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We prove a Matrix-Tree Theorem enumerating the spanning trees
of a cell complex in terms of the eigenvalues of its cellular Lapla-
cian operators, generalizing a previous result for simplicial com-
plexes. As an application, we obtain explicit formulas for spanning
tree enumerators and Laplacian eigenvalues of cubes; the latter are
integers. We prove a weighted version of the eigenvalue formula,
providing evidence for a conjecture on weighted enumeration of
cubical spanning trees. We introduce a cubical analogue of shifted-
ness, and obtain a recursive formula for the Laplacian eigenvalues
of shifted cubical complexes, in particular, these eigenvalues are
also integers. Finally, we recover Adin’s enumeration of spanning
trees of a complete colorful simplicial complex from the Cellular
Matrix-Tree Theorem together with a result of Kook, Reiner and
Stanton.

© 2010 Elsevier Inc. All rights reserved.

“Is there a q-analogue of that?”
Dennis Stanton

1. Introduction

1.1. Cellular spanning trees

In [10], the authors initiated the study of simplicial spanning trees: subcomplexes of a simplicial
complex that behave much like the spanning trees of a graph. The central result of [10] is a general-
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ization of the Matrix-Tree Theorem, enumerating simplicial spanning trees in terms of eigenvalues of
combinatorial Laplacians. In this paper, we extend our field of inquiry to the setting of arbitrary cell
complexes and their Laplacians.

Let X be a d-dimensional cell complex; we write Xi for the set of i-cells of X . A cellular spanning
tree, or just a spanning tree, of X is a d-dimensional subcomplex Y ⊆ X with the same (d − 1)-
skeleton, whose (reduced) homology satisfies the two conditions H̃d(Y ;Z) = 0 and |H̃d−1(Y ;Z)| < ∞.
These two conditions imply that |Yd| = |Xd| − β̃d(X) + β̃d−1(X), where β̃d and β̃d−1 denote (reduced)
Betti numbers. In fact, any two of these three conditions together imply the third. In the case d = 1,
a cellular spanning tree is just a spanning tree of X in the usual graph-theoretic sense; the first two
conditions above say respectively that Y is acyclic and connected, and the third condition says that Y
has one fewer edge than the number of vertices in X .

Let Ci denote the i-th cellular chain group of X with coefficients in Z, and let ∂i : Ci → Ci−1 and
∂∗

i : Ci−1 → Ci be the cellular boundary and coboundary maps (where we have identified cochains
with chains via the natural inner product). The i-th up-down, down-up and total combinatorial Laplacians
are respectively

Lud
i = ∂i+1∂

∗
i+1, Ldu

i = ∂∗
i ∂i, Ltot

i = Lud
i + Ldu

i ,

which may be viewed either as endomorphisms on Ci , or as square symmetric matrices, as conve-
nient. We are interested in the spectra of these Laplacians, that is, their multisets of eigenvalues,
which we denote by sud

i (X), sdu
i (X), and stot

i (X) respectively. Combinatorial Laplacians seem to have
first appeared in the work of Eckmann [11] on finite-dimensional Hodge theory, in which the i-th
homology group of a chain complex is identified with ker(Li) via the direct sum decomposition
Ci = im ∂i+1 ⊕ ker Li ⊕ im∂∗

i . As the name suggests, the combinatorial Laplacian is a discrete version
of the Laplacian on differential forms for a Riemannian manifold; Dodziuk and Patodi [7] proved that
for suitably nice triangulations, the eigenvalues of the combinatorial and analytic Laplacians converge
to each other.

For 0 � k � d, let Tk(X) denote the set of all spanning k-trees of X (that is, the spanning trees of
the k-skeleton of X ). Let

τk(X) =
∑

Y ∈Tk(X)

∣∣H̃k−1(Y ;Z)
∣∣2

,

πk(X) =
∏

0 �=λ∈sud
k−1(X)

λ for k � 1.

We set π0 = |X0|, the number of vertices of X , for reasons that will become clear later. Note that
τ1(X) is just the number of spanning trees of the 1-skeleton of X . Bolker [4] was the first to observe
that enumeration of higher-dimensional trees requires some consideration of torsion; the specific
summand |H̃k−1(Y ;Z)|2, first noticed by Kalai [16], arises from an application of the Binet–Cauchy
theorem. The precise relationship between the families of invariants {πk(X)} and {τk(X)} is as follows.

Theorem 2.8 (Cellular Matrix-Tree Theorem). Let d � 1, and let Xd be a cell complex such that Hi(X;Q) = 0
for all i < d. Fix a spanning (d − 1)-tree Y ⊂ X, let U = Yd−1 , and let LU be the matrix obtained from Lud

d−1(X)

by deleting the rows and columns corresponding to U . Then:

πd(X) = τd(X)τd−1(X)

|H̃d−2(X;Z)|2 and

τd(X) = |H̃d−2(X;Z)|2
|H̃d−2(Y ;Z)|2 det LU .
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These formulas are identical to those of the Simplicial Matrix-Tree Theorem [10, Theorem 1.3], ex-
cept that they apply to the wider class of cell complexes. Note that the classical Matrix-Tree Theorem
for graphs is just the special case d = 1. Our proof, in Section 2, is similar to that in [10], and ulti-
mately stems from the work of Kalai [16]. It is not hard to generalize the result to a weighted version,
Theorem 2.12.

Of particular interest to us is the problem of which complexes are Laplacian integral, that is,
all of whose Laplacians have integer eigenvalues. This question seems to have been first raised by
Friedman [13]. While no general characterization of Laplacian integrality is known, many classes of
simplicial complexes are known to have combinatorially meaningful Laplacian integer spectra. These
include matroid complexes [19], shifted complexes [9], matching complexes [8], and chessboard com-
plexes [14].

In Section 2 of the paper, we develop this machinery more carefully and prove the Cellular Matrix-
Tree Theorem and its weighted analogue.

1.2. Cubical complexes

In Section 3, we study Laplacian integrality for cell complexes that are cubical rather than sim-
plicial. Specifically, the n-dimensional unit cube Q n ⊂ Rn can be regarded as a cell complex whose
faces are indexed by the ordered n-tuples f = ( f1, . . . , fn), where f i ∈ {0,1,�}, with f ⊆ g iff f i = gi
whenever gi �= �; here dim f = #{i: f i = �}. Intuitively, we think of � as the open interval (0,1).
A proper cubical complex is then an order ideal in this face poset. (This is a more restricted class than
the more usual definition of “cubical complex”, meaning any cell complex in which the closure of
each cell is a cube.)

For a proper cubical complex X ⊆ Q n , the prism over X is the cell complex PX := X ×
{0,1,�} ⊆ Q n+1. The cellular Laplacian spectra of X determine those of PX ; the precise formulas
are given in Theorem 3.3. Since the cube Q n itself is an iterated prism, it follows from these results
that Q n and all its skeletons are Laplacian integral, with spectra given by the formulas

∑
λ∈stot

k (Q n)

rλ =
(

n

k

)
r2k(1 + r2)n−k

, (1)

∑
λ∈sud

k (Q n)

rλ ◦=
n∑

i=k+1

(
n

i

)(
i − 1

k

)
r2i (2)

(Theorem 3.4), where
◦= means “equal up to constant coefficient” (i.e., up to the multiplicity of zero

as an eigenvalue). Applying the Cellular Matrix-Tree Theorem to formula (2) gives

τk(Q n) =
n∏

j=k+1

(2 j)(
n
j)(

j−2
k−1)

(Corollary 3.5). This generalizes the well-known count
∏n

j=2(2 j)(
n
j) of spanning trees of the n-cube

graph (see, e.g., [24, Example 5.6.10]).

1.3. Weighted spanning tree enumerators

In Section 4, we discuss weighted spanning tree enumerators of skeletons of cubes.
To each face f = ( f1, . . . , fn) ∈ Q n , associate the monomial

ξ f =
∏

i: f =�
qi

∏
i: f =0

xi

∏
i: f =1

yi,
i i i
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in commuting indeterminates. For a cubical subcomplex X ⊆ Q n , we consider the weighted spanning
tree enumerator

τ̂k(X) =
∑

Y ∈Tk(X)

∏
f ∈Yk

ξ f .

In principle, one can calculate τ̂k(X) by replacing the Laplacians of X with their weighted versions and
applying Theorem 2.12. In practice, the difficulty is that the eigenvalues of the weighted Laplacians
of cubical complexes—even for such basic cases as skeletons of cubes—are in general not polynomial.
Furthermore, the corresponding weighted cellular boundary maps ∂ do not satisfy ∂2 = 0, and so do
not give the structure of an algebraic chain complex.

