ELECTRONIC WORKSHOPSIN COMPUTING
Series edited by Professor C.J. van Rijsbergen

C.R. Roast and J.I. Siddiqi, Sheffield Hallam University, UK (Eds)

BCS-FACSWorkshop on Formal Aspectsof
the Human Computer Interface

Proceedings of the BCS-FACS Workshop on Formal Aspects of the
Human Computer Interface, Sheffield Hallam University,
10-12 September 1996

Context Sengitive User | nterfaces
J. Creissac Campos and F.M. Martins

Published in Collaboration with the
British Computer Society

S Springer

©Copyright in this paper belongs to the author(s) ISBN 3-540-76105-5

Context Sensitive User Interfaces

Jose Creissac Campos Fernando Mario Martins
jfc@di.uminho.pt fmm@di.uminho.pt
Departamento de | nformética, University of Minho Departamento de |nformética, University of Minho
Largo do Paco, 4719 Braga Codex, Portugal Largo do Paco, 4719 Braga Codex, Portugal
Abstract

This paper presents a conceptual design model for user interfaces (MASS') and a general formalism for dialogue
specification (Interaction Scripts) which are the most important components of an approach to the methodological,
iterative design of Interactive Systems from formal, model-based specification of both the application and the User
Interface (UI).

This approach allowsthe integration of both dialogue and application semantics from the beginning of the design
process, by using prototypes derived from both specifications.

Assuming that all the application semantics is available at early design stages, the MASS model defines a set of
guidelines that will enforce the designer to create user interfaces that will present a prophylactic instead of the usual
therapeutic behaviour. By a prophylactic behaviour it is meant, metaphoricaly, that the Ul will exhibit a behaviour
that prevents and avoids both syntactic and semantic user errors, in contrast with the most usual therapeutic, or error
recovery, behaviour.

Thedial ogue specification formalism (Interaction Scripts) despite being general, in the sensethat it may be applied
to the specification of any kind of dialogue, is specially suited to the specification of Ulswith the behaviour prescribed
by the MASS design model. In addition, it isindependent from concrete environment details, therefore alowing for
different implementations of the same specification, that is, different looks and feels.

The operational semantics of the Interaction Script notation is also presented in terms of Petri-Nets that are auto-
matically generated from the Interaction Script specification of the dialogue controller.

Keywords: Assisted Human-Computer Interaction, Formal Specification, Rapid Prototyping, Semantic " feedfor-
ward”, Methodology of Interactive Systems

1 Introduction

In this paper we put forward some of theideas and tools devel oped under amethodol ogical work to apply formal meth-
ods to the systematic devel opment of User Interfaces (Uls).

Usually, methodol ogiesfor the specification of human-computer interaction specify the dialoguein alooserelation
with the specification and design of the functional layer of the system (the application) (cf. [1, 2, 11]).

This arises from an inadequate interpretation of the Separation Principle [10]. By completely separating the dia-
logue layer from the semantics of the application, the quality of the interactive system and the flexibility of its design
is compromised. Because semantic feedback is not easily specified, interfaces specified (and possibly prototyped) this
way tend to be static, not being able to reflect in its behaviour (feel) the state of the application.

We argue that, although the Principle of Separation should be taken into account (for modularity reasons), astrong
link between both specifications must be established at design level, for the sake of the quality of thefinal interface and
also for promoting its iterative design in the context of the application semantics.

The level of abstraction at which the Ul specification is made is also important. Most proposed notations specify
at alevel too close to key strokes and mouse clicks[1, 11, 3]. We argue that the dialogue specification must only be
concerned with the flow of information between the user and the application layer. The exact way inwhich information

L Syntactic and Semantic Assisted Mode

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 1

Context Sensitive User I nterfaces

is presented to and manipulated by the user, should be left to the responsibility of the toolkit being used, in the same
way as the exact implementation of the data being manipulated by the application layer isits responsibility.

Finally, adialogue specification should be constructive, allowing for the generation of dynamic prototypes, for iter-
ative, validated design. Based on this assumptions we propose a conceptual design model for user interfaces (MASS)
and a specification formalism (Interaction Scripts). The MASS model [12] is a conceptual model for user interface
design. The model aims at defining the propertiesthat the interaction should obey.

