is 〈{p, p′, q, r, s}, ∅〉. It thus holds that p, p′ ∈ T ′
w and both of them are strictly

derivable from P ′. Thus, {p,¬p} is a culprit set of P17, which confirms our observation

that LitP17
is the only answer set of P17 because every potential answer set contains both

p and ¬p (see Example 7.5). Note that it is not only the literals in the culprit set which

characterise this inconsistency case, it is the derivation of the literals, i.e. that both literals

are strictly derivable.

Theorem 7.9 states the existence of a culprit set in inconsistency case 1.

Theorem 7.9. Let P have no well-founded model and let its only answer set be LitP .

Then P has a case 1 culprit set {a,¬a}.
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Proof. By Lemma 7.6, ∃a, a′ ∈ HBP ′ s.t. P ′ ⊢MP a and P ′ ⊢MP a′. By definition of

well-founded model (as an alternating fixpoint [Van93]), a, a′ ∈ T ′
w where 〈T ′

w,F
′
w〉 is the

well-founded model of P ′. By Definition 7.3, {a,¬a} is a case 1 culprit set.

7.4.2 Inconsistency Case 2

Example 7.9. The well founded model of P ′
18 (see P18 in Example 7.6) is 〈{q, q′, s′,

t′}, {p, r}〉. It holds that q, q′ ∈ T ′
w and here even both of them are defeasibly derivable.

Thus, {q,¬q} is a culprit set of P18, which confirms our observation that the reason for

the inconsistency of P18 is that every potential answer set contains both q and ¬q, but

LitP18
is not an answer set due to the NAF literals involved in the derivations of q and ¬q.

Note that even though the culprit sets of P17 and P18 are very similar – both consist of

complementary literals – the difference lies in the derivations of the literals in the culprit

set: here, the literals are not both strictly derivable, so the reason for the inconsistency

is both that complementary literals are derivable (explicit negation) as well as that their

derivations involve NAF literals.

Theorem 7.10 proves the existence of a culprit set in inconsistency case 2.

Theorem 7.10. Let P have no well-founded model and no answer sets. Then P has a

case 2 culprit set {a,¬a}.

Proof. Let 〈T ′
w,F

′
w〉 be the well-founded model of P ′. Since P has no well-founded model,

T ′
w must contain some a, a′. Since every answer set is a superset of the well-founded model

(Corollary 5.7 in [VRS91]), every potential answer set of P contains a and ¬a, meaning

that the only possible answer set is LitP . From the assumption that P has no answer

sets, we can conclude that AS(PLitP ) does not contain a and ¬a. Thus, all of the rules

needed for the derivation of either a or ¬a are deleted in PLitP , meaning that a or ¬a is

defeasibly derivable. Trivially, the other literal is also derivable as a, a′ ∈ T ′
w. Then by

Definition 7.3, {a,¬a} is a case 2 culprit set of P.

7.4.3 Inconsistency Case 3a

Example 7.10. P ′
19 (see P19 in Example 7.7) has two answer sets S′

1 = {q, q′, r} and

S′
2 = {p, p′, s}, so P19 falls into inconsistency case 3a. q, q′, p, p′ are all defeasibly derivable

from P19
′ and thus {q,¬q, p,¬p} is a culprit set of P19. This confirms our observation that

the reason for the inconsistency of P19 is that the two potential answer sets both contain

complementary literals, but that LitP19
is not an answer set due to the NAF literals

involved in the derivations of the complementary literals. Thus, as in Example 7.9, the

inconsistency is due to the interplay of explicit negation and NAF with the difference of the

even-length cycle described in Example 7.6. Due to this difference in the derivations, here

the well-founded model of the translated logic program does not provide any information

about culprits (as it is 〈∅, ∅〉), but the answer sets do.
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Theorem 7.11 states the existence of a culprit set in inconsistency case 3a.

Theorem 7.11. Let P have a well-founded model and let P ′ have n ≥ 1 answer sets.

Then, P has a case 3a culprit set {a1,¬a1, . . . , an,¬an}.

Proof. By Theorem 7.8, P has no answer sets, so all Si ⊆ LitP with Si = AS(PSi)

contain complementary literals ai and ¬ai, butAS(PLitP ) does not contain complementary

literals. Thus, all S′
i with S′

i = AS(P ′Si
′

) contain ai and a′i, so ai and a′i must be derivable

from P ′. Assume that P ′ ⊢MP ai and P ′ ⊢MP a′i. Then by Lemma 7.6 the only answer

set of P is LitP (contradiction). Thus, at least one of ai and a′i is defeasibly derivable

from P ′. Then by Definition 7.3, {a1,¬a1, . . . , an,¬an} is a case 3a culprit set of P.

7.4.4 Inconsistency Case 3b

Example 7.11. Let P20 be the following logic program:

{ s← w;

¬u← not v;

w ← not t;

v ← not t, not y;

t← ¬x;

x← ;

¬x← not ¬u;

y ← not x }

P20 has a well-founded model and P ′
20 has no answer sets, so P20 falls into inconsis-

tency case 3b. The only 3-valued M-stable model of P ′
20 is 〈{x}, {y}〉, where U ′

M =

{s, t, u′, v, w, x′}. The negative undefined dependency graph of P ′
20 w.r.t. 〈{x}, {y}〉 is il-

lustrated in Figure 7.4. We note that u′, v, t, u′ is an odd-length negative dependency cycle

contained in a SCUP w.r.t. 〈{x}, {y}〉, namely the SCUP {u′, v′, t}. Thus, C = {¬u, v, t}

is a culprit set of P20. This example shows that in inconsistency case 3b the inconsistency

is due to NAF on its own; explicit negation plays no role.

u′ v

t

x′

t w

Figure 7.4: The negative undefined dependency graph of P ′
20 w.r.t. 〈{x}, {y}〉 (see Exam-

ple 7.11).

In inconsistency case 3b, the translated logic program P ′ has no answer sets. Since

P ′ is a logic program without explicitly negated atoms, the reason for the non-existence
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of answer sets of P ′ – and thus of P – can be characterised as in Section 7.2 for logic

programs without explicit negation. Theorem 7.12 not only characterises culprit sets in

inconsistency case 3b, but also states how to find a culprit set.

