215 research outputs found

    Cellular spanning trees and Laplacians of cubical complexes

    Get PDF
    We prove a Matrix-Tree Theorem enumerating the spanning trees of a cell complex in terms of the eigenvalues of its cellular Laplacian operators, generalizing a previous result for simplicial complexes. As an application, we obtain explicit formulas for spanning tree enumerators and Laplacian eigenvalues of cubes; the latter are integers. We prove a weighted version of the eigenvalue formula, providing evidence for a conjecture on weighted enumeration of cubical spanning trees. We introduce a cubical analogue of shiftedness, and obtain a recursive formula for the Laplacian eigenvalues of shifted cubical complexes, in particular, these eigenvalues are also integers. Finally, we recover Adin's enumeration of spanning trees of a complete colorful simplicial complex from the cellular Matrix-Tree Theorem together with a result of Kook, Reiner and Stanton.Comment: 24 pages, revised version, to appear in Advances in Applied Mathematic

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Towards quantum advantage via topological data analysis

    Get PDF
    Even after decades of quantum computing development, examples of generally useful quantum algorithms with exponential speedups over classical counterparts are scarce. Recent progress in quantum algorithms for linear-algebra positioned quantum machine learning (QML) as a potential source of such useful exponential improvements. Yet, in an unexpected development, a recent series of "dequantization" results has equally rapidly removed the promise of exponential speedups for several QML algorithms. This raises the critical question whether exponential speedups of other linear-algebraic QML algorithms persist. In this paper, we study the quantum-algorithmic methods behind the algorithm for topological data analysis of Lloyd, Garnerone and Zanardi through this lens. We provide evidence that the problem solved by this algorithm is classically intractable by showing that its natural generalization is as hard as simulating the one clean qubit model -- which is widely believed to require superpolynomial time on a classical computer -- and is thus very likely immune to dequantizations. Based on this result, we provide a number of new quantum algorithms for problems such as rank estimation and complex network analysis, along with complexity-theoretic evidence for their classical intractability. Furthermore, we analyze the suitability of the proposed quantum algorithms for near-term implementations. Our results provide a number of useful applications for full-blown, and restricted quantum computers with a guaranteed exponential speedup over classical methods, recovering some of the potential for linear-algebraic QML to become one of quantum computing's killer applications.Comment: 29 pages, 3 figures. New results added and improved expositio

    Combinatorial and Hodge Laplacians: Similarity and Difference

    Full text link
    As key subjects in spectral geometry and combinatorial graph theory respectively, the (continuous) Hodge Laplacian and the combinatorial Laplacian share similarities in revealing the topological dimension and geometric shape of data and in their realization of diffusion and minimization of harmonic measures. It is believed that they also both associate with vector calculus, through the gradient, curl, and divergence, as argued in the popular usage of "Hodge Laplacians on graphs" in the literature. Nevertheless, these Laplacians are intrinsically different in their domains of definitions and applicability to specific data formats, hindering any in-depth comparison of the two approaches. To facilitate the comparison and bridge the gap between the combinatorial Laplacian and Hodge Laplacian for the discretization of continuous manifolds with boundary, we further introduce Boundary-Induced Graph (BIG) Laplacians using tools from Discrete Exterior Calculus (DEC). BIG Laplacians are defined on discrete domains with appropriate boundary conditions to characterize the topology and shape of data. The similarities and differences of the combinatorial Laplacian, BIG Laplacian, and Hodge Laplacian are then examined. Through an Eulerian representation of 3D domains as level-set functions on regular grids, we show experimentally the conditions for the convergence of BIG Laplacian eigenvalues to those of the Hodge Laplacian for elementary shapes.Comment: 26 page

    Efficient 1-Laplacian Solvers for Well-Shaped Simplicial Complexes: Beyond Betti Numbers and Collapsing Sequences

    Get PDF
    We present efficient algorithms for solving systems of linear equations in 1-Laplacians of well-shaped simplicial complexes. 1-Laplacians, or higher-dimensional Laplacians, generalize graph Laplacians to higher-dimensional simplicial complexes and play a key role in computational topology and topological data analysis. Previously, nearly-linear time solvers were developed for simplicial complexes with known collapsing sequences and bounded Betti numbers, such as those triangulating a three-ball in R3 (Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [SODA’2014], Black, Maxwell, Nayyeri, and Winkelman [SODA’2022], Black and Nayyeri [ICALP’2022]). Furthermore, Nested Dissection provides quadratic time solvers for more general systems with nonzero structures representing well-shaped simplicial complexes embedded in R3. We generalize the specialized solvers for 1-Laplacians to simplicial complexes with additional geometric structures but without collapsing sequences and bounded Betti numbers, and we improve the runtime of Nested Dissection. We focus on simplicial complexes that meet two conditions: (1) each individual simplex has a bounded aspect ratio, and (2) they can be divided into “disjoint” and balanced regions with well-shaped interiors and boundaries. Our solvers draw inspiration from the Incomplete Nested Dissection for stiffness matrices of well-shaped trusses (Kyng, Peng, Schwieterman, and Zhang [STOC’2018]).ISSN:1868-896

    Weighted Tree-Numbers of Matroid Complexes

    Get PDF
    International audienceWe give a new formula for the weighted high-dimensional tree-numbers of matroid complexes. This formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes consist of polynomials in the weights. In the formula, Crapo’s β\beta-invariant appears as the key factor relating weighted combinatorial Laplacians and weighted tree-numbers for matroid complexes.Nous présentons une nouvelle formule pour les nombres d’arbres pondérés de grande dimension des matroïdes complexes. Cette formule est dérivée du résultat que le spectre des Laplaciens combinatoires pondérés des matrides complexes sont des polynômes à plusieurs variables. Dans la formule, le β\beta;-invariant de Crapo apparaît comme étant le facteur clé reliant les Laplaciens combinatoires pondérés et les nombres d’arbres pondérés des matroïdes complexes
    • …
    corecore