Interaction Scripts [12, 9, 7] were developed as a formalism to specify dialogues which may satisfy the MASS
model. Usually an Interaction Script will specify the dialogue leading to an application function call. The dialogueis
specified by an expression defining its valid traces. A set of context validity conditions specify the conditionsin which
the Interaction Script may be activated and the values read are validated, based on the state of the application. The
operational semantics of Interaction Scripts is defined by Petri Nets, and a dynamic prototype? of the user interface
may then be generated from the specification.

2 TheMASSModel

The MASS model isaconceptual model of the Ul. Taking into account the taxonomical works of Rohr and Tauber [19]
and Nielsen [15], the MASS model may be characterized as a conceptual design model of the Ul of type RUi or DUi.
This means that being a conceptual design model, MASS defines a set of properties (or guidelines) that the Designer
(D) of the Ul should obey in order to design a Ul with theintended characteristics. The model may also be of interest to
the human factors Researcher (R). Following the abovereferred classification it isalso both aninternal (existing inside
the person intended to useit) and external model (may be formally or informally communicated). It isalso astructural
model becauseit follows some main principle (in this case fully assisted interaction in order to prevent user errors) and
it is generic (may be applied to different kinds of objects and problems). The key properties prescribed by MASS are:
syntactic assistance, semantic assistance, flexibility, and mode commutation. Each one of the propertiesis explained
bel ow.

e SyntacticAssistance: theinteractionlanguageof the Ul hidesfromthe user the concrete syntax and detailsof the
language used to communicate with the application; by using structured editing, either explicitly (cf. Interaction
Archetypes® [14]) or implicitly (cf. the I nteraction Script notation presented in this paper), the user alwayswrites
syntactically correct commands.

Thisproperty relatesto thefact that usersthink in an informal way, but haveto interact in aformal interaction language.
Thisimplies a great probability of syntactic errors. The Syntactic Assistance suggested by MASS and implemented
through a scheme of structured editing allows for the elimination of such errors. The interaction style that best fits to
structured editing is the menu based style (navigation through options).

e Semantic Assistance: the model must ensure that the values/actionsthe user can choose are correct at any state;
therefore the user will not cause error situations.

Semantic assistance together with syntactic assistance, allows for user interfaces with a prophylactic perspective of
interaction. Syntactic errors, as well as meaningless sentences are prevented, freeing the application layer from error
treatment and recovery. Error messages and user actions to deal with them are also minimized, with evident benefits
to the interaction process.

Theideaof prophylactic interaction (ametaphor) is used to stress the fact that we are able to design user interfaces
which are error-sensitive, by providing both syntactical and semantical assistance to the user. Semantical aid may only
be correctly provided to the user if theinteractivesystemisableto“calculate” theactua context. So, the Ul will present
alook (presentation) and afeel (behaviour) which are sensitiveto (that is always aware of, informed of) the application
state. The key ideaisto feedforward application semanticsto the Ul without disregarding the usual need for semantic
feedback in the output. However one must understand that the first is concerned with correct input while the other is
concerned with clear, understandabl e output.

2Unlike a static prototype, that only shows the ook of the user interface, a dynamic prototype shows both the look and fedl of the user interface.
3 Archetypes are terms with variables that represent the possible navigations needed to interactively synthesize a correct application command.

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 2

Context Sensitive User I nterfaces

e Flexibility in the ArgumentsInput Order: the order by which the arguments are read may also be specified.

Because the order of the argumentsto be read may be flexible (possibly concurrent), that depending on the semantics
of the application, we need to use amore powerful structure (Nets) than the usual trees or graphs used in conventional
structural editing.

e Mode Commutation: in implementations where it makes sense, the model must allow the syntactic-semantic
assistance to be disconnected by user’s choice.

So, a user can choose between an assisted or a command mode. However, if an error occurs during the input of a
command (let us say interactive expression) the assisted mode is automatically offered as an aid to the user.
In the next session we present the formalism for Ul specification.

