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Weighted Tree-Numbers of Matroid
Complexes

Woong Kook1† and Kang-Ju Lee1‡

1Department of Mathematical Sciences, Seoul National University, Seoul, Korea

Abstract. We give a new formula for the weighted high-dimensional tree-numbers of matroid complexes. This
formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes
consist of polynomials in the weights. In the formula, Crapo’s β-invariant appears as the key factor relating weighted
combinatorial Laplacians and weighted tree-numbers for matroid complexes.

Résumé. Nous présentons une nouvelle formule pour les nombres d’arbres pondérés de grande dimension des ma-
troı̈des complexes. Cette formule est dérivée du résultat que le spectre des Laplaciens combinatoires pondérés des
matroı̈des complexes sont des polynômes à plusieurs variables. Dans la formule, le β-invariant de Crapo apparaı̂t
comme étant le facteur clé reliant les Laplaciens combinatoires pondérés et les nombres d’arbres pondérés des ma-
troı̈des complexes.

Keywords: matroid complex, weighted combinatorial Laplacians, weighted tree-numbers

1 Introduction
The purpose of this paper is to give a new formula for the weighted tree-numbers of matroid complexes.
As a high-dimensional analogue of Cayley-Prüfer theorem [29], Kalai [19] found the formula for the
weighted tree-numbers of standard simplexes. Continuing his study, Adin [1] presented a formula for
the tree-numbers of complete colorful complexes and posed the problem of finding their weighted tree-
numbers. Duval, Klivans, and Martin [11] obtained a formula of the weighted tree-numbers of shifted
complexes, developing simplicial matrix-tree theorem. We derive a formula of the weighted tree-numbers
of the independent set complex of matroids (Theorem 9). In particular, we answer Adin’s question in [1,
Section 6 (b)].
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2 Combinatorial Laplacians and high-dimensional tree-numbers
Adin [1] studied high-dimensional tree-number of simplicial complexes via combinatorial Laplacians, and
similar studies were conducted in [8, 11–13, 20, 26–28, 30, 34]. For a finite graph, Temperley’s formula
demonstrates how the number of spanning trees and the detereminant of a combinatorial Laplacian are
related.

Theorem 1 [36, Temperley’s formula] LetG be a finite loopless graph with n vertices with its Laplacian
matrix L(G), and J the all 1′s matrix. If we denote the number of spanning trees of G by k(G), then

det(L(G) + J) = n2 ⋅ k(G).

◻

As we shall see, L(G) + J is the 0-th combinatorial Laplacian for the chain complex of G as a 1-
dimensional complex.

Temperley’s formula has been generalized to high-dimensional complexes [11, 12, 20]. In this paper,
we will focus on the following type of complexes. A finite simplicial complex will be called Z-APC
(Z-acyclic in positive codimension) if its reduced homology over Z is trivial except possibly in the top
dimension (refer to [11] for the origin of this terminology). The independent set complex IN(M) of a
matroid M , which is the main object of study in this paper, is Z-APC because it is shellable [3]. We may
refer to IN(M) as a matroid complex, also.

Let {Ci, ∂i} be an augmented chain complex of a finite Z-APC complex Γ of dimension d with the
augmentation ∂0 ∶ C0 → Z given by ∂0(v) = 1 for every vertex v in Γ. Recall that, for i ∈ [−1, d], the i-th
combinatorial Laplacian ∆i ∶ Ci → Ci is defined by

∆i = ∂ti∂i + ∂i+1∂
t
i+1.

Note that if Γ is a finite graph, then ∂t0∂0 = J and ∂1∂
t
1 = L(G). Hence, Temperley’s formula can be

restated as det(∆0) = n2k̇(G).
Let Γi be the set of all i-simplices, and Γ(i) the i-skeleton of Γ. For a non-empty subset S ⊂ Γi, define

ΓS = S ∪ Γ(i−1) as an i-dimensional subcomplex of Γ. For i ∈ [−1, d], a non-empty subset B ⊂ Γi is an
i-dimensional tree (or, simply, i-tree) if

(1) Hi(ΓB) = 0,

(2) ∣Hi−1(ΓB)∣ is finite, and

(3) Hj(ΓB) = 0 for j ≤ i − 2.