In order to overcome this difficulty we replace the natural “combinatorial” weighting ξ f with a
closely related “algebraic” weighting by Laurent monomials, whose boundary maps do satisfy ∂2 = 0.
The algebraically weighted Laplacian spectra of Q n are given explicitly as follows (Theorem 4.2):

∑
λ∈ŝtot

k (Q n)

rλ =
n∑

j=i

(
j

i

)
e j

(
ru1 , . . . , run

)
,

where ui = q2
i /x2

i + q2
i /y2

i and e j denotes the j-th elementary symmetric function.
In the case of shifted simplicial complexes, a weighted version of the Simplicial Matrix-Tree Theo-

rem can be used to translate the knowledge of the algebraically weighted Laplacian spectrum into an
exact combinatorial formula for the weighted tree enumerators τk(X) (see [10]). We had hoped that
this approach would succeed in the case of skeletons of cubes, but the exact form of the relationship
between the two weightings has so far eluded us. On the other hand, there is strong evidence that the
combinatorial spanning tree enumerator τk(Q n) is given by the following formula (Conjecture 4.3):

τ̂k(Q n) = (q1 · · ·qn)
∑n−1

i=k−1 (n−1
i )( i−1

k−2)
∏

A⊆[n]
|A|�k+1

[∑
i∈A

(
qi(xi + yi)

∏
j∈A\i

x j y j

)](|A|−2
k−1 )

.

1.4. Shifted cubical complexes

In Section 5, we introduce an analogue of shiftedness for cubical complexes.
Shifted complexes are a well-known and important family of simplicial complexes; see, e.g., [3,17]

as general references. They may be defined as certain iterated near-cones, or as order ideals with re-
spect to a natural partial ordering of integer sets. The Laplacian spectrum of a shifted simplicial com-
plex � can be expressed recursively in terms of the spectra of its link and deletion [9, Lemma 5.3],
and explicitly as the transpose of its vertex–facet degree sequence [9, Theorem 1.1]. In particular, the
eigenvalues are integers.

Our definition of a cubical analogue of shiftedness seeks to extend all these properties of shifted
simplicial complexes to the cubical setting. First, shifted subcomplexes of Q n are in bijection with
the shifted simplicial complexes on n vertices, via the “mirroring” operation as described in Babson,
Billera, and Chan [2]; roughly speaking, vertices of a simplicial complex correspond to directions of
a cubical complex. Like their simplicial cousins, shifted cubical complexes are a particular type of
iterated near-prism. Moreover, their eigenvalues may be described recursively in terms of the cubical
link and deletion. An immediate corollary of this recurrence is that shifted cubical complexes are
Laplacian integral. We present a number of natural questions for further research on shifted cubical
complexes.



A.M. Duval et al. / Advances in Applied Mathematics 46 (2011) 247–274 251
1.5. Duality

In Section 6, we study the connections between the Laplacian spectra of a cell complex and its
dual complex.

Two cell complexes X , Y are dual if there is an inclusion-reversing bijection f �→ f ∗ from the cells
of X to the cells of Y , with dim f + dim f ∗ = d for all f , such that the boundary maps of X equal
the coboundary maps of Y . In this case, we have an immediate duality on the Laplacian spectra:
stot

i (X) = stot
d−i(Y ) for all i. Moreover, for subsets T ⊆ Xi and U = { f ∗: f ∈ Xi\T }, the subcomplex

XT = T ∪ X(i−1) forms a spanning i-tree of X if and only if the subcomplex YU = U ∪ Y(d−i−1) forms
a spanning (d − i)-tree of Y (Proposition 6.1).2 From a matroid point of view, this is essentially the
statement that the matroid represented by the columns of ∂X,i is dual to the matroid represented by
the columns of ∂Y ,d−i ; the bases of these matroids are cellular spanning trees. (If X is a simplicial
complex, this matroid is known as a simplicial matroid; see, e.g., [5].)

The cellular dual of the n-cube is the n-dimensional cross-polytope. This is an instance of a com-
plete colorful complex, whose spanning tree enumerators were calculated by Adin [1]. In addition,
complete colorful complexes are matroid complexes (corresponding to products of rank-1 matroids).
Kook, Reiner and Stanton determined the Laplacian spectra of matroid complexes in [19]. We explore
the connection between all these results. In particular, we explain how to derive Adin’s formula from
the Kook–Reiner–Stanton formula together with the Cellular Matrix-Tree Theorem, and give an alter-
nate calculation of the (unweighted) spectra of cubes (Theorem 3.4) using duality together with Adin’s
formula.

2. Cellular spanning trees

2.1. Cell complexes

See Hatcher [15] for definitions and basic facts about cell complexes. We write Xi for the set of
all i-dimensional cells of X , and X(i) instead of Hatcher’s Xi for the i-skeleton X0 ∪ X1 ∪ · · · ∪ Xi .
The notation Xd indicates that X has dimension d. We borrow some standard terminology from the
theory of simplicial complexes: a cell of X not contained in the closure of any other cell is called a
facet of X , and we say that X is pure if all its facets have the same dimension.

Let R be a ring (if unspecified, assumed to be Z), and let Ci(X) denote the i-th cellular chain
group of X , i.e., the free R-module with basis {[F ]: F ∈ Xi}. We then have cellular boundary and
coboundary maps

∂X,i : Ci(X) → Ci−1(X),

∂∗
X,i : Ci−1(X) → Ci(X),

where we have identified cochains with chains via the natural inner product. We will abbreviate the
subscripts in the notation for boundaries and coboundaries whenever no ambiguity can arise.

We will often regard ∂i (resp. ∂∗
i ) as a matrix whose columns and rows (resp. rows and columns)

are indexed by Xi and Xi−1 respectively.
The i-th (reduced) homology group of X is H̃i(X) = ker(∂i)/ im(∂i+1), and the i-th (reduced) Betti

number β̃i(X) is the rank of the largest free R-module summand of H̃i(X).

2.2. Laplacians

For 0 � i � dim X , define linear operators Lud
X,i , Ldu

X,i , Ltot
X,i on the vector space Ci(X) by

Lud
X,i = ∂i+1∂

∗
i+1 (the up-down Laplacian),

2 As pointed out by a referee, YU = { f ∗: f /∈ XT }, a relationship reminiscent of Alexander duality for simplicial complexes.
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Ldu
X,i = ∂∗

i ∂i (the down-up Laplacian),

Ltot
X,i = Lud

X,i + Ldu
X,i (the total Laplacian).

Let sud
i (X), sdu

i (X) and stot
i (X) denote the spectra of the respective Laplacians, that is, the multisets

of their eigenvalues. Each of these multisets has cardinality |Xi| (counting multiplicities), because the
Laplacians can be represented by symmetric square matrices of that size. Instead of working with
multisets, it is often convenient to record the eigenvalues by the generating functions

E•
i (X; r) =

∑
λ∈s•i (X)

rλ,

E•(X; r, t) =
dim X∑

i=0

∑
λ∈s•i (X)

tirλ

where • ∈ {ud,du, tot}.
The various Laplacian spectra are related by the identities

Eud
i (X; r)

◦= Edu
i+1(X; r), (3a)

Etot
i (X; r)

◦= Eud
i (X; r) + Edu

i (X; r) = Eud
i (X; r) + Eud

i−1(X; r), (3b)

Eud
i (X; r)

◦= Etot
i (X; r) − Eud

i−1(X; r), (3c)

[9, Eq. (3.6)], where f
◦= g means that the two polynomials f , g are equal up to their constant

coefficients. It follows that

Edu
i+1(X; r)

◦= Eud
i (X; r)

◦=
i∑

j=0

(−1)i− j Etot
j (X; r). (4)

Therefore, each of the three families of generating functions{
Etot

i (X; r): 0 � i � dim X
}
,

{
Eud

i (X; r): 0 � i � dim X
}
,

{
Edu

i (X; r): 0 � i � dim X
}

determines the other two. (The constant coefficients, which represent the multiplicity of the zero
eigenvalue, can always be found by observing that Eud

i (X,1) = Edu
i (X,1) = Etot

i (X,1) = |Xi|.)
The bookkeeping differs slightly from simplicial complexes: each cell in a cell complex has di-

mension � 0, whereas every simplicial complex includes the (−1)-dimensional face ∅. Therefore, for
instance, Edu

0 (X,q)
◦= 0 for all X .

2.3. Product and sum formulas for the total Laplacian

For this section, it is convenient to regard the boundary map of a cell complex X as a linear
endomorphism ∂X : C(X) → C(X), where C(X) = ⊕

i Ci(X). That is, ∂X = ∑
i ∂X,i ; equivalently, for

each i, ∂X,i is the restriction of ∂X to the group Ci(X) of cellular i-chains.
If X and Y are disjoint cell complexes, then

Etot(X ∪ Y ; r, t) = Etot(X; r, t) + Etot(Y ; r, t),

because the k-th total boundary map (resp., Laplacian) of X ∪ Y is just the direct sum of the corre-
sponding boundary maps (resp., Laplacians) of X and Y .
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Let Z = X × Y . Then the set of k-cells of Z is

Zk =
k⋃

i=0

Xi × Yk−i,

and on the level of chain groups we have

Ck(Z) =
k⊕

i=0

Ci(X) ⊗ Ck−i(Y ).

The boundary map ∂Z is defined as follows. Let f ∈ Xi and g ∈ Yk−i . Then ( f , g) ∈ Zk , and the bound-
ary map acts on the corresponding cellular chain [ f ] ⊗ [g] ∈ Ck(Z) by dim f = i and dim g = k − i,

∂Z
([ f ] ⊗ [g]) = ∂X [ f ] ⊗ [g] + (−1)dim f [ f ] ⊗ ∂Y [g].

More simply, we may write

∂Z =
k∑

i=0

∂X ⊗ id+(−1)i id⊗∂Y , ∂∗
Z =

k∑
i=0

∂∗
X ⊗ id+(−1)i id⊗∂∗

Y .