3 Thelnteraction Script Formalism

The Interaction Script formalism despite being general [13], is particularly well suited for the specification of dialogue
controllers that follow the MASS model. In fact, each Interaction Script can be seen as a mini-MASS, specifying an
assisted interface for an API-based application.

The Interaction Script formalism is used to describe, at a high level of abstraction, the control of the flow of inter-
action that the Dialogue Controller must execute. Each Interaction Script describes all the steps of the dialogue that
will lead to the correct synthesis of an API-call. This correctness must be both syntactic and semantic.

The synthesis of a command, also implies the synthesis of its arguments. So, Interaction Scripts will provide for
argument validation, aswell asfor the specification of the argument input order, which may be randomin certain cases.

Methodologically, in afirst stage, an Interaction Script iswritten for each command of the application. In asecond
stage, Interaction Scriptsarewritten to specify the correct dial ogue structure (which command can be called and when).
Although more natural, this bottom-up strategy is not mandatory and a top-down approach can also be used.

The operationa semantics of Interaction Scripts is represented by Petri Nets. These Petri Nets are automatically
generated allowing for fast prototyping [18]. This approach is, then, positioned at a higher level than some systems
that specify Ul directly using Petri Nets (cf. [5])

3.1 Properties

Thedevelopment of the | nteraction Script formalism was made bearing in mind the need for ahigh degree of expressive
power. Let us see the main properties of the formalism:

compositionality , that is, the possibility of building complex specifications by combining simple I nteraction Scripts;

local reuse , thatis, thepossibility of an Interaction Script beingimported by, or included in, another I nteraction Script,
in this latter case the included Interaction Script will share the variables of the one which includesit;

sub-dialogue concurrency , that is, the possibility of specifying that events may occur concurrently;

specification of external behavior , by specifying the acceptable traces of interaction, that is, the correct event se-
quences,

declar ative specification of internal behavior , by means of event-condition-actiontriples, representing the internal
dtate transitions of the dialogue controller;

asynchronous eventstreatment , that is, eventsthat are originated by non deterministic user actions and that imply
immediate action from the dialogue controller. Example of such eventsare Cancel , Gk, Reset and Appl y
that will be described later;

4From now on will call it generically “command”.

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 3

Context Sensitive User I nterfaces

data synthesisinteraction , thatis, the possibility of specifying restrictionson the order of argument reading, and also
the use of pre-defined interactorsfor specific datatypes;

error treatment , thatis, specification of handling codefor exception situations, which may arisewhenever theMASS
model is not fully obeyed;

localization of interaction effects , through the explicit declaration of the effects of each event in theinternal state of
the application, of the presentation, and of the dialogue controller;

presentation abstraction , as non commitment with the low level semantics of actual presentation technology, even
though allowing for the existence of different views of the same interactive object - for each Interaction Script
therewill be at |east a presentation descriptor (DA °) that maps the Interaction Script to a concrete presentation,
we may have several DA attached to each Interaction Script, and the actual DA in use may be changed at run
time;

prototyping , thatis, from aspecification written with Interaction Scriptsarunning prototypeof thedia oguecontroller
can be automatically generated.

3.2 Syntax and Static Semantics

We will now present the syntax and static semantics of the Interaction Script formalism. As we said before, an In-
teraction Script usually describes the dialogue needed to synthesize an application command. We need to specify the
dialogue structure that leads to the choice of a command and the synthesis of their arguments. We considered three
types of Interaction Scripts:

e DECISION - thistypeof I nteraction Script is used to structurethe dial ogue hel ping the user to sel ect the operation
that he/she wants to execute.

e SYNTH - thistype of Interaction Script describes the dialogue steps that will lead to an operation call.
e VALSYNTH - thistypeissimilar to SYNTH but returnsthe value obtained from the execution of the operation.

We have al so defined some I nteraction Scriptsfor low-level input of some pre-defined data types (finite functions, sets,
etc. - cf. data synthesisinteraction)

An Interaction Script starts with the keyword Def G ¢ and ends with EndG . Each Interaction Script is divided
into two main components(seelS1and | S 2): the Declarations component, and the Behaviour describing component.
All identifiers of variables and of other Interaction Scriptsthat are used in an Interaction Script are defined in its Dec-
larations component. In the Behaviour component the interaction flow is defined. Each component may have several
clauses. We will now list the clauses that may be used in all Interaction Script types.

