
N90-24988

Some Issues Related to Simulation of the

Tracking and Communications Computer Network

Final Report

NASA/ASEE Summer Faculty Fellowship Program - 1989

Johnson Space Center

Prepared by: Robert C. Lacovara, Ph. D.

Academic Rank: Assistant Professor

University and Department: Stevens Institute of Technology

Dept. of Electrical Engineering

and Computer Science

Hoboken, NJ 07030

NASA/JSC

Directorate: Engineering

Division: Tracking And Communications

Branch: Communications Performance

and Integration

JSC Colleague: J. C. Dallas

Date Submitted: August 11, 1989

Contract Number: 44-001-800

15-1

https://ntrs.nasa.gov/search.jsp?R=19900015672 2020-03-19T21:59:45+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42823197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The Communications Performance and Integration branch of the Tracking and

Communications Division has an ongoing involvement in the simulation of its

flight hardware for Space Station Freedom. Specifically, the communication

process between central processor(s) and orbital replaceable units (ORU's) is

simulated with varying degrees Of fidelity.

This report presents the results of investigations into three aspects of

this simulation effort. The most general area involves the use of computer

assisted software engineering (CASE) tools for this particular simulation. The

second area of interest is simulation methods for systems of mixed hardware and

software. The final area investigated is the application of simulation methods

to one of the proposed computer network protocols for space station, specifical-

ly IEEE 802.4.

15-2



INTRODUCTION

Simulation methods represent a broad area of knowledge and technique. The

investigations herein are oriented towards a specific simulation, namely that

of the space to ground subsystem of the communications and tracking system for

the space station.

This particular simulation consists of a set of programs written chiefly in

ADA which a) emulate the state of many ORU's and b) provide fault detection,

diagnosis and recovery based on the status of the various ORU's. The simulation

was written by a team of about six people, and is consequently sufficiently

complex to warrant the application of CASE tools. The result of application of

CASE tools to the existing simulation yielded some insight into the value of

CASE tools and into the simulation itself. This is deemed useful in that the

present simulation (called 3B) is a forerunner to more realistic simulations to

be written in the near future.

During the study of the use of CASE tools, it became apparent that the

techniques used for the simulation were highly specific. For example, some

actual hardware (network hardware) will be available for use during the simula-

tion sessions, and will therefore be incorporated. Predominantly synchronous

techniques were used, and little "instrumentation" (other than journal files)

of the actual simulation was written into the code. This study indicates that

there is some reason to believe that some commercially available asynchronous

simulation tools would be of value in future efforts.

A specific area of interest to the simulation group was the performance of

certain computer networks specified for use on the space station. Some effort

was made towards obtaining simulations of these networks, but this work remains

to be completed.

This report now presents three sections which describe the study and re-

sults of the three areas described above: CASE Tools; Simulation Tools; and

Network Simulation.

CASE TOOLS

Computer Assisted Software Engineering (CASE) tools are intended to assist

the development of large and complex software systems, particularly those which

involve multiple programmers and extensive physical systems. At the present

15-3



time, there are several commercial CASE systems which are similar to a great

extent.

These systems accept a specification of a software system as their input

data. This input specification includes descriptions of the physical inputs to

the system (human or machine generated information), descriptions of the pro-

cesses needed within the system, descriptions of internal storage for the

system, and specifications of the output product of the system (reports and

forms.) The actual form of the specification is a graphic of data flows within

the software system, and graphical representation of specific resources used in

the system. The overall effect is to form a picture of a complex system which

shows the flow of data through processes which modify the data.

From a description of a software system, the CASE tool makes checks for

consistency of data flows from process to process, and compiles information on

those flows. For example, redundant data flows, or data flows which are partial-

ly specified are automatically identified. Complete descriptions of the objects

used in a system may be extracted by the CASE tool. Finally, some CASE tools

can build significant portions of the final code from the description. Even

simple CASE tools can produce data declarations in several programming

languages. (Unfortunately, ADA does not seem to be a common choice.)

Figure 1 is the representation of the simulation of the Space to Ground

subsystem of the Communications and Tracking system. External sources and sinks

of data (command and status) are shown as square boxes. Data flows are shown as

directed lines. Processes (programs and algorithms) which modify, use or gener-

ate data are shown as rectangles with rounded corners. In this specific case,

the processes shown correspond to the efforts of single programmers. Figure 2

shows an "explosion"of a single process. The explosion has the same inputs and

outputs as the corresponding process of Figure 1, but shows the internal pro-

cesses in greater detail.

