677 research outputs found

    An efficient method to classify GI tract images from WCE using visual words

    Get PDF
    The digital images made with the Wireless Capsule Endoscopy (WCE) from the patient's gastrointestinal tract are used to forecast abnormalities. The big amount of information from WCE pictures could take 2 hours to review GI tract illnesses per patient to research the digestive system and evaluate them. It is highly time consuming and increases healthcare costs considerably. In order to overcome this problem, the CS-LBP (Center Symmetric Local Binary Pattern) and the ACC (Auto Color Correlogram) were proposed to use a novel method based on a visual bag of features (VBOF). In order to solve this issue, we suggested a Visual Bag of Features(VBOF) method by incorporating Scale Invariant Feature Transform (SIFT), Center-Symmetric Local Binary Pattern (CS-LBP) and Auto Color Correlogram (ACC). This combination of features is able to detect the interest point, texture and color information in an image. Features for each image are calculated to create a descriptor with a large dimension. The proposed feature descriptors are clustered by K- means referred to as visual words, and the Support Vector Machine (SVM) method is used to automatically classify multiple disease abnormalities from the GI tract. Finally, post-processing scheme is applied to deal with final classification results i.e. validated the performance of multi-abnormal disease frame detection

    Intelligent Hemorrhage Identification in Wireless Capsule Endoscopy Pictures Using AI Techniques.

    Get PDF
    Image segmentation in medical images is performed to extract valuable information from the images by concentrating on the region of interest. Mostly, the number of medical images generated from a diagnosis is large and not ideal to treat with traditional ways of segmentation using machine learning models due to their numerous and complex features. To obtain crucial features from this large set of images, deep learning is a good choice over traditional machine learning algorithms. Wireless capsule endoscopy images comprise normal and sick frames and often suffers with a big data imbalance ratio which is sometimes 1000:1 for normal and sick classes. They are also special type of confounding images due to movement of the (capsule) camera, organs and variations in luminance to capture the site texture inside the body. So, we have proposed an automatic deep learning model based to detect bleeding frames out of the WCE images. The proposed model is based on Convolutional Neural Network (CNN) and its performance is compared with state-of- the-art methods including Logistic Regression, Support Vector Machine, Artificial Neural Network and Random Forest. The proposed model reduces the computational burden by offering the automatic feature extraction. It has promising accuracy with an F1 score of 0.76

    Generic Feature Learning for Wireless Capsule Endoscopy Analysis

    Full text link
    The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase)
    corecore