The Declarations component may include declarations of:

o thetype of the Interaction Script (clause TY PE);

theimported Interaction Scripts (clause EXTERNAL);

the locally defined Interaction Scripts (clause SUBGI);

the local variables (clause STATE-CTRL);

the application variables that are to be accessed by the Interaction Script (clause STATE-APL).
For all Interaction Script types the Behaviour component may include:

e acontext condition that defines when the Interaction Script may be activated (clause CONTEXT);

5From the portuguese Descritores de Apresentacao.
63 comes from the portuguese for Interaction Script: Guides de | nteracgao.

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 4

Context Sensitive User I nterfaces

¢ thedescription of al the event sequences that the I nteraction Script accepts (clause EV SEQ).
The combinatorsfor writing EV SEQ are:

e expl + exp2 - choice, only one expression can be selected;

e exp* - repetition, the dialogue in exp may be repeated;

e expl.exp2 - sequence, expl followed by exp2;

e expl|exp2 - synchronous parallelism, both sub-dialogues may proceed (events are accepted) in parallel, and
the main dialogue will finish whenever one of the sub-dial oguesfinishes.

e expl||exp2 - asynchronous parallelism, both sub-dialogues may proceed in parallel, and only when both sub-
dialogues are finished will the main dialogue finish too.

e capllexp2] - interruptible sequence, the dialogue specified by expl can be interrupted by exp2; if that hap-
pensexp2 must end beforeexpl can continue.

The Interaction Script Menu shownin IS 1 isan example of aDECISION Interaction Script adapted from [8], and
itispart of asimpledictionary interface specification. ThisInteraction Script definesadialoguein which the user must
choose one of five options, the dialogue being terminated when he/she chooses End.

Inthiscasewe havealocally defined Interaction Script: End. End isthe empty Interaction Script and doesnothing,
being used by M enu just to end the dialogue.

IS1 DECISION type Interaction Script

Defd Menu
Decl arati ons
TYPE DECI SON
EXTERNAL G nit, Gvanage, GDefWrd
SUBG End
Behavi our
EVSEQ (@ nit + Gvanage + GefWord)* + End
Subd
Def @ End
Endd
Endd

Inthisexamplewe show how the specification of the event sequencesthat an I nteraction Script accepts (cf. specification
of external behaviour) can be defined by composition of other Interaction Scripts(cf. compositionality and local reuse).
Inthiscase at most one Interaction Script can be active at each moment. However, if we had used the | or || combinators
we could have more than one I nteraction Script simultaneously active (cf. sub-dialogue concurrency).

The Declarations component of an I nteraction Script of type SYNTH may includethe clauseslisted before and also
the declarations of:

¢ the arguments of the operation to call (clause ARGS);

¢ thevariables of the Presentation that are to be accessed by the Interaction Script (clause STATE-UI).
The Behaviour component includes the clauses listed before and also the declaration of:

¢ conditionsto be verified and actions to be executed after each event (TRANS);

e actionsto execute upon Interaction Script start (clause INIT);

o the operation to call (clause EXEC).

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 5

Context Sensitive User I nterfaces

Their are some predefined eventsthat can beincluded in TRANS:

e OK - when thisevent is present in TRANS, the Interaction Script ends only when the event happens, this event
isonly available when EVSEQ is finished,;

e CANCEL - thisevent is always available (when present in TRANS) and ends the Interaction Script without in-
voking EXEC;

e APPLY - similar to OK but the dialogueis restarted;
e RESET - similar to CANCEL but the dialogueis restarted.

In IS 2 the Interaction Script GDelWor d specifies the synthesis of the DELWORD operation call”. We can see
that this synthesisis valid only if the condition “not(EMPTYDIC())” holds (cf. CONTEXT clause). After reading the
word (input(w)), if the word exists (“EXISTWORD(w)” is true) then “m = DEFWORD(w)” is executed® otherwise
an error message is shown (cf. TRANS clause for input(w)).

