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Abstract

Malignant disease is a major cause of morbidity and mortality in western Europe. 

Cancers which form distant metastasis are difficult to contain. Measures to stimulate 

or inhibit movement of cancer cells may play an important part in metastasis biology. 

The movement behaviour of individual cells within a cluster may give new clues 

about cell-to-cell interactions. However, the recognition and tracking of individual 

cells in clusters is difficult for a fully automated imaging system. 

A principal aim of this study was to develop a semi-automatic image processing 

system to enable assessment of cell movement in clustered cancer cell colonies. The 

system would also be adapted and applied for the segmentation and analysis of 

macroscopic images of leg ulcers.

A piecewise cubic spline interpolation was used to describe cells by their boundary. 

The spline model was extended into the time domain with a deterministic relocation 

technique to facilitate tracking of cells, thus forming a new adaptive spline model. 

The method was applied to investigate the movement behaviour of clustered human 

colon cancer cells in vitro associated with an added movement stimulant. The results 

demonstrated that stimulated cells show more movement activity and higher 

velocities than control cells. The system was also applied to assess morphology of 

neutrophils in brightfield microscopy and results were compared with a region-based 

segmentation technique. Furthermore the system was applied to assess cell 

morphology in relation to intracellular chemical changes in neutrophils. 

On a macroscopic level, the spline technique was used to segment the wound 

boundary in leg ulcer images. The spline was used to generate a profile of the wound 

edge at the boundary of leg ulcers to extract new wound assessment parameters based 

on hue, saturation and intensity.

In summary, these adaptive spline methods enable the assessment of cell movement 

behaviour in clustered cells. Differences in behaviour between stimulated cells and 

control cells can be quantified. The system is also proving to be useful in segmenting 

macroscopic images such as leg ulcer images. Thus this system should be of value in 

macroscopic analysis of wound healing and microscopic analysis of cell movement 

and cell behaviour.
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Chapter 1

Adaptive Spline Method for Assessment of Cell Motility 

and its Application to Lesions

1.0 Introduction

In western Europe at least one third of the population develops a malignant disease 

such as cancer [Lindblom and Liljegren, 2000]. The spreading of cancer and 

development of secondary tumours within the body are thought to be contributed by 

the ability of cells to move [Schiffmann, 1990].

Motility, a term describing movement behaviour, is a basic necessity for survival of 

all living organisms. This also applies on a microscopic level within each organism. 

From embryonic development to inflammatory processes, the ability of cells to 

divide and move is essential. For example, neutrophils are blood cells that are 

responsible for combating infection within the body. They move to a site of infection, 

engulf and kill the intruding micro-organisms. In wound healing the repair process of 

tissue involves both migration and proliferation of cells [Zahm et al., 1997]. 

Epithelial cells were shown to migrate and reorganise, forming new tissue at the 

wound edge in vitro. Cell motility is a major factor in malignant diseases. For 

instance, the capability of cancer cells to move is thought to be crucial in the 

formation of distant metastases [Jiang et al., 1994a]. The objective assessment of cell 

motility is therefore considered to be important for investigating these phenomena.

In this thesis, a new approach of assessing the motility of cells is described. In this 

method, a cell is described by a mathematical contour approximation of the boundary 

using splines. This adaptive spline method enables the semi-automatic segmentation 

of clustered cells and subsequent tracking in combination with a deterministic 

relocation technique. A cell tracking system was designed by developing software 

incorporating the adaptive spline method and other imaging techniques. The system 

was applied to quantify the movement behaviour of human colon cancer cells with 

and without added movement stimulators. The system was further adapted and
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applied to segment macroscopic wound images in order to investigate the appearance 

of leg ulcers.

1.1 Background

The advent of light-microscopy in the early nineteenth century led to the discovery 

that all animal and plant tissues are aggregates of individual cells. In 1838, this was 

formally established as the cell doctrine by Schleiden and Swann [Alberts et al, 

1994]. In 1863 Virchow [1863] observed that there was movement of cells in 

tumours examined ex vivo after surgery. However, the ability to examine living cell 

cultures was limited until the first design of a suitable microscope technique in the 

early 1930s. Prior to the development of quantitative systems, the movement of cells 

was assessed by observing cell activity. For example, cell migration was assessed 

qualitatively by counting the number of cells that moved across a line. Other 

techniques used microscopic chamber assays allowing cells to migrate through micro 

pores. These include the Boyden chamber assay [Boyden et al., 1962] and migration 

of cells from microcarrier beads onto flat plastic surface [Rosen et al., 1990]. 

However, no quantitative assessment about individual cell velocities and cell shape 

changes could be made.

Later, photography was used to take single snapshots over a period of time and to 

evaluate cell movement by tracing the outline of cells manually and estimating their 

position [Hammerli and Strauli, 1981]. However, manual segmentation is time- 

consuming and my be prone to error. In order to assess the movement of freely 

moving cells more accurately, computer assisted image processing methods were 

applied. A number of image processing systems and methods have been established 

to assess the movement of single, detached cells [Thurston et al., 1986; Tatsuka et 

al., 1989; Hoffmann-Wellenhof et al., 1994; Soil et al, 1995; Zicha and Dunn, 

1995].

Some systems for single cell analysis are based on a spatial segmentation of 

individual cells in an image sequence. This often requires a uniform background 

around the cell using brightfield or phase-contrast microscopy from which the cell
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can be easily detected and described. An outline of the cell is generated in each image 

of the sequence without using temporal information from the previous or next frame. 

The location of the cell is calculated from its centre of area (centroid) and this can be 

used to calculate cell velocity.

In the case of single, detached cells, the segmentation of cell images is usually 

performed using low-level image processing algorithms, e.g. thresholding, edge 

detection and region growing to separate the background from the cell body. 

Applying morphological operators subsequently connects fragments of the boundary 

and creates a binary image with the cell body highlighted or just an outline of the cell 

as demonstrated by Tatsuka et al. [1989].

In some cases, however, the exact boundary location of an individual cell may be 

difficult to reconstruct by simply linking together fragments of the boundary. The 

contour of a cell or any object may be described more generally by providing 

additional information about the location and shape. Such a segmentation technique 

was suggested by Kass et al. [1987] and is known as an active contour model or 

snake. An initial contour is placed around or inside an object of interest and the 

contour is guided by internal and external forces to find a close fit to the object's 

contour. Leymarie and Levine [1993] developed and applied such an active contour 

model to delineate and track the boundary of single cells. An initial boundary was 

placed manually on the outside of the cell and the mathematical contour converged 

towards the cell boundary using a gravitational model based on the potential surface 

of the gradient. However, the snake method required clear gradient features to fit the 

boundary of the solitary cell. Their system performed on well defined edges on single 

cells but did not catch expanding cellular regions very well. Also, the lack of 

interactive measures meant that falsely segmented regions could not be corrected.

Another approach is to investigate differences between consecutive images as an 

indicator for cell movement activity [Hoffmann-Wellenhof et al., 1994], facilitating 

so-called temporal information. These differences can be used to relocate and 

redefine the cell in consecutive frames. For example, Siegert et al. [1994] proposed a 

novel imaging method based on optical flow analysis to assess the movement of
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cells. The movement and direction of movement of each pixel was assessed; this 

enabled movement analysis of whole cell colonies without the need to segment and 

identify each cell individually. An overall velocity of the cell colony was calculated. 

However, there was no distinction made between individual cells, rather, the 

movement of the whole colony was analysed.

The movement of single cells has been studied extensively, however, only a few 

studies have attempted to assess the movement of clustered cells, for example Siegert 

et al. [1994] by using optical flow analysis. Cells usually appear in clusters and there 

is a suggestion that cell-to-cell interactions may have an effect on their motility. 

Stoker and Gherardi [1991] suggest that cell adhesion molecules may restrict 

movement in clustered cell populations. The quantitative analysis of cell motility for 

clustered cells may hence be of value in determining the effect of those cell-to-cell 

adhesions which may ultimately be useful in providing information about preventing 

cancer cells from detaching and spreading.

The assessment of cell movement of clustered cells is very difficult if not impossible 

for a fully automated image processing system. Figure 1.1 shows an example of a 

clustered cell colony of HT115 human colon cancer cells. In the case of a tightly 

clustered environment where cells are close together or some cells even overlap, 

deciding which boundary segment belongs to which cell would be difficult for an 

automated vision system. Cells are no longer solitary and surrounded by a uniform 

background which can be segmented unambiguously. "Classical" imaging techniques 

such as thresholding and edge detection are unlikely to be sufficient to segment and 

track cells within clusters.
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Figure 1.1: Example of a cluster of human colon cancer cells viewed by Hoffman 

modulation contrast microscopy at x320 magnification.
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More importantly, since the segmentation is likely to be prone to error, the lack of 

user influence in this process makes it unsuitable for segmenting clustered cells.

The human observer considers many visual clues, e.g. intensity, gradient, uniformity, 

by which cells can be distinguished. Moreover, a human observer also applies his/her 

prior knowledge about cell structure and cell movement behaviour to facilitate the 

identification process. For example, an area of the cell boundary that changes rapidly 

between consecutive images may be identified as membrane ruffling. By linking 

spatial and temporal information together, a more accurate picture of moving cells in 

clusters may be generated.

Therefore, a method which could facilitate the segmentation and tracking of cells in 

clusters would be expected to have the following attributes:

• incorporates a priori knowledge about constraints of the cell boundary

• interactive for seamless user interaction, if necessary, to correct misinterpretation

• enables semi-automatic tracking of cells in consecutive frames

• using spatial and temporal information to guide image segmentation and tracking

1.2 Novel Cell Tracking Technique

A cell can be considered as a closed boundary (membrane) which can be described 

by a mathematical model of its boundary shape. A contour model suggested by 

Leymarie and Levine [1993] required clear gradient features to fit the boundary to a 

solitary cell. In a clustered environment, this is insufficient as cells can overlap or 

stick close together. To address these problems, a new adaptive spline model which 

forms the basis of a semi-automatic approach to cell tracking was developed. A 

deformable point model made of control vertices is combined with a cubic spline 

interpolation to render the cell boundary. In this technique, a cell is defined initially 

via an interactive boundary description facilitating a priori knowledge provided by 

an operator, placing only a few salient points on the cell boundary. The spline uses 

the information gathered from the initial placement to re-sample and relocate itself in 

consecutive images, hence allowing an interactive, dynamic tracking process. The
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control points form an interactive interface between the user and the system. Spatial 

image information such as image gradient and temporal image information such as 

area matching form a deterministic spatio-temporal relocation process. In consecutive 

frames, the position of the spline boundary is used as an estimate and re-sampled and 

located accordingly. The devised system has enabled the analysis of attached cells in 

cancer cell colonies [Hoppe et al, 1998a]. Also, the system was used to delineate the 

boundary of single neutrophils to enable the analysis of cell morphology and, in 

combination with ratio imaging, the measurement of localised intracellular chemical 

changes [Hoppe et al, 2000a].

Cell motility is also of significance in inflammatory processes and during tissue 

regeneration. In wound healing, the repair process of tissue involves cell migration 

and proliferation [Zahm et al., 1997]. Again, the effect of growth factors during in 

vitro wound healing have been studied [Schreier et al., 1993]. However, studies at 

microscopic level may not be enough to study wound healing. Herbin et al. [1993] 

remarked that macroscopic assessment of wound healing may be more suitable for 

measuring healing kinetics and comparing new and traditional therapies. It has been 

suggested that changes of wound appearance, such as discolouration and the margin 

of the epithelium, may be useful in determining the healing progress in wounds 

[Cutting et al., 1994]. For example, colour analysis using image processing has been 

used to describe and quantify the debridement and granulation in venous ulcers 

[Romanelli, 1997; Hoppe et al., 2000b]. However, in order to compare digital images 

and their true colour representation and to produce consistent results, the question of 

colour consistency under clinical conditions has to be considered.

The author has investigated colour variations of images taken with a digital 3CCD 

camera under clinical conditions [Hoppe et al, 1998c]. The Hue, Saturation and 

Intensity colour model was used which is considered to come close to a human 

interpretation of colour and provides a stable colour descriptor under varying lighting 

conditions [Gonzales and Woods, 1993]. However, it was concluded from this study 

that a colour reference is necessary in order to obtain reliable results for describing 

subtle changes in hue. If colour consistency between images cannot be obtained at a 

high degree, the appearance of the wound may also be assessed by comparing regions
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within the wound itself. An intra-wound analysis method could therefore be more 

robust than an inter-wound analysis method. The adaptive spline method was adapted 

and applied to delineate the boundary of wounds. The spline contour was used to 

create a wound profile to help investigating the vicinity of the wound boundary 

[Hoppeefa/.,2000b].