Associated with the data flows of Figure 1 and Figure 2 are specific record

structures for the data passed. These records are not described further in this

report, but by examination of the records some inconsistencies were noted in

the system, and corrections were facilitated thereby.

The description of the simulation system shown in Figures 1 and 2 was ob-

tained after most of the code was written. CASE tools, however, are intended to

be used before the generation of code. Nevertheless, several interesting

15-4



Q

1-

15-5



9
(2J

9
T.

1

b4

0.
I

0")

_Z 1

W

i
(n

I

0

l'--W _ W

dX _

I

/

0.
I

_J_
m
d:

I

0

U

Z

I
m

0
n.,

I
(_)

15-6



observations were made concerning the simulation system.

After the initial description of the simulation was distributed to

programmers, several inconsistencies were noted in names of structures, and

some inconsistencies in the uses of the structures were found. These faults

would have surfaced readily enough at run time, but it is not clear that they

would have been diagnosed quickly. The value of the CASE tool is that some

types of problems which may be difficult to diagnose during debugging runs are

actually explicitly visible from the output of the CASE tool. In that case, the

potential error is corrected before 'trial and error'' runs are made.

A secondary effect of the CASE tool effort was a certain amount of interac-

tion on the part of the programmers in an effort to standardize the use of some

data structures. These changes were probably not important to the run time

performance of the code. The changes tended to make different interfaces in the

system look alike. Most likely, the overall clarity of the system improved by a

small amount once all of the interfaces between programmers became explicit.

(Prior to the use of the CASE tool, interfaces between programs were negotiated

by the programmers pair-wise.)

Finally, it appeared that the existence of the CASE tool printouts provided

a convenient "look and point" tool during some phases of the integration and

testing of the simulation.

It seems reasonable that the use of the CASE tool even after most of the

simulation was designed and written was of some concrete value. The total ef-

fort involved in the use of the CASE tool was not excessive: about 36 hours to

learn to use the tool, and perhaps 8 hours to enter the description of the

simulation system.

More importantly, it seems that much of the advantage of using a CASE tool

will accrue from its use from the beginning of an effort. Programmers may then

attend to the details of program operation from the foundation of a firm and

unambiguous specification. This should speed the overall design, elaboration,

and debugging process associated with a complex software system. It should also

reduce the amount of time spent in "pair-wise" negotiation by the programmers.

SIMULATION TOOLS

In the studied simulation, only one of the processes actually "simulated"

anything at all. This is the module marked SIM in Figure 1. This process ran

15-7



multiple tasks which were numerical simulations of the behavior of ORU's. Other

processes actually performed software tasks which will be performed in the

future by flight software. Consequently, the other processes in the simulation

are actually limited-scope study models of software yet to be written for

flight.

The SIM module simulates some number of ORU's (about 40). Various parame-

ters of the ORU's are simulated. However, the actual values are generated by

keyboard input at a "command console." At the time of this writing, time-vary-

ing behavior of the simulation is being considered. To that end, several meth-

ods of simulation programming are considered.

There are several types of ORU in the simulation. Briefly, these may be

considered only by the behavior desired of their various outputs. The simplest

type of ORU has nearly static outputs and must only change for power up/down,

or for gross failure. A second type of ORU reports the changes in some external

event (auto-track antenna pointing, for example) and except for gross failure,

may be characterized by deterministic functions of time. A third type of ORU

has outputs which may be characterized best by some probability distribution

function.

Individually, any of these three behaviors could be simulated by asynchro-

nous or synchronous techniques. However, all three are needed and there are at

least twenty if not forty systems which require simulation simultaneously. A

reasonable method seems to be the use of a commercial simulation language such

as SIMSCRIPT or GPSS, at least for the non-deterministic portions of the

system. These languages hide the simulation mechanism (queues, lists, timers,

etc.) from the programmer and provide access to asynchronous techniques. They

are also well documented, and these two languages are both mature (more than 10

years old), and available on almost any computational platform (MS-DOS machines

through supercomputers.) There is also no reason that the existing simulation

(written in ADA) could not call tasks written in the formal simulation

languages.