Note that condition (3) is a consequence of the fact Γ
(i−1)
B = Γ(i−1). We will denote the set of all i-trees

in Γ by Bi = Bi(Γ) with B−1 = {∅}. Define the i-th tree-number of Γ to be

ki = ki(Γ) = ∑
B∈Bi

∣Hi−1(ΓB)∣2 .

The following is a generalization of Temperley’s formula showing a relationship between ∆i and un-
weighted high-dimensional tree-numbers ki.
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Theorem 2 [20, Proposition 7] Let ki be the i-th tree-number of a Z-APC complex Γ . Then

(1) det ∆−1 = k0

(2) det ∆i = ki−1k
2
i ki+1 for i ∈ [0, d − 1]

(3) det ∆d = kd−1 if Γ is acyclic, and 0 otherwise. ◻

3 Weighted combinatorial Laplacians and weighted tree-numbers

As a refined enumerator of tree-numbers, we discuss weighted tree-numbers. For example, Cayley-Prüfer
theorem [29] gives an enumeration of the spanning trees of complete graphs according to their vertex
degrees, and Kalai’s formula [19, Theorem 3′] gives an enumeration of high-dimensional tree-numbers
of standard simplexes according to their vertex degrees. Other examples of weighted Laplacians and
weighted tree-numbers can be found in [11, 12, 30]. In [30], the weights of different dimensions were
considered simultaneously, and we will develop similar ideas for matroid complexes in this paper.

Let Γ be Z-APC. For each vertex v ∈ Γ0, let xv be an indeterminate and define the weight of v to be
Xv = x2

v . For each face σ ∈ Γi, define xσ = ∏v∈σ xv and define the weight of σ to be

Xσ = ∏
v∈σ

Xv = (xσ)2.

Denote by F a field containing R and all indeterminates xv . Let Ĉi be the F-vector space of i-chains
in Γ. The weighted boundary operator ∂̂i ∶ Ĉi → Ĉi−1 is defined as follows. For each oriented i-face
[σ] = [v0, v1, . . . , vi],

∂̂i[σ] =
i

∑
j=0

(−1)jxvj [σ − vj].

Equivalently, ∂̂i can be defined as

∂̂i =W −1
i−1∂iWi

where Wi is the diagonal matrix whose diagonal entry corresponding to the i-face σ ∈ Γi is xσ . Define
the i-th weighted combinatorial Laplacian ∆̂i ∶ Ĉi → Ĉi to be the i-th combinatorial Laplacian of the
weighted chain complex {Ĉi, ∂̂i}, i.e.,

∆̂i = ∂̂ti ∂̂i + ∂̂i+1∂̂
t
i+1.

Example 1 Let K be an (abstract) simplicial complex on a vertex set {1,2,3,4,5} whose facets are
{124,125,134,135,145,234,235,245} (see Fig. 1). Suppose that the rows and columns of ∂̂2 ∶ Ĉ2 → Ĉ1
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are ordered lexicographically. Then ∂̂2 is given by

[124] [125] [134] [135] [145] [234] [235] [245]
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[12] x4 x5 0 0 0 0 0 0
[13] 0 0 x4 x5 0 0 0 0
[14] −x2 0 −x3 0 x5 0 0 0
[15] 0 −x2 0 −x3 −x4 0 0 0
[23] 0 0 0 0 0 x4 x5 0
[24] x1 0 0 0 0 −x3 0 x5
[25] 0 x1 0 0 0 0 −x3 −x4
[34] 0 0 x1 0 0 x2 0 0
[35] 0 0 0 x1 0 0 x2 0
[45] 0 0 0 0 x1 0 0 x2

.

◻

Fig. 1: a realization of K

We introduce the definition of weighted high-dimensional tree-numbers by Kalai [19].