In summary, the assessment of cell motility is thought to be important in 

understanding cancer metastasis. Several image processing methods have previously 

been developed to quantify and study the movement of single, detached cells. 

However, it is thought to be important to investigate the behaviour of single cells in 

clusters to enable studying treatments that effect cell-cell adhesions.

1.3 Aims and objectives

The aim of this study was therefore to develop and apply a new method to facilitate 

the tracking of clustered and single cells. This method was thought to be of use also 

in segmenting wound images and assessing healing at the vicinity of the wound 

boundary and further work was aimed at this aspect. A number of objectives were 

therefore projected. They were

1. to review methods of assessment of cell motility

A number of computer-based systems were developed over the last fifteen years to 

monitor the movement of single cells. However, very few systems tried to address the 

problem of analysing cell movement in clusters. A literature review will be carried 

out describing current imaging methods of assessing cell motility. This includes the 

review of different light-microscopy techniques and appropriate image processing 

techniques to segment and track the movement of cells. The outcome of this review 

would be to identify possible techniques and avenues for segmentation and tracking 

clustered cells.

2. to develop an approach for segmenting cells in clusters

It is anticipated to develop a new method for segmenting cells in clusters. A fully
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automated system identifying cells in a cluster automatically is considered unlikely to 

be successful and the proposed system will be of a semi-automatic nature with some 

degree of automation. The anticipated outcome of this work is to develop a semi­ 

automatic segmentation technique which facilitates the description of cells in 

clusters. Furthermore, parameters to describe cell movement and behaviour will also 

be identified.

3. to combine the segmentation with a tracking mechanism

The intention is to combine the semi-automatic segmentation with a tracking 

mechanism to relocate the cell in consecutive images. A suitable tracking technique 

will be investigated and a new approach is developed which suits the problem of 

clustered cells. Cells are non-rigid objects expressing changes of shape and position 

simultaneously. Cell boundaries may also be weak in definition when membrane 

ruffling occurs or due to protrusion or retraction of cellular regions. The anticipated 

outcome is to enable the tracking of cells in clusters in combination with a semi­ 

automatic segmentation and tracking technique. These will be incorporated into a 

newly developed software package for tracking cells.

4. to validate the new system

It is intended to validate the software against artificial and real images. A series of 

artificial test images will be created to validate measurement of size and position of 

objects. The system will then be applied to track single cells and cells in clusters. It is 

also intended to compare the performance of the system with a manual 

segmentation/tracking on real images. The outcome would be thorough analysis of 

the performance of the newly developed system.

5. to study the effect of HGF/SF motogen on Human Colon Cancer Cells in vitro

It is planned to study the effect of HGF/SF motogen on the movement behaviour of 

human colon cancer cells in vitro. With the new segmentation method it should be 

possible to assess the movement of cells within a cluster. This is especially useful in
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order to quantify the 'scattering effect' of the motogen HGF/SF on cancer cells. 

Furthermore, it is anticipated to assess the effect of anti human E-cadherin antibody 

and motogen on the movement behaviour of human colon cancer cells.

6. to apply and extend the new method to ratio imaging for neutrophils

The system should be flexible enough to deal with other investigations in assessing 

morphological changes of cells. Furthermore, measuring intracellular chemical 

changes is considered to be important in understanding the mechanism of cell 

motility. It is intended to adapt the system to describe the morphology of expanding 

pseudopods in neutrophils while measuring the concentration of cytosolic free 

calcium. This may help to determine whether an inter-cellular chemical change can 

be associated with movement.

7. to apply the system to assess the appearance of ulcers in the vicinity of their 

wound boundaries

The system may further be used to delineate boundaries and to register image 

features of different types. It is envisaged to show its application to delineate the 

boundary of leg ulcers in order to assess the morphology of the boundary region. It is 

intended to create a means of describing the profile of boundaries based on colour.

8. to produce a comprehensive report and discussion on the results of the 

investigations.

1.4 Contribution to original knowledge

My original contribution to knowledge has been the development and application of a 

new semi-automatic, adaptive spline-based method to facilitate the assessment of cell 

motility in clustered cancer cells. Results were published in a full paper in Anticancer 

Research [Hoppe et a/.,1998a]. The system was extended with a deterministic 

relocation algorithm based on image gradient which was applied to examine the
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movement of cancer cells. A full paper was published in Medical & Biological 

Engineering & Computing [Hoppe et a/.,1999a]. The performance of the method was 

further enhanced by incorporating region matching techniques and a decision process 

with the spline. In a further development, the method was used together with ratio- 

imaging to measure changes in neutrophil cell morphology and intra-cellular 

chemical change [Hoppe et al., 2000a].

On a macroscopic level, the colour distribution in wound images under clinical 

conditions has been investigated and the results of this study were presented at the 

European Tissue Repair Society meeting in Copenhagen and published in Wound 

Repair and Regeneration [Hoppe et al., 1998b]. The adaptive spline method was used 

to semi-automatically segment wound boundaries in order to describe changes in the 

vicinity of the edge of leg ulcers [Hoppe et al., 2000b].

The following list summarises key points of the method and results described in this 

thesis.

• Development of a new adaptive spline method to describe cell movement.

The adaptive spline method is based on a geometrically deformable point model 

combined with a Hermite spline interpolation. Using a deterministic spatio- 

temporal relocation process for tracking cells, the system is capable to track 

clustered cells interactively.

• Using the above system we have been able to analyse the movement of clustered 

cancer cells and hence to compute cell area, cell velocity, relative movement 

(Centroid-Nucleus) and movement paths. As an indicator for cell shape the 

compactness or roundness was used. The method can also be applied to different 

types of cells, for example neutrophils.

• Analysis of movement behaviour of Human Colon Cancer cells (HT115) 

stimulated with HGF/SF.

It was observed that the median cell velocity of stimulated HT115 cancer cells 

was greater than cells not treated with motogen. Median cell area variation was
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greater with stimulated HT115 cancer cells than control cells. The movement path 

showed greater variation in stimulated cells in comparison with control cells. 

Some cells within a cluster did not seem to respond to the HGF/SF motogen.

• The method was combined with ratio-imaging to measure the concentration of 

cytosolic free calcium in neutrophils. Expanding and retracting pseudopods 

express greater changes in cytosolic free Ca2+ than the rest of the cell body.

• The method was also shown to be suitable for analysis of other medical and 

biological images, for example it has been adapted and applied to assess the 

appearance of leg ulcers. A system to capture wound images under clinical 

conditions has been developed and the analysis of the data collected showed the 

importance of using a colour patch chart for reference. The system was used to 

investigate the amount of slough in leg ulcers which was compared well with a 

clinicians assessment. An intra-wound analysis method based on the adaptive 

spline technique was used to generate a profile of the wound boundary edge which 

may be useful as a measure of wound appearance.
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2 Review of Developments for the Assessment of Cell

Movement in Light Microscopy and related Image

Processing Techniques

2.0 Background

Cell motility is a wide ranging phenomenon describing biological processes, such as 

cytoplasmic streaming, and other forms of intracellular transport, as well as the 

movement behaviour of cells. Cell motility is studied at levels ranging from 

molecular and biochemical mechanisms to dynamic behaviour of single cells, whole 

tissues and organisms.

Cancer metastasis is a complex phenomenon that is thought to be based on the 

principle of motile cells [Schiffmann, 1990]. The motility of cancer cells is thought 

to be a principal cellular parameter, essentially required in the invasion and formation 

of distant metastasis in human cancer [Schiffmann, 1990, Jiang et al., 1994a]. It 

involves primary proliferation of cells, their invasion through the basement 

membrane and extracellular matrix, which results in their appearance in the blood 

circulation system. It is followed by re-attachment and migration through the 

endothelial layer and finally the production of distant secondary tumours [Jiang et al., 

1994b]. Grimstad [1987] showed that cell locomotion contributes to the ability of 

cancer cells to invade new tissue.

Measures to stimulate or inhibit motility of cancer cells may play an important part in 

the understanding of metastasis biology in cancer. Special interest has been paid to 

the effect of factors which stimulate or inhibit motility. Stoker and Gheradi [1991] 

introduced a new term 'motogen' which describes any factors that promote cell 

motility. For example, cytokines can literally be described as 'cell movers' [Stoker 

and Gheradi, 1991]. HGF/SF 1 , a cytokine, is thought to be a trigger for cell spreading

HGF/SF: Hepatocyte growth factor/scatter factor
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[Rosen et al, 1990, Bhargava et al, 1993, Jiang et al, 1997]. Thus the ability to 

quantify movement and spreading of cancer cells may be important for assessing the 

efficacy of new treatment strategies.

In immunology, the motility of neutrophils is crucial for combating infection within 

the body. Neutrophils move from the blood stream to a site of infection where they 

engulf (phagocytose) and kill the infecting micro-organism. These cells are capable 

of rapid and specific changes in cell shape. Immunological abnormalities such as the 

Chediak-Higashi syndrome may be detected by analysing the movement behaviour of 

neutrophils [Korzynska et al, 1998]. However, it is as yet not fully understood which 

intracellular processes cause the cell to move. Several lines of evidence suggest that 

changes in calcium concentration may play a role in this response [Pettit and Hallett, 

1998]. Despite the importance of this cellular activity, it has been surprisingly 

difficult to establish a link between an intracellular chemical change within a cell and 

an accompanying localised cell shape change. For example, the expansion of a 

cellular region in neutrophils is thought to be triggered by a sudden change in 

cytosolic free calcium [Pettit and Hallett, 1998]. A system for assessing localised cell 

shape changes and intracellular changes would be of great help to further observe this 

assumption.

Several systems and techniques have been developed to assess the movement of cells 

and this review is concerned with describing the principles and common techniques 

using digital image processing. Computer systems to study motility of cells typically 

comprise a microscope system fitted with a Charged-Coupled Device (CCD) camera 

connected to a computer or video system. Images are either recorded on a time-lapse 

video system or digitised directly with a computer equipped with an image capture 

board. The following Figure 2.1 visualises a typical system to study cell movement.

Typical systems found in the literature are operated such that data are analysed 

retrospectively. Hence, the first step involves image acquisition and storage, the 

second step concerns image segmentation and image interpretation while the final 

step is used to analyse and interpret the acquired data. In contrast, Thurston et al. 

[1986] introduced a system based on a moving microscope stage that enabled the
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movement analysis of single cells in real time. The authors system would be based on 

retrospective analysis of video images.

Tracking of cells expands the image segmentation approach into the time domain. 

Segmentation of video images may be considered separately or an inter-frame 

approach, such as differences between frames, may be used as the basis for tracking 

and relocating objects.

This literature review includes light microscopy systems and common image 

processing techniques and their application to segment cell images and facilitate the 

tracking of cells. The following aspects were reviewed:

• Principles of light microscopy and image acquisition. This part focused on 

techniques in light microscopy; it included bright-field, phase-contrast, differential 

interference contrast, Hoffman modulation contrast and finally phase-shifting 

interference contrast microscopy. It was anticipated to get an understanding of 

light microscopy and suitable techniques for studying living cells (Section 2.1).

• Image segmentation techniques were discussed and examples given when used in 

specific systems for segmenting cell images. The success of image segmentation 

may be increased by facilitating prior information about the objects to be 

segmented. Therefore, attention was paid to model based segmentation approaches 

using a priori knowledge, such as Active Contour Models and Geometrically 

Deformable Models (GDMs). It was anticipated to explore possible segmentation 

techniques which may form the basis for a new segmentation technique for cells in 

clusters (Section 2.2 and 2.3).

• Tracking techniques were reviewed and different types of motion were discussed 

in respect to cell movement. The principles of motion in digital imaging were 

described. This was to explore possible techniques which, in combination with a 

new segmentation technique, may facilitate the tracking of clustered cells (Section 

2.4).
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• Parameters to describe cell movement and cell shape were identified. Once cells 

were segmented, suitable parameters to describe their movement behaviour need 

to be identified. It was intended to describe the most common descriptors of cell 

motility (Section 2.5).

• Image processing systems to study cell motility were described. Two research 

systems which are used to assess the movement of cells were described (Section 

2.6).

• The last part of the literature survey summarises previous methods and possible 

new avenues to explore are discussed (Section 2.7).
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2.1 Image Acquisition in the study of living Cells in Light Microscopy

Optical Systems are the key to the discovery of the cell structure and cell behaviour. 

However, cells are typically lOum to 20 um in diameter, and thus invisible to the 

naked eye. The development of light microscope technology in 1674 by van 

Leeuwenhoek provided a technological breakthrough for studying small specimen. 