Theorem 7.12. Let P have a well-founded model and let P ′ have no answer sets. Let

〈T ′
M ,F

′
M 〉 be a 3-valued M-stable model of P ′ with U ′

M the set of undefined atoms. Then,

for any a1 ∈ U
′
M there exists a negative dependency path a1, . . . , an, b1, . . . , bm such that

the set C consisting of the original literals of the translated literals b1, . . . , bm is a case 3b

culprit set of P.

Proof. By Proposition 7.1 there exists a SCUP w.r.t. 〈T ′
M ,F

′
M 〉 and by Theorem 7.4 there

exists an odd-length negative dependency cycle C in the SCUP. Furthermore, for all a1 ∈ U

it holds that either 1) a1 is an initial SCC of the negative undefined dependency graph

or 2) a1 is not an initial SCC of the negative undefined dependency graph. In the first

case a1 is part of a SCUP that comprises an odd-length cycle b0, . . . bm. Since the SCUP

is strongly connected, there exists a path a1, . . . , an, b1, . . . bm (an = b0) such that the set

C consisting of the original literals of the translated literals b1, . . . , bm is a case 3b culprit

set of P. In the second case, since a1 is not an initial SCC of the negative undefined

dependency graph, it is part of another SCC of the negative undefined dependency graph,

which consequently is negatively dependent on some initial SCC over a path of atoms

from U . That is, there exists a path a1, . . . , an, b1, . . . bm such that an, b1, . . . , bm is an

odd-length cycle in an initial SCC. Thus, he set C consisting of the original literals of the

translated literals b1, . . . , bm is a case 3b culprit set of P.

Note that in each of the three inconsistency cases discussed in Section 7.3, the trans-

lated logic program P ′ might or might not have answer sets. However, regarding culprit

sets this distinction only makes a difference in inconsistency case 3.

It follows directly from Theorems 7.9, 7.10, 7.11, and 7.12 that the culprit sets we

identified are indeed responsible for the inconsistency, i.e. if no culprit sets exist then the

logic program is consistent.

Corollary 7.13. Let P be a (possibly consistent) logic program. If there exists no culprit

set of inconsistency cases 1, 2, 3a, or 3b of P, then P is consistent.

7.5 Explaining Culprits

As pointed out in the previous sections, even though we identify culprits as sets of literals,

the reason for the inconsistency is mostly the way in which these literals are derivable from

the logic program. In order to make the reason for the inconsistency more understandable

to the user, we now show how explanations of the inconsistency can be constructed in

terms of trees whose nodes are derivations similar to our Attack Trees from Chapter 5.

In contrast to Chapter 5, we do not construct the translated ABA or AA framework,
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but instead define derivations based on the logic program with respect to a 3-valued

interpretation 〈T ,F〉.

We call a derivation true with respect to 〈T ,F〉 if all NAF literals not k used in the

derivation are true with respect to the interpretation in question, i.e. the literals k are

false in the interpretation. We call a derivation false with respect to the interpretation if

there exists a NAF literal not k used in the derivation that is false with respect to the

interpretation, i.e. k is true in the interpretation.

Definition 7.4 (True/False Derivation). Let 〈T ,F〉 be a 3-valued interpretation of P,

l ∈ LitP , and ∆ ⊆ NAFLitP .

1. P ∪∆ ⊢MP l is a true derivation of l w.r.t. 〈T ,F〉 if ∀not k ∈ ∆ : k ∈ F .

2. P ∪∆ ⊢MP l is a false derivation of l w.r.t. 〈T ,F〉 if ∃not k ∈ ∆ : k ∈ T .

Example 7.12. Consider P20 from Example 7.11. P20 ∪ {not t, not y} ⊢MP v is a true

derivation w.r.t. 〈{s}, {t, y}〉, a false derivation w.r.t. 〈{s, t}, {y}〉, and neither a true nor

a false derivation w.r.t. 〈{s}, {y}〉.

An explanation of inconsistency cases 1-3a illustrates why the literals in a culprit set

are true in the respective 3-valued stable model 〈T ,F〉 used to identify this culprit set,

which is due to the literals’ derivations. Thus, an explanation starts with a true derivation

of a literal in the culprit set with respect to 〈T ,F〉. The explanation then indicates why

this derivation is true, i.e why all NAF literals not k are true with respect to 〈T ,F〉. The

reason why not k is true is that some derivation of k is false, i.e. a NAF literal not m in a

derivation of k is false with respect to 〈T ,F〉. This, in turn, is explained in terms of why

m is true with respect to 〈T ,F〉, and so on.

Definition 7.5 (Explanation of a Literal w.r.t. a Model). Let 〈T ,F〉 be a 3-valued stable

model of P and let l ∈ LitP . An explanation of l w.r.t. 〈T ,F〉 is a tree such that:

1. every node holds either a true or a false derivation w.r.t. 〈T ,F〉;

2. the root holds a true derivation of l w.r.t. 〈T ,F〉;

3. for every node N holding a true derivation P ∪∆ ⊢MP k w.r.t. 〈T ,F〉 and for every

not m ∈ ∆: every false derivation of m w.r.t. 〈T ,F〉 is held by a child of N ;

4. for every node N holding a false derivation P∪∆ ⊢MP k w.r.t. 〈T ,F〉: N has exactly

one child holding a true derivation of some m w.r.t. 〈T ,F〉 such that not m ∈ ∆;

5. there are no other nodes except those given in 1-4.

Since culprit sets are determined with respect to different 3-valued stable models in the

different inconsistency cases, explanations are constructed with respect to these different

models, too.
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Definition 7.6 (Inconsistency Explanation - Cases 1 and 2). Let P have no well-founded

model and let 〈T ′
w,F

′
w〉 be the well-founded model of P ′. Let {a,¬a} be a culprit set of P.

A translated inconsistency explanation of P consists of an explanation of a w.r.t. 〈T ′
w,F

′
w〉

and an explanation of a′ w.r.t. 〈T ′
w,F

′
w〉. An inconsistency explanation of P is derived

by replacing every translated literal in the translated inconsistency explanation by its

respective original literal.

Since explanations are trees, they can be easily visualised, as shown for P18 (see Ex-

amples 7.6 and 7.9) in Figure 7.5.

P18 ∪ {not r} ⊢MP q

P18 ∪ {not ¬t} ⊢MP r

P18 ∪ ∅ ⊢MP ¬t

P18 ∪ {not p} ⊢MP ¬q

Figure 7.5: The inconsistency explanation of P18 (see Examples 7.6, 7.9).

