3,079 research outputs found

    Some issues related to simulation of the tracking and communications computer network

    Get PDF
    The Communications Performance and Integration branch of the Tracking and Communications Division has an ongoing involvement in the simulation of its flight hardware for Space Station Freedom. Specifically, the communication process between central processor(s) and orbital replaceable units (ORU's) is simulated with varying degrees of fidelity. The results of investigations into three aspects of this simulation effort are given. The most general area involves the use of computer assisted software engineering (CASE) tools for this particular simulation. The second area of interest is simulation methods for systems of mixed hardware and software. The final area investigated is the application of simulation methods to one of the proposed computer network protocols for space station, specifically IEEE 802.4

    Distributed Real-Time Emulation of Formally-Defined Patterns for Safe Medical Device Control

    Full text link
    Safety of medical devices and of their interoperation is an unresolved issue causing severe and sometimes deadly accidents for patients with shocking frequency. Formal methods, particularly in support of highly reusable and provably safe patterns which can be instantiated to many device instances can help in this regard. However, this still leaves open the issue of how to pass from their formal specifications in logical time to executable emulations that can interoperate in physical time with other devices and with simulations of patient and/or doctor behaviors. This work presents a specification-based methodology in which virtual emulation environments can be easily developed from formal specifications in Real-Time Maude, and can support interactions with other real devices and with simulation models. This general methodology is explained in detail and is illustrated with two concrete scenarios which are both instances of a common safe formal pattern: one scenario involves the interaction of a provably safe pacemaker with a simulated heart; the other involves the interaction of a safe controller for patient-induced analgesia with a real syringe pump.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Context sensitive user interfaces

    Get PDF
    This paper presents a conceptual design model for user interfaces (MASS1) and a general formalism for dialogue specification (Interaction Scripts) which are the most important components of an approach to the methodological, iterative design of Interactive Systems from formal, model-based specification of both the application and the User Interface (UI). This approach allows the integration of both dialogue and application semantics from the beginning of the design process, by using prototypes derived from both specifications. Assuming that all the application semantics is available at early design stages, the MASS model defines a set of guidelines that will enforce the designer to create user interfaces that will present a prophylactic instead of the usual therapeutic behaviour. By a prophylactic behaviour it is meant, metaphorically, that the UI will exhibit a behaviour that prevents and avoids both syntactic and semantic user errors, in contrast with the most usual therapeutic, or error recovery, behaviour. The dialogue specification formalism(Interaction Scripts) despite being general, in the sense that it may be applied to the specification of any kind of dialogue, is specially suited to the specification of UIs with the behaviour prescribed by the MASS design model. In addition, it is independent from concrete environment details, therefore allowing for different implementations of the same specification, that is, different looks and feels. The operational semantics of the Interaction Script notation is also presented in terms of Petri-Nets that are automatically generated from the Interaction Script specification of the dialogue controller

    Interactive Music and Synchronous Reactive Programming

    Full text link
    This paper presents Skini, a programming methodology and an execution environment for interactive structured music. With this system, the composer programs his scores in the HipHop.js synchronous reactive language. They are then executed, or played, in live concerts, in interaction with the audience. The system aims at helping composers to find a good balance between the determinism of the compositions and the nondeterminism of the interactions with the public. Each execution of a Skini score yields to a different but aesthetically consistent interpretation. This work raises many questions in the musical fields. How to combine composition and interaction? How to control the musical style when the audience influences what is to play next? What are the possible connections with generative music? These are important questions for the Skini system but they are out of the scope of this paper that focuses exclusively on the computer science aspects of the system. From that perspective, the main questions are how to program the scores and in which language? General purpose languages are inappropriate because their elementary constructs (i.e., variables, functions, loops, etc.) do not match the constructions needed to express music and musical constraints. We show that synchronous programming languages are a much better fit because they rely on temporal constructs that can be directly used to represent musical scores and because their malleability enables composers to experiment easily with artistic variations of their initial scores. The paper mostly focuses on scores programming. It exposes the process a composer should follow from his very first musical intuitions up to the generation of a musical artifact. The paper presents some excerpts of the programming of a classical music composition that it then precisely relates to an actual recording. Examples of techno music and jazz are also presented, with audio artifact, to demonstrate the versatility of the system. Finally, brief presentations of past live concerts are presented as an evidence of viability of the system

    Time At Your Service: Schedulability Analysis of Real-Time and Distributed Services

    Get PDF
    The software today is distributed over several processing units. At a large scale this may span over the globe via the internet, or at the micro scale, a software may be distributed on several small processing units embedded in one device. Real-time distributed software and services need to be timely and respond to the requests in time. The Quality of Service of real time software depends on how it schedules its tasks to be executed. The state of the art in programming distributed software, like in Java, the scheduling is left to the underlying infrastructure and in particular the operating system, which is not anymore in the control of the applications. In this thesis, we introduce a software paradigm based on object orientation in which real-time concurrent objects are enabled to specify their own scheduling strategy. We developed high-level formal models for specifying distributed software based on this paradigm in which the quality of service requirements are specified as deadlines on performing and finishing tasks. At this level we developed techniques to verify that these requirements are satisfied. This research has opened the way to a new approach to modeling and analysis of a range of applications such as continuous planning in the context of logistics software in a dynamic environment as well as developing software for multi-core systems. Industrial companies (DEAL services) and research centers (the Uppsala Programming for Multicore Architectures Resrearch Center UPMARC) have already shown interest in the results of this thesis.LEI Universiteit LeidenFoundations of Software Technolog
    • …
    corecore