This led to the discovery of cellular composition by Schleiden and Schwann in 1838. 

However, it was not until the second half of the nineteenth century that the internal 

structure of cells could be examined [Alberts et al, 1994].

The process from the microscope cell image to the digital image requires several 

stages of conversions which have an effect on the quality and appearance of the 

acquired image. The microscope configuration, video camera and digitising 

equipment determine the formation process of digital images. For example, in 

brightfield microscope setup, contrast is generated by differences in light absorption 

in cells. In phase-contrast microscopy, phase shifts due to the different refractive 

index of areas within the cell are translated into image intensity. It is also important 

to consider artefacts introduced by different microscopy techniques, e.g. a halo 

around cells in phase-contrast or gradient directionality in Hoffman modulation 

contrast.

2.1.1 Image Acquisition

In order to obtain a digital image from a microscope, a video camera is mounted on 

the optical axis of the microscope. Video cameras incorporate a CCD array and may 

be divided into two groups [Van Vliet et al, 1998]:

• Video Rate Cameras

• Integrating Digital Cameras (scientific cameras)

Both types consist of an array of photosensitive elements (CCD) but differ in the 

mode of operation. The spatial resolution of a scientific CCD camera equals that of 

its photosensitive array. The photoelectrons are accumulated over a specific time 

interval (integration time) at each pixel and during the readout period a shutter blocks
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new photons from reaching the array (black-out period). The electrical potential at 

each pixel is digitised by an analogue to digital (A/D) converter, usually with 12 bit 

resolution, and thus the full image is available in digital format.

In contrast, video rate cameras do not allow for a black-out periods but rather enable 

a simultaneous integration and readout time. After integration, the potential in each 

pixel is transferred to a non-photosensitive pixel which is read out during the next 

integration cycle. Integration time is determined by the video format (20ms for PAL2) 

and the potential along a line of pixels is converted into a video signal.

Video cameras enable convenient storage of image data using a standard video 

recording system and subsequent digitisation with an image frame grabber board. 

Furthermore, a time-lapse video system enables storage of long recordings, such as 

overnight recordings. However, since there is no longer a one-to-one relationship 

between CCD pixel and image pixel, the digitised video image is subject to artefacts 

and hence the quality is inferior to that of a scientific CCD camera. The choice of 

camera system depends on the purpose of the analysis. Long recording cell behaviour 

studies result in an enormous amount of digital data and may therefore be better 

stored on conventional video recording equipment. The advent of optical storage 

disks, such as CD-RW and DVD-RAM will undoubtedly lead to more digital 

recording.

2.1.2 Light Microscopy

The visibility of details in cellular structure depends on availability of enough 

contrast. However, the light absorbance of cells is not enough to create sufficient 

contrast which led to the development of techniques that take advantage of phase 

shifts and interference between light rays [Wilkinson, 1998]. In its most basic 

configuration, a light microscope consists of a condenser lens and an objective lens. 

A beam of light rays is focused onto each point of the specimen by the condenser 

lens. The objective lens collects these light rays and constructs an image which is

Video standard in the United Kingdom and central Europe
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visible through the eyepiece or projected onto a CCD array. This principle is 
illustrated in the Figure 2.2.

In this configuration, contrast is achieved by differences in light absorbance of 

different cellular regions and between the cell and its surrounding background. The 

light rays that are focused onto each point of the specimen are of the same amplitude 

and phase. The specimen has the ability to modify light such that it changes the 

amplitude by absorbing light and phase shifts are caused by different refractive 

indices. Bright field illumination is the most common form of illumination in 

microscopes, and its components are illustrated in Figure 2.2. The image intensity is 

a function of the light absorption of objects within the bright field. Hence, these are 

called amplitude objects, i.e. objects which change the amplitude of light rays 

passing through them [Wilkinson, 1998]. The image intensity /(x,y) is a function of 

light extinction coefficient s at each point (x,y,z) as described by Wilkinson et al., 

[1998].

I(x,y) = I,e-*(x 'y} with r(x,y) = £""* s(x,y,z)dz (2.0)

The resolution of a light microscope is limited to the wavelength of visible light - 

400nm (violet) to 800nm (red) [Alberts et al., 1994]. However, due to interference 

between light waves the possible resolution is further decreased. These optical 

diffraction effects limit the resolution which also depends on the numerical aperture 

(NA) of the lens system. For example, a small point will be displayed as a circular 

spot, hence two points close to each other can be blurred into one. The resolution 

limit TO is expressed by the Rayleigh criterion

0.6 U——— (2.1)
NA v ;

where A, is the wavelength of light and NA the numerical aperture (NA < 1 in air, NA 

< 1.3 in water) [Wilkinson , 1998]. The resolution achieved in light microscopy is 0.2 

um with a wavelength of 400nm [Brocksch, 1994].
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However, there is little in the contents of cells (which are 70% water by weight) to 

impede the passage of light rays and thus they are almost invisible through an 

ordinary light microscope [Alberts et al, 1994]. One possibility is to increase the 

light extinction coefficient by staining cells with a coloured dye to make cells visible. 

Another approach is exploit the phase shifts caused by different refractive indices. 

Both techniques are described in the next two sections.

2.1.3 Fluorescence Microscopy

In fluorescent microscopy, fluorescent molecules are bound to antibody molecules 

which move and attach to particular regions within the cell. These molecules absorb 

light at one wavelength and emit it at a longer wavelength [Alberts et al., 1994]. This 

enables, for instance, the targeting of a specific area within the cell body. If a 

fluorescent molecule is illuminated and then viewed through a filter that allows only 

light of the emitted wavelength to pass through, only the fluorescent molecules are 

clearly visible. These images are then easy to segment. A cell can be stained with 

different fluorescent molecules allowing several regions to be stained differently at 

the same time. Furthermore, fluorescent molecules can be used as tags or indicators 

of proteins and or small ions, such as Ca2+ or H+ [Whitaker, 1994]. This is an 

important technique since the intracellular ionic composition is thought to be related 

to cellular activity [Slavik, 1998].

A disadvantage of many traditional dyes for fluorescent microscopy is that they can 

be toxic to cells at useful concentrations [Wilkinson, 1998]. Studying living cells 

requires a very low concentration of dyes since they may have an effect on the life 

cycle and behaviour of cells. This may be overcome by using image intensifiers to 

enhance the brightness of low concentration dyes.

Although fluorescently labelled antibodies have been used for locating proteins in 

livings cells, they are usually used with dead cells. Measuring the changing 

concentrations of ions in living cells, however, is important in understanding the 

biochemical processes and cellular activity [Slavik, 1998]. Ratio-imaging can be used 

to obtain quantitative information about the concentrations of ions, for instance Ca2+
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using lower concentrations of sensing agents. Taking the ratio of two images at two 

different wavelengths (ratio-imaging) produces the data to calculate the ion 

concentration [Slavik, 1998]. For example, ratio-imaging has been used to measure 

the concentration of free Ca2+ in living cells [Hallett et al, 1996].

2.1.4 Phase-Contrast and Interference Contrast Microscopy

The cellular structure can only be partially made visible through staining. In order to 

view unstained, living cells the phase-contrast microscopy technique was developed 

by Zernicke in 1932 [Alberts et al., 1994]. In phase-contrast, changes in phase delays 

between light rays are translated into differences in image intensity. The phase of the 

light passing through a cell is changed according to the cell's refractive index 

[Alberts et al., 1994]. Phase-contrast greatly increases the apparent contrast between 

cell organelles as small phase differences can be made visible by exploiting 

interference effects. For instance, the light passing through a thick part of the cell, 

such as the nucleus, is more deflected and diffracted than the phase of light that 

passes through the thinner region next to it. An annular phase plate is mounted above 

the objective lens (see Figure 2.2) which attenuates and advances the phase of the 

undeflected light rays by 90 degrees [Brocksch, 1994]. The diffracted (and deflected) 

light is now approximately 180 degrees out of phase and due to interference, reduce 

each other significantly, leading to darker areas. Thus, the thicker nucleus appears 

darker than the thinner surrounding cellular region. The following image in Figure 

2.3 shows a single cell viewed by phase-contrast microscopy.

To further enhance contrast from phase delays, Normanski [1955] developed a 

differential interference contrast (DIG) method using polarised light. The light wave 

is split up into parallel rays at right angles to each other. These are then displaced in 

the order of micrometers above the resolution limit of the microscope. These two 

light rays enter the specimen in phase and become out of phase if passing through an 

area with different refractive indices. Finally, the displacement between the two rays 

is compensated and both rays are recombined passing through a second polariser, the 

so called analyser [Brocksch, 1994]. Since the light wave is no longer polarised but
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its constituent parts are out of phase, interference causes its amplitude (and hence 

brightness) to alter according to the phase difference.

Phase contrast and DIG rely on the interference between light waves, which may lead 

to interference fringes and halos around objects [Wilkinson, 1998]. DIG has extended 

resolution and contrast of previous light microscopy techniques and thus allows cell 

structure to be highly resolved [Foskett, 1993]. In order to avoid some of the artefacts 

introduced by interference, Hoffman [1977] created a system whereby phase 

gradients are transformed into intensity changes without relying solely on the 

interference principle.

2.1.5 Hoffman Modulation Contrast Microscopy

The Hoffman modulation contrast (HMC) principle was designed by Hoffman in 

1975. The modulation contrast microscope enables unstained, living cells to be 

viewed with high contrast [Hoffman, 1977]. This system exploits phase gradients 

rather than phase differences between light waves and converts them into intensity 

changes. A specimen with varying thickness also expresses continuously changing 

optical gradients. Different gradients cause different angles of light refraction. Light 

from the specimen is passed onto a modulator, which can be described as a graded 

filter. Refracted light passes through the modulator at a different location and is thus 

transformed into different intensities [Wilkinson, 1998]. The image intensity of 

opposite gradients are opposite, hence one gradient is dark while the opposite 

gradient is bright in the image. This leads to a three-dimensional appearance of the 

cells within the image. In fact, as light intensities vary above and below an average 

value - the light is said to be modulated, hence the term modulation contrast 

[Hoffman, 1977]. The following Figure 2.4 shows a single cell viewed by Hoffman 

Modulation contrast microscopy. The opposite gradients at the edge of the cell image 

are clearly visible.
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Figure 2.4: Directional optical gradients in Hoffman Modulation Contrast 
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DIG and HMC use relative differences in phase shifts and optical gradients to 

translate into image intensity. Although structural features are expressed well in both 

DIG and HMC, there is no linear relationship between the optical gradient and 

density of the specimen. One way of achieving this has been demonstrated by 

Bereiter-Hahn [1985] using a phase shifted interference technique.

2.1.6 Phase Shifting Interference Microscopy

The phase shifted interference principle (PSI) [Bereiter-Hahn, 1985] makes use of the 

interference between phase delays of two separate light beams. Dunn and Zicha 

[1995] developed an image processing system which allows the phase difference to 

be accurately related to the distribution of dry mass inside cells (DRIMPAS system - 

digitally recorded interference microscopy with automatic phase-shifting). In their 

microscope configuration (Horn microscope), one light beam passes through the 

specimen while the second beam passes through a dummy chamber. This was 

combined with a computer system to calculate the true phase difference by solving a 

set of interference equations and thus the accurate density of dry mass in cells. 

Moreover, the system can also be adjusted such that cellular regions are brighter than 

the surrounding background, hence the segmentation process is less complex. 

Unfortunately, the Horn microscope is no longer available but work is under way to 

construct a new, less expensive version of the double-beam Horn microscope with 

integrated digital image processing functions to allow the accurate calculation of dry 

mass distribution [Dunn, 1998].

Summary

Light microscopy enables the study of cell structures but it was not until the 

development of the phase-contrast microscope that detailed studies of living cells and 

their behaviour was made possible. The fact that light rays passing through a 

specimen are delayed led to the development of microscopy techniques based on 

exploiting phase changes rather than differences in light absorption. Techniques such 

as phase-contrast, DIG and HMC greatly improve the contrast between cellular
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structure and background and enable the study of cell morphology. Fluorescent 

techniques and ratio imaging are primarily used to study intracellular biochemical 

changes.

There is a trend to combine these two avenues to study intracellular functionality in 

combination with changes in cell morphology. For example, Foskett [1993] 

described a system which enabled simultaneous DIG imaging with quantitative 

fluorescence imaging.

Any technique to distinguish cells within a cluster relies on enough contrast between 

cellular structures. The author intends to use Hoffman modulation contrast 

microscopy due to the enhanced bright and dark regions at the boundary of cells. 

Opposite gradients at the cell boundary may help to separate touching cells or even 

overlapping cells.