Definition 7.7 (Inconsistency Explanation - Case 3a). Let P have a well-founded model

and let S′
1, . . . , S

′
n (n ≥ 1) be the answer sets of P ′. Let {a1,¬a1, . . . , an,¬an} be a

culprit set of P. A translated inconsistency explanation of P consists of an explanation

of all ai and a′i (1 ≤ i ≤ n) w.r.t. 〈S′
i, (HBP ′\S′

i)〉. An inconsistency explanation of P is

derived by replacing every translated literal in the translated inconsistency explanation

by its respective original literal.

Figure 7.6 shows part of the inconsistency explanation of P19 (see Examples 7.7 and

7.10). It also illustrates the difference between the reason of inconsistency in P18 and P19,

namely the negative dependency cycle of s and r in P19, which results in infinite trees.

P19 ∪ {not s} ⊢MP q

P19 ∪ {not r} ⊢MP s

P19 ∪ {not s} ⊢MP r

P19 ∪ {not r} ⊢MP s
...

P19 ∪ {not s} ⊢MP ¬q

P19 ∪ {not r} ⊢MP s

P19 ∪ {not s} ⊢MP r

P19 ∪ {not r} ⊢MP s
...

Figure 7.6: Part of the inconsistency explanation of P19 explaining q and ¬q. The full
inconsistency explanation also comprises similar explanations for p and ¬p.

For inconsistency case 3b, where the literals in a culprit set form an odd-length negative

dependency cycle, the inconsistency explanation is constructed with respect to the set U

rather than T and F , since all literals in a culprit set are contained in U of a 3-valued

M-stable model. The reason that a literal is undefined is that its derivation contains a

NAF literal not k that is undefined. Then k ∈ U , which again is due to its derivation
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containing some undefined NAF literal, and so on. Thus, an explanation of inconsistency

case 3b is a tree of negative derivations with respect to U .

Definition 7.8 (Inconsistency Explanation - Case 3b). Let P have a well-founded model

and let P ′ have no answer sets. Let 〈T ′
M ,F

′
M 〉 be a 3-valued M-stable model of P ′ with

U ′
M the set of undefined atoms. Let C be a culprit set of P and a ∈ C. A translated

inconsistency explanation of P is a tree such that:

1. every node holds a false derivation w.r.t. 〈U ′
M , ∅〉;

2. the root holds a false derivation of a w.r.t. 〈U ′
M , ∅〉;

3. for every node N holding a false derivation P ∪ ∆ ⊢MP b w.r.t. 〈U ′
M , ∅〉: N has

exactly one child node holding a false derivation of some m w.r.t. 〈U ′
M , ∅〉 such that

not m ∈ ∆ and m ∈ C;

4. there are no other nodes except those given in 1-3.

An inconsistency explanation of P is derived by replacing every translated literal in the

translated inconsistency explanation by its respective original literal.

Figure 7.7 illustrates the inconsistency explanation of P20 (see Example 7.11), showing

the odd-length cycle of derivations of literals contained in a SCUP. It also illustrates how

the derivations in an inconsistency explanation can be expanded to derivation trees, which

can also be done for cases 1-3a.

P20 ∪ {not v} ⊢MP ¬u

P20 ∪ {not t, not x} ⊢MP v

P20 ∪ {not ¬u} ⊢MP t

P20 ∪ {not v} ⊢MP ¬u
...

¬u

not v

v

not tnot x

t

¬x

not ¬u

¬u

not v
...

Figure 7.7: The inconsistency explanation of P20 (left) and the version where derivations
are expanded to trees (right).

Note that in all our examples, the culprit set is unique. However, in general a logic pro-

gram may have various culprit sets (from the same inconsistency case) resulting in various

inconsistency explanations. Moreover, there may be various inconsistency explanations

for a given culprit set.
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7.6 Related Work

7.6.1 Logic Programs without Explicit Negation

We first compare our characterisation of SCUPs as parts that are responsible for incon-

sistency to related work on inconsistency of logic programs without explicit negation.

You and Yuan [YY94] show that for some logic programs (without explicit negation),

namely those with a well-founded stratification, it holds that with respect to 3-valued M-

stable models where U 6= ∅ there exists an odd-length negative dependency cycle containing

at least one atom contained in U . Theorem 7.4 extends this result to arbitrary logic

programs and shows that, in fact, all atoms in an odd-length negative dependency cycle

are contained in U .

Fages [Fag94] and Dung [Dun92] prove that a logic program that is order- or call-

consistent (this implies that the logic program does not comprise an odd-length negative

dependency cycle), respectively, has a stable model. It follows that if a logic program has

no stable model, it comprises an odd-length negative dependency cycle. We extend these

results by localising the responsible odd-length cycles of a logic program without stable

model, showing that they are made of atoms that are contained in U of some 3-valued

M-stable model (see Theorem 7.4) and that they are contained in an “initial” SCC of

the negative undefined dependency graph. For instance, the negative dependency graph

of P16 has two odd-length cycles, namely {p} and {v, w, z} (see Example 7.2). However,

only the former is a part of a responsible set of atoms, as shown in Example 7.2.

Caminada and Sakama [CS06] show that a specific class of logic programs, called

extended normal logic programs, always has an answer set, namely those where 1) clauses

without NAF literals are closed under transposition, transitivity, and antecedent cleaning

(body of clause does not contain the classical negation of its head), and 2) clauses with

NAF in the body are “normal”, i.e. the body contains as only NAF literal the NAF literal

of the clause’s head. It follows that if a logic program has no answer set, then it is not

an extended normal logic program. In most cases, this will not be surprising, since most

logic programs are not extended normal logic programs. Therefore, the work of Caminada

and Sakama is in general not helpful when identifying why a logic program has no answer

sets.