From this we calculate

Lud
Z = ∂Z ∂∗

Z = (−1)i−1∂X ⊗ ∂∗
Y + Lud

X ⊗ id + id ⊗Lud
Y + (−1)i∂∗

X ⊗ ∂Y ,

Ldu
Z = ∂∗

Z ∂Z = (−1)i∂X ⊗ ∂∗
Y + Ldu

X ⊗ id+ id ⊗Ldu
Y + (−1)i−1∂∗

X ⊗ ∂Y ,

Ltot
Z = Ltot

X ⊗ id+ id ⊗Ltot
Y .

That is, the matrix for Ltot
Z is block-diagonal, with blocks

Ltot
X,0 ⊗ id + id ⊗Ltot

Y ,k, Ltot
X,1 ⊗ id+ id ⊗Ltot

Y ,k−1, . . . , Ltot
X,k ⊗ id + id ⊗Ltot

Y ,0.

Therefore,

stot
k (Z) = {

λ + μ: λ ∈ stot
i (X), μ ∈ stot

j (Y ), i + j = k
}

as multisets. From this we obtain the following product formula.

Theorem 2.1. Let X , Y be cell complexes. Then

Etot(X × Y ; r, t) = Etot(X; r, t)Etot(Y ; r, t).
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2.4. Spanning trees

Definition 2.2. Let Xd be a cell complex, and let k � d. A cellular spanning k-tree (for short, CST or
k-CST) of X is a k-dimensional subcomplex Y ⊆ X such that Y(k−1) = X(k−1) and

H̃k(Y ) = 0, (5a)∣∣H̃k−1(Y )
∣∣ < ∞, and (5b)

|Yk| = |Xk| − β̃k(X) + β̃k−1(X). (5c)

We write Tk(X) for the set of all k-CST’s of X , sometimes omitting the subscript if k = d. Note that
Tk(X) = Tk(X( j)) for all j � k.

A 0-dimensional CST is just a vertex of X . If X is a connected 1-dimensional cell complex—that
is, a connected graph—then the definition of 1-CST coincides with the usual definition of spanning
tree: a spanning subgraph of X that is acyclic, connected, and has one fewer edge than the number
of vertices in X .

Proposition 2.3. Let Y ⊆ X be a k-dimensional subcomplex with Y(k−1) = X(k−1) . Then any two of the condi-
tions (5a), (5b), (5c) together imply the third.

The proof is identical to that of [10, Proposition 3.5].

Definition 2.4. A cell complex X is acyclic in positive codimension, or APC for short, if β̃ j(X) = 0 for all
j < dim X .

As in the setting of simplicial complexes, APC-ness is the “right” analogue of connectedness for
graphs, in the following sense.

Proposition 2.5. A cell complex has a cellular spanning tree if and only if it is APC.

The proof is identical to that of [10, Proposition 3.7].

2.5. The Cellular Matrix-Tree Theorem

Throughout this section, let Xd be an APC cell complex with d � 1. Define

τk = τk(X) =
∑

Y ∈Tk(X)

∣∣H̃k−1(Y )
∣∣2

for 0 � k � d,

πk = πk(X) =
∏

0 �=λ∈sud
k−1(X)

λ for 1 � k � d.

Observe that τ0 = |X0|, because a 0-dimensional CST is just a vertex. In addition, we define

π0 = π0(X) = |X0|, π−1 = π−1(X) = 1.

While it might seem more consistent to define π0 = 1 (because sud
−1(X) = ∅), several subsequent

enumeration formulas (such as Corollary 3.5 and Theorem 6.2) can be stated much more conveniently
with this convention for π0. (By way of motivation, in the case of a simplicial complex on n vertices
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(see [10]), it is in fact true that π0 = n, because of the presence of a (−1)-dimensional face; the
Laplacian Lud

−1 is not a void matrix, but rather the 1 × 1 matrix with single entry n.)

Abbreviate β̃i = β̃i(X) and ∂ = ∂X,d . Let T be a set of d-cells of X of cardinality |Xd| − β̃d + β̃d−1 =
|Xd| − β̃d , and let S be a set of (d − 1)-cells such that |S| = |T |. Define

XT = T ∪ X(d−1), S̄ = X(d−1)\S, X S̄ = S̄ ∪ X(d−2),

and let ∂S,T be the square submatrix of ∂ with rows indexed by S and columns indexed by T .

Proposition 2.6. The matrix ∂S,T is nonsingular if and only if XT ∈ Td(X) and X S̄ ∈ Td−1(X).

Proof. We may regard ∂S,T as the top boundary map of the d-dimensional relative complex Γ =
(XT , X S̄). So ∂S,T is nonsingular if and only if H̃d(Γ ) = 0. Consider the long exact sequence

0 → H̃d(X S̄) → H̃d(XT ) → H̃d(Γ ) → H̃d−1(X S̄) → H̃d−1(XT ) → H̃d−1(Γ ) → ·· · . (6)

If H̃d(Γ ) �= 0, then H̃d(XT ) and H̃d−1(X S̄) cannot both be zero. This proves the “only if ” direction.
If H̃d(Γ ) = 0, then H̃d(X S̄ ) = 0 (since dim X S̄ = d − 1), so (6) implies H̃d(XT ) = 0. Therefore XT

is a d-tree, because it has the correct number of facets. Hence H̃d−1(XT ) is finite. Then (6) implies
that H̃d−1(X S̄) is finite. In fact, it is zero because the top homology group of any complex must be
torsion-free. Meanwhile, X S̄ has the correct number of facets for a (d − 1)-CST of X , proving the “if ”
direction. �
Proposition 2.7. If ∂S,T is nonsingular, then

|det ∂S,T | = |H̃d−1(XT )| · |H̃d−2(X S̄)|
|H̃d−2(XT )| = |H̃d−1(XT )| · |H̃d−2(X S̄)|

|H̃d−2(X)| .

Proof. As before, we interpret ∂S,T as the boundary map of the relative complex Γ = (XT , X S̄). So
∂S,T is a map from Z|T | to Z|T | , and Z|T |/∂S,T (Z|T |) is a finite abelian group of order |det ∂S,T |. On
the other hand, since Γ has no faces of dimension � d − 2, its lower boundary maps are all zero, so
|det ∂S,T | = |H̃d−1(Γ )|. Since H̃d−2(XT ) is finite, the desired result now follows from the piece

0 → H̃d−1(XT ) → H̃d−1(Γ ) → H̃d−2(X S̄) → H̃d−2(XT ) → 0 (7)

of the long exact sequence (6). �
We now can state our main result connecting cellular spanning tree enumeration with Laplacian

eigenvalues.

Theorem 2.8 (Cellular Matrix-Tree Theorem). Let d � 1 and let Xd be an APC cell complex. Then:

(1) We have

πd(X) = τd(X)τd−1(X)

|H̃d−2(X)|2 .
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(2) Suppose that d > 0. Let L = Lud
X,d−1 , let U be the set of facets of a (d − 1)-CST of X , and let LU denote the

reduced Laplacian obtained by deleting the rows and columns of L corresponding to U . Then

τd(X) = |H̃d−2(X)|2
|H̃d−2(XU )|2 det LU .

Proof of Theorem 2.8 (1). The Laplacian L is an |Xd−1| by |Xd−1| square matrix. Since X is APC, we
have rank L = |Xd| − β̃d = |Xd| − β̃d + β̃d−1. Let χ(L; y) = det(yI − L) be the characteristic polynomial
of L (where I is an identity matrix of the same size), so that πd(X) is given up to sign by the
coefficient of y|Xd−1|−|Xd|+β̃d in χ(L; y). Equivalently,

πd =
∑

S⊆Xd−1|S|=rank L

det LU =
∑

S⊆Xd−1

|S|=|Xd|−β̃d

det LU (8)

where U = Xd−1\S in each summand. By the Binet–Cauchy formula, we have

det LU =
∑

T ⊆Xd|T |=|S|

(det ∂S,T )
(
det ∂∗

S,T

) =
∑

T ⊆Xd|T |=|S|

(det ∂S,T )2. (9)

Combining (8) and (9), applying Proposition 2.6, and interchanging the sums, we obtain

πd =
∑

T : XT ∈Td(X)

∑
S: X S̄∈Td−1(X)

(det ∂S,T )2

and now applying Proposition 2.7 yields

πd =
∑

T : XT ∈Td(X)

∑
S: X S̄∈Td−1(X)

( |H̃d−1(XT )| · |H̃d−2(X S̄)|
|H̃d−2(X)|

)2

=
(
∑

T : XT ∈Td(X) |H̃d−1(XT )|2)(∑S: X S̄∈Td−1(X) |H̃d−2(X S̄)|)
|H̃d−2(X)|2

as desired. �
In order to prove the “reduced Laplacian” part of Theorem 2.8, we first need the following lemma.

Lemma 2.9. Let U be the set of facets of a (d − 1)-CST of X , and let S = Xd−1\U . Then |S| = |Xd| − β̃d(X),
the number of facets of a d-CST of X .