-24-



Chapter 2

2.2 Image Segmentation Techniques for Cell Imaging

Image segmentation in the context of cell imaging is concerned with the description 

of cells in microscope cell images. Tracking movement adds a further dimension to 

the segmentation. In the next two section (section 2.2 and 2.3), techniques for 

segmenting static images are reviewed while in section 2.5 motion and tracking 

techniques are described.

Image segmentation is a process in which regions or features sharing similar 

characteristics are identified and grouped together. For example, a uniform 

background may be distinguishable from a non-uniform cell body. Image 

segmentation may use thresholding, edge detection, region detection, texture 

descriptors or any combination of these techniques. The segmentation is followed by 

an image interpretation, whereby the extracted features from the segmentation 

process are combined to describe real-world objects. For example, boundaries from 

an edge-detection process may be linked to form a closed boundary describing the 

outline of a cell body. The image interpretation applies high-level knowledge about 

the object to describe an image or objects appearing in an image. However, this high- 

level knowledge may also be applied during the segmentation stage which may 

enhance the success of the segmentation and thus the overall image interpretation. 

Medical images may thus be segmented in two different approaches.

a) Low-level features such as uniform regions or discontinuities are extracted and 

grouped together. High-level knowledge is then applied to use these features to 

form a meaningful interpretation of the image, for example, to identify cells. 

Image segmentation may use thresholding, edge detection, region detection, or any 

combination of these techniques (Section 2.3).

b) In a second approach a priori high-level knowledge about objects to be identified 

is used to guide the segmentation process. This so-called model-based approach 

depends on a shape model that contains information about the expected objects in
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the image, such as anatomical structure. Such information may be used to decide, 

for example, whether an edge is part of a structure or artefact (Section 2.4).

2.2.1 Region-based Segmentation in Digital Cell Imaging

All segmentation techniques are concerned with being able to distinguish the cell 

body from the surrounding background. A simple question has to be asked: 'Does a 

particular pixel belong to the cell body?' The result of the region-based segmentation 

process should lead to a description of the cell by its body mass. Region-based 

segmentation methods attempt to partition or group regions according to common 

image properties. These image properties may consist of

• Intensity values

• Textures or patterns that are unique to each type of region

• Spectral profiles in the frequency domain.

Thresholding is the simplest way to perform segmentation, and it is used extensively 

in many image processing applications. In its simplest form, threshold selection is 

done on a pixel by pixel basis, by comparing the grey level of each pixel f(x, y) with 

some predetermined value T. If the grey level is below the threshold, the pixel 

f(x,y)is assigned T, otherwise '0', hence creating a binary image. A number of

sophisticated thresholding techniques have been introduced which automatically 

define an optimal threshold value T or even multiple threshold values Ti..Tn . 

Threshold values may even differ within regions of an image creating a dynamic, 

regional based thresholding algorithm [Lee et al. 1990, Sahoo et al. 1988]. The 

following Figure 2.5 shows a single human colon cancer cell viewed by Hoffman 

modulation contrast microscopy. Two global thresholds have been applied at ±5% of 

median intensity, filtering out the non-modulated background in HMC.

Thresholding is often used when sufficient contrast between the cell body and 

background is present. Thurston et al. [1986] developed an automated microscope 

system to measure motility of single cells based on a global thresholding principle in 

brightfield microscopy. Tatsuka et al. [1989] created an image processing system
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median intensity. Left image shows a single human colon cancer cell (HT115) and 

the right image the area above and below the two thresholds. Pseudopod marked by 

white arrow.



Chapter 2

which used an adaptive thresholding algorithm for detecting cell outlines in phase- 

contrast microscopy. It is assumed that the cell is distinguishable from the 

background by its intensity values. However, as seen in Figure 2.5, pixel values close 

the background intensities can occur in protruding or retracting areas (Pseudopods). 

These problems are caused by non-homogeneous optical properties of the cell 

[Gauthier et al., 1997]. Phase shifted interference microscopy has been shown to 

create an image whereby cell images have different intensity values to the 

background [Brown and Dunn, 1989, Zicha and Dunn 1995]. However, it is 

important to note that such global region-based segmentation techniques are sensitive 

to a non-uniform lighting distribution and any distortion must be corrected.

Regions may also be identified through structure and appearance. In this context, the 

analysis of texture may be used as a means of differentiating regions. One common 

definition for texture is that it is composed of basic patterns that are repeated in a 

periodic manner [Wechsler, 1980]. This is most applicable in describing 

deterministic types of texture, such as in tiling. These basic patterns, or textons, are 

homogenous with respect to defined rules [Julesz, 1981]. Other types of texture are 

more random (stochastic) in nature, having no basic pattern or dominant repetition 

frequency present. Yet, there may be a relationship between pixels in a region that is 

detectable by the human vision system. The probabilities of occurrences of pixel 

combinations has been shown to be important in the human analysis of texture [Pratt 

et al., 1978]. Texture has been used extensively to segment macroscopic images for 

example in aerial surveillance. On the microscopic level, texture values can be re­ 

mapped to intensity values and previously described image segmentation methods 

may be used for further analysis. Korzynska et al., [1998] used texture to segment 

neutrophil images. However, working with texture implies the loss of resolution 

since texture is described as a function of its neighbourhood. Thus resolution is 

compromised and the visualisation of small structures may be eliminated.
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2.2.2 Edge based Segmentation

Edge based segmentation methods are often used to look for explicit or implicit 

boundaries between regions. A cell, or indeed any object, can also be described by its 

boundary rather than the mass of its body. Segmentation methods on the basis of 

edge detection are very common. In fact, the human vision system is thought to 

recognise shapes in an image mostly by discontinuities, such as boundaries and peaks 

[Hubel and Wiesel, 1977].

The image gradient can be computed by simply applying the gradient operator to the 

entire image function f(x,y). The two-dimensional gradient-operator Vfis 

generally defined as [Gonzales and Woods, 1993],

Vf = t
By

The gradient is represented by a vector with a direction and magnitude. The direction 

of the gradient may be useful in estimating the orthogonal vector of a boundary. In 

general, the magnitude of the gradient vector is what is usually referred to as the 

gradient. The magnitude of the gradient requires the partial derivatives df I dx and 

df/dyof each pixel to be calculated which in its explicit form is quite time- 

consuming. Several discrete approximations have been developed based on spatial 

operator masks, for example Robinson [1965], Prewitt [1970] and Sobel [Gonzales 

and Woods, 1993].

The exact location of an edge can be calculated with the second-order derivative of 

the image function [Gonzales and Woods, 1993]. The zero crossings indicate the 

crossover between a rising and a falling part of an edge. A common technique for this 

operation is the magnitude of the two-dimensional Laplacian function applied to the 

image. However, the second order derivative is unacceptably sensitive to noise and 

Marr and Hildreth [1980] combined the Laplacian operator with Gaussian smoothing
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to overcome the problem. The so-called Laplacian-of-Gaussian (LoG) V 2 G filter is 

based on the second derivative of the Gaussian function G(x,y,a)

V'G^G^+G and G(x,y,cr) =——--e 2ff (2.3)
Ina

with

„ . , d2 G(x,y) d2 G(x,y) ._ .. 
G^(x,.y) = —2 and G^X*,}') = ——2 (2 - 4)

Figure 2.6 shows a human red blood cell viewed by brightfield microscopy and 

applied with a 3x3 Prewitt as well as 3x3 Laplacian of Gaussian spatial operator 

mask.

The image of a red blood cell in Figure 2.6a shows a strong inner gradient and a 

weaker outer gradient of the boundary. These double edges occur at the rising and 

falling edge by using the first derivative. As mentioned earlier, the second derivative 

may be used for edge location and image 2.6c shows the same blood cell segmented 

with second derivative filter LoG operator. In the case of a simple structure like the 

blood cell, the boundary may be located easily. However, in more complex cellular 

structures, the boundary is often fragmented due to expanding regions as can be seen 

in Figure 2.7. In the right hand image, the boundary is visible as well as inner cellular 

structures such as the nucleus. The gradient may enable the detection of boundaries. 

Interpreting and forming a closed curvature from such images, however, is a more 

complex task.

Due to the limitations of brightfield technology some regions of the cell may have 

poor contrast and thus express no gradient at the boundary. However, modulation 

interference microscopy emphasises 'optical gradient' as shown in figure 2.7b. Soil et 

al. [1995] concludes that although gradient methods appear to be the most versatile 

approach, they also generate more complex images since gradient methods find all 

edges, including those inside the cell perimeter. Additional methods such as edge 

linking, thresholding and binary morphology may be necessary to obtain a cell
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a) Prewitt filter b) original c) Laplacian of Gaussian

Figure 2.6: Double edge in picture a , while dark boundary represents the zero- 

crossing and hence the location of the edge of the blood cell in c.

a) neutrophil- brightfield b) cancer cell - HMC

Figure 2.7: Gradient (first derivative) of neutrophil (a) and HT115 cancer cell (b) 

using a 3x3 Prewitt operator.
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outline. Soil et al. [1995] describes the principal application of binary morphology 

for gap-filling in a fragmented boundary. Tatsuka et al. [1989] used a combination of 

dynamic thresholding, gap-filling and edge detection to generate the outline of single 

cells viewed by phase-contrast. However, this technique does not use information 

about the object to be segmented and may hence produce unreliable results.

An advantage of edge detection over thresholding is that it depends on local 

differences and hence is mostly independent from global effects such as non-uniform 

lighting. As with many systems, a combination of different methods can yield a 

satisfactory solution. For example, Kittler et al. [1985] proposed an automatic 

threshold algorithm based on intensity and gradient information.

Thresholding may only be used when dealing with single, detached cells. Since cells 

with the same optical properties cannot be distinguishable when attached. Clustered 

cells may be distinguishable by the orientation of their gradient. However, it is 

difficult to determine which fragment of the boundary belongs to which cell without 

any a priori knowledge. Moreover, the cell membrane may not always be 

homogeneous and noise as well as intracellular organelles may lead to 

misinterpretations.

2.3 Model based approaches in Image Segmentation

The shape of an object is commonly described by its outline, hence the detection of 

the cell contour is of great importance. It is possible to describe a contour with a 

mathematical model. Parameters of that model are determined by a priori 

knowledge, such as anatomical features, and from imaging features detected by low- 

level techniques. These so-called 'Active Contour Models' are flexible descriptions of 

contours which can be manipulated to fit an image contour. One of the first models 

used for describing contours is the 'Snake' devised by Kass et al. [1987]. Active 

contour models are popular in segmenting and tracking anatomical structures because 

of the availability of a priori knowledge of these structures and their spatial 

relationship. Many techniques have been developed such as Active Contour Models
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(Snakes) [Kass et al, 1987], Geometrically Deformable Models (GDMs) [Miller, 

1990], and Active Shape Models [Cootes et al., 1992]. Some of these techniques 

have been adapted to tracking objects. Recently, Peterfreund [1999] developed a 

Snake for tracking non-rigid objects which is based on motion estimation.

Contour models describe a boundary with a mathematically defined curvature Q as a 

function of its arc length u. In the case of a two-dimensional space the curvature is 

formed parametrically as

(2.5)

Since the shape of boundaries is usually a complex formation it is unlikely that a 

single function would satisfy the description. A boundary is therefore split up into 

several segments, each between two control points. The continuous representation of 

a curvature is approximated with a finite number of points. Kass et al. [1987] used 

finite differences to approximate the curvature. Another very common choice is to 

use higher order polynomials which reduce the number of control points needed, and 

forming a piecewise polynomial curvature as shown in Figure 2.8. This contour 

representation can be combined with low-level image processing techniques to form 

an active model that attracts the contour towards edges and peaks. In this review the 

original idea of an active contour by Kass is described while references to further 

developments are made.

2.3.1 Active Contours

Kass et al. [1987] proposed the concept of an energy minimising spline guided by 

external constraint forces and influenced by image forces (Snakes). Each force 

generates energy which has an influence of the total energy Etotai of the spline. Snakes 

are active because they actively alter their shape and position while seeking an 

optimal position based on energy minimisation. A two-dimensional dynamic contour 

called v can be defined in terms of its x and y coordinates, which in turn are 

parameterised by the linear parameter s, and the time parameter t,
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Figure 2.8: A closed curvature made of four segments.
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= (x(s,t),y(s,t)). (2.6)

The parameter s e[0...l] and parameter t e[0...oo]. Each time step would bring the 

snake closer to an energy minimum until an equilibrium of all forces is reached. Kass 

defined that the total energy of his model was made of three energy terms.

E1 _

^ total ~ ? + E + E''imternal image external - (2.7)

The internal energy Ein,ernai describes the bending and stretching of the curvature. 