IS2 SYNTH type Interaction Script

Defd GDel Word
Decl arati ons
TYPE SYNTH
ARGS w. Wbrd
VAR-U m Meani ng
Behavi our
CONTEXT not (EMPTYDI C())
INNT w="";
m=""
EVSEQ i nput (w)
TRANS i nput (w): EXI STWORD(wW) => m = DEFWORD(W)
EXCEP out ("Word does not Exist!")
X
CANCEL :
EXEC DELWORD(w)
Endd

This example shows how the TRANS clause allows us to have declarative specification of internal behaviour, asyn-
chronous events treatment (cf. OK and CANCEL), and error treatment.

Thetype VALSYNTH isidentical to thetype SYNTH. The only differenceisthat it declares the type of the result
that it will produce.

3.3 Operational Semantics

The operational semanticsof the I nteraction Scriptsis based on an extension of Labelled Petri Nets (LPN)[17] described
in[6] and called L abelled-Guarded-Interruptible Petri Nets. Basically these are Labelled Petri Nets extended with two
features[12]:

¢ the association of acondition to each transition, so that only if this condition is true the transition will fire;

o the possibility of a net being interrupted by another net, the first being resumed only when the second net ends.

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 6

Context Sensitive User I nterfaces

L1
©—> Lo o} >O—>{evsean J>O—->{T " >0

1-CONTEXT(X) a-INIT(X) b-EXEC(X)

Figure 1: Net for ageneric Interaction Script

3.3.1 GenericInteraction Script Semantics

L et us now show the structure of a net that represents a generic Interaction Script.
Thefollowing conventionswill be used:

e Thetokenswill show theinitial marking.
e The places of the final marking will be represented by adouble circle.

e Transitions will be represented by rectangles with margins. In the "entrance” margin we write the conditions
associated with the transitions, and in the " exit” margin we write the action associated with the transition.

¢ Rounded squares represent abstractions of subnets.

Figure 1 representsthe execution of ageneric I nteraction Script X. We can see that the Interaction Script can only start if
the conditioninthe CONTEXT clause of X istrue (or non existing), and that when that happensthe actionsin INIT are
executed. Upon start the Interaction Script will behave according to a net representing its EVSEQ clause. When that
net ends, the Interaction Script will end automatically and the expression in EXEC will be executed. In this example
we are not considering asynchronous events, which will be introduced later.

3.3.2 TheEVSEQ Clause
The simplest EV SEQ clause we can have is the one which includes only one event. For example:
EVSEQ gi(var)

where gi is some Interaction Script identifier and var a variable. In figure 2 we show the net corresponding to this
EVSEQ, and we call X the Interaction Script that contains this EV SEQ clause.

1 start 2 end a
gi(var) gi(var)
cancel
gi(var) 1 - CONTEXT(gi(var))
2 - COND(TRANS(X)[gi(var)])
b end 3 3 - not(COND(TRANS(X)[gi(var)]))
gi(var) a - ACTION(TRANS(X)[gi(var)])
b - EXCEP(TRANS(X)[gi(var)])

Figure 2: Net for gi(var)

We can see that the first transition can only fire (with the start event) if the context condition of gi istrue. After that,
three transitions can happen. One corresponds to the cancel event and can be fired as soon as the event occurs. The

7DELWORD deletes aword from the dictionary.
8Note that mis a User Interface variable. So, the meaning of the word is passed to the interface (cf. localization of interaction effects).

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 7

Context Sensitive User I nterfaces

other two correspond to the end event: one for when the condition associated with gi(v) (inthe TRANS clause) is true
and one for when that condition is false. In thefirst case, the actions associated with gi(v) in the TRANS clause are
executed.

With this example we can also see that each event in EVSEQ generates three events at the petri net level: start,
cancel, and end of the event.

Each combinator has an associated Petri Net that combines the nets of its arguments to build the Petri Net of the
global EVSEQ expression.

3.3.3 Asynchronous events

In figure 3 we show the same net of figure 1, now completed with the asynchronous events CANCEL and OK. The
CANCEL event can happen at any time after the start of the Interaction Script and endsthe dialogue. The OK eventis
placed after the net of EV SEQ so that the dialogue does not end automatically after EVSEQ. The RESET and APPLY
events are equivalent to CANCEL and OK but the token goesto an initial place.