Proof. Let Y = X(d−1); in particular,

|Y�| = |X�| for � � d − 1 and β̃�(Y ) = β̃�(X) for � � d − 2. (10)

Therefore, |U | = |Yd−1| − β̃d−1(Y ) + β̃d−2(Y ) = |Xd−1| − β̃d−1(Y ), so |S| = β̃d−1(Y ) by Proposition 2.3.
Meanwhile, the Euler characteristics of X and Y are
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χ(X) =
d∑

i=0

(−1)i|Xi | =
d∑

i=0

(−1)i β̃i(X),

χ(Y ) =
d−1∑
i=0

(−1)i|Yi | =
d−1∑
i=0

(−1)i β̃i(Y ).

By (10), we see that

χ(X) − χ(Y ) = (−1)d|Xd| = (−1)dβ̃d(X) + (−1)d−1β̃d−1(X) − (−1)d−1β̃d−1(Y )

from which we obtain |Xd| = β̃d(X) − β̃d−1(X) + β̃d−1(Y ). Since X is APC, we have β̃d−1(X) = 0, so
|S| = β̃d−1(Y ) = |Xd| − β̃d(X) as desired. �
Proof of Theorem 2.8 (2). By the Binet–Cauchy formula, we have

det LU =
∑

T : |T |=|S|
(det ∂S,T )

(
det ∂∗

S,T

) =
∑

T : |T |=|S|
(det ∂S,T )2.

By Lemma 2.9 and Proposition 2.6, ∂S,T is nonsingular exactly when XT ∈ Td(X). Hence Proposi-
tion 2.7 gives

det LU =
∑

T : XT ∈Td(X)

( |H̃d−1(XT )| · |H̃d−2(XU )|
|H̃d−2(X)|

)2

= |H̃d−2(XU )|2
|H̃d−2(X)|2

∑
T : XT ∈Td(X)

∣∣H̃d−1(XT )
∣∣2 = |H̃d−2(XU )|2

|H̃d−2(X)|2 τd(X),

which is equivalent to the desired formula. �
We will often work with complexes that are in fact Z-acyclic in positive codimension (as opposed

to merely Q-acyclic), and whose Laplacians have nice forms. In this case, the following formula is
often the most convenient way to obtain tree enumerators from Laplacian eigenvalues.

Corollary 2.10. Let Xd be a cell complex such that H̃i(X,Z) = 0 for all i < d. Then, for every k � d, we have

τk =
k∏

i=0

π
(−1)k−i

i .

Proof. Applying Theorem 2.8 (1) repeatedly, we obtain

τk = πk

τk−1
= πk

πk−1
τk−2 = · · · =

(
k∏

i=1

π
(−1)k−i

i

)
τ

(−1)k

0 =
k∏

i=0

π
(−1)k−i

i . �

For later use (when we study duality in Section 6), define

ωk = ωk(X) =
∏

0 �=λ∈stot(X)

λ.
k
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Note that Eq. (3b) implies that ωk = πkπk+1 for k > 0. Moreover, ω0 = π1. Solving for the π ’s in terms
of the ω’s gives

πi =
i−1∏
j=0

ω
(−1)i− j+1

j

and substituting this formula into Corollary 2.10 gives

τk =
k∏

i=0

i−1∏
j=0

ω
(−1)k− j+1

j =
k−1∏
j=0

k∏
i= j+1

ω
(−1)k− j+1

j =
k−1∏
j=0

ω

∑k
i= j+1(−1)k− j+1

j

=
k−1∏
j=0

ω
(−1)k− j+1(k− j)
j . (11)

2.6. The Weighted Cellular Matrix-Tree Theorem

As before, let d � 1 and let Xd be a cell complex that is APC. Introduce an indeterminate x f for
each f ∈ Xd , and let X f = x2

f . For every T ⊆ Xd , let xT = ∏
f ∈T x f and let XT = x2

T . To construct the

weighted boundary matrix ∂̂X,d , we multiply each column of ∂X,d by x f , where f is the corresponding
d-cell of X . We can accordingly define weighted versions of the coboundary maps, Laplacians, etc., of
Section 2.5, as well as of the invariants πk and τk . We will notate each weighted object by placing
a hat over the symbol for the corresponding unweighted quantity. Thus π̂k is the product of the
nonzero eigenvalues of L̂ud

X,k−1 (for k � 1), and

τ̂k = τ̂k(X) =
∑

Y ∈Tk(X)

∣∣H̃k−1(Y )
∣∣2

XY .

Meanwhile, any unweighted quantity can be recovered from its weighted analogue simply by setting
x f = 1 for all f ∈ Xd .

Proposition 2.11. Let T ⊆ Xd and S ⊆ Xd−1 , with |T | = |S| = |Xd| − β̃d. Then det ∂̂S,T = xT det ∂S,T is
nonzero if and only if XT ∈ Td(X) and X S̄ ∈ Td−1(X). In that case,

±det ∂̂S,T = |H̃d−1(XT )| · |H̃d−2(X S̄)|
|H̃d−2(XT )| xT = |H̃d−1(XT )| · |H̃d−2(X S̄)|

|H̃d−2(X)| xT . (12)

Proof. The first claim follows from Proposition 2.6, and the second from Proposition 2.7. �
It is now straightforward to adapt the proofs of both parts of Theorem 2.8 to the weighted setting.

Theorem 2.12. Let d � 1, let Xd be an APC cell complex, and let L̂ = L̂ud
X,d−1 .

(1) We have

π̂d(X) = τ̂d(X)τd−1(X)

|H̃d−2(X)|2 .
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(2) Let U be the set of facets of a (d − 1)-CST of X , and let L̂U be the reduced Laplacian obtained by deleting
the rows and columns of L̂ corresponding to U . Then

τ̂d(X) = |H̃d−2(X)|2
|H̃d−2(XU )|2 det L̂U .

3. Cubical complexes

We now specialize from arbitrary cell complexes to cubes and cubical complexes. We retain the
notation and terminology of Section 2 for cell complexes.

The n-cube Q n is the face poset of the geometric n-cube Q̃ n , the convex hull of the 2n points in Rn

whose coordinates are all 0 or 1. We will usually blur the distinction between the polytope Q̃ n and its
face poset Q n . The faces of Q n are ordered n-tuples f = ( f1, . . . , fn), where f i ∈ {0,1,�}. Intuitively,
we think of � as the open interval (0,1). For example, the cell (0,�,1,�) ∈ Q 4 corresponds to the
2-cell

{0} × (0,1) × {1} × (0,1) ⊂ Q̃ 4 ⊂ R4.

The order relation in Q n is as follows: f � g iff f i � gi for all i ∈ [n], where 0 < �; 1 < �; and 0, 1
are incomparable. (If necessary, we can regard Q n as containing a unique minimal element ∅, with
undefined direction and dimension −1.)

The direction of a face f is defined as dir( f ) = {i ∈ [n]: f i = �}, so that dim( f ) = |dir( f )|. Notice
that dir( f ) ⊆ dir(g) whenever f � g , although the converse is not true. The poset Q n is ranked, with(n

i

)
2n−i faces of rank i for 0 � i � n.
A proper cubical complex X is an order ideal in Q n . This is a combinatorial object with a natural

geometric realization X̃ as the union of the corresponding faces of the polytope Q̃ n . Note that this is
a much more restrictive definition of “cubical complex” than as simply a cell complex all of whose
faces are combinatorial cubes. The reason for working with this smaller class of cubical complexes is
that the cells and boundary maps can be described combinatorially, as we now explain.

Let f and g be faces of Q n of dimensions i − 1 and i respectively. If f � g , then we may write
dir(g) = {a1, . . . ,ai}, dir( f ) = {a1, . . . , â j, . . . ,ai}, with both direction sets listed in increasing order.
Then the relative orientation of the pair f , g is

ε( f , g) =
{

(−1) j if fa j = 0,

(−1) j+1 if fa j = 1.

Meanwhile, if f � g , then we set ε( f , g) = 0.
Let R be a coefficient ring (typically Z or a field), and let Ci(X) = Ci(X, R) be the free abelian

group on generators [ f ] for f ∈ Xi . The i-th cubical boundary map of X is

∂X,i : Ci(X) → Ci−1(X),

[g] �→
∑

f ∈Xi−1

ε( f , g)[ f ]

and the i-th cubical coboundary map of X is

∂∗
X,i : Ci−1(X) → Ci(X),

[ f ] �→
∑
g∈X

ε( f , g)[g].

i
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As before, we define the i-th up-down, down-up, and total cubical Laplacians as respectively

Lud
X,i = ∂X,i+1∂

∗
X,i+1, Ldu

X,i = ∂∗
X,i∂X,i, Ltot

X,i = Lud
X,i + Ldu

X,i .

The map ∂X,i is in fact the cellular boundary map of Q n as a cell complex; see [12, §4]. So the
techniques of Section 2 can be applied to count cubical spanning trees.

Example 3.1. A fundamental example is the complex X = Q 1, with X0 = {0,1}, X1 = {�}. The bound-
ary, coboundary and Laplacian matrices of X are

∂1 =
[−1

1

]
, Lud

0 = Ltot
0 =

[
1 −1

−1 1

]
,

∂∗
1 = [−1 1 ] , Ldu

1 = Ltot
1 = [ 2 ] ,

and so its spectrum polynomial is

Etot(Q 1; r, t) =
dim X∑

i=0

∑
λ∈stot

i (X)

tirλ = 1 + r2 + tr2. (13)

3.1. Prisms

We now consider the important prism operation, which is the cubical analogue of coning a simpli-
cial complex.