^image is the image energy and depends on the image intensity and gradient values 

along the path of the contour. Eexternai is created by artificial energy fields imposed by 

the user or other high-level features. Other energy terms have been proposed, such as 

optical flow for the velocity snake [Peterfreund, 1999]. 

The internal energy is defined as

^ internal ds a? (2.8)

where a controls the amount of stretching of the snake and p controls the amount of 

bending along the boundary. Large values of a will increase the internal energy of the 

snake as it stretches more, whereas small values of a will make the total energy less 

sensitive to the amount of stretching. Similarly, large values of (3 will increase the 

internal energy of the snake as it develops more curves and vice versa.

The image energy of the snake is defined as

77 __
image (2.9)

Large values of o>i make the snake align itself with bright regions in the image. 

Similarly, large values of 002 tend to make the snake align itself with large image
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gradients in the image whereas large negative values of 002 make the snake avoid 

these gradients. Small absolute values of 012 make the snake indifferent to edges in 

the image. Kass also introduced a line energy term which uses the Laplacian of 

Gaussian to align the snake to zero-crossings in the image.

The external energy is defined as a negative energy field where spline points cannot 

move. So-called spring forces where introduced which pushed snake points towards a 

location while volcano forces push points away from a location. Springs and 

volcanoes provide indirect user interference to guide the snake indirectly to a correct 

position if necessary.

The minimisation of the energy function yields an optimal solution for the position of 

each snake point on the contour in respect to internal forces, image forces and 

external forces. Kass used variational calculus to find the minimum of the snake 

energy. First and second order derivatives are approximated by finite differences and 

at each time step the position of control points is changed in that direction which 

yields a lower energy. However, the calculated solution may only express a local 

minimum of the global energy solution and thus not the correct boundary location. 

Therefore, other techniques to enhance the minimisation process have been proposed.

Amini et al. [1990] suggested the use of dynamic programming for the optimisation 

of the discrete sum of independent energy terms. Another discrete optimisation 

technique has been proposed by Williams and Shah [1992]. Their so-called greedy 

optimisation examines the neighbourhood of each control point and searches for a 

energy minimum locally.

Quite often contour models are used for both segmentation and tracking of structures 

simultaneously. After initial placement, the snake searches for an energy minimum in 

the first frame and uses the found position as an initialisation for the next frame. 

Applications for snakes include the segmentation and tracking of echocardiographic 

sequences by Mikic et al. [1993] and tracking the aorta in 2D Magnetic Resonance 

(MR) images [Rueckert et al., 1997].
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On a microscopic level, Leymarie and Levine [1993] adapted and further developed 

an active contour model to track single, detached cells in brightfield microscopy. The 

snake is attracted to the gradient of the boundary at different scales. This coarse to 

fine fitting facilitates a scale-space approach using a Gaussian spatial operator to 

decrease the scale and then a Sobel operator mask to produce a gradient image.

As concluded by Leymarie and Levine [1993], this approach only works well with 

good contrast boundaries. Thin, expanding regions of the cell , such as pseudopods, 

were not included in the final boundary description. The lack of interaction between 

user and snake optimisation meant that wrong interpretations could not be corrected 

interactively. The calculated position of the snake boundary at equilibrium does not 

necessarily represent a valid solution. Image features may have been taken into the 

calculation of a solution which were not part of an object. There is no higher-level 

decision making process involved to decide which image features are valid or 

invalid.

2.3.2 Geometrical Deformable Models (GDMs)

The previously described contour models are physical based implicit models which 

are influenced by external forces, such as user intervention and image features and 

internal smoothness constraints. Miller et al. [1991] introduced an explicit model 

based on a vertex model that is able to adapt and resample itself according to the 

complexity of the shape it describes. This ability is performed in a two step approach:

• Deformation: In this step the vertices are pushed towards image features such as 

boundaries or intensity values. The shape is solely determined by the number of 

vertices, hence any information between points is not taken into account. In 

Miller's model, each vertex YJ can move along the normal vector nj to a new 

position. A global cost function C is used as an assessment of how well the vertex 

model fits the boundary and topology of the object.
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According to Miller, the cost function for a two-dimensional GDM is made of the 

following components:

(2.11)

where C,(x,y) is the cost of a particular vertex at position (x,y) which is made of 

the weighted sum of D(x,y), a potential field that pushes the vertex towards the 

boundary, I(x,y) an image term that identifies image features and Tj, a measure of 

smoothness of the current vertex position in context with its neighbours.

• Resampling: Miller introduced a scheme whereby vertices are added and deleted 

according to the distance between neighbours. If the distance is greater than a 

threshold TI, a new vertex is added and if it falls below a threshold T^ a vertex is 

deleted. This enables the model to control its resolution and ensures smoothness.

Fitting of the vertex contour is achieved by minimising the cost function (2.11). 

Points are moved to a new position along the normal vector such that the cost of each 

point staying at the new position is lower than the previous position, otherwise it will 

remain in that position.

The vertex model has been combined with a spline interpolation and an energy 

minimising approach similar to snakes [Rueckert et al., 1997]. It has been used 

successfully to track the aorta in cardiovascular magnetic resonance (MR) images 

with a high degree of a priori knowledge available.
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2.3.3 Active Shape Models

The amount of a priori knowledge may be used further to restrict the number of 

possible shapes the contour can develop. For example, if the shape of an object is 

known and the variations of the shape can be described statistically from a training 

set of shapes. This information is used to limit the movement possibilities for the 

active contour and hence a higher degree of successful fitting may be achieved. 

Cootes and Taylor [1992, 1995] described variations in shape of an object by a point 

distribution model (PDM) as following

x = x + Pb (2.12)

where x represents all landmark points describing the boundary of the object, x is the 

mean position of those points, P is a matrix containing the modes of variation and b 

is a vector of weights for each mode. Instead of using all modes of variation, limiting 

the number of variations can still be sufficient to describe a large proportion of the 

shape variations.

An instance of the shape of the object may be created by varying the weights for each 

mode of variation b. According to Cootes et al. [1995], an instance X of the shape 

can then be described by adding translation Xc , and shape changes M (orientation 6 

and scale s)

(2.13)

Active shape models use an instance of the shape as a first approximation of the 

contour. For each landmark point, a displacement is calculated according to image 

features, for example the maximum edge strength along the normal vector. Using the 

current shape parameters, a best possible fit is tried by translating, rotating and 

scaling the current shape defined in equation 2.13. In a final step, adjustments to the 

original weights b are made to optimise further a closer fit. The most interesting 

feature of active shape models is their ability to learn shapes from a training set 

which enables a more successful fit. However, a large set of shapes is required for
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training to capture the variability and the training process may be time-consuming. 

Only objects with a limited and known variability can be segmented with the help of 

such a model. In medical imaging, objects with known anatomical features can be 

segmented successfully with Active Shape models. On the other hand, cells do not 

express a limited number of shape variations and hence may not be suitable to be 

segmented by a shape model.

Summary

In summary, snakes are a model-driven approach for solving many image 

understanding problems that are difficult, if not impossible, to tackle using classical 

approaches. Just like human vision, snakes start with an a priori model of initial 

shape of an object. By using the smoothness constraints, they are able to fill in for 

missing and noisy boundary information. As a result, they are more robust than non- 

model based methods, which make little use of knowledge about image structure. 

Active contour models are used to represent physical contours in medical images 

with a high degree of a priori knowledge from, for example, anatomical features, e.g. 

Rueckert et al., [1997]. However, these techniques have been implemented mostly in 

research based systems, hi cell imaging, however, there is a lesser degree of a priori 

knowledge since cells can develop an arbitrary number of shapes. Therefore, active 

shape models based on modelling shape variations would not be appropriate to 

describe cell shapes.

Contour models are often adopted to detect or follow boundaries as part of a tracking 

algorithm. However, the degree of user intervention in the segmentation and tracking 

process is often limited. In the original snake model, Kass provided for indirect user 

inter-action by defining positive and negative external forces which influence 

indirectly the fitting process of the snake. The global optimisation process of many 

contour models often leads to overlooking subtle features such as, for example, 

expanding pseudopods in cells. The calculated position at equilibrium may not 

always represent a viable image segmentation solution as seen in the case of cell 

image segmentation by Leymarie and Levine [1993].
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2.4 Tracking non-rigid Objects

The ultimate aim of this project is to be able to track the movement of non-rigid 

objects in a noisy environment. Some tracking techniques are based on an accurate 

segmentation of the object outline in each frame without any temporal information as 

described in the previous sections. An outline of an object is generated from a single 

frame without using any information from the previous or consecutive frames. 

Another approach is to investigate directly the motion of an object. Many early 

motion .estimation techniques simplified the process of the quantitative assessment of 

movement by assuming rigid motion of objects. However, with cells and indeed with 

most objects in real world, non-rigid motion is the norm. Huang et al. [1990] 

classified motion as shown in Figure 2.9.

Articulated motion occurs where parts of an object express rigid movement but move 

independently from each other. However, the overall motion of the object is non- 

rigid. Often articulated motion is referred to as piecewise rigid motion.

Elastic motion can be described as motion with certain constraints. Aggarwal et al. 

[1994] used the example of a bending metal sheet as an example of elastic motion 

whereby the bending is constrained by physical parameters. Another example of 

elastic motion is the bending and flexing of muscles. In these examples a high degree 

of a priori knowledge exists in terms of shape and motion and is often used to 

simplify the motion analysis. However, fluid motion is free of any constraints and 

may even include turbulent deformations [Aggarwal et al., 1994].

2.4.1 Assessment of Motion

Many attempts have been made to understand how motion is perceived in biological 

visual systems in order to model the methodology with a computer system. The 

assessment of visual motion can be categorised in low-level techniques, based on 

pixel analysis and high-level techniques using a priori knowledge. High-level
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techniques are a combination of low-level motion features and information about the 

movement, such as smoothness, shape or movement constraints.

Low-level flow estimation

In an early review, Thomson and Barnard [1981] distinguish between three basic 

approaches for low-level motion estimation: differencing techniques, temporal- 
spatial gradient analysis and matching techniques.

a) Differencing techniques determine changes in image intensity at each point j[x,y) 
in time. Consecutive frames are subtracted and values over a threshold indicate 

movement while those underneath the threshold T may be interpreted as noise. 

A difference image d(x,y) can be described as shown by Gonzalez and Woods, 

[1993]

. (2]4) 
otherwise

Miyata et al. [1988] used the differences between three frames at different 

intervals to detect and quantify cell membrane ruffling (small, rapid changes at 

cell membrane).

b) Temporal-spatial gradient techniques use changes in image intensity locally at an 

image point over both time and space to estimate the translation of that point. The 

velocity information is most reliably available near the intensity discontinuities, 

such as edges and peaks since the effect of noise is less distorting on these areas. 

Although the velocity of each point is calculated individually, the movement of 

the neighbourhood area is taken into account too. In its simplest form, the spatial 

variability is represented by a gradient vector g. A small area within the image 

may shift by the amount dsand causes the intensity change di. This yields the 

following relationship [Thomson and Barnard, 1981].

di = -g-ds = ~(gxdsx + gydsy ) (2.15)
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If there is only a single rigid object moving within an image, one can determine a 

set of linear equations from n observation points.

with

8.x\

[G]ds = d

£y

OJCrt O yn

'dsx 
ds., , d =

-dl

-di

(2.16)

(2.17)

Due to the problem with noise when analysing the movement of individual pixels, 

a more generalised approached has been developed by Horn and Schunck [1981]. 

Their approach is based on the movement of brightness patterns rather than a 

single object, the so-called optical flow. The brightness at point (x,y) in an image 

/(x,y) at time t is denoted as E(x,y,t). The brightness of a particular point is 

considered to be constant, hence dE I dt = 0. This yields

cE dx dE_dy_ ^ 
dx. dt dy dt dt

(2.18)

This can be rewritten as a single linear equation with two unknown u and v as

dx dy =Q, with« = —,v = —- . 
dt dt

(2.19)

This equation is widely known as the motion constraint equation. However, this 

equation is not sufficient to determine uniquely the two components of a 

movement vector. Hence, Horn and Schunck [1981] introduced an additional 

smoothness constraint assuming that the velocity of a brightness pattern varies 

smoothly over the image plane. The partial derivatives of the image brightness Ex, 

Ey and Et are estimated by finite differences while the smoothness is described by 

the Laplacian of the x and y component of the flow. With many independently 

moving objects, the smoothness constraint of the flow field cannot be guaranteed.
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Also, the estimation of the gradient by finite differences is sensitive to noise and 

may thus lead to false readings.