Oz O[5 =0

1-CONTEXT(X) a-INIT(X) b-EXEC(X)

@[

Figure 3: Net for OK and CANCEL events

4 Fast Prototyping

Building on the fact that Interaction Scripts can be translated to Petri Nets, a prototyping tool was developed. At the
moment an Interaction Script compiler and the runtime system[8] have been implemented. The compiler translates
Interaction Scripts into Petri Nets and the runtime system animates these nets.

The architecture of the runtime system is shown in figure 4. It has three components: the Dialogue Controller
(specified with Interaction Scripts), an application module (that links the dial ogue controller to the application) and a
presentation module (that implements the look of the dialogue with the user).

Whilethe Interaction Script specification of the dialogue controller definesthe feel of the Ul, itslook depends upon
the Presentation Model. A presentation description language (DA) was devel oped for the description of the look of the
Ul. This language has the ability to specify more than one look for the presentation, allowing the user to choose, in
runtime, the look he/she prefers.

Runtime System

User g 4y App.

Presentation Dialogue Application

< > <
Model Controller Model

Figure 4: Runtime System Architecture

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 8

Context Sensitive User I nterfaces

Each component of the runtime system is a separate process communicating through UNIX channels. So, we can
“plug” and “unplug” different application and presentation modulesto the dialogue controller. This has two main ad-
vantages. On the side of the application, it allows us to use the prototype of the Ul either with the prototype or the
final implementation of the application. Thisway the Ul prototype can be used throughout the reification process of
the specification of the application. On the side of the presentation, we may have different kinds of presentation mod-
ules depending on the technology available. At present there are two presentation modules available, one for vt100
terminals and one for X11.

The dialogue controller and the vt100 presentation module were written in a functional language called CAMILA
[4], the X11 presentation module was written in Tcl/Tk [16] and CAMILA. The presentation modul e implementation
language will depend on the final language used in the implementation of the application.

Infigures 5 and 6 we show examples of dialogue portions generated by the runtime system using the X11 presen-
tation. Thefirst isthe dialogue generated for the Interaction Script GDelWord (an appropriate DA was supplied), the
second was taken from [12].

Byt W
Bpert D Honary
s Ward

snpty DEntionary

Manmaneni
Faanh
{adl

Word |Example
Meaning
GAMA {c) jfic 1994 View: Ingles Mode: Menu

Figure 5: Dialogue generated for the Interaction Script GDelWord

5 Conclusions

In this paper we arguethat the user interface of an interactive system, although kept separate from the application layer,
must include enough semantic information to be able to reflect theinternal state of the application layer. We also argue
that the dial ogue specification must be done at ahigh abstraction level, making it independent from details of the actual
interaction technology being used in a given context. Thisway, the specification becomes generic and can be imple-
mented in different types of environments. Therefore, our approach supports separate implementation but integrated
and iterative design.

We propose a conceptual model of interaction (the MASS model). This model comprises a set of propertiesthat a
user interface should obey, and incorporates an implicit user model. This user model takes into account the erroneous
and unpredictable behaviour of users, as well as his’her vague knowledge of the interaction language. The two most
important properties defined by the MASS model (Syntactic Assistance and Semantic Assistance) define a prophylac-
tic approach to user interface design and implementation, useful in many API-based applications, by feedforwarding
application semantic information at early design stages.

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 9

Context Sensitive User I nterfaces

=] ATH
Ll Viaw

Principal Levantamentos
Consuiing Ouibrns Lavanlamnaniosg
$ pvaninmenios § pvaninmelo 1I]I]I]I]|
Poapanening ¢ g
Chibras Dperaions *1 l]pl]l]
< iGEah
<~ 20000
< RhEah
<™ 30000
< BeEah
<™ 40000

1 GAMA {c)jfc 1994 View: Viewl Mode: Menu |

Figure 6: Screen Shot of the Runtime System

Wethen propose aspecification formalism (the I nteraction Script formalism) that allowsfor the specification of user
interfaces obeying the MASS model. Specificationsdonewith the Interaction Script formalism describe, at ahigh level
of abstraction, the control of theflow of dialogue between the user and the application layer. Among other propertiesthe
Interaction Script formalism allows for assisted interface specification, reuse, dialogue concurrency, fast prototyping
and iterative design.