Dimopolous and Torres [DT96] introduce the notion of minimal attack graph of a logic

program, which is very similar to our ABA graphs from Section 3.3.2 when constructed for

the translated ABA framework of a logic program. They show that if the minimal attack

graph comprises no odd-length cycles, then the logic program has at least one stable

model. They also prove that if each odd-length cycle in the minimal attack graph has at

least two symmetric edges or has two cords (edges between non-consecutive nodes in the

cycle) whose heads are consecutive nodes of the cycle, then the logic program has at least

one stable model. It follows that if a logic program has no stable model, then there exists

an odd-length cycle with at most one symmetric edge and no two cords whose heads are

consecutive nodes of the cycle. Therefore, Dimopolous and Torres also characterise which
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odd-length cycles are responsible for the non-existence of stable models. However, their

characterisation is purely structural, whereas ours also has a semantic component, since

we use a 3-valued M-stable model for our characterisation. Furthermore, Dimopolous and

Torres do not distinguish between responsible and non-responsible cycles. For instance,

P16 from Example 7.2 yields the minimal attack graph illustrated in Figure 7.8. There

are two odd-length cycles that do satisfy the conditions stated by Dimopolous and Torres.

However, only one of them corresponds to an odd-length cycle contained in a SCUP,

namely the odd-length cycle {not p}, which corresponds to the SCUP {p} of P16.

{not z, not p}

{not w} {not u}

{not p, not q}

{not p} {}

Figure 7.8: The minimal attack graph [DT96] of P16 from Example 7.2.

Costantini [Cos06] characterises the existence of stable models in terms of appropriate

assignments of the truth values T and F to atoms in odd- and even-length negative de-

pendency cycles, and then combining the values into a global model. It follows, that the

non-existence of stable models of a logic program occurs since no suitable combination of

truth value assignments to cycles can be found. However, this characterisation does not

allow to draw a conclusion about which of the cycles are responsible that no stable model

exists.

Syrjänen [Syr06] considers all odd-length negative dependency cycles as erroneous. In

addition, he determines dissatisfied constraints as responsible for inconsistency, an ASP

language construct not considered in our work. Brain et al. [BGP+07b, BGP+07a] and

Gebser et al. [GPST08] study reasons why a given set of literals (e.g. an intended answer

set) is not an answer set by translating the given logic program into a meta-program.

The answer sets of this meta-program contain additional literals, which indicate errors

in the underlying logic program. In contrast, we characterise reasons for inconsistency

independent of an intended answer set.
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7.6.2 Logic Programs with Explicit Negation

Oetsch et al. [OPT10], Polleres et al. [PFSF13], and Frühstück et al. [FPF13] extend the

meta-programming approach for debugging in ASP [BGP+07b, BGP+07a, GPST08] to

logic programs with explicit negation, but do not (explicitly) deal with inconsistency due

to complementary literals. Furthermore, contrary to our work they assume as given an

intended answer set.

Shchekotykhin [Shc15] and Dodaro et al. [DGM+15] extend the meta-programming ap-

proach for debugging to the identification of preferred explanations as to why an intended

set of literals is not an answer set. This is achieved by querying the user about literals

that should definitely be included in an answer set. In contrast, our work characterises

reasons for inconsistency without requiring interaction from the user and without the need

for an intended answer set. Oetsch et al. [OPT11] also present an approach for finding

errors in a logic program through interaction with the user, namely by “stepping through”

the logic program. That is, in each step the user adds a rule to be satisfied, until some

kind of inconsistency is reached. The work is different in spirit from ours, since Oetsch et

al. are not concerned with characterising different reasons for inconsistency. Furthermore,

even though they consider logic programs with explicit negation, they do not (explicitly)

investigate inconsistency due to complementary literals.

Ulbrecht et al. [UTB16] investigate the severity of inconsistency, i.e. they propose

quantitative measures for inconsistency and present desirable properties of such measures.

Contrary to our work, the inconsistency measures are not concerned with identifying the

cause of inconsistency, but with minimal changes that restore consistency.

7.6.3 Alternative Semantic Definitions

We here used the original definition of consistent and inconsistent logic programs under

the answer set semantics as introduced by Gelfond and Lifschitz [GL91].

Some of the later definitions of the answer set semantics, e.g. Answer Set Prolog

[GL02], do not turn answer sets comprising complementary literals into the set of all

literals, thus leading to a slightly different notion of inconsistency. For handling incon-

sistency in Answer Set Prolog, Balduccini and Gelfond [BG03] propose to add special

“consistency-restoring” rules, which allow the specification of preferences and can resolve

inconsistencies.

Another line of research applies ideas from paraconsistent logics to the answer set se-

mantics to yield new semantics, see e.g. [SI95, EFM10, AEF+16]. As in Answer Set Prolog,

complementary literals in these semantics do not cause to infer all literals. This allows

to draw conclusions even when parts of a logic program are inconsistent. Furthermore,

different kinds of inconsistencies can be distinguished.

250



7.7 Summary

We showed that the two ways in which a logic program may be inconsistent – it has

no answer sets or its only answer set is the set of all literals – can be determined using

the well-founded model semantics and further divided into four inconsistency cases: one

where only explicit negation is responsible, one where only NAF is responsible, and two

where the interplay of explicit negation and NAF is responsible for the inconsistency. Each

of these cases is characterised by a different type of culprit set, containing literals that

are responsible for the inconsistency due to the way in which they are derivable. These

culprit sets can be identified using “weaker” semantics than answer sets and can be used

to explain the inconsistency in terms of trees whose nodes are derivations, similar to the

Attack Trees in Chapter 5.

The inconsistency where only NAF is responsible arises due to the same reasons as

inconsistency in logic programs without explicitly negated atoms. We characterised this

inconsistency by transferring the concept of SCUPs to logic programs.

A natural question following the characterisation of inconsistency cases is how to per-

form debugging based on the culprit sets, as well as how to deal with of multiple culprit

sets for a logic program, which will be addressed in the future.
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Chapter 8

Conclusion
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8.1 Thesis Summary

In this thesis, we illustrated how concepts and methods from the field of computational

argumentation can be applied to solve problems in Answer Set Programming (ASP). We

focussed on two particular Argumentation formalisms, namely Assumption-Based Argu-

mentation (ABA) and Abstract Argumentation (AA) frameworks.

For our investigations we both used existing concepts from ABA and AA frameworks,

such as the notion of arguments and attacks, and developed new methods for these frame-

works. In particular, we

❼ reformulated the semantics of ABA frameworks in terms of assumption labellings,

and

❼ characterised sets of arguments responsible for the non-existence of stable labellings

in AA frameworks.

Concerning problems in ASP, we investigated questions arising with respect to the

answer set semantics:

1. how to explain why a literal is or is not contained in an answer set, and

2. how to characterise inconsistency and explain why it arises.

We provided answers to both questions by making use of an existing translation of logic

programs into ABA and AA frameworks, and new and existing correspondence results

between the semantics of logic programs and the translated ABA and AA frameworks.