Definition 3.2. Let X ⊆ Q n be a proper cubical complex. The prism over X is the subcomplex of Q n+1
defined by

PX = {
f = ( f1, . . . , fn+1) ∈ Q n+1: ( f1, . . . , fn) ∈ X

}
.

Note that

(PX)i = {
( f1, . . . , fn,0), ( f1, . . . , fn,1): ( f1, . . . , fn) ∈ Xi

}
∪ {

f = ( f1, . . . , fn,�): ( f1, . . . , fn) ∈ Xi−1
}
.

As a cell complex, PX is just the product X × Q 1. Therefore, we can use the product formula,
Theorem 2.1, to write down the Laplacian spectra of PX in terms of those of X . The formula can be
stated in several equivalent ways, all of which will be useful in different contexts.

Theorem 3.3. Let Xd be a proper cubical complex. Then

Etot(PX; r, t) = (
1 + r2 + tr2)Etot(X; r, t), (14a)

Etot
i (PX; r) = (

1 + r2)Etot
i (X; r) + r2 Etot

i−1(X; r), (14b)

stot
i (PX) = {

λ: λ ∈ stot
i (X)

} ∪ {
λ + 2: λ ∈ stot

i (X)
} ∪ {

μ + 2: μ ∈ stot
i−1(X)

}
, (14c)

sud
i (PX)

◦= {
λ: λ ∈ sud

i (X)
} ∪ {

λ + 2: λ ∈ stot
i (X)

}
, (14d)

for all 0 � i � d, where ∪ denotes multiset union.
In particular, the prism operation preserves Laplacian integrality.
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Proof. Eq. (14a) follows from Theorem 2.1 together with Eq. (13), and (14b) and (14c) are just
rephrasings of (14a).

To prove (14d), we proceed by induction on i. For i = 0, the formula follows from (14c), because
sud

0 (X) = stot
0 (X) and stot

−1(X) = ∅. For i � 1, we have

sud
i (PX)

◦= stot
i (PX)\sud

i−1(PX)

= stot
i (PX)\(sud

i−1(X) ∪ {
λ + 2: λ ∈ stot

i−1(X)
})

◦= sud
i (X) ∪ {

λ + 2: λ ∈ stot
i (X)

} ∪ sud
i−1(X) ∪ {

λ + 2: λ ∈ stot
i−1(X)

}
\(sud

i−1(X) ∪ {
λ + 2: λ ∈ stot

i−1(X)
})

= sud
i (X) ∪ {

λ + 2: λ ∈ stot
i (X)

}
. �

3.2. Laplacian spectra of cubes

As a consequence of Theorem 3.3, we obtain a formula for the Laplacian eigenvalues of Q n , and
thus for the torsion-weighted spanning tree enumerators τk(Q n).

Theorem 3.4. Cubes and their skeletons are Laplacian integral. Specifically, for all n � 1, we have

Etot(Q n; r, t) = (
1 + r2 + tr2)n =

n∑
k=0

tk
(

n

k

)
r2k(1 + r2)n−k

, (15)

Eud(Q n; r, t) =
n−1∑
k=0

tk

[
n∑

j=k+1

(
n

j

)(
j − 1

k

)
r2 j

]
. (16)

Proof. The formula for Etot
k (Q n; r, t) follows from Theorem 3.3, since Q n can be identified with the

n-fold product Q 1 × · · · × Q 1 as cubical complexes (indeed, as cell complexes).
By (3c), we can obtain Eud(Q n; r, t) from Etot(Q n; r, t) by deleting all the r-free terms (i.e., those

which correspond to zero eigenvalues) and dividing by 1 + t . The only such term is a single 1 (from
the k = 0 summand). Therefore,

Eud(Q n; r, t) = (1 + r2(1 + t))n − 1

1 + t

= (
∑n

j=0

(n
j

)
r2 j(1 + t) j) − 1

1 + t
=

∑n
j=1

(n
j

)
r2 j(1 + t) j

1 + t

=
n∑

j=1

(
n

j

)
r2 j(1 + t) j−1 =

n∑
j=1

(
n

j

)
r2 j

j−1∑
k=0

(
j − 1

k

)
tk

=
n−1∑
k=0

tk

[
n∑

j=k+1

(
n

j

)(
j − 1

k

)
r2 j

]
. �

Corollary 3.5. Let n � 1 and 1 � k � n. Then

τk(Q n) =
n∏

j=k+1

(2 j)(
n
j)(

j−2
k−1).



262 A.M. Duval et al. / Advances in Applied Mathematics 46 (2011) 247–274
Proof. Theorem 3.4 implies that

πi(Q n) =
n∏

j=i

(2 j)(
n
j)(

j−1
i−1) =

n∏
j=1

(2 j)(
n
j)(

j−1
i−1)

for 0 < i � n (adopting the convention that
(a

b

) = 0 for a < b). Applying the alternating product for-
mula, Corollary 2.10, gives

τk(Q n) =
k∏

i=0

π
(−1)k−i

i = 2n(−1)k
k∏

i=1

[
n∏

j=1

(2 j)(
n
j)(

j−1
i−1)

](−1)k−i

= 2n(−1)k
n∏

j=1

(2 j)(
n
j)(

∑k
i=1(−1)k−i( j−1

i−1)).

The j = 1 factor in this product simplifies to 2n(−1)k−1
, canceling the initial factor of 2n(−1)k

. For
2 � j � k, the sum in the exponent vanishes, and for k + 1 � j � n, it simplifies to

( j−2
k−1

)
(this can be

seen by repeatedly applying Pascal’s identity), giving the desired formula. �
4. Weighted Laplacians of cubes

In this section, we study a weighting that associates a Laurent monomial to each face of Q n , giving
finer information about Laplacian spectra of cubes.

4.1. Algebraically weighted eigenvalues

Let X ⊆ Q n be a proper cubical complex, and introduce commuting indeterminates xi , yi , qi for
i ∈ N. Weight each face f = ( f1, . . . , fn) ∈ Q n by the monomial

ξ f =
∏

i: f i=�
qi

∏
i: f i=0

xi

∏
i: f i=1

yi .

Define the algebraically weighted cubical boundary map by

∂̂X,k : Ck(X) → Ck−1(X),

[g] �→
∑

f ∈Xk−1

ε( f , g)
ξg

ξ f
[ f ] (17)

so that the corresponding weighted coboundary map is

∂̂∗
X,k : Ck−1(X) → Ck(X),

[ f ] �→
∑
g∈Xk

ε( f , g)
ξg

ξ f
[g]. (18)

It is easy to check that ∂̂ ∂̂ = ∂̂∗∂̂∗ = 0. (This vital equality would fail if we had defined the weighted
boundary more “combinatorially naturally” by [g] �→ ∑

f ∈X ε( f , g)ξg[ f ].)

k−1
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The k-th up-down, down-up, and total algebraically weighted cubical Laplacians are respectively

L̂ud
X,k = ∂̂X,k+1∂̂

∗
X,k+1, L̂du

X,k = ∂̂∗
X,k∂̂X,k, L̂tot

X,k = L̂ud
X,k + L̂du

X,k.

As in the unweighted case, it is convenient to record the eigenvalues as generating functions:

Ê•
k(X; r) =

∑
λ∈ŝ•k (X)

rλ,

Ê•(X; r, t) =
dim X∑
k=0

∑
λ∈ŝ•k (X)

tkrλ,

where • ∈ {ud,du, tot}.

Example 4.1. Consider the complex X = Q 1 (see Example 3.1), whose edge we regard as lying in
direction i. The vertices have weights xi and yi , and the edge has weight qi . The weighted boundary,
coboundary and Laplacian matrices are thus

∂̂1 =
[−qi/xi

qi/yi

]
, L̂ud

0 = Ltot
0 =

[
q2

i /x2
i −q2

i /xi yi

−q2
i /xi yi q2

i /y2
i

]
,

∂̂∗
1 = [−qi/xi qi/yi ] , L̂du

1 = Ltot
1 = [

q2
i /x2

i + q2
i /y2

i

]
,

and so the weighted spectrum polynomial is

Êtot(Q 1; r, t) =
∑

i

∑
λ∈stot

i (Q 1)

tirλ = 1 + rui + trui (19)

where

ui = q2
i

x2
i

+ q2
i

y2
i

.

Just as in the unweighted setting, the total eigenvalue generating function Êtot(X; r, t) is multi-
plicative on products of cubical complexes, that is,

Êtot(X × Y ; r, t) = Êtot(X; r, t)Êtot(Y ; r, t). (20)

This formula is proved in exactly the same way as its unweighted analogue Theorem 2.1 (which can
be recovered from (20) by setting qi = xi = yi = 1). In particular, if X ⊆ Q n−1 is a proper cubical
complex, then the prism PX ⊆ Q n is just the product of X with a copy of Q 1 lying in direction n.
Hence

Êtot(PX; r, t) = (
1 + run + trun

)
Êtot(X; r, t). (21)

Note that specializing qi = xi = yi = 1 makes ui = 2, and so recovers the first assertion of Theorem 3.3.
The corresponding recurrence for the multisets of eigenvalues is

ŝtot
i (PX) = {

λ: λ ∈ ŝtot
i (X)

} ∪ {
λ + un: λ ∈ ŝtot

i (X)
} ∪ {

μ + un: μ ∈ ŝtot
i−1(X)

}
. (22)
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We now calculate the eigenvalues of the weighted Laplacians of the full cube Q n .