Theprototype of aspecification donewith Interaction Scriptsis obtai ned by an automatic trandationinto Petri Nets.
This Ul prototype can be used throughout the reification process of the application layer (from its own prototypeto its
final implementation), and it can be used to generate interfaces with different kinds of interaction technology.

All these tools are working together in a system till being developed called GAMA-X [7, 8].

Acknowledgments
Theauthorswish to thank therefereesfor their commentsand remarks, which we believe helped to improvethe contents
of thefinal version of this paper.

References

[1] Abowd, G. D. Agents: Communicating interactive processes. In Diaper, D. et a. (Eds), Human-Computer Inter-
action - INTERACT’ 90, pages 143-148. Elsevier Science Publishers, 1990.

[2] Alexander, H. Formally-based tools and techniques for human-computer dialogues. Ellis Horwood Seriesin
Computers and their Applications, 1987.

[3] Alexander, H. Structuring dialogues using csp. In Harrison, M. and Thimbleby, H. (Eds), Formal Methodsin
Human-Computer I nteraction, chapter 9, pages 273-295. Cambridge University Press, 1990.

[4] Barbosa, L. and Almeida, J. J. CAMILA by example. Internal report, DI/INESC, Universidade do Minho, 1991.

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 10

(5]

(6]

[7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]

[19]

Context Sensitive User I nterfaces

Bastide, R. and Palanque, P. Petri nets with objects for the design, validation and prototyping of user-driven
interfaces. In Diaper, D. et a. (Eds), Human-Computer Interaction - INTERACT’ 90, pages 625-631. Elsevier
Science Publishers, 1990.

Biljon, W. Extending petri netsfor specifying man-machinedia ogues. Int. J. Man-Machine Studies, 28:437-455,
1988.

Campos, J. C. GAMA-X Geracao Semi-Automéatica de Interfaces Sensiveis ao Contexto. MSc thesis, Departa-
mento de Informética, Universidade do Minho, 1993.

Campos, J. C. Gama-X - programmer’s manual. Technical report, Departamento de Informaética, Universidade
do Minho, 1995.

Campos, J. C. and Martins, F. M. Automatic generation of user interfaces at prototype level. Technical report,
Project EUREKA-SOUR - Olivetti Ricercall NESC-Braga, 1994.

Casey, B. and Dasarathy, B. Modelling and validating the man-machine interface. Software Practice and Expe-
rience, 12(6):557-569, June 1984.

Cockton, G. Designing abstractionsfor communication control. In Harrison, M. and Thimbleby, H. (Eds), Formal
Methodsin Human-Computer I nteraction, chapter 8, pages 233-271. Cambridge University Press, 1990.

Martins, F. M. Métodos Formais na Concepgao e Desenvolvimento de Sistemas Interactivos. PhD thesis, Depar-
tamento de Informética, Universidade do Minho, 1995.

Martins, F. M. Specifyinginteraction with interaction scripts: A comparative study. Technical report, DI/INESC,
Universidade do Minho, January 1996.

Martins, F. M. and Oliveira, J. N. Archetype oriented user interfaces. Computer & Graphics, 14(1):17—-28, 1990.

Nielsen, J. A meta-model for interacting with computers. Interacting with Computers, 2(2):147-174, August
1990.

Ousterhout, J. K. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company, Inc., 1.st edition, 1994.
Peterson, J. Petri nets. Computing Serveys, 9(3):223-252, September 1977.

Reps, T. and Teitelbaum, T. The synthesizer generator: A system for constructing language-based editors. In
Texts and Monographsin Computer Science. Springer-Verlag, 1989.

Rohr, G. and Tauber, M. Representational framework and models for human-computer interfaces. In van der
Veer et. a. (ed), Readings on Cognitive Ergonomics - Mind and Computer. Springer-Verlag, 1984.

BCS-FACS Workshop on Formal Aspects of The Human Computer Interface 11