As an answer to the first question, we introduced argumentative justifications of literals

with respect to an answer set, based on arguments and attacks between them in the

translated AA framework. We defined Attack Trees as explanations in terms of arguments,

which may be more suitable for non-ASP experts. Furthermore, we introduced ABAS

Justifications as explanations in terms of literals, which may be more suitable for ASP

experts.

As an answer to the second question, we applied results from our investigation of the

non-existence of stable models in AA frameworks to logic programs, yielding a charac-

terisation of inconsistency in a particular class of logic programs (namely those without

explicit negation). We then classified inconsistency cases in arbitrary logic programs, and

illustrated how to construct argumentative explanations of parts of the logic program

responsible for the inconsistency, which are similar to our Attack Trees.

Overall, we showed how techniques from one areas of research can aid finding solutions

to the problems in another area of research. More precisely, we illustrated how techniques

from computational argumentation can be applied to provide solutions to the problems of

non-understandable answer sets and inconsistency of logic programs.
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8.2 Future Work

We only considered the connection between flat ABA frameworks, their corresponding AA

frameworks, and logic programs that may comprise both negation-as-failure (NAF) and

explicit negation. Especially with regards to logic programs, there are many language ex-

tensions (see e.g. [BET11, Fab13]). An interesting direction of future research is therefore

whether argumentation in general, and ABA and AA frameworks in particular, can also be

used to explain answer sets of logic programs that make use of such language extensions.

We will discuss this strand of future work in more detail in Section 8.2.1. Furthermore,

ABA frameworks have been extended in various ways, for example to incorporate prefer-

ences and to construct arguments as graphs rather than trees. We discuss future directions

of research concerning these extensions in Section 8.2.2.

In addition to the above lines of future work, there are two main topics left for future

investigations. Firstly, we here only characterised inconsistency in logic programs under

the answer set semantics. How to restore consistency based on our characterisations is

left for future work, as discussed in more detail in Section 8.2.3. Secondly, we here mainly

focussed on theoretical results and left the development of algorithms for future work, as

discussed in Section 8.2.4.

8.2.1 Language Extensions of Logic Programs

A frequently used extension of logic programs is to allow the head of a clause to be a

disjunction of literals. Since disjunctive heads are not defined for ABA rules, the direct

translation of clauses into ABA rules as given in Section 4.2, is not applicable for such logic

programs. Bochman [Boc03] introduces an extension of AA frameworks called Collective

Argumentation, which is able to model the way disjunction is handled in logic programs.

Future work will show whether a similar extension can be used for ABA frameworks to

model disjunction in the head of rules. Furthermore, You et al. [YYG00] give an abductive

interpretation of logic programs with disjunction. Since abductive interpretations of logic

programs are instances of ABA [BDKT97], the abductive interpretation of disjunction in

logic programs may also be an instance of ABA.

Another language extension of logic programs concerning the head of clauses are con-

straints. Constraints are clauses whose head is empty. The head of a constraint can

equivalently be thought of as being the truth value F. This means, if the body of a con-

straint is satisfied (i.e. all literals have truth value T), then F is implied, and therefore the

clause is not satisfied. Consequently, a constraint expresses conditions that should never

be satisfied together. How to translate a constraint into an ABA rule is an open question

since ABA rules cannot have an empty head. Due to the previously mentioned relationship

between ABA and the abductive interpretation of logic programs, a useful starting point

may be the work of Toni [Ton95], where an argumentation semantics is given to abductive

logic programs with constraints.

Constraints are often combined with another language extension of logic programs,
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namely aggregates. Aggregates are special constructs able to express, for example, that a

maximum or minimum number of given literals need to be satisfied. Different approaches

have been introduced to translate logic program with aggregates into a logic program

without aggregates which preserve the semantics [PDB03, SPE06]. Future work will show

whether such translations can be used to model logic programs with aggregates in ABA

and use our ABAS Justifications to provide explanations.

8.2.2 Extensions of ABA

Another interesting line of research is to consider extensions of ABA in the light of the

developments presented in this thesis.

One such extension is the incorporation preferences into an ABA framework. Čyras

and Toni [ČT16b] introduce an extension of ABA called ABA+, where some attacks in

ABA are reversed to incorporate preferences, and Wakaki [Wak14] presents p ABA, where

assumption extensions are chosen among all (traditional) assumption extensions to account

for the given preferences. One line of future research regarding ABA with preferences is

to investigate if our new notions of assumption labellings can be extended to express

the semantics of ABA+ and p ABA frameworks. Concerning logic programming, various

semantics have been proposed to handle preferences defined over the clauses or literals in a

logic program, e.g. [SI96, ZF97, BE99, GTZ07]. Another interesting line of future research

is thus the comparison of preference-handling in ABA frameworks and logic programs,

to see if, for example, our justification methods can be adapted to logic programs with

preferences by applying methods from ABA+ or p ABA. This comparison will also involve

extensions of AA frameworks that take preferences into account, e.g. [BC03, KvdT08,

Mod09, BCGG11].

Another recent development of ABA frameworks was presented by Craven and Toni

[CT16a], who introduce a new extension semantics for ABA, based on the interpretation

of arguments as graphs rather than trees. Future work will show if it is possible to find a

labelling semantics that corresponds to the new extension semantics.

As previously mentioned, we here focused on flat ABA frameworks (except for Sec-

tion 3.5). This is because the head of a logic program cannot be a NAF literal, and con-

sequently no rule in the translated ABA framework has an assumption as its head. There

is however some work on logic programs that allow NAF literals in the head of clauses,

e.g. [IS98, SBL14, Ji15]. Whether the semantics of such logic programs correspond to the

semantics of non-flat ABA frameworks is another line of future research.

8.2.3 Inconsistency and Debugging

In this thesis, we focused on characterising and explaining inconsistency in logic programs.

How to use this knowledge for debugging an inconsistent logic program so as to obtain

meaningful answer sets is left for future work. It will be particularly interesting to see

if our results on iterative SCUP revisions for obtaining a stable argument labelling from
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Chapter 6 can be transferred to logic programs in order to obtain an answer set. For AA

frameworks, we used results about the decomposability of complete argument labellings

to prove that revising SCUPs allows to turn a preferred argument labelling into a stable

argument labelling. Concerning logic programs, the decomposability of answer sets has

also been investigated by various authors, e.g. [LT94, ELS97, FLLP09], which may be a

useful starting point for proving that changes to SCUPs in logic programs allow to turn a

3-valued M-stable model into an answer set.