To overcome this problem, optical flow based on a field theory approach has been 

proposed by Numura and Miike [1991]. Instead of describing the movement of 

brightness pattern it measures the outflow and inflow of 'image current" within a 

small area. Their approach is based on the continuity equation from 

hydrodynamics which is described as

(2.20)

where & is the density of fluid and i is the current density of the flow while sm is 

the rate of material formation. On the assumption that no new material is formed 

(Am-0) and i corresponds to the 'image current density', Nomura and Miike 

rewrote the above equation as

(2.21)

where g describes the image intensity at a specific pixel location in time g(x,y,t). 

Grad is the image gradient at position (x,y) and time t while v represents the x and 

y component of the flow vector. Considering the same point in two consecutive 

frames yields two equations which can be written in matrix form as

dx. dy a
a

(2.22)

The two components of the flow vector v can be determined by matrix inversion 

as long as the determinant of the coefficient matrix is non-zero. Nomura and 

Miike further introduced a temporal optimisation scheme using all available 

frames n with a least square minimisation to solve the n equations. Siegert et al.
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[1994] used this approach for optical flow to describe the movement of single 

cells as well as the movement of clustered cells. However, cells were not 

distinguished within a cluster, rather the overall velocities of the whole cluster 

were evaluated.

Brown and Dunn [1989] analysed the movement of dry mass in fibroblasts. Their 

method is based on the field theory equation (2.20) where the divergence of dry 

mass current pv is equal to the rate of decrease in dry mass density <ty / dt.

(2.23)

c) Matching techniques were the first to be used in motion estimation. It is possible 

to match a small region in one image frame to a region of the same size in its 

neighbourhood in a consecutive frame. In its simplest form, a region is selected 

and an organised search for a corresponding area is performed using some 

optimisation criteria. Two measures of similarity are commonly used, the sum of 

squared differences (SSD):

(2.24)

The above equation calculates the sum of square differences in intensity / of a 

small area centred at point p(x,y) at time ti and several other locations (x+dx, 

y+dy) in the neighbourhood of p(x,y) at time ti. The position of the minimum of 

the SSD indicates the best fit and hence determines the position the area has 

moved to.

The second measure of similarity is the cross-correlation between a small area at 

time ti and several other locations (x+dx, y+dy) at time t2 can be described as:

(2.25)
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Englert and Sheng [1990] used a normalised cross-correlation algorithm to 

determine the flow of particles. As pointed out by Thomson and Barnard [1981] 

regions with high information content are chosen preferably which are likely to 

provide good auto-correlation. This so-called 'feature point matching' uses low- 

level image segmentation techniques, for example peak detection, prior to the area 

matching. These features are then traced using the above correlation technique. 

Interestingly, features points may also be determined from objects to be 

monitored. A priori knowledge about the shape of objects may help finding 

suitable feature points and hence enhancing the success of the matching 

techniques.

Summary

Optical flow techniques have been used successfully to track the movement of rigid 

objects and on non-rigid objects. These techniques do not incorporate any 

information about the image structure and objects. Having information about the 

moving objects in an image may be of great advantage. For example, the movement 

of a human may be seen as articulated motion, piecewise rigid motion of the limbs 

and body. Due to the anatomical structure of the skeleton and muscles, a limited 

number of movements is possible which may be described in a model. The tracking 

of a person's movement may be simplified significantly by applying the model as a 

signature of walking patterns. Such a model is described as a parametric model 

where objects have a finite number of shapes or the deformation can be modelled 

mathematically Aggarwal et al. [1994].

However, the motion of cells can be described as being elastic or with respect to a 

small area dK as being articulated. Parametric models are inadequate for this type of 

motion.

It is important to note that optical flow has been used to track single cells or the 

whole cluster, but in case of clustered cells there was no distinction made between 

individual cells within the cluster [Siegert et al., 1994].
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Active contour models have been used to track objects but without the use of spatio- 

temporal information such as optical flow. Only recently has motion analysis been 

combined with an active contour model [Hoch and Litwinowicz, 1996] and the so- 

called velocity snake [Peterfreund, 1999]. Both use motion estimation to place the 

snake closer to the boundary in situations of motion.
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2.5 Description of Cell Morphology and Cell Motility

This thesis is concerned with the assessment of cell movement behaviour and the 

term motility is used for describing morphological changes and translocative 

movement. Once objects have been identified, parameters such as position, size and 

shape may be used to describe the objects, e.g. cells. The centroid P(xc,yc) of the area 

occupied by the cell is often used as the position of the cell [Soil, 1995]. This is used 

as a basis to calculate cell velocity.

(2.26)

Cell motility describes changes in shape and location over time of cells. Haemmerli, 

[1978] described two different types of motility of cells.

• Stationary motility describes the appearance and disappearance of pseudopods 

without changing the position of the cell.

• Translocative motility describes directional movement when the cell is polarised. 

This is often accomplished by cytoplasmic extensions of the cell front.

Translocative velocity is the distance between two positions over time. However, it is 

somewhat controversial what the 'optimal' time-interval should be. Soil [1995] 

remarks that it is important to choose the same time-interval if velocities are to be 

compared.

Shape changes are usually accompanied when cells are moving, however, stationary 

motility may also express changes in cell shape due to pseudopod expansion. The 

shape of cells has been described by higher-order moments [Dunn and Brown, 1990] 

or as circular maps [Killich et al., 1993]. A common size-independent descriptor for 

shapes is the roundness, defined as [Schnorrenberg et al., 1997]
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perimeter ,~ O7% 
roundness = ——————• V--L ') <\n • area

This may be used as a descriptor for stationary motility.
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2.6 Example of Systems for Assessing Cell Motility

This section gives an overview of two systems, which demonstrate the computer- 

assisted assessment of the movement of several single or clustered cells.

DRIMAPS System (Dunn and Zicha, 1995)

Phase-shifted interference images represent the distribution of dry mass inside cells. 

The phase shifted interference principle (PSI) [Bereiter-Hahn, 1985] makes use of the 

interference between phase delays of two separate light beams. In the Horn 

microscope configuration used, one light beam passes through the specimen while 

the second beam passes through a dummy chamber. This was combined with a 

computer system to calculate the true phase difference by solving a set of interference 

equations and thus the accurate density of dry mass in cells. Cells were masked out 

using a Sobel edge detector with the boundaries diluted. The remaining background 

image was used to determine a polynomial transformation to compensate for the 

inherent fluctuations in background intensities. The system can also be adjusted such 

that cellular regions are brighter than the surrounding background, hence the 

segmentation process is less complex. The system calculates area and velocity and 

higher order moments for cell shape assessment from the dry mass distribution.

A gradient method for the quantitative assessment of cell movement and 
tissue flow (Siegert et a/., 1994)

The system addresses the problem of describing the movement of multicelluar 

cultures. Instead of identifying each cell individually within a colony, Siegert's 

approach is based on the analysis of pixel flow in all regions of a frame. In analogy to 

the flow measurement of particles in fluids [Numura et al, 1991], Siegert calculates 

the average velocity vector for every pixel from 25 vectors in a 5x5 region and thus 

the movement of a small region. Images were digitised at a five-second interval. To 

reduce noise, the average velocity vector was calculated. However, no distinction 

was made between individual cells.
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2.7 Conclusions

The assessment of cell motility may be described as an image segmentation problem 

and a motion detection problem. Many techniques have been developed to segment 

single, detached cells using a variety of microscope techniques. Low-level image 

segmentation techniques have been used successfully in cases where single cells had 

different intensity values from the image background. Such techniques are tailor 

made to the image properties from images using a specific light microscopy methods. 

For example, objects in the image plane in phase-contrast microscopy develop a halo 

around their boundary which has been used to facilitate cell boundary detection. A 

number of automated systems have been used to describe the movement of single, 

detached cells. Most systems are based on a combination of low-level image 

segmentation techniques such as thresholding and edge detection. One system used 

an active contour model to segment a single cell in consecutive frames.

The segmentation of individual cells in clusters is challenging. Siegert et al,, [1994] 

used optical flow analysis to measure the movement of all cells within a clustered 

region. Since there is a clear interest in measuring the behaviour of cells in clusters, 

the analysis of cell movement of individual cells in clusters would be of great 

advantage. Since segmentation of clustered cells without high-level knowledge is 

very difficult, an interactive adaptive contour model is proposed to segment and track 

individual cells in an interactive fashion.

Such a model should have the following properties:

• semi-automatic contour initialisation

• semi-automatic fitting to cell shape to reduce user bias

• relocation of contour in consecutive frames

• allow easy user interaction to correct relocation if necessary
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3 Adaptive Spline Method

3.0 Introduction

The tracking of non-rigid objects such as cells is a complex task. In this chapter a 

novel approach of describing cells and assessing their motility is presented. This 

approach allows the tracking of individual cells in clusters which is considered to be 

important in the study of cell behaviour. One of the difficulties of segmenting cells is 

that their boundary is not consistent around the cell body. Cells constantly change 

their appearance due to protrusion and retraction of the cell margin. The boundary 

may be very weak and does not express a predominant gradient. The ruffling of the 

cell membrane may lead to a blurred boundary which could be difficult to detect in a 

fully automated system.

In this new approach, a cell is described by a piecewise cubic spline interpolation 

facilitating a priori knowledge about the boundary of cells. The cell boundary is 

approximated by a spline-based contour model describing the shape of the cell 

membrane. A semi-automatic, interactive tracking approach has been adopted which 

requires the positioning of control points 1 onto or close to the cell boundary at the 

start of the monitoring process. This is combined with an adaptive relocation 

approach using image features in the vicinity of the cell boundary.

The essence of the method is to use image features in the near neighbourhood of the 

salient control points that can be relocated in consecutive frames using gradient and 

pixel flow properties. In Figure 3.1 the four corner stones of the adaptive spline 

method are shown. The method is designed to allow interaction between the cell 

segmentation and tracking process as well as user influence on the final result of the 

segmentation process. This semi-automatic approach allows the operator to intervene 

in the automatic tracking process to ensure correct interpretation of the cell boundary 

in clustered cells.

In the literature the term vertex is often used instead of control point
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• The user interaction mechanism is through the salient control points on which the 

spline boundary is interpolated. Moving single points changes the shape of the 

rendered boundary, also points may be added or deleted. However, this so called 

re-sampling process may also be performed more automated whereby control 

points are added and deleted according to a the length of spline segments.

• The spline fitting process moves control points closer to the boundary if a 

sufficient gradient is apparent.

• The point relocation process is based on a spatial-temporal area matching 

technique to approximate the piecewise rigid movement of each control point. 

This movement information is combined with gradient information in a decision 

making process to determine the new position of each control point in consecutive 

frames.

The arrows between those four blocks symbolise the dependency between those 

components. The functionality of each block is described in this chapter.

In summary, the proposed spline-based contour model has the following properties:

• semi-automatic, initial control point selection

• automatic fitting to cell shape to reduce user bias (where unambiguous)

• cell tracking in consecutive frames

• allows easy user interaction

• limited search space (neighbourhood processing) due to clustered cells

• tracking of centroid

Figure 3.2 outlines the way in which the method section of the thesis is organised. 

The adaptive spline method was used to investigate the movement of cancer cells as 

described in chapter 5.

It is also shown that the spline technique may be used in other areas of image 

segmentation, such as the delineation of the wound edge in ulcers. The adaptive 

spline model was further used to approximate the position of the boundary of leg
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ulcers and to derive features from the boundary. An orthogonal profile was created 

from the spline which was used to describe new wound assessment parameters. The 

application of the spline to wound imaging will be discussed is chapter 6.

The adaptive spline method was developed preliminarily in the Java language (Sun 

Microssystems Inc.). Image enhancement techniques were developed preliminarily in 

Matlab (The Mathworks Inc.) environment using the Image Processing Toolbox.

Finally, a stand-alone software package was designed in C++ using Borland C++ 

(Borland Inc.) on Microsoft Windows95. The software contains image capture 

software and the implementation of the adaptive spline technique together with 

tracking and image enhancement features. The software was developed in an object- 

orientated fashion. A class diagram is attached in the appendix C. Parts of source 

code describing the adaptive spline class are also shown in appendix C. The software 

was written in ANSI C++ and it is anticipated to port the application to the Linux 

environment. Snapshots of the software in action are attached in appendix B.
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3.1 Cell Image Features

Cells are usually between lOum and 30um in diameter and consist of a nucleus 

surrounded by cytoplasm. A literal description of the cell is given as follows [Alberts 

etal, 1994]:

Any one of the minute protoplasmic masses that make up organised 
tissue, consisting of a nucleus which is surrounded by cytoplasm 
enclosed in the cell membrane.