Theorem 4.2. For all n � 1, we have

Êtot(Q n; r, t) =
n∏

k=1

(
1 + ruk + truk

) =
n∑

i=0

ti

[
n∑

k=i

(
k

i

)
ek

]
, (23)

Êud(Q n; r, t) =
n∑

j=1

(1 + t) j−1e j =
n−1∑
i=0

ti

[
n∑

j=i+1

(
j − 1

i

)
e j

]
, (24)

where e j denotes the j-th elementary symmetric function in the forms ru1 , . . . , run .

Proof. The first equality of (23) follows from iterating the weighted product formula (20). Extracting
the ti coefficient to find Etot

i (Q n; r) and abbreviating u A = ∑
i∈A ui for A ⊆ [n] we have

Êtot
i (Q n; r) =

∑
A⊆[n]
|A|=i

( ∏
j∈A

ru j

)( ∏
j /∈A

(
1 + ru j

)) =
∑

A⊆[n]
|A|=i

ru A
∑

B⊆[n]\A

ruB

=
n∑

k=i

∑
C⊆[n]
|C |=k

∑
A⊆C
|A|=i

ruC =
n∑

k=i

∑
C⊆[n]
|C |=k

(
k

i

)
ruC

=
n∑

k=i

(
k

i

)
ek

which is the second equality of (23).
Finally, by the weighted analogues of the equalities (3c), we can obtain Êud(Q n; r, t) from

Êtot(Q n; r, t) by deleting all the r-free terms (i.e., those which correspond to zero eigenvalues) and
dividing by 1 + t:

Êud(Q n; r, t) = (
∏n

k=1 1 + (1 + t)ruk ) − 1

1 + t

=
n∑

j=1

(1 + t) j−1e j =
n∑

j=1

j−1∑
i=0

(
j − 1

i

)
tie j

=
n−1∑
i=0

ti

[
n∑

j=i+1

(
j − 1

i

)
e j

]
. �

Extracting the ti coefficient from formula (24) of Theorem 4.2 gives

Êud
i (Q n; r) =

∑
A⊆[n]

|A|�i+1

(|A| − 1

i

)
ru A .
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That is, the nonzero eigenvalues of L̂ud
i (Q n) are the expressions u A , each occurring with multiplic-

ity
(|A|−1

i

)
. Therefore, the product of nonzero eigenvalues—that is, the algebraically weighted analogue

of the invariant πi(Q n)—is

∏
λ∈ŝud

i (Q n)

λ �=0

λ =
∏

A⊆[n]
|A|�i+1

u
(|A|−1

i )
A =

∏
A⊆[n]

|A|�i+1

[∑
j∈A

(q2
j

x2
j

+ q2
j

y2
j

)](|A|−1
i )

. (25)

4.2. Weighted tree enumeration

We now consider the polynomial generating function

τ̂k(X) =
∑

Y ∈Tk(X)

∏
g∈Yk

ξg

for a proper cubical complex X . As usual, the main case of interest is X = Q n . In principle, the
invariants τ̂k(Q n) can be computed in terms of the eigenvalues of weighted Laplacians, using The-
orem 2.12. Those “combinatorially weighted” Laplacians look similar to (in fact, simpler than) the
algebraically weighted Laplacians discussed in the previous section, but they do not come from well-
defined boundary maps (i.e., whose square is zero) and their eigenvalues are not even polynomials.
On the other hand, there is strong evidence for the following formula.

Conjecture 4.3.

τ̂k(Q n) = (q1 · · ·qn)
∑n−1

i=k−1 (n−1
i )( i−1

k−2)
∏

A⊆[n]
|A|�k+1

[∑
i∈A

(
qi(xi + yi)

∏
j∈A\i

x j y j

)](|A|−2
k−1 )

.

The conjectured formula is similar to Eq. (25): specifically, clearing denominators from the square-
bracketed expression in (25) indexed by A ⊆ [n] gives the corresponding factor indexed by A in the
right-hand side of the conjecture. Our original goal in proving formulas such as Theorem 4.2 was to
prove Conjecture 4.3 by translating between the algebraically and combinatorially weighted Lapla-
cians; this approach had succeeded in the case of shifted simplicial complexes [10], but it is not clear
how to do that here.

Conjecture 4.3 can be verified computationally for small values of n and k. The case k = 1 is
Theorem 3 of [20], and the case k = n − 1 can be checked directly, because an (n − 1)-spanning tree
of Q n is just a subcomplex generated by all but one of its (n − 1)-faces.

We suggest a possible avenue for proving Conjecture 4.3. First, note that the weighted spanning
tree enumerator is homogeneous in the variable sets {x1, y1,q1}, . . . , {xn, yn,qn}, so we lose no infor-
mation by setting q1 = · · · = qn = 1 on the right-hand side, obtaining the simpler formula

F (n,k) =
∏

A⊆[n]
|A|�k+1

[∑
i∈A

(
(xi + yi)

∏
j∈A\i

x j y j

)](|A|−2
k−1 )

.

Second, we observe that F (n,k) satisfies the recurrence

F (n,k) = G
([n],n − 1,k

)
F (n,n − 1)(

n−2
k−1)
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where

G(S,a,b) =
∏

A⊆S, |A|=a

F (A,b).

5. Shifted cubical complexes

Inspired by the notion of shifted simplicial complexes (see, e.g., [17,9]), we define the class of
shifted cubical complexes. These shifted cubical complexes share many properties with their simplicial
counterparts. In particular, they are Laplacian integral, constructible from a few basic operations, and
arise as order ideals with respect to a natural relation on direction sets. The guiding principle is that
directions in cubical complexes are analogous to vertices in simplicial complexes.

We first generalize our definitions slightly to be able to work with cubical complexes on arbitrary
direction sets. That is, if D is any set of positive integers, a cubical complex with direction set D is a
family X of ordered tuples ( f i)i∈D , where f i ∈ {0,1,�} for all i, closed under replacing �’s with 0’s
or with 1’s. The direction and dimension of faces are defined as before: dir( f ) = {i ∈ D: f i = �}, and
dim f = |dir( f )|. We will frequently need to regard the direction of a face as a list in increasing order;
in this case we write dir( f )< instead of dir( f ).

Definition 5.1. A shifted cubical complex is a proper cubical complex X ⊆ Q n that satisfies the following
conditions for every f , g ∈ {0,1,�}n with dim f = dim g:

(1) X contains the full 1-skeleton of Q n .
(2) If f ∈ X and dir( f ) = dir(g), then g ∈ X .
(3) If g ∈ X and dir( f )< precedes dir(g)< in component-wise partial order (that is, the i-th smallest

element of dir( f )< is less than or equal to that of dir(g)< for every i), then f ∈ X .

The first condition is analogous to the requirement that a simplicial complex “on vertex set V ”
actually contain each member of V as a vertex. In light of condition (2), it would be equivalent
to replace (1) with the condition that X contains at least one edge in every possible direction. The
second condition reflects a symmetry between the digits 0 and 1, while the last condition is the
cubical analogue of the definition of a shifted simplicial complex (as a complex whose faces, regarded
as collections of vertices, form an order ideal in component-wise partial order).

5.1. Near-prisms

Björner and Kalai [3] introduced the concept of near-cones, computed their homotopy type, and
showed that shifted simplicial complexes are near-cones. The cubical counterpart of a near-cone is
a near-prism. We develop the basic facts about near-prisms in parallel to the presentation of [9,
Section 5], in order to prove that shifted cubical complexes are Laplacian integral.

Throughout this section, let X ⊆ {0,1,�}n be a d-dimensional proper cubical complex. For a direc-
tion i ∈ [n], define the deletion and link with respect to i as follows:

deli X = { f \ f i: f ∈ X, f i �= �},
linki X = { f \ f i: f ∈ X, f i = �}.

The deletion and link in direction i are proper cubical complexes with direction set [n]\i. Mean-
while, given a complex X on direction set [n]\i, define the prism of X in direction i as follows:

Pi X = {
( f1, . . . , fn) ∈ {0,1,�}n: f \ f i ∈ X

}
.

If X ⊆ Q n−1, then the prism PX defined in Section 3.1 is Pn X in this notation.
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Observe that Pi X naturally contains two isomorphic copies of X : one consisting of all faces of X
with 0 inserted in the i-th digit, and one consisting of all faces of X with 1 inserted in the i-th digit.
We denote these subcomplexes by 0i X and 1i X respectively.

Definition 5.2. A cubical complex X is a near-prism in direction i if (1) the boundary of every face of
deli X is contained in linki X , and (2) both 0i(deli X) and 1i(deli X) are contained in X .

If X is a near-prism in direction i, then it admits the decomposition

X = 0i(deli X) ∪ 1i(deli X) ∪ Pi(linki X). (26)

The following fact is not difficult to prove directly from the definition of a shifted cubical complex.