Definition 3 For i ∈ [0, d], define the i-th weighted tree-number of Γ to be

k̂i = k̂i(Γ) = ∑
B∈Bi

∣Hi−1(ΓB)∣2XB . (3.1)

where XB = ∏
σ∈B

Xσ is the weight of B ∈ Bi. Define k̂−1 = 1.

For each B ∈ Bi, define the degree of a vertex v ∈ Γ0 in B to be the number of facets in ΓB containing v,
denoted by degBv. When Γ is a graph, this definition of degree is the same as that in graph theory. Then
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equation (3.1) becomes

∑
B∈Bi

∣Hi−1(ΓB)∣2 ∏
v∈Γ0

Xv
deg

B
v,

which explains why weighted tree-numbers are often called degree-weighted tree-numbers. Note that if
Xv = 1 for all v ∈ Γ0, then we recover the i-th (unweighted) tree-number ki.

An example of degree-weighted tree-numbers is the following Cayley-Prüfer [29] theorem for complete
graphs.

∑
T ∈B1(Kn)

n

∏
i=1

X
deg

T
(i)

i =X1X2⋯Xn(X1 +X2 +⋯ +Xn)n−2.

A high-dimensional analogue of this theorem is Kalai’s formula [19, Theorem 3′]

∑
B∈Bi(Σ)

∣Hi−1(ΓB)∣
n

∏
i=1

X
deg

B
(i)

i = (X1X2⋯Xn)(
n−2
i−1
)(X1 +X2 +⋯ +Xn)(

n−2
i
) (3.2)

where Σ is the standard simplex on n vertices.
The following is the weighted version of Theorem 2.

Theorem 4 The following holds for a Z-APC complex Γ of dimension d:

(1) det ∆̂−1 = k̂0

(2) det ∆̂i = (∏σ∈Γi−1 Xσ)−1(∏σ∈ΓiXσ)−1k̂i−1k̂
2
i k̂i+1 for i ∈ [0, d − 1]

(3) det ∆̂d = (∏σ∈Γd−1 Xσ)−1k̂d−1(∏σ∈ΓdXσ) if Γ is acyclic, and 0 otherwise. ◻

From now on, let Γ be an acyclic complex of dimension d + 1. The reason for considering dimension
d + 1 is that we will apply an acyclization to a Z-APC complex of dimension d.

By using Theorem 2, a relation was found between the generating function of the logarithmic determi-
nants of combinatorial Laplacians and that of the logarithmic tree-numbers, which makes it efficient to
compute the tree-numbers [20, Theorem 8]. The following theorem is the weighted version of this rela-
tion. We introduce formal logarithm having the following property: logXY = logX + logY for nonzero
X,Y ∈ F.

Theorem 5 Let D̂(x), K̂(x), and F (x) be given as follows.

(1) D̂(x) = ∑d+1
i=−1 ω̂ix

i+1 where ω̂i = log det ∆̂i

(2) K̂(x) = ∑di=0 κ̂ix
i where κ̂i = log k̂i

(3) F (x) = ∑v∈Γ0
logXv((∑di=0 fv,ix

i+1) − fv,d+1x
d+1) where fv,i is the number of i-faces in Γ con-

taining v.

Then we have

D̂(x) = (1 + x)2K̂(x) − (1 + x)F (x), or

K̂(x) = (1 + x)−2D̂(x) + (1 + x)−1F (x).

◻
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From this theorem, one can recover Kalai’s formula (equation (3.2)).
In addition, we express weighted tree-numbers in terms of the monomials corresponding to all vertices

and eigenvalues of weighted combinatorial Laplacians. The following theorem is the weighted version
of [12, equation (11)] obtained from Theorem 5.