Viewed by an ordinary brightfield microscope, cell features are almost invisible due 

to the low light extinction coefficient of cells. As discussed in chapter 2, techniques 

such as phase contrast, DIG and Hoffman modulation contrast (HMC) microscopy 

are used to view unstained, living cells and their structure. In HMC, optical gradients 

due to phase shifts are highlighted and objects have a three-dimensional appearance 

due to the directionality of the optical gradient. The image in Figure 3.3 shows a 

single cancer cell viewed by HMC.

The opposite gradients are clearly marked by bright and dark areas on the cell 

membrane as seen in Figure 3.3. The protruding area appears to be 'thinner' and 

hence expresses a lesser gradient. Structural features such as the nucleus and 

nucleolus may also be identified as spots within the. cytoplasm thanks to the three- 

dimensional appearance. The directionality of the gradient may be used to distinguish 

two neighbouring cells as seen in Figure 3.4. The areas of interest are marked by a 

white arrow in Figure 3.4.

The positive and negative gradient between touching cells makes HMC suitable for 

assessing clustered cells. It is important to note that the cell margin may be very thin 

in expanding regions of the cell and hence would be very difficult to detect from the 

weak gradient alone. However, a human observer may still be able to distinguish 

these expanding regions when viewed as an image sequence. Subtle changes in image
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Figure 3.3: Single human colon cancer cell as viewed by HMC microscopy
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Figure 3.4: Applications of HMC to visually distinguish touching or even 

overlapping cells.
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intensity over time are recognised and the human high-level vision system appears to 

form a segmented cell out of the spatio-temporal information.

This is the reason why changes between video frames (temporal information) is 

combined with spatial information such as image intensity and image gradient, to 

form a spatial-temporal technique of describing and tracking cells. This is combined 

on a higher level with a spline-based mathematical contour to finally describe the 

shape of cells. As in the human vision system, edges are the first and most important 

clue to the position and shape of an object. In general, the location of a boundary is 

determined by the zero crossings of the second derivative of the image function 

[Gonzalez and Woods, 1993]. Figure 3.5 shows this principle applied to a basic test 

image. The outline of the test image in Figure 3.5 denotes the zero-crossings of the 

Laplacian filter. However, in a real world imaging situation objects are not as well 

defined as the test image in Figure 3.5.

The location of an edge in Hoffman Modulation Contrast images is more complex 

due to the fact that the HMC image already represents a gradient image. Furthermore, 

this so called 'optical gradient' in HMC is directional dependent [Hoffman, 1977]. A 

possible location technique for an edge in HMC on a test image and on a real image 

of a single cell is demonstrated. The same procedure is applied to detect the boundary 

of clustered cells. It is important to note that the boundary may not be detected fully 

due to weak boundary definition at retracting and protruding cell areas.

The test image in Figure 3.6 is a simple approximation of the effect of modulation 

contrast. The image was created by applying a horizontal first derivative filter mask. 

It is important to mention that this approximation introduces a systematic error to the 

image. The artificial object 'increases in size' by one pixel each on the positive as 

well as negative slope of the edge. This is not the case in modulation contrast. The 

bright and dark areas introduced by the optical gradient are part of the object. This 

can be explained with the following equations.
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Figure 3.6: Simple test object 'Hoffman modulated'. A cell shape (left image) viewed 

by HMC (right image) simulated by a horizontal edge detector mask.
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discrete: V/(x,,) = continuous: Vf(x,y) = lim = . (3.0)
Ax A*->O AJC <3c

The steps of the optical gradient are infinitesimally small Ax-»0 while the steps of 

the gradient in the test image are one pixel width (Ax = 1). The size of the test object 

has increased but due to the fact that bright and dark areas are part of the object in 

HMC, this will then become the new test image. The created image expressed a grey 

background where no optical gradient is apparent while one side of the object is dark 

and the opposite side is bright. Purely vertical edges are not expressed in HMC but 

any edge with a horizontal component expressed a gradient as on the artificial test 

image seen in Figure 3.6.

Since the HMC image already represents the (directional) first derivative, a natural 

progression would be to derive the imageXx>y) a second time. In order to investigate 

a valid method to determine the location of the cell boundary from the gradient, the 

method was first applied on an artificial HMC test image and was later applied to a 

real cell image. Figure 3.7 shows the artificial HMC test image and the appropriate 

derivative. A standard 3x3 Prewitt filter mask was used for the horizontal and 

vertical component. As shown in the equation in Figure 3.7, the two components 

were simply added together. This resulted in positive and negative gradients at the 

inner and outer boundary to create a high contrast. This process is explained in Figure 

3.8. A profile of an artificial object is shown and the position of the edges are marked 

as a dotted line in the profile graph. The intensity plot shows the profile of the same 

object viewer under HMC. Typical features are the bright and dark edges of the 

object giving it a three dimensional appearance. The derivative plot shows the 

positive and negative gradient values which occur at the boundary of an HMC image. 

In the image next to the derivative plot, high gradients are expressed as dark values, 

hence the dark outline in that image represents the true location of the boundary.

The same procedure is now applied to a real cell image viewed by Hoffman 

modulation contrast microscopy. Figure 3.9 shows a single cell image with two 

profiles marked by a white line in the image. The corresponding profile plots are
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Figure 3.7: Simple test object 'Hoffman modulated' with first derivative Prewitt 

operator applied. The resulting image was overlaid with the true position of the edge 

(black outline).
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Figure 3.8: Edge location in artificial HMC image using a 3x3 Prewitt filter
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situated on right to the image. The perceived boundary position is marked on the 

profile plots by a dotted line.

The location of the boundary in Figure 3.9 can be determined at the rise and fall of 

the optical gradient values which are represented by high and low intensity values. 

This is very clear when investigating horizontal edges as in the image in Figure 3.9. 

Since HMC images already represent an optical gradient (first order) a natural 

progression would be to use the second derivative as an indicator for the location of 

an edge. This coincides with the perception of the position of the boundary at the 

rising edge of the optical gradient as shown in Figure 3.9. The position of the edge in 

Figure 3.9 is indicated by two dotted lines in the profile graphs.

This proposition is further investigated in Figure 3.10 where a profile is generated 

from a cross-section of a cell image. The spatial resolution of the Prewitt filter mask 

was extended to a size 5x5 due to improve the definition of the boundaries. The 

horizontal and vertical component of the filter mask are shown below.
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The two vertical and horizontal components are added together. The resulting image 

expressed positive and negative gradients which are then normalised to the range 

[0..1, or 0..255 if mapped into grey level range]. This provides dark regions at the 

cell boundary and bright regions on the inner side of the cell boundary. Figure 3.10 

shows a cross-section through a single cell viewed by HMC. The profile is marked 

on both the HMC image and the gradient image with a dotted line. The location of 

the boundary is determined at the position of the lowest gradient (dark region).
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Figure 3.9: Profile of line (1) and (2) over the positive and negative edge of an 

human colon cancer cell viewed by Hoffman modulation contrast.
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Figure 3.10: Vertical profile through single cell viewed by HMC. The first derivative 

is used as indicator of boundary location. The position of the edge is marked by two 

vertical dotted lines in the profile graphs.
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An absolute vertical edge of a cell would not show up in HMC. Fortunately, edges 

are never really straight and cells usually develop a curved or jagged boundary with 

horizontal and vertical components.

The boundary of clustered cells can also be detected using the Prewitt filter mask 

(3.1). Figure 3.11 shows two cells touching and a cross-section through both cells as 

indicated by a white line. The boundary between the two cells is located by the 

lowest gradient in the region of the boundary. The boundaries may be distinguished 

further by using the intensity of the optical gradient. The top left cell in the image in 

Figure 3.11 shows a lower intensity at the boundary between the two cells while the 

boundary of the adjacent cell expresses a higher intensity.
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Figure 3.11: Profile through two clustered cells viewed by HMC. The first derivative 
is used as indicator of boundary location. The position of the edges is marked by 
three vertical dotted lines in the profile graphs. The boundary between the two 

touching cells is clearly visible.
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3.2 Adaptive Spline Contour

This section is concerned with the definition of splines and their application to 

description of cell like shapes. The mathematics of the spline model are derived and 

suitable parameters to describe the morphology of cell shapes are described. The 

accuracy of delineating artificial and real cell shapes is discussed in chapter 4.

3.2.1 The Spline Contour

The cell boundary is described by two-dimensional rendering of the cell membrane, 

using splines. To describe a cell shape, a sequence of control points is specified on 

the boundary, which will in some way describe how the curvature is formed. The 

function of the control points is twofold:

1. They determine the contour formation. The contour is required to pass through 

these points, hence the type of spline to be chosen is interpolating. Other types , 

e.g. Bezier splines approximate the location of their control points and run close to 

these points.

2. They form an interface between user interaction and contour formation.

In general, any object contour Q can be described by a piecewise formation of 

individual curve segments Q= {Qi,---,Qn } • The smoothness of the contour is 

determined by the type of curve segment, e,g, linear or polynomial. A two- 

dimensional contour Q can be defined in terms of its x and y co-ordinates which 

form a parameterised curve with the linear parameter u,

Q(u) = (X(u), 7(«)) umm <u< umax (3 .2) 

The range of the parameter u is usually defined in the closed interval [0,1].
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Splines can be categorised as described by Bartels et al. [ 1987], in to:

• Approximating/Interpolating: A spline that passes through a set of control 
points interpolates while a spline that passes close to the control points 
approximates its path to the location of those points.

• Global/Local control of splines: The parameters of one spline segments depend 
on the location of all control points forming the contour. Locally controlled 

splines calculate the parameters of one segment depending on the neighbouring 
segments only.

• Control point spacing: Many splines assume an equidistant spacing between 
control points. This leads to a uniform range of the parameter u, e.g. 0 < u < 1. 
Non-uniform parameterisation may perform better in some cases.

• Continuity: The continuity describes the transition between two neighbouring 
spline segments. For example, a C2 continuity describes spline segments with 
equal first and second derivatives at the transition point.

The aim is to render the membrane of a cell with a suitable curvature. This is used as 
an approximate shape descriptor from which other parameters, such as position and 
compactness can be calculated. The curvature Q(w) is formed by a number of 

segments that are defined by control points P, (Xj,yO at the beginning and the end of 

each segment Q;(«) Another requirement for the curvature is to pass through the 

specified control points, interpolating the shape with a smooth curvature in between. 
Figure 3.12 shows a closed curvature, interpolating between four control points 

Pi-Pa-

The most commonly used type of polynomial are of the 3 rd order, so-called cubic 

splines. For example, a single two-dimensional curve segment QJ(M) can be 

described by the following pair of cubic equations for each dimension.

Q.(u} = (Xt (u),Yl (u)) with Qi (u) = ai u* + b,u 2 +ci u + dl (3.3)
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Figure 3.12: A contour made of four spline segments

Figure 3.13: An example shape with control points placed as a first approximation 

(black) and a further refinement (grey).
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This leaves four coefficients which need to be determined individually for each 

segment. Also, the coefficients have to be determined for the x and y coordinate 

separately.

The following four equations can be established for the y-coordinate. The same 

conditions apply for the x-coordinate. For convenience, one writes a\ instead of ayj:

y, = ai u 3 +bju 2 +ciu + di withO<w<l

(3.4)

These equations can be written in matrix form and the matrix can be solved by matrix 

inversion.

'o o o r
1111
0010
,3210

/ \

b,
c,
d,,

' ' y, "
VM

y, (3.5)

The inverse matrix is calculated as follows

b,
c,

2-21 1
-3 3 -2 -1
0010
1000

y,
VM

y, (3.6)

The suggested solution requires the derivatives between two segments at a control 

point to be known. This may be overcome by estimating the derivatives at the control 

points using finite differences,
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(3 . 7)

however, a better solution is at hand using knowledge about the cell shape. The cell 

membrane expresses a continuous boundary as shown in the example cell image in 

Figure 3.3. If one has to describe such a curvature with a few points, one tends to 

place points at local maxima and minima of the curvature. The following Figure 3.13 

shows an example shape with points marked by a user as a means of approximating 

the shape.

The spline has to be designed such that it is intuitive to place control points on the 

boundary that will closely render the boundary. Following the example shape in 

Figure 3.13, all points set as a first approximation have in common a smooth second 

order transition. Therefore, we introduce a new condition, such that the second 

derivatives at the end of one segment equal those at the beginning of the following 

segment. This form of spline is called a 'Natural Cubic Spline', a special case of a 

Hermite spline interpolation [Bartels et al, 1987].

The first derivative can be calculated and hence the parameters aj,bj,Cj,dj by 

substituting the equations of (3.6) into the above equation (3.8).