Lemma 5.3. X is a shifted cubical complex iff X is a near-prism in direction 1 and both link1 X and del1 X are
shifted cubical complexes with respect to the direction set {2, . . . ,n}.

In particular, shifted cubical complexes are iterated near-prisms. As in [9], this characterization will
help describe the Laplacian eigenvalues of a shifted cubical complex.

First, we introduce notation to work with weakly decreasing sets of nonnegative integers, defined
up to

◦=-equivalence (i.e., with an indeterminate number of trailing zeroes). The symbol 2m will de-
note the sequence (2,2, . . . ,2) of length m. If a = (a1 � a2 � · · ·) and b = (b1 � b2 � · · ·) are two
sequences, then a + b denotes the sequence (a1 + b1 � a2 + b2 � · · ·). In particular, 2m + a is the
sequence derived from a by adding 2 to each of the first m entries of a, padding the end of a with 0’s
if necessary. For instance, 28 + (7,5,5,2,1)

◦= (9,7,7,4,3,2,2,2).
Let s(X) denote the sequence of nonzero eigenvalues of Lud

X,d−1, written in weakly decreasing order.

Theorem 5.4. Let Xd be a pure cubical complex which is a near-prism in direction 1, and let � denote the
number of facets of link1 X. If X is also a prism, then

s(X) = 2� + s(link1 X).

Otherwise,

s(X) = s(del1 X) ∪ (
2� + (

s(del1 X) ∪ s(link1 X)
))

.

Proof. First, suppose that X is not a prism. Then dim(del1 X) = d and dim(link1 X) = d − 1. Let X ′ =
del1 X . Since X is a pure near-prism, we see that

X ′
d = del1 X and X ′

d−1 = link1 X .

So (P1 X ′)d = 01 del1 X ∪ 11 del1 X ∪ P1 link1 X = X by Eq. (26) above. Therefore

sud
d−1(X) = sud

d−1

(
PX ′)

◦= sud
d−1

(
X ′) ∪ (

2|X ′
d−1| + stot

d−1

(
X ′))

◦= sud
d−1

(
X ′) ∪ (

2|X ′
d−1| + (

sud
d−1

(
X ′) ∪ sud

d−2

(
X ′)))

= sud
d−1(del1 X) ∪ (

2|(link1 X)d−1| + (
sud

d−1(del1 X) ∪ sud
d−2(link1 X)

))
, (27)

where the second line uses (14d), and all integer sequences are listed in weakly decreasing order.
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The proof is similar if X is a prism. In this case, X = PX ′ where dim X ′ = d − 1, and X ′ = link1 X ,
so again X ′

d−1 = link1 X . Eq. (27) then applies again, but sud
d−1(X ′) consists of all 0’s, because dim X ′ =

d − 1. Therefore

sud
d−1(X)

◦= 2|(link1 X)d−1| + sud
d−2(link1 X). �

Corollary 5.5. Shifted cubical complexes are Laplacian integral.

Proof. We proceed by induction on the number of directions. If a shifted cubical complex X has only
one direction, then X = Q 1, which is Laplacian integral by Theorem 3.4.

Now let X be a d-dimensional shifted cubical complex on more than one direction. Let Y be the
j-dimensional pure skeleton of X , i.e., the subcomplex consisting of the j-dimensional faces of X and all
of their subfaces. It is clear that sud

j−1(X)
◦= sdu

j (X)
◦= sdu

j (Y )
◦= sud

j−1(Y ), since sdu
j depends only on X j

and X j−1. Therefore, we only need to show that Y is Laplacian integral, but Y is pure by definition,
so we may apply Theorem 5.4. By induction, del1 Y and link1 Y are Laplacian integral, and we are
done. �

In the case of a shifted simplicial complex �, it is shown in [9] that sud(�) = dT (�), where dT is
the transpose of the vertex–facet degree sequence, and that dT satisfies the simplicial analogue of the
recursion of Theorem 5.4.

Problem 5.6. Is there an analogous notion of degree sequence for cubical complexes that is related to
the Laplacian spectrum?

5.2. Mirroring

Let � be a simplicial complex on vertex set [n]. The mirror of � is the cubical complex

M(�) = {
f ∈ Q n: dir( f ) ∈ �

}
.

Mirroring was first used by Coxeter [6] to study certain generalizations of regular polytopes; see [2,
Section 2.1] for a nice summary of its history and uses. It is not hard to see that the mirroring operator
takes the class of shifted simplicial complexes to the class of shifted cubical complexes. Mirroring also
behaves nicely with respect to other basic operations on simplicial and cubical complexes:

(1) M(Cone(�)) = P(M(�));
(2) M(�k) = (M(�))k;
(3) M(deli �) = deli M(�);
(4) M(linki �) = linki M(�);
(5) M(bd �) = bd M(�).

Here del and link have their usual meanings for simplicial complexes, i.e.,

deli � = {σ\i: σ ∈ �}, linki � = {σ\i: σ ∈ �, i ∈ σ },

and bd X denotes the union of the boundary faces of every face of X (equivalently, the set of non-
maximal faces of X ).

Furthermore, mirroring takes near-cones to near-prisms in the following sense. A simplicial near-
cone � with apex i has the property that bd(deli �) ⊆ linki �. In this case,

bd
(
deli M(�)

) = bd
(
M(deli �)

) = M
(
bd(deli �)

) ⊆ M(linki �) = linki M(�),
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and so we may construct a near-prism (as in (26)) from the cubical complexes deli M(�) and
linki M(�).

Unfortunately, mirroring does not seem to behave nicely with respect to trees or Laplacian eigen-
values. For instance, mirroring does not preserve the APC property. Thus, the mirror of a simplicial
complex with spanning trees will not necessarily have a spanning tree. Even the mirror of a pure
shifted simplicial complex is not necessarily APC. (For example, let � be the graph with vertices 1,
2, 3 and edges 12, 13. Then � is contractible, but M(�) is the prism over an empty square—
a 2-dimensional cell complex that is homotopy equivalent to a circle, hence not APC.) Mirroring
also does not in general preserve the property of being Laplacian integral. (For example, the pure
2-dimensional complex � with vertices 1, 2, 3, 4, 5 and facets 124, 125, 134, 135 is a matroid com-
plex, hence Laplacian integral by [19], but M(�) is not Laplacian integral.)

Although mirroring does not appear useful for enumerating spanning trees, or computing eigen-
values, it is possible that there are still interesting things to explore, such as the relations between
eigenvalues of a simplicial complex and its mirror, perhaps especially in special cases such as shifted
or near-cone/near-prism complexes.

5.3. Homotopy type

Björner and Kalai [3] proved that a simplicial near-cone is always homotopy equivalent to a wedge
of spheres, and that the number of spheres in each dimension is easily determined from its com-
binatorial structure. An immediate consequence is that shifted simplicial complexes are homotopy
equivalent to wedges of spheres, with the number of spheres in each dimension again easy to de-
scribe.

Given a near-prism X , define

Bi(X) = deli X\ linki X .

By the definition of near-prism, every face in 0i Bi(X) or in 1i Bi(X) is a facet of X .

Conjecture 5.7. If X is a near-prism in direction i, and deli X is homotopy equivalent to a wedge of spheres,

deli X �
∨

j

S
r j

j ,

then X is homotopy equivalent to a wedge of spheres. Specifically,

X �
∨

j

S
r j+ci, j

j ,

where ci, j is the number of j-dimensional cells in Bi(X).

Problem 5.8. Assuming the truth of Conjecture 5.7, give a combinatorial formula for the homotopy
type of a shifted cubical complex.

Eran Nevo [21] recently showed us a solution to Problem 5.8. In particular, his combinatorial for-
mula confirms Conjecture 5.7 when X is a shifted cubical complex.

5.4. Extremality

Shifted simplicial complexes derive their name from the existence of shifting operators which
associate a shifted complex to any simplicial complex. Shifted simplicial complexes exhibit certain
extremality properties with respect to invariants such as f -vectors, Betti numbers, degree sequence
and Laplacian eigenvalues: see, e.g., [9,17,18]. In [3], Björner and Kalai pose the problem of developing
shifting operators for arbitrary polyhedral complexes.
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Problem 5.9. Is there a natural notion of cubical shifting which associates a shifted cubical complex
to an arbitrary cubical complex? In what ways are shifted cubical complexes extremal in the class of
all (proper) cubical complexes?

6. Duality

In this section we examine pairs of dual complexes. We now extend the definition of cell complex
to allow the possibility that the complex contains the empty set as a (−1)-dimensional face. We
assume the reader is familiar with the basics of matroid theory and refer to [22] for an excellent
reference.

Let X and Y be cell complexes. We say that X and Y are dual if there is an inclusion-reversing
bijection f �→ f ∗ from the cells of X to the cells of Y such that, for some d, dim f + dim f ∗ = d
for every f . (Necessarily, then, dim X = d + 1 if Y contains the empty set as a face, and dim X = d
otherwise; similarly, dim Y = d + 1 if X contains the empty set as a face, and dim Y = d otherwise.)
We also require that the boundary maps of X equal the coboundary maps of Y : that is, if we extend
the duality bijection to all cellular chains by linearity, then

∂X ( f ) = ∂∗
Y

(
f ∗)

or, more specifically,

∂X,i : Ci(X) → Ci−1(X) = ∂∗
Y ,d−i+1 : Cd−i(Y ) → Cd−i+1(Y ) and

∂∗
X,i : Ci(X) → Ci−1(X) = ∂Y ,d−i+1 : Cd−i(Y ) → Cd−i+1(Y ).

