7 research outputs found

    On the complexity of computing Gr\"obner bases for weighted homogeneous systems

    Get PDF
    Solving polynomial systems arising from applications is frequently made easier by the structure of the systems. Weighted homogeneity (or quasi-homogeneity) is one example of such a structure: given a system of weights W=(w_1,,w_n)W=(w\_{1},\dots,w\_{n}), WW-homogeneous polynomials are polynomials which are homogeneous w.r.t the weighted degree deg_W(X_1α_1,,X_nα_n)=w_iα_i\deg\_{W}(X\_{1}^{\alpha\_{1}},\dots,X\_{n}^{\alpha\_{n}}) = \sum w\_{i}\alpha\_{i}. Gr\"obner bases for weighted homogeneous systems can be computed by adapting existing algorithms for homogeneous systems to the weighted homogeneous case. We show that in this case, the complexity estimate for Algorithm~\F5 \left(\binom{n+\dmax-1}{\dmax}^{\omega}\right) can be divided by a factor (w_i)ω\left(\prod w\_{i} \right)^{\omega}. For zero-dimensional systems, the complexity of Algorithm~\FGLM nDωnD^{\omega} (where DD is the number of solutions of the system) can be divided by the same factor (w_i)ω\left(\prod w\_{i} \right)^{\omega}. Under genericity assumptions, for zero-dimensional weighted homogeneous systems of WW-degree (d_1,,d_n)(d\_{1},\dots,d\_{n}), these complexity estimates are polynomial in the weighted B\'ezout bound _i=1nd_i/_i=1nw_i\prod\_{i=1}^{n}d\_{i} / \prod\_{i=1}^{n}w\_{i}. Furthermore, the maximum degree reached in a run of Algorithm \F5 is bounded by the weighted Macaulay bound (d_iw_i)+w_n\sum (d\_{i}-w\_{i}) + w\_{n}, and this bound is sharp if we can order the weights so that w_n=1w\_{n}=1. For overdetermined semi-regular systems, estimates from the homogeneous case can be adapted to the weighted case. We provide some experimental results based on systems arising from a cryptography problem and from polynomial inversion problems. They show that taking advantage of the weighted homogeneous structure yields substantial speed-ups, and allows us to solve systems which were otherwise out of reach

    A survey on signature-based Gr\"obner basis computations

    Full text link
    This paper is a survey on the area of signature-based Gr\"obner basis algorithms that was initiated by Faug\`ere's F5 algorithm in 2002. We explain the general ideas behind the usage of signatures. We show how to classify the various known variants by 3 different orderings. For this we give translations between different notations and show that besides notations many approaches are just the same. Moreover, we give a general description of how the idea of signatures is quite natural when performing the reduction process using linear algebra. This survey shall help to outline this field of active research.Comment: 53 pages, 8 figures, 11 table

    On the hardness of the hidden subspaces problem with and without noise. Cryptanalysis of Aaronson-Christiano’s quantum money scheme

    Get PDF
    [ES] El boom de internet ha marcado el comienzo de la era digital y ésta ha traído consigo un desarrollo espectacular de las tecnologías de la información y de las comunicaciones, entre las que la criptografía es la reina. La criptografía de clave pública actual está basada principalmente en dos problemas que la comunidad criptográfica asume como difíciles: la factorización y el logaritmo discreto. Sin embargo, si se llegase a construir un computador cuántico lo suficientemente potente, esta dificultad no sería tal. Así pues, la computación cuántica pondría en un grave aprieto a la criptografía moderna y, puesto que la trayectoria reciente del campo sugiere que ésta podría convertirse en una realidad en un futuro no muy lejano, la comunidad criptográfica ha comenzado a explorar otras opciones para estar lista en caso de que se logre construir un computador cuántico eficiente. Esto ha dado un im- pulso a lo que se conoce como criptografía post-cuántica, aquella cuya dificultad no se vería afectada por este nuevo paradigma de computación y que está basada en los llamados problemas resistentes a la computación cuántica. La criptografía post-cuántica ha suscitado mucho interés recientemente y actualmente está en proceso de estandarización, por lo que en el momento de iniciar esta tesis resultaba relevante estudiar problemas supuestamente resistentes al computador cuántico. La parte central de esta tesis es el análisis de la dificultad del problema de los subespacios ocultos (HSP por sus siglas en inglés) y del problema de los subespacios ocultos con ruido (NHSP), dos problemas resistentes al computador cuántico según sus autores. Además de la relevancia que su supuesta resistencia a la computación cuántica les confiere, estos dos problemas son también importantes porque en su dificultad se sustenta la seguridad de las dos versiones del primer esquema de dinero cuántico de clave pública que cuenta con una prueba de seguridad. Este primer esquema es el de Aaronson-Christiano, que implementa dinero cuántico — un tipo de dinero que explota las leyes de la mecánica cuántica para crear dinero infalsificable — que cualquiera puede verificar. Los resultados obtenidos acerca de la dificultad del HSP y del NHSP tienen un impacto directo sobre la seguridad del esquema de Aaronson-Christiano, lo cual nos motivó a centrar esta tesis en estos dos problemas. El Capítulo 3 contiene nuestros resultados acerca del problema de los subespacios ocultos y está fundamentalmente basado en nuestro trabajo [Conde Pena et al.,2015]. Los autores del HSP lo definieron originalmente sobre el cuerpo binario, pero nosotros extendemos la definición a cualquier otro cuerpo finito de orden primo, siempre considerando que la instanciación es la que los autores proponen. Después de modelar el HSP con un sistema de ecuaciones con buenas propiedades, usamos técnicas de criptoanálisis algebraico para explorar el sistema en profundidad. Para el HSP sobre cualquier cuerpo que no sea el binario diseñamos un algoritmo que resuelve de manera eficiente instancias que satisfacen una cierta condición. Utilizando técnicas distintas, construimos un algoritmo heurístico, sustentado por argumentos teóricos, que resuelve eficientemente instancias del HSP sobre el cuerpo binario. Ambos algo-ritmos comprometen la dificultad del HSP siempre que las instancias del problema sean escogidas como Aaronson-Christiano proponen. Como consecuencia, nuestros algoritmos vulneran la seguridad de la versión del esquema sin ruido. El capítulo 4 contiene nuestros resultados acerca del problema de los subespacios ocultos con ruido y está fundamentalmente basado en nuestro trabajo [Conde Pena et al., 2018]. Al igual que con el HSP, extendemos la definición del NHSP a cualquier otro cuerpo de orden primo y consideramos instancias generadas como especifi- can Aaronson-Christiano. Mostramos que el NHSP se puede reducir al HSP sobre cualquier cuerpo primo que no sea el binario para ciertas instancias, mientras que el NHSP sobre el cuerpo binario se puede resolver con una probabilidad mayor de la asumida por los autores en la conjetura sobre la que la seguridad de su esquema con ruido se sustenta. Aunque nuestros resultados se obtienen desde un punto de vista puramente no cuántico, durante el desarrollo de esta tesis otro autor demostró que existe una reducción cuántica del NHSP al HSP también en el caso binario. Por tanto, la dificultad del NHSP y la seguridad del esquema de Aaronson-Christiano con ruido se han visto comprometidas por nuestros descubrimientos acerca del HSP