The chief benefit of the use of these languages is the ease of documenta-

tion and maintenance of the simulation. It is usually easy to change the under-

lying probability distribution functions in any simulation. However, changing

the behavior of special purpose programs for simulation may require extensive

re-writes. It appears that SIMSCRIPT or GPSS -type simulations are relatively

15-8



easy to change. This will be important as the fidelity requirement of the simu-

lation increases.

TOKEN BUS 802.4

At the time of writing, and prior to the August 1989 scrub exercise, the

802.4 token bus standard was to be used in flight hardware for low rate local

area networks (LAN's) on Space Station. The simulations discussed above have

not at the time of writing progressed to simulations of the LAN's, but this is

anticipated. Accordingly, a study was initiated with the intent of identi-

fication of a means of simulation of LAN operation. As 802.4 had been

specified, the simulation of this LAN was of some interest.

Interestingly, a great deal has been published on LAN simulation, and 802.4

in particular. The references which follow pertain to LAN simulation and

performance. The 802.4 standard was studied extensively in the early 80's by

the National Bureau of Standards (NBS) by a working group composed of both

industrial concerns and the NBS.

This group did a vast amount of work in 802.4. The NBS team wrote several

simulations of the standard. Further, it built an instrumented hardware imple-

mentation of a network using four or six nodes, and verified its simulation

programs against the hardware systems. Results of these efforts are published

in several workshops and conferences. Refer to the references.

At the present time, little commercial interest remains for 802.4 token

bus. The chief reason appears to be its performance in comparison to 802.5

token ring systems and other systems of higher data rate media. In the papers

surveyed and listed in the references, there appears to be no performance re-

gime in which 802.4 is superior to 802.5 [Stuck 83]. The 802.4 standard does

seem to outperform Ethernet, but this is hardly surprising, in view of the fact

that Ethernet' uses a collision resolution algorithm to resolve contention

(specifically, CSMA-CD.) Furthermore, LAN's which employ higher rate media than

802.4, such as FDDI (at 100 Mbs as compared to 10 Mbps) seem to have

leap-frogged the 802 standards for many applications. These higher rate systems

provide multiples of 802 performance data rates at far under multiples of cost.

In the process of investigation, a public-domain simulation of 802.4 was

discovered at the NBS. This is written in SIMSCRIPT, and has been obtained for

any value it may present to simulation authors in the future. This simulation

15-9



may be useful when the details of i.AN operation are desired in the Space to

Ground Simulation. Further work remains in order to use the simulations.

CONCLUSIONS

During this summer residency, the author divided his efforts along the

three lines described above. The simulation efforts were particularly interest-

ing since they have led to a consideration of mixed simulation systems. These

systems will consist of hardware (probably actual I_AN hardware), software

written specifically to imitate flight functions, and software written in for-

mal simulation languages.

15-10



REFERENCES

(Alphabetically by first author)

ANSI/IEEE Standard; Draft International Standard, "802.4 Token-Passing Bus

Access Method," ANSl/IEEE Std 802.4-1985; ISO/DIS 8802/4.

ANSI/IEEE Standard; ISO Draft Proposal, "802.5 Token Ring Access Method,"

ANSl/IEEE Std 802.5-1985; ISO/DP 8802/5.

Jean-Luc Archambault, "An IEEE 802.4 Token Bus Network Simulation," U. S.

Dept. of Commerce, National Bureau of Standards, NBSlR 84-2966.

Wemer Bux, "Local Area Subnetworks: A Performance Comparison," IEEE Trans.

on Communications, Vol. Com-29 No. 10, Oct 1981.

Imrich Chlamtac and Raj Jain, "A methodology for building a simulation

model for efficient design and performance analysis of local area networks,"

Simulation, Feb. 1984.

M. Alex CoMn and Alfred C. Weaver, "Performance of Single Access Classes

on the IEEE 802.4 Token Bus," IEEE Trans. on Communications, Vol. Com-34 No.

12, Dec. 1986.

Rhonda Alexis Dirvin and Arthur R. Miller, 'q'he MC68824 Token Bus

Controller," IEEE Micro, June 1988.

Larry Press, "Benchmarks for LAN Performance Evaluation," Comm. of the ACM,

Vol. 31 No. 8, Aug. 1988.

William Stallings, "Local Network Performance," IEEE Communications

Magazine, Vol. 22 No. 3, Feb. 1984.

Bart W. Stuck, "Calculating the Maximum Mean Data Rate in Local Area

Networks," IEEE Computer, May 1983.

15-11



I,