Furthermore, characterising the non-existence of stable assumption labellings in ABA

is left for future work. Due to the semantic correspondence between flat ABA frameworks

and AA frameworks and logic programs, we expect the characterisation for flat ABA

frameworks to be straightforward. Whether a concept similar to SCUPs can also be

identified for non-flat ABA frameworks will be an interesting line of research.

8.2.4 Computation, Implementation, and Applications

Our argumentative justifications of literals (not) contained in an answer set constitute the

only part of this thesis that we implemented. However, the LABAS Justifier does cur-

rently not support logic programs containing variables, which is a limitation since many

applications of ASP involve logic programs with variables. We thus intend to extend the

computation of Attack Trees and LABAS Justifications in the LABAS Justifier to logic

programs with variables and test its usefulness on applications. For example, Athakravi

et al. [ASL+15] extract logic programs from past legal cases and apply the answer set

semantics to determine how to proceed when faced with a new legal case. They men-

tion explanations of their solutions (i.e. of answer sets) as future work, so our LABAS

Justifications may be useful in combination with their approach. Furthermore, we plan

to integrate the LABAS Justifier into an IDE (Integrated Development Environment) for

ASP such as ASPIDE [FRR11] or SeaLion [BOP+13]. This will promote the usage of our

justification methods in real-world applications and may lead to the increased use of ASP

in application areas where explainability of solutions is crucial, such as medical decision

support.

Argument labellings have been used in various algorithms for the computation of the

semantics of AA frameworks (see [CDG+15] for an overview). It will thus be interesting to

investigate algorithms for the the computation of semantics of ABA frameworks using the

assumption labellings presented in this thesis. Furthermore, argument labellings have been

used in a software for teaching the semantics of AA frameworks to novices [DS14, SD16].

Future work will show if assumption labellings can be used in a similar way to teach the

semantics of ABA frameworks.

Concerning the non-existence of stable argument labellings of AA frameworks, future

work involves both complexity analysis and the development of an implementation for

determining sets of arguments responsible for the non-existence and for turning a preferred

argument labelling into a stable argument labelling.
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Various implementations have been developed for debugging inconsistent logic pro-

grams, e.g. [BOP+13, DMA15, DGM+15, Shc15, GDM+16]. In future work, we plan to

evaluate these implementations to find the most suitable one for integrating our charac-

terisations and explanations of inconsistency scenarios.
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mantics for Disjunctive Deductive Databases. Annals of Mathematics and

Artificial Intelligence, 19(1-2):59–96, 1997.
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[SZ91] Domenico Saccà and Carlo Zaniolo. Partial Models and Three-Valued

Models in Logic Programs with Negation. In Proceddings of the 1st Inter-

national Workshop on Logic Programming and Non-monotonic Reasoning

(LPNMR’91), pages 87–101, 1991.

[TKI08] Matthias Thimm and Gabriele Kern-Isberner. On the Relationship of

Defeasible Argumentation and Answer Set Programming. In Proceedings

of the 2nd International Conference on Computational Models of Argument

(COMMA’08), pages 393–404, 2008.

[TKI14] Matthias Thimm and Gabriele Kern-Isberner. On Controversiality of Ar-

guments and Stratified Labelings. In Proceedings of the 5th International

Conference on Computational Models of Argument (COMMA’14), pages

413–420, 2014.

[TML13] Giorgio Terracina, Alessandra Martello, and Nicola Leone. Logic-Based

Techniques for Data Cleaning: An Application to the Italian National

Healthcare System. In Proceedings of the 12th International Conference

on Logic Programming and Nonmonotonic Reasoning (LPNMR’13), pages

524–529, 2013.

277



[TMP+17] Sjoerd T. Timmer, John-Jules Ch. Meyer, Henry Prakken, Silja Renooij,

and Bart Verheij. A two-phase Method for Extracting Explanatory Ar-

guments from Bayesian Networks. International Journal of Approximate

Reasoning, 80:475–494, 2017.

[Ton95] Francesca Toni. A Semantics for the Kakas-Mancarella Procedure for Ab-

ductive Logic Programming. In Proceedings of the 1995 Joint Conference

on Declarative Programming, pages 231–244, 1995.

[Ton12] Francesca Toni. Reasoning on the Web with Assumption-Based Argu-

mentation. In Proceedings of the 8th International Summer School on

Reasoning Web, pages 370–386, 2012.

[Ton13] Francesca Toni. A Generalised Framework for Dispute Derivations in

Assumption-Based Argumentation. Artificial Intelligence, 195:1–43, 2013.

[Ton14] Francesca Toni. A Tutorial on Assumption-Based Argumentation. Argu-

ment & Computation, 5(1):89–117, 2014.

[UTB16] Markus Ulbricht, Matthias Thimm, and Gerhard Brewka. Measuring In-

consistency in Answer Set Programs. In Proceedings of the 15th European

Conference on Logics in Artificial Intelligence (JELIA’16), pages 577—-

583, 2016.

[Van93] Allen Van Gelder. The Alternating Fixpoint of Logic Programs with Nega-

tion. Journal of Computer and System Sciences, 47(1):185–221, 1993.

[VPRV16] Charlotte S. Vlek, Henry Prakken, Silja Renooij, and Bart Verheij. A

Method for Explaining Bayesian Networks for Legal Evidence with Sce-

narios. Artificial Intelligence and Law, 24(3):285–324, 2016.

[VRS88] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. Unfounded Sets

and Well-Founded Semantics for General Logic Programs. In Proceedings

of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (PODS’88), pages 221–230, 1988.

[VRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The Well-

Founded Semantics for General Logic Programs. Journal of the ACM,

38(3):620–650, 1991.

[Wak14] Toshiko Wakaki. Assumption-Based Argumentation Equipped with Pref-

erences. In Proceedings of the17th International Conference on Principles

and Practice of Multi-Agent Systems (PRIMA’14), pages 116–132, 2014.

[WCG09] Yining Wu, Martin Caminada, and Dov M. Gabbay. Complete Exten-

sions in Argumentation Coincide with 3-Valued Stable Models in Logic

Programming. Studia Logica, 93(2-3):383–403, 2009.