It is important to note that the cell boundary is a closed curvature, hence the last 

segment is connected to the first segment. Lets assume our contour is made out of 

m+1 control points PO ... Pm - For each control point we need to calculate the first 

derivative, hence one has to solve m+1 equations of 3.9. This shows that each 

derivative depends on the derivatives of its neighbours and so forth, hence the change
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of one control point has an effect of all the other points. This makes the spline 

globally controlled.

The m+1 equations in matrix form are

4 1 0 1 A/ -' X / 

1410

1014

(3.10)

The first derivatives can hence be calculated and with the help of equation 3.6 the 

four spline coefficients a;, bj, Cj and dj can be determined. This way, the spline is fully 

described mathematically. The following image in Figure 3.14 shows an example of 

a cell described by the developed spline method. The boundary is marked with 

control points (squares) and its interpolation between segments (dotted line).

3.2.2 Spline Deformation

Cells are non-rigid objects that change shape and location at any given moment in 

time. The spline model is able to adapt to these changes and ensure a close fit 

description of the cell boundary. Rigid deformations such as translation and rotation 

are almost certain to be found in combination with non-rigid deformation of the cell 

shape. These deformations are well served with the spline based model. Figure 3.15 

shows possible deformations of the spline model. The freedom of movement and 

ability to describe complex shapes is guaranteed by the fact that control points can be 

moved individually and the number of control points is variable. The position of a 

control point is either changed manually or according to the location of image 

features.

After each deformation process the re-sampling process can be performed where 

control points are added or deleted. The number of control points is variable and 

hence determine the resolution of the model. Complex shapes need a greater number 

of control points than simpler shapes.
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Figure 3.14: Single cell viewed by HMC and delineated with the spline model. The 

boundary is marked with control points (red squares) and its interpolation between 

segments (green dots).
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Figure 3.15: Control point P of spline contour can move in eight directions 

independent of all the other control points. Control points can also be added or 

deleted to adjust the resolution of the spline model.
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Control points are added if the length of a segment between two control points is 

greater than a set threshold Tmax . Control points are deleted if two points are close to 

each other and the segment length is below a set threshold Tmjn . The two thresholds 

depend on the image resolution and the size of cells.

Deformation and re-sampling is performed at a control point level. The control points 

are connected by a cubic spline to form a smooth curvature. Segments are formed 

such that the overall length of the contour reaches a minimum. The implementation 

of the sorting algorithm can be found in appendix C. The following Figure 3.16 

illustrates this problem. If a crossover were to occur in the spline boundary in Figure 

3.16 between the two control points in the thin region, the overall length of the 

boundary would be larger than the displayed optimal solution. Whenever the position 

of a control point changes, the process of finding the minimum length of the contour 

is performed and the segment coefficients are calculated accordingly.
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3.3 Cell Tracking

The spline has been designed such that it can approximate the shape of objects, or 

cells. A cell is described by the location of its boundary. The manual positioning of 

salient control points from which the boundary is formed is used as a first 

approximation of the boundary location. This method, however, is user dependent 

and one would like to reduce user-bias further. The adaptive spline method combines 

fitting and tracking of cells in a new contour model. The aim of the tracking process 

is to relocate the cell boundary in consecutive frames. There are two major 

approaches to tracking objects.

• The first approach is based on locating objects in each frame individually. This 

process is repeated for each frame and objects with similar size and position are 

identified in consecutive frames as being one and the same object. This method 

does not require a high frame rate and considerable changes between frames are 

possible.

• The second approach does not identify objects in frames, it rather finds similarities 

- or differences - between frames. In an ideal situation the movement of each pixel 

can be traced and thus pixels belonging to an object are identified in consecutive 

frames. One disadvantage of this approach is that it allows only few changes 

between frames and thus a much higher frame rate is needed.

Motion analysis methods are generally more sensitive to noise while the first 

approach is more robust.

The following Figure 3.17 shows an example of an early technique to identify motion 

in consecutive frames by creating a difference image. The images in Figure 3.17 

show a simple subtraction of two consecutive images. Areas of many changes 

between frames are bright while few changes are represented by dark areas. The 

bottom half of the cell in Figure 3.17 moved upwards, hence the bright area.
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Figure 3.17: A single HTl 15 colon cancer cell shown at ti=0s and t2=120s. The third 

image shows the absolute difference between the two image frames.
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However, the differences between image frames should only be an indicator of 

movement and may be used to quantify the motion of isolated objects. Cells express 

changes at the boundary as well as within the cytoplasm and the difference technique 

would thus not be sufficient to describe their movement.

The tracking technique developed for the adaptive spline method combines the two 

approaches described in the section above. Spatial information is used to fit the 

spline boundary according to the gradient while temporal information from the 

movement of small regions is gathered to approximate the cells motion. In this 

method, the movement of a cell is described by the movement of its boundary. Since 

the boundary constitutes several control points, the movement of the cell is 

determined by the relocation of each control point. This forms a new spline based 

spatio-temporal approach to tracking objects. Alternatively, the control points may 

also be moved manually by an operator if necessary.

In summary, the motion of control points on the boundary is approximated using an 

area matching technique. A confidence parameter Cflow [0--1] (pixel flow) is 

calculated according to how well the found position compares to the position in the 

previous frame.

In a second step, the location of each control point will also be determined by moving 

the points to high gradients which are expressed by the cell boundary. However, the 

spline will only adjust its points towards an edge if there is sufficient evidence of an 

edge. A confidence parameter Cgradient [0..1] is calculated for each control point 

which gives an indication of whether an edge has been located in the neighbourhood 

of the control point and how well it is able to fit to this boundary. This uses a priori 

knowledge about the cell boundary (e.g. closed, continuous curvature). The edge 

fitting can be guided by the result of the pixel flow estimation. One novel aspect is 

that the final location of a control point is determined by a decision making process 

based on the newly introduced confidence parameters.
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The control points also form an interface between the user and the spline model. This 

enables an interactive process and final control over the delineated contour by the 

operator. The following schematic in Figure 3.18 shows this concept of the control 

point relocation.

Image features are detected by using low-level imaging functions such as edge 

detection and motion analysis. Unlike snakes, image features do not directly 

determine the position of the contour. The image information gathered from low- 

level imaging techniques in the vicinity of control point is passed to a decision 

making process which ultimately relocates the position of each point. The constituent 

parts of the image features used are shown in the Figure 3.19.

The proposed discrete spatial-temporal model is based on this decision making 

process for all control points using the image features described above. The 

following sections describe the calculation of pixel flow features (section 3.3.1) and 

the gradient features (section 3.3.2). Section 3.3.4 describes the decision making 

process used in the point relocation strategy.

3.3.1 Pixel Flow Property in Point Relocation

The control points which the spline boundary is made of, need to be relocated in 

order to track the movement of the cell membrane. The aim of the pixel flow analysis 

is to provide an approximation of the movement of individual control points, hi this 

section a technique is developed based on region matching which approximates the 

movement of a control point close to the cell boundary.

As described in the literature review, motion in images can be determined by a 

number of methods, including spatial-temporal techniques and cross-correlation 

techniques.

An analogy to fluid analysis has been made by Horn et al. [1985] where the 'flow' of 

pixels is assessed and described as 'optical flow'. However, this approach relies on
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Figure 3.19: Image features used to determine the repositioning of individual control 

points. Gradient features are used to fit the spline to edges while the pixel flow is 

used as an approximation of control point motion as indicated by white arrows in the 

image.
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intensity gradient. The flow parameter is anticipated to be independent of the image 

gradient since the gradient is used separately for relocation purposes. In this instance, 

the movement of the neighbourhood area Ajk around a control point will be estimated 

using the sum of squared differences between the area Ajk and any possible location 

in a specified search space Amn between consecutive frames as illustrated in Figure 
3.20.

The sum of squared differences in area can be calculated as following:

(3.11)

In its simplest form, each control point is relocated to the position with a best fit, or 

the least difference D/IOW . In an ideal situation, DJJOW equals zero. The range of values 

for Dfiow is [0..25] in a 5x5 region. As with any decision making process, it is 

important to know how reliable the information provided is. In this case, it is 

anticipated to describe the confidence of the flow parameter DJJOW .

The confidence parameter of pixel flow C//ow will be defined as following.

C flow Jtow .-^ -i /T\ 
flOW -\ - f D (3-12)

Areas that match well express little difference ( Dflow < 1) and hence will express a

high confidence parameter C/?ow . Areas with larger differences are not taken into 

account (C/?ow = 0). Thus, the confidence parameter has the range [0..1]. The pixel 

flow is calculated at the exact location of each control point.

However, misfits can occur due to noise and hence it would not be sufficient to rely 

on a single fit. To overcome the problem, the flow confidence Cflow for every pixel

(C now ) within a small region around the control point is calculated. The influence of 

a possible misfit is minimised by using the weighted sum of the possible movement
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Figure 3.20: Relocation with region matching: The sum of squared differences 

between the neighbourhood region Ajk in frame FI and regions of the same size 

within the search space area Amn in frame FI are calculated.
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Figure 3.21: Movement vectors around a small 3x3 region with one misfit.
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vectors within that small region as shown in the illustration in Figure 3.21. The 

influence of each movement vector is weighted according to its pixel flow confidence 

CfloWi . The total new confidence parameter is now calculated as

~ ~
n

where n is the number of pixels in the region around the control point and Cflow is 

the confidence parameter of each pixel in that area.

Choosing the right size for the search area Amn can be quite difficult. If the search 

space is too small, the correct location may be outside this area while an area too 

large increases the possibilities of misfits. The search area (Amn) size of 9x9 was 

found to be sufficient combined with a neighbourhood area (Ajk) size of 5x5. In some 

cases, however, the movement of the cell superseded the search space area. To 

overcome this problem without having to increase the search area, the method of area 

matching is performed at two different scales. A second confidence parameter Cfiow_2 

and its movement vector is introduced which describes the pixel flow at a coarser 

scale. The same tracking is performed at full and half the original scale and a 

decision is made on the basis of the higher confidence value.

Figure 3.22 shows the occurrence of confidence values CflOW during the tracking of a 

single cell for 2 Yz minutes. The tracking was performed for seven consecutive 

frames with At = 20s. The majority of confidence values was observed between 90 % 

and 100%.

Fast moving cells may move outside the search space at the original scale which 

results in a poor Cf|OW In this case, a better result may be achieved by relying on the 

pixel flow estimation at half the original scale if Cfl0w_2 expresses a sufficient high 

confidence. Figure 3.23 shows the occurrence of confidence parameters at half the 

resolution. There are fewer confidence values at the lower end of the scale, however, 

tracking at half the scale introduces an inherent error of one pixel displacement. A
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Figure 3.22: Distribution of flow confidence values during a single tracking 

procedure for 16 control points for five image frames. The tracking was performed at 

full resolution. The neighbourhood area was 5x5 using a 9x9 search space. The 

dotted line shows the suggested threshold value of Tflow = 60.
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Figure 3.23: Distribution of flow confidence values during a single tracking 

procedure for 16 control points for five image frames. The tracking was performed at 

half full resolution. The neighbourhood area was 5x5 using a 7x7 search space. The 

dotted line shows the suggested threshold value of Tnow_2 = 60.
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threshold parameter Tfl0w (and Tflow_2) was defined which decides whether a pixel 

position suggested from the area matching technique is considered a valid estimation. 

A threshold value of 60% was found to be appropriate.

3.3.2 Gradient Based Property

The fitting and relocation of the cell boundary happens at the control points only. The 

area around the neighbourhood of the control points is searched for a closer fit of the 

spline segment.

Several strategies to locate a boundary are possible

• maximum gradient along orthogonal profile

• maximum gradient along normal profile

• maximum gradient in area

In each of these cases, the spline is placed initially close to the cell boundary or partly 

on the boundary. For example, the image in Figure 3.24 shows the gradient of an 

elliptical shape with the initial placement of the spline boundary. In this simple 

example, the boundary can be located by searching along the orthogonal profile for 

the highest gradient along the normal profile of each control point. From each 

position along the spline boundary, the tangential vector f can be calculated. The 

vector f describing a point on a curvature Q(s) is denoted as

r(s + As) - rt — ———————

(3.12) 

The normal vector ,defmed at As -> 0, yields [Papular, 1991]
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Figure 3.24: Gradient image of simple shape with spline approximation and gradient 

profiles (white) prior to the fitting process.

Figure 3.25: Simple cell shape before (left) and after spline fitting process (right).
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The tangential vector is therefore calculated from the derivatives of each component 

of the parameters describing the curvature. Applied to the spline curvature 

Q( X