8 research outputs found

    Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer

    Get PDF
    BACKGROUND: Tumor classification is inexact and largely dependent on the qualitative pathological examination of the images of the tumor tissue slides. In this study, our aim was to develop an automated computational method to classify Hematoxylin and Eosin (H&E) stained tissue sections based on cancer tissue texture features. METHODS: Image processing of histology slide images was used to detect and identify adipose tissue, extracellular matrix, morphologically distinct cell nuclei types, and the tubular architecture. The texture parameters derived from image analysis were then applied to classify images in a supervised classification scheme using histologic grade of a testing set as guidance. RESULTS: The histologic grade assigned by pathologists to invasive breast carcinoma images strongly correlated with both the presence and extent of cell nuclei with dispersed chromatin and the architecture, specifically the extent of presence of tubular cross sections. The two parameters that differentiated tumor grade found in this study were (1) the number density of cell nuclei with dispersed chromatin and (2) the number density of tubular cross sections identified through image processing as white blobs that were surrounded by a continuous string of cell nuclei. Classification based on subdivisions of a whole slide image containing a high concentration of cancer cell nuclei consistently agreed with the grade classification of the entire slide. CONCLUSION: The automated image analysis and classification presented in this study demonstrate the feasibility of developing clinically relevant classification of histology images based on micro- texture. This method provides pathologists an invaluable quantitative tool for evaluation of the components of the Nottingham system for breast tumor grading and avoid intra-observer variability thus increasing the consistency of the decision-making process

    Intelligent Noninvasive Diagnosis of Aneuploidy:Raw Values and Highly Imbalanced Dataset

    Get PDF
    The objective of this paper is to introduce a noninvasive diagnosis procedure for aneuploidy and to minimize the social and financial cost of prenatal diagnosis tests that are performed for fetal aneuploidies in an early stage of pregnancy. We propose a method by using artificial neural networks trained with data from singleton pregnancy cases, while undergoing first trimester screening. Three different datasets' with a total of 122 362 euploid and 967 aneuploid cases were used in this study. The data for each case contained markers collected from the mother and the fetus. This study, unlike previous studies published by the authors for a similar problem differs in three basic principles: 1) the training of the artificial neural networks is done by using the markers' values in their raw form (unprocessed), 2) a balanced training dataset is created and used by selecting only a representative number of euploids for the training phase, and 3) emphasis is given to the financials and suggest hierarchy and necessity of the available tests. The proposed artificial neural networks models were optimized in the sense of reaching a minimum false positive rate and at the same time securing a 100% detection rate for Trisomy 21. These systems correctly identify other aneuploidies (Trisomies 13&18, Turner, and Triploid syndromes) at a detection rate greater than 80%. In conclusion, we demonstrate that artificial neural network systems can contribute in providing noninvasive, effective early screening for fetal aneuploidies with results that compare favorably to other existing methods

    First Trimester Noninvasive Prenatal Diagnosis:A Computational Intelligence Approach

    Get PDF
    The objective of this study is to examine the potential value of using machine learning techniques such as artificial neural network (ANN) schemes for the noninvasive estimation, at 11-13 weeks of gestation, the risk for euploidy, trisomy 21 (T21), and other chromosomal aneuploidies (O.C.A.), from suitable sonographic, biochemical markers, and other relevant data. A database(1) consisted of 51,208 singleton pregnancy cases, while undergoing first trimester screening for aneuploidies has been used for the building, training, and verification of the proposed method. From all the data collected for each case from the mother and the fetus, the following 9 are considered by the collaborating obstetricians as the most relevant to the problem in question: maternal age, previous pregnancy with T21, fetal crown-rump length, serum free beta-hCG in multiples of the median (MoM), pregnancy-associated plasma protein-A in MoM, nuchal translucency thickness, nasal bone, tricuspid flow, and ductus venosus flow. The dataset was randomly divided into a training set that was used to guide the development of various ANN schemes, support vector machines, and k-nearest neighbor models. An evaluation set used to determine the performance of the developed systems. The evaluation set, totally unknown to the proposed system, contained 16,898 cases of euploidy fetuses, 129 cases of T21, and 76 cases of O.C.A. The best results were obtained by the ANN system, which identified correctly all T21 cases, i.e., 0% false negative rate (FNR) and 96.1% of euploidies, i.e., 3.9% false positive rate (FPR), meaning that no child would have been born with T21 if only that 3.9% of all pregnancies had been sent for invasive testing. The aim of this work is to produce a practical tool for the obstetrician which will ideally provide 0% FNR and to recommend the minimum possible number of cases for further testing such as invasive. In conclusion, it was demonstrated that ANN schemes can provide an effective early screening for fetal aneuploidies at a low FPR with results that compare favorably to those of existing systems