278



[YMR16] Anthony P. Young, Sanjay Modgil, and Odinaldo Rodrigues. Prioritised

Default Logic as Rational Argumentation. In Proceedings of the 15th Inter-

national Conference on Autonomous Agents & Multiagent Systems (AA-

MAS’16), pages 626–634, 2016.

[YY90] Jia-Huai You and Li Yan Yuan. Three-Valued Formalization of Logic

Programming: Is It Needed? In Proceedings of the 9th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems (PODS’90), pages 172–182, 1990.

[YY94] Jia-Huai You and Li Yan Yuan. A Three-Valued Semantics for Deductive

Databases and Logic Programs. Journal of Computer and System Sciences,

49(2):334–361, 1994.

[YY95] Jia-Huai You and Li Yan Yuan. On the Equivalence of Semantics for

Normal Logic Programs. The Journal of Logic Programming, 22(3):211–

222, 1995.

[YYG00] Jia-Huai You, Li Yan Yuan, and Randy Goebel. An Abductive Approach

to Disjunctive Logic Programming. Journal of Logic Programming, 44(1-

3):101–127, 2000.

[ZF97] Yan Zhang and Norman Y. Foo. Answer Sets for Prioritized Logic Pro-

grams. In Proceedings of the 1997 International Symposium on Logic Pro-

gramming (ILPS’97), pages 69–83, 1997.

[ZFTL14] Qiaoting Zhong, Xiuyi Fan, Francesca Toni, and Xudong Luo. Explain-

ing Best Decisions via Argumentation. In Proceedings of the European

Conference on Social Intelligence (ECSI’14), pages 224–237, 2014.

279





Appendix A

Auxiliary Results

This appendix comprises auxiliary results used in the proofs of Chapter 6.

Lemma A.1. Let LabArg be a labelling of AA, Args ⊆ Ar and A ∈ Ar \Args. Let AA⊛

be a revision of AA w.r.t. Args by LabArg and LabArg⊛ a revision labelling of AA⊛.

Then A is legally labelled by LabArg in AA if and only if A is legally labelled by LabArg⊛

in AA⊛.

Proof. From left to right: Let A be legally labelled by LabArg. By Definition 6.1, (B,A) ∈

Att if and only if (B,A) ∈ Att⊛. Furthermore, LabArg⊛(A) = LabArg(A) and for all

B ∈ Ar, LabArg⊛(B) = LabArg(B). Since it only depends on the labels of attackers of A

whether or not A is legally labelled, it follows that A is legally labelled by LabArg⊛. The

proof of the opposite direction is analogous.

Lemma A.2. Let LabArg and LabArg′ be two labellings of AA such that LabArg ⊑

LabArg′. Then, ∀A ∈ in(LabArg) ∪ out(LabArg) it holds that if A is legally labelled by

LabArg, then A is legally labelled by LabArg′.

Proof. Let A ∈ in(LabArg). Then for all attackers B of A, B ∈ out(LabArg). By

definition of LabArg′, A ∈ in(LabArg′) and for all attackers B of A, B ∈ out(LabArg′).

Thus, A is legally labelled in by LabArg′. Let A ∈ out(LabArg). Then there exists an

attacker B of A such that B ∈ in(LabArg). By definition of LabArg′, A ∈ out(LabArg′)

and B ∈ in(LabArg′). Thus, A is legally labelled out by LabArg′.

Lemma A.3. Let Args be an enforcement set w.r.t. LabArgpref and LabArg an enforce-

ment labelling w.r.t. Args. Then ∀A ∈ Ar \Args: A is legally labelled by LabArg.

Proof. Let A ∈ Ar \Args. By Definition 6.4, if A ∈ undec(LabArgpref ), then A is legally

labelled by LabArg. If A ∈ in(LabArgpref ) ∪ out(LabArgpref ), then by Lemma A.2 A is

legally labelled by LabArg, since LabArgpref ⊏ LabArg.

Definition A.1 (Compatible Labelling). Let Args1, Args2 ⊆ Ar such that Args1 ∩

Args2 = ∅ and Args1∪Args2 = Ar. Let LabArg1 be a labelling of AA↓Args1
and LabArg2
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a labelling of AA↓Args2
. LabArg1 is compatible with LabArg2 if and only if LabArg1 is a

complete labelling w.r.t. (AA↓Args1
, Args2, LabArg2, Att ∩ (Args2 ×Args1)).

Lemma A.4. Let Args1, Args2 ⊆ Ar such that Args1 ∩Args2 = ∅ and Args1 ∪Args2 =

Ar. Let LabArg1 be a labelling of AA↓Args1
and LabArg2 a labelling of AA↓Args2

.

LabArg = LabArg1 ∪ LabArg2 is a complete labelling of AA if and only if LabArg1

is compatible with LabArg2 and LabArg2 is compatible with LabArg1.

Proof. Follows from Definition A.1 and Theorem 3 in [BBC+14].

Lemma A.5. Let Args1, Args2 ⊆ Ar such that Args1∩Args2 = ∅, Args1∪Args2 = Ar,

and Args2 does not attack Args1. Let LabArg1 be a complete labelling of AA↓Args1
and

LabArg2 a labelling of AA↓Args2
. LabArg = LabArg1 ∪ LabArg2 is a complete labelling

of AA if and only if LabArg2 is compatible with LabArg1.

Proof. From left to right: Let LabArg = LabArg1 ∪ LabArg2 be a complete labelling of

AA. Then by Lemma A.4, LabArg2 is compatible with LabArg1.

From right to left: Let LabArg2 be compatible with LabArg1. Since LabArg1 is a complete

labelling of AA↓Args1
, by Proposition 1 in [BBC+14] LabArg1 is a complete labelling

w.r.t. (AA↓Args1
, ∅, ∅, ∅). Since Args2 does not attack Args1, it follows that LabArg1 is

a complete labelling w.r.t. (AA↓Args1
, Args2, LabArg2, ∅), so LabArg1 is compatible with

LabArg2. Thus by Lemma A.4, LabArg1 ∪ LabArg2 is a complete labelling of AA.

We can generalise Lemma A.5 to SCCs.

Corollary A.6. Let Args1, . . . , Argsn (n ≥ 1) be a sequence of all SCCs of AA and

for all i 6= j, Argsi 6= Argsj, and if Argsi is attacked by Argsk (i 6= k), then k < i.