Theorem 6 Let Λ̂ be the set of all distinct eigenvalues of the total weighted Laplacian ⊕d+1
i=−1 ∆̂i and let

mλ̂,i be the multiplicity of λ̂ in ∆̂i, i.e., det ∆̂i = ∏λ̂∈Λ̂ λ̂
mλ̂,i . The d-th weighted tree-number k̂d of Γ is

∏
vertices v of Γ

(Xv)∣χ̃((lk v)
(d−2))∣∏

λ̂∈Λ̂
λ̂aλ̂,d

where aλ̂,d = ∑
d−1
j=−1 (−1)d−j−1(d − j)mλ̂,j and the link of a vertex v is given by

lk v = {σ ∈ Γ ∣ σ ∩ {v} = ∅, σ ∪ {v} ∈ Γ},

and (lk v)(d−2) denotes the (d − 2)-skeleton of lk v. ◻

One can regard the characteristic polynomial of ∆̂ as an element in F[x], and its eigenvalues as elements
in the algebraic closure of F.

4 Weighted combinatorial Laplacians of matroid complexes
An interesting question concerning combinatorial Laplacians is which complexes have integral spectra.
There are some known complexes with this property: chessboard [18], matching [10], matroid [25],
shifted [14], and shifted cubical complexes [12]. Then a natural question for the weighted combinato-
rial Laplacians is which complexes have spectra that consist of polynomials. Duval, Klivans, and Martin
showed that the spectra of the weighted combinatorial Laplacians of shifted complexes consist of poly-
nomials and used their result to give the weighted tree-numbers of shifted complexes [11]. We show
that matroid complexes have polynomial spectra and will use these to find the weighted tree-numbers of
matroid complexes.

First, we review the spectra of the unweighted combinatorial Laplacians of matroid complexes [25]. Let
M be a loopless matroid, r its rank function, L(M) its lattice of flats, and µ(V,W ) the Möbius function
on L(M)×L(M). Define the α-invariant α(M) ofM to be the unsigned reduced Euler characteristic of
its matroid complex IN(M). For convenience, we will denote µ(W /V ) = ∣µ(V,W )∣ and d = r(M) − 1.

Theorem 7 [25, Corollary 18] Let Λ be the set of all distinct eigenvalues of the total Laplacian⊕di=−1 ∆i

of a matroid complex IN(M). Then

Λ = {∣E ∖ V ∣ ∶ V ∈ L(M) and α(V ) ≠ 0}

and, for each λ ∈ Λ, its multiplicity mλ,i in ∆i is given by

∑
V ∶∣E∖V ∣=λ

∑
W ∶r(W )=i+1

α(V )µ(W /V ).

◻
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We present the weighted version of the above theorem. Let F be a field containing R and all indeter-
minates xe for each element e in the ground set E of M . For each e ∈ E, define the weight of e to be
Xe = x2

e. For each non-empty set S ⊂ E, define ∣∣S∣∣ = ∑e∈SXe and ∣∣∅∣∣ = 0.

Theorem 8 Let Λ̂ be the set of all distinct eigenvalues of the total weighted Laplacian ⊕di=−1 ∆̂i of a
matroid complex IN(M) where ∆̂i is the i-th weighted combinatorial Laplacian of M . Then

Λ̂ = {∣∣E ∖ V ∣∣ ∶ V ∈ L(M) and α(V ) ≠ 0}

and, for each λ̂ = ∣∣E ∖ V ∣∣ ∈ Λ̂, its multiplicity mλ̂,i in ∆̂i is given by

∑
W ∶r(W )=i+1

α(V )µ(W /V ).

In particular, the spectra of⊕di=−1 ∆̂i consist of polynomials in Xe’s. ◻

5 Weighted tree-numbers of matroid complexes
We show that the weighted tree-numbers of matroid complexes have a nice factorization according to the
degrees of their vertices. Our method is different from what was used to find the formula for the weighted
tree-numbers of a shifted complex [11]. While the reduced Laplacian in the top dimension was used
in [11], we use all of the combinatorial Laplacians.