These equalities imply immediately that

L•
X,i = L•

Y ,d−i, E•
i (X; r) = E•

d−i(Y ; r), (28)

where • ∈ {ud,du, tot}.

Proposition 6.1. Suppose that Xd and Y d are dual complexes. Let T ⊆ Xi and let U = { f ∗: f ∈ Xi\T }. Then
the subcomplex XT = T ∪ Xi−1 is an i-spanning tree of X if and only if the subcomplex YU = U ∪ Yd−i−1 is a
(d − i)-spanning tree of Y .

Proof. An equivalent statement is the following: the matroid3 represented (over any field of char-
acteristic 0, say Q) by the columns of M = ∂X,i is dual to the matroid represented by the columns
of ∂Y ,d−i = ∂∗

X,i+1, or equivalently by the rows of N = ∂X,i+1. Since ∂X,i∂X,i+1 = 0, the column span
of ∂X,i (regarded as a vector subspace of QXi) is orthogonal, under the standard inner product, to the
row span of ∂X,i+1. On the other hand, these two subspaces have complementary dimension, because

rank M = |Xi | − dim ker M = |Xi | − dim im M = |Xi| − rank N = |Xi| − rank N.

The desired duality now follows from [22, Exercise 2.2.10(ii)]. �
Duality carries over naturally to the algebraically weighted setting. Specifically, let each cell f ∈ X

have an indeterminate weight ξ f . We define the weighted cellular boundary and coboundary maps as

3 When X is a simplicial complex, this matroid is known as a simplicial matroid; see, e.g., [5]. (One could analogously define
a cellular matroid as a matroid representable by the columns of some cellular boundary map. This is a more general class of
matroids; for example, simplicial matroids must be simple, while cellular matroids need not be.)
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in Section 2.6, which give rise to weighted Laplacians and spectrum polynomials as usual. Then, we
assign weights to the cells of the dual complex Y by the formula

ξ f ∗ = 1/ξ f .

It is routine to check that the formulas of (28) carry over to the weighted setting, that is,

L̂•
X,i = L̂•

Y ,d−i and Ê•
i (X; r) = Ê•

d−i(Y ; r), (29)

where • ∈ {ud,du, tot}.
Furthermore, the matroid represented by ∂̂X,i is identical to that represented by ∂X,i , since we have

just adjoined the indeterminates {ξ f : f ∈ X} to the ground field, and then multiplied the rows and
columns of the matrix by nonzero scalars (which does not change the matroid structure). Therefore,
the proof of Proposition 6.1 is still valid if we replace the boundary and coboundary maps with their
algebraically weighted analogues.

6.1. Spectrum polynomials of matroids

Let M be a matroid on ground set V , and let X be the corresponding independent set complex,
that is, the simplicial complex on V whose facets are the bases of M . Kook, Reiner and Stanton [19]
defined the spectrum polynomial of M to be

SpecM(t; r) =
∑

I

tr(I)r|〈I1〉|,

where r is the rank function of M; A �→ 〈A〉 is its closure operator; and I1 is a certain subset of I
defined algorithmically (the details are not needed in the present context). The algorithm depends
on a choice of a total ordering for V , but SpecM(t; r) does not. By [19, Corollary 18], the spectrum
polynomial records the Laplacian eigenvalues of X , via the formula∑

i

∑
λ∈stot

i (X)

tirλ = Etot(X; r, t) = t−1r|V | SpecM

(
t; r−1). (30)

We are going to apply this result to calculate the Laplacian spectra of a complete colorful complex,
and thereby recover Adin’s torsion-weighted count of their simplicial spanning trees [1]. We will see
that the dual to the n-cube arises as a special case of a complete colorful complex.

Let a1, . . . ,an be positive integers. The complete colorful complex X = X(a1, . . . ,an) is defined as
follows. Let V 1 = {v1,1, . . . , v1,a1 }, . . . , Vn = {vn,1, . . . , vn,an } be n pairwise disjoint vertex sets of car-
dinalities a1, . . . ,an . We will regard each V i as colored with a different color. Then X is the pure
(n − 1)-dimensional simplicial complex on V = V 1 ∪ · · · ∪ Vn defined by

X = {
f ⊆ V : | f ∩ V i| � 1 ∀i

}
.

Define the color set of an independent set I to be the set C(I) = {i: I ∩ V i �= ∅}. Also, for a set of colors
K ⊆ [n], abbreviate K̄ = [n]\K and A(K ) := ∑

i∈K ai .
Observe that X is a matroid independence complex of a very simple form; the matroid M is just

the direct sum of n rank-1 matroids whose ground sets are the color classes V i . In particular, X is
Cohen–Macaulay [23, pp. 88–89], so H̃i(X,Z) = 0 for every i � n − 2.

If n = 2, then X is a complete bipartite graph, while if ai = 2 for every i then X is the boundary
of an n-dimensional cross-polytope.
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Let W = {v1,1, v2,1, . . . , vn,1}. For any independent set I ⊆ V (i.e., any face of X ), the subset I1
produced by the algorithm of [19] is just I1 = I\W ; in particular, |〈I1〉| = A(C(I1)). Therefore,

SpecM(t; r) =
∑

K⊆[n]

∑
I∈X: C(I)=K

tr(I)r|〈I1〉|

=
∑

K⊆[n]
t|K | ∑

I∈X: C(I)=K

r|I\W |

=
∑

K⊆[n]
t|K | ∏

k∈K

(
1 + (ak − 1)rak

)
. (31)

Applying the Kook–Reiner–Stanton theorem (30) and extracting the coefficient of ti (for −1 � i �
n − 1 = dim X ), we obtain

Etot
i (X; r) =

∑
K⊆[n]

|K |=i+1

r A(K̄ )

( ∏
k∈K

(
rak + ak − 1

))

=
∑

K⊆[n]
|K |=i+1

( ∑
J⊆K

( ∏
j∈K\ J

(a j − 1)

)
r A(K̄ )+A(K\ J )

)

=
∑

K⊆[n]
|K |=i+1

( ∑
J⊆K

( ∏
j∈K\ J

(a j − 1)

)
r A( J̄ )

)
. (32)

Therefore,

ωi(X) =
∏

K⊆[n]
|K |=i+1

∏
J⊆K

A( J̄ )[
∏

j∈ J (a j−1)] =
∏
J⊆[n]

| J |�i+1

A( J̄ )[(
n−| J |

i+1−| J |)
∏

j∈ J (a j−1)]
. (33)

Plugging (33) into (11) gives

τk(X) =
k−1∏
i=0

∏
J⊆[n]

| J |�i+1

A( J̄ )[(−1)k−i+1(k−i)( n−| J |
i+1−| J |)

∏
j∈ J (a j−1)]

=
n∏

j=0

∏
J⊆[n]
| J |= j

B( J )[
∑k−1

i= j−1(−1)k−i+1(k−i)( n− j
i+1− j)] (34)

where

B( J ) = A( J̄ )(
∏

j∈ J (a j−1))
.

The bracketed exponent in (34) can be simplified, first by rewriting it in terms of the three quantities
N = n − j, M = k − j, a = i + 1 − j, and then by some routine calculations (which we omit) using
Pascal’s recurrence:
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k−1∑
i= j−1

(−1)k−i+1(k − i)

(
n − j

i + 1 − j

)
= (−1)M

M∑
a=0

(−1)a(M − a + 1)

(
N

a

)

= (−1)M
M∑

a=0

(−1)a
(

N − 1

a

)

=
(

N − 2

M

)
=

(
n − j − 2

k − j

)
.

This is precisely the exponent that appears in Adin’s formula for τk(X) [1, Theorem 1.5]. (Adin’s r
is our n, and Adin’s d is our j.) In particular, it is zero when j > k. Rewriting (34) recovers Adin’s
formula for the tree enumerators of complete colorful complexes:

Theorem 6.2 (Adin). Let X be the complete colorful complex with color classes of sizes a1, . . . ,an, and define
B( J ) as above. Then

τk(X) =
k∏

j=0

∏
J⊆[n]
| J |= j

B( J )(
n− j−2

k− j )
.

In the special case that ai = 2 for all i (so X is the boundary of an n-dimensional cross-polytope),
the formula (31) specializes to

SpecM(t; r) =
n∑

k=0

(
n

k

)
tk(1 + r2)k

and then applying (30), we see that

∑
i

∑
λ∈stot

i (Xn)

tirλ =
n∑

k=0

tk−1
(

n

k

)
r2n−2k(1 + r2)k =

n−1∑
j=−1

t j
(

n

j + 1

)
r2n−2 j−2(1 + r2) j+1

or equivalently

Etot
j (Xn; r) =

(
n

j + 1

)
r2n−2 j−2(1 + r2) j+1

.

The dual complex to an n-dimensional cross-polytope is the n-cube Q n . By formula (28) (with d =
n − 1), we have therefore

Etot
k (Q n; r) = Etot

n−1−k(Xn; r) =
(

n

k

)
r2k(1 + r2)n−k

,

giving another proof of (the first formula of) Theorem 3.4.
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