Let LabArgi be a labelling of AA↓Argsi
. Then LabArg = LabArg1 ∪ . . . ∪ LabArgn is

a complete labelling of AA if and only if LabArg1 is a complete labelling of Args1 and

LabArgi is compatible with LabArg1 ∪ . . . ∪ LabArgi−1 for all i ∈ {2 . . . n}.

Lemma A.7. Let Args1, Args2 ⊆ Ar such that Args1 ∩Args2 = ∅ and Args1 ∪Args2 =

Ar. Let LabArg1 be a labelling of AA↓Args1
and LabArg2 a labelling of AA↓Args2

. If

∀A ∈ Args1 it holds that A is legally labelled by LabArg1∪LabArg2 in AA, then LabArg1

is compatible with LabArg2.

Proof. Let LabArg = LabArg1 ∪ LabArg2 and let A ∈ Args1.

❼ If A ∈ in(LabArg1), then clearly A ∈ in(LabArg). Thus, ∀B attacking A, B ∈

out(LabArg). It follows that if B ∈ Args1, B ∈ out(LabArg1), and if B ∈ Args2,

then B ∈ out(LabArg2).

❼ If A ∈ out(LabArg1), then clearly A ∈ out(LabArg). Thus, ∃B attacking A such

that B ∈ in(LabArg). It follows that B ∈ Args1 and B ∈ in(LabArg1), or B ∈

Args2 and B ∈ in(LabArg2).
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❼ If A ∈ undec(LabArg1), then clearly A ∈ undec(LabArg). Thus, ∀B attacking A,

B /∈ in(LabArg), and ∃C attacking A such that C ∈ undec(LabArg). It follows

that if B ∈ Args1, B /∈ in(LabArg1), and if B ∈ Args2, then B /∈ in(LabArg2).

Furthermore, it follows that C ∈ Args1 and C ∈ undec(LabArg1) or C ∈ Args2 and

C ∈ undec(LabArg2).

Thus, all A ∈ Args1 satisfy the conditions in Definition A.1, so Args1 is compatible with

Args2.

Lemma A.8. Let ArgsIO = in(LabArgpref ) ∪ out(LabArgpref ) and ArgsU =

undec(LabArgpref ). Then LabArgpref ↓ArgsU is the only complete labelling w.r.t.

(AA↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO ×ArgsU)).

Proof. Since LabArgpref is a complete labelling of AA, it holds by Lemma A.4 that

LabArgpref ↓ArgsIO is compatible with LabArgpref ↓ArgsU and vice versa. By Definition A.1,

it follows that LabArgpref ↓ArgsU is a complete labelling w.r.t.

(AA↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO ×ArgsU)).

To prove that LabArgpref ↓ArgsU is the only such labelling, assume there exists a labelling

LabArgU 6= LabArgpref ↓ArgsU of AA↓ArgsU such that LabArgU is a complete labelling

w.r.t.

(AA↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO ×ArgsU)).

Thus by Definition A.1, LabArgU is compatible with LabArgpref ↓ArgsIO.

Clearly, LabArgpref ⊏ LabArgpref ↓ArgsIO ∪ LabArgU , so by Lemma A.2 all A ∈ ArgsIO

are legally labelled by LabArgpref ↓ArgsIO ∪ LabArgU .

Then by Lemma A.7, LabArgpref ↓ArgsIO is compatible with LabArgU . It follows by

Lemma A.4, that LabArgpref ↓ArgsIO ∪ LabArgU is a complete labelling of AA. Contra-

diction, since LabArgpref ⊏ LabArgpref ↓ArgsIO ∪ LabArgU and LabArgpref is a preferred

labelling. Thus, LabArgpref ↓ArgsU is the only complete labelling w.r.t.

(AA↓ArgsU , ArgsIO,LabArgpref ↓ArgsIO, Att ∩ (ArgsIO ×ArgsU)).

Lemma A.9. Let Args1, Args2 ⊆ Ar such that Args1 ∩Args2 = ∅ and Args1 ∪Args2 =

Ar. Let LabArg2 be a labelling of AA↓Args2
. Then there exists a labelling LabArg1 of

AA↓Args1
such that LabArg1 is compatible with LabArg2.

Proof. Since Definition A.1 mirrors the definition of canonical local function of the com-

plete semantics (Definition 24 in [BBC+14]), a labelling LabArg1 of Args1 is compatible

with a labelling LabArg2 of Args2 if and only if LabArg1 is an element of the canoni-

cal local function of the complete semantics of the argumentation framework with input

(AA↓Args1
, Args2, LabArg2, Att ∩ (Args2 × Args1)). By Definition 13 in [BBC+14], the

canonical local function of the complete semantics of (AA↓Args1
, Args2, LabArg2, Att ∩

(Args2 ×Args1)) can be computed via the complete labellings of the standard argumen-

tation framework of (AA↓Args1
, Args2, LabArg2, Att∩ (Args2×Args1)). Since a standard

argumentation framework always exists, it has a complete labelling, so the canonical local
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function of the complete semantics for (AA↓Args1
, Args2, LabArg2, Att∩ (Args2×Args1))

is non-empty. Thus LabArg1 exists.

Lemma A.10. Let ArgsIO = in(LabArgpref ) ∪ out(LabArgpref ) and ArgsU ⊆

undec(LabArgpref ). Let LabArgIO = LabArgpref ↓ArgsIO and let LabArgU be some la-

belling of AA↓ArgsU . Then LabArgIO is compatible with LabArgU .

Proof. We note that ∀B ∈ ArgsU attacking some A ∈ ArgsIO it holds that A ∈

out(LabArgIO) since arguments labelled in are not attacked by arguments labelled undec

in LabArgpref . Let A ∈ ArgsIO.

❼ If A ∈ in(LabArgIO), then for all B ∈ ArgsIO attacking A it holds that B ∈

out(LabArgIO) since LabArgpref is a complete labelling. Furthermore, no B ∈

ArgsU attacks A.

❼ If A ∈ out(LabArgIO), then there exists B ∈ ArgsIO attacking A such that B ∈

in(LabArgIO) since LabArgpref is a complete labelling.

Thus, LabArgIO is a complete labelling w.r.t. (AA↓ArgsIO, ArgsU, LabArgU,Att ∩

(ArgsU ×ArgsIO)), and therefore LabArgIO is compatible with LabArgU .
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