    A survey on signature-based algorithms for computing Gröbner basis computations

    Get PDF
    International audienceThis paper is a survey on the area of signature-based Gröbner basis algorithms that was initiated by Faugère's F5 algorithm in 2002. We explain the general ideas behind the usage of signatures. We show how to classify the various known variants by 3 different orderings. For this we give translations between different notations and show that besides notations many approaches are just the same. Moreover, we give a general description of how the idea of signatures is quite natural when performing the reduction process using linear algebra. This survey shall help to outline this field of active research

    Homotopy algorithms for solving structured determinantal systems

    Get PDF
    Multivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in real algebraic geometry. The goal of this thesis is to provide efficient algorithms to solve such structured systems. In order to solve the first kind of systems, we design efficient algorithms by using the symbolic homotopy continuation techniques. While the homotopy methods, in both numeric and symbolic, are well-understood and widely used in polynomial system solving for square systems, the use of these methods to solve over-detemined systems is not so clear. Meanwhile, determinantal systems are over-determined with more equations than unknowns. We provide probabilistic homotopy algorithms which take advantage of the determinantal structure to compute isolated points in the zero-sets of determinantal systems. The runtimes of our algorithms are polynomial in the sum of the multiplicities of isolated points and the degree of the homotopy curve. We also give the bounds on the number of isolated points that we have to compute in three contexts: all entries of the input are in classical polynomial rings, all these polynomials are sparse, and they are weighted polynomials. In the second half of the thesis, we deal with the problem of finding critical points of a symmetric polynomial map on an invariant algebraic set. We exploit the invariance properties of the input to split the solution space according to the orbits of the symmetric group. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in the number of points that we have to compute. Our results are illustrated by applications in studying real algebraic sets defined by invariant polynomial systems by the means of the critical point method

    Précision p-adique

    Get PDF
    P-Adic numbers are a field in arithmetic analoguous to the real numbers. The advent during the last few decades of arithmetic geometry has yielded many algorithms using those numbers. Such numbers can only by handled with finite precision. We design a method, that we call differential precision, to study the behaviour of the precision in a p-adic context. It reduces the study to a first-order problem. We also study the question of which Gröbner bases can be computed over a p-adic number field.Les nombres p-adiques sont un analogue des nombres réels plus proche de l’arithmétique. L’avènement ces dernières décennies de la géométrie arithmétique a engendré la création de nombreux algorithmes utilisant ces nombres. Ces derniers ne peuvent être de manière générale manipulés qu’à précision finie. Nous proposons une méthode, dite de précision différentielle, pour étudier ces problèmes de précision. Elle permet de se ramener à un problème au premier ordre. Nous nous intéressons aussi à la question de savoir quelles bases de Gröbner peuvent être calculées sur les p-adiques

    On the Complexity of Computing Gröbner Bases for Quasi-Homogeneous Systems

    Get PDF
    Let K be a field and ( f1,..., fn) ⊂ K[X1,...,Xn] be a sequence of quasi-homogeneous polynomials of respective weighted degrees (d1,...,dn) w.r.t a system of weights (w1,...,wn). Such systems are likely to arise from a lot of applications, including physics or cryptography. We design strategies for computing Gröbner bases for quasihomogeneous systems by adapting existing algorithms for homogeneous systems to the quasi-homogeneous case. Overall, under genericity assumptions, we show that for a generic zero-dimensional quasi-homogeneous system, the complexity of the full strategy is polynomial in the weighted Bézout bound ∏ n i=1 di/ ∏ n i=1 wi. We provide some experimental results based on generic systems as well as systems arising from a cryptography problem. They show that taking advantage of the quasi-homogeneous structure of the systems allow us to solve systems that were out of reach otherwise
    corecore