To begin, we review two important invariants of a matroid M which will appear in the formula. One is
α(M) which equals the unsigned reduced Euler characteristic ∣χ̃(IN(M))∣ of IN(M). Note that α(M)
has other interpretations as follows:

α(M) = ∣µL(M∗)(0̂, 1̂)∣ = rk H̃r(M)−1(IN(M)) = TM(0,1),

where M∗ is the dual matroid of M , and TM(x, y) the Tutte polynomial of M .
The other is Crapo’s β(M) which is defined as follows [6]:

β(M) = (−1)r(M) ∑
A⊂E(M)

(−1)∣A∣r(A) .

For our purpose, it will be useful to take the following equivalent definition of β(M) (used in [38, Chapter
7.3]).

β(M) = (−1)r(M) ∑
V ∈L(M)

µ(0̂, V )r(V ).

It is also known that β(M) equals the unsigned reduced Euler characteristic of the reduced broken circuit
complex [3]. The following is the main theorem of this paper.

Theorem 9 The d-th weighted tree-number k̂d(M) = k̂d(IN(M)) of a matroid complex IN(M) is

∏
e∈E

X(∣B(M/e)∣−α(M/e))e ∏
flats V ofM

(∑
e∉V

Xe)α(V )β(M/V ).

where ∣B(M)∣ denotes the number of bases of a matroid M . Here,

∣B(M/e)∣ − α(M/e) = ∣χ̃(IN(M/e)(d−2))∣.

(This equality comes from the shellability of matroid complexes.) ◻
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This theorem is proved using Theorem 6 and Theorem 8.
By setting Xe = 1 for all e ∈ E, we can recover (unweighted) tree-numbers of matroid complexes [24,

Theorem 2]. To simplify their formulas, we introduce a convolution of α-invariant and β-invariant.

Definition 10 For λ ∈ Λ = {∣E ∖ V ∣ ∶ V ∈ L(M) and α(V ) ≠ 0}, define a convolution of α-invariant and
β-invariant with respect to λ as

α ○λ β = ∑
V ∈L(M)∶∣E∖V ∣=λ

α(V )β(M/V ).

Theorem 11 [24, Theorem 5] The d-th tree-number kd(M) = kd(IN(M)) of a matroid complex
IN(M) is

∏
λ∈Λ

λα○λβ .

◻

Example 2 Let M =M(G) be the cycle matroid of G where G is a graph K4 − e (see Fig.2). Then the
cycle matroid complex IN(M) of M is the simplicial complex K in Example 1 (see Fig.1). We apply
our theorem to compute the weighted tree-numbers of the matroid complex IN(M).

First, for each vertex e in IN(M), the matroid complex IN(M/e) of the contraction M/e consists of
4 vertices and so ∣χ̂((IN(M/e))(0))∣ = 3.

Second, for each flat V in M , let us compute α(V ) and β(M/V ).

• If V = ∅, then α(V ) = 1 and β(M/V ) = β(M) = 1.

• If V has only one element, then α(V ) = 0 .

• If V is {1,2,3} or {3,4,5}, then α(V ) = 1 and β(M/V ) = 1.

• If V =M , then β(M/V ) = β(∅) = 0.

Therefore,

k̂2(M) =X3
1X

3
2X

3
3X

3
4X

3
5(X1 +X2 +X3 +X4 +X5)(X1 +X2)(X4 +X5)

and we obtain k2(M) = 22 ⋅ 5. ◻

Fig. 2: a graph G =K4 − e
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6 Applications: Complete colorful complexes
We give the weighted version of Adin’s formula for the tree-numbers of complete colorful complexes,
answering the question posed in [1, Section 6 (b)]. Define a complete colorful complex as follows. For
each t ∈ [r], let Et = {e1,t, e2,t, . . . , ent,t} be a set of vertices representing color t. Let E = ⊔rt=1Et.
Define complete colorful complex K =K(n1, . . . , nr) to be a simplicial complex on a vertex set E whose
faces are subsets of E each containing at most one element from each Et, i.e.,

K = {F ⊂ E ∣ ∣F ∩Et∣ ≤ 1 for t = 1, . . . , r}.
Note that K is isomorphic to the matroid complex of⊕rt=1U1,nt where U1,nt is a rank 1 uniform matroid
on nt elements. FThe dimension of K is d = r − 1. In addition, for each i ∈ [1, d], the i-th skeleton K(i)

is a matroid complex.
For each t ∈ [r], denote the weights of e1,t, e2,t, . . . , ent,t by X1,t,X2,t, . . . ,Xnt,t, respectively. For

each S ⊂ [r], define πS = ∏s∈S (ns − 1).