    Using Contextual Learning to Improve Diagnostic Accuracy: Application in Breast Cancer Screening

    Get PDF
    Abstract-Clinicians need to routinely make management decisions about patients who are at risk for a disease such as breast cancer. This paper presents a novel clinical decision support system that is capable of helping physicians make diagnostic decisions. We apply this support system to improve the specificity of breast cancer screening. The system utilizes clinical context (e.g., demographics, medical history) to minimize the false positive rates while avoiding false negatives. An online contextual learning algorithm is used to update the diagnostic strategy presented to the physicians over time. We analytically evaluate the diagnostic performance loss of the proposed algorithm, in which the true patient distribution is not known and needs to be learned, as compared with the optimal strategy where all information is assumed known, and prove that the false positive rate of the proposed learning algorithm asymptotically converges to the optimum. Moreover, the relevancy of each contextual information is assessed, enabling the approach to identify specific contexts that provide the most value of information in reducing diagnostic errors. Experiments were conducted using patient data collected from a large academic medical center. Our proposed approach outperforms the current clinical practice by 36% in terms of false positive rate given a 2% false negative rate. Index Terms-Breast cancer, cancer screening, computer-aided diagnosis system, online learning, contextual learning, multiarmed bandit

    Mitotic cell detection in H&E stained meningioma histopathology slides

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Meningioma represent more than one-third of all primary central nervous system (CNS) tumors, and it can be classified into three grades according to WHO (World Health Organization) in terms of clinical aggressiveness and risk of recurrence. A key component of meningioma grades is the mitotic count, which is defined as quantifying the number of cells in the process of dividing (i.e., undergoing mitosis) at a specific point in time. Currently, mitosis counting is done manually by a pathologist looking at 10 consecutive high-power fields (HPF) on a glass slide under a microscope, which is an extremely laborious and time-consuming process. The goal of this thesis is to investigate the use of computerized methods to automate the detection of mitotic nuclei with limited labeled data. We built computational methods to detect and quantify the histological features of mitotic cells on a whole slides image which mimic the exact process of pathologist workflow. Since we do not have enough training data from meningioma slide, we learned the mitotic cell features through public available breast cancer datasets, and predicted on meingioma slide for accuracy. We use either handcrafted features that capture certain morphological, statistical, or textural attributes of mitoses or features learned with convolutional neural networks (CNN). Hand crafted features are inspired by the domain knowledge, while the data-driven VGG16 models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. Our work on detection of mitotic cells shows 100% recall , 9% precision and 0.17 F1 score. The detection using VGG16 performs with 71% recall, 73% precision, and 0.77 F1 score. Finally, this research of automated image analysis could drastically increase diagnostic efficiency and reduce inter-observer variability and errors in pathology diagnosis, which would allow fewer pathologists to serve more patients while maintaining diagnostic accuracy and precision. And all these methodologies will increasingly transform practice of pathology, allowing it to mature toward a quantitative science

    SHIVA : un sistema heurístico e integrado para la validación de sistemas inteligentes

    Get PDF
    [Resumen] En esta tesis se aborda la construcción de una herramienta de validación de sistemas expertos. Tras unos primeros capítulos en los que se introducen las nociones necesarias de verificación y validación de sistemas expertos, se hace una revisión de muchos métodos estadísticos aplicables a tal fin. Como consecuencia de todo ello se presenta la metodología propuesta para la validación de sistemas expertos. Fruto de esta metodología surge la herramienta SHIVA cuyas características y funcionamiento práctico se exponen en dos de los últimos capítulos. La tesis finaliza con un capítulo de discusión, un apéndice con las reglas de aprendizaje de SHIVA y otro con los artículos publicados por el doctorando en relación con la Tesis

    Computer-aided detection of breast cancer nuclei

    No full text
    A computer-aided detection system for tissue cell nuclei in histological sections is introduced and validated as part of the Biopsy Analysis Support System (BASS). Cell nuclei are selectively stained with monoclonal antibodies, such as the anti-estrogen receptor antibodies, which are widely applied as part of assessing patient prognosis in breast cancer. The detection system uses a receptive field filter to enhance negatively and positively stained cell nuclei and a squashing function to label each pixel value as belonging to the background or a nucleus. In this study, the detection system assessed all biopsies in an automated fashion. Detection and classification of individual nuclei as well as biopsy grading performance was shown to be promising as compared to that of two experts. Sensitivity and positive predictive value were measured to be 83% and 67.4%, respectively. One major advantage of BASS stems from the fact that the system simulates the assessment procedures routinely employed by human experts; thus it can be used as an additional independent expert. Moreover, the system allows the efficient accumulation of data from large numbers of nuclei in a short time span. Therefore, the potential for accurate quantitative assessments is increased and a platform for more standardized evaluations is provided
    corecore