Theorem 12 For i ∈ [1, d], we have

k̂i(K) =
r

∏
t=1

(X1,t⋯Xnt,t)∑
i−1
j=0(−1)i−1−jej(n1,...,n̂t,...,nr) ∏

∣S∣≤i
(∑
s∉S

X1,s +⋯ +Xns,s)
πS(r−2−∣S∣i−∣S∣

)

where ej(Y1, . . . , Yn) is the j-th elementary symmetric polynomial. In particular,

k̂d(K) =
r

∏
t=1

((X1,t⋯Xnt,t)
(∏s≠t (ns)−∏s≠t (ns−1))(X1,t +⋯ +Xnt,t)∏s≠t (ns−1)).

◻
The weighted top-dimensional tree-number of a complete colorful complex was computed by Aalipour
and Duval.

We recover Adin’s formula for the unweighted tree-numbers of complete colorful complexes from the
above weighted version, by settingX1,t = ⋅ ⋅ ⋅ =Xnt,t = 1 for all t ∈ [r]. (The top-dimensional tree-number
of a complete colorful complex was suggested by Bolker [5].)

Corollary 13 [1, Theorem 1.5] For i ∈ [1, d], we have

ki(K) = ∏
∣S∣≤i

(∑
s∉S

ns)πS(
r−2−∣S∣
i−∣S∣

)
.

In particular,

kd(K) =
r

∏
t=1

nt
(∏s≠t (ns−1)).

◻
Note that the 1-dimensional skeleton of a complete colorful complex is a complete multipartite graph.

By using the above theorem, we obtain the weighted spanning tree-numbers of complete multipartite
graphs (For that of a complete bipartite graph, see [35, Exercise 5.30]).

Let Kn1,...,nr be a complete multipartite graph with an r-partition (V1, . . . , Vr). For each t ∈ [r], let
Vt = {v1,t, . . . , vnt,t}, and denote the weights of v1,t, . . . , vnt,t by X1,t, . . . ,Xnt,t, respectively. For a
complete bipartite graph Km,n with a bipartition (A,B) where A = {u1, . . . , um} and B = {v1, . . . , vn},
let X1, . . . ,Xm (resp. Y1, . . . , Yn) be the weights of u1, . . . , um (resp. v1, . . . , vn).
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Corollary 14 The weighted spanning tree-number of Kn1,...,nr is given by

k̂(Kn1,...,nr) = (
r

∏
t=1

X1,t⋯Xnt,t)(
r

∑
t=1

(X1,t +⋯ +Xnt,t))
r−2 r

∏
t=1

(∑
s≠t

(X1,s +⋯ +Xns,s)ns−1)

In particular, the weighted spanning tree-number of Km,n is given by

k̂(Km,n) = (X1⋯Xm)(Y1⋯Yn)(X1 +⋯ +Xm)n−1(Y1 +⋯ + Yn)m−1.

◻
When each color set has only one element, we recover Kalai’s formula for the weighted tree-numbers of
standard simplexes.

Corollary 15 [19, Theorem 1, 3′] Let Σ be the standard simplex on n vertices. For each vertex vj ∈ (Σ)0,
let Xj be its weight. Then the i-th weighted tree-number is given by

k̂i(Σ) = (X1X2⋯Xn)(
n−2
i−1
)(X1 +X2 +⋯ +Xn)(

n−2
i
).

In particular, its i-th tree-number is given by

ki(Σ) = n(
n−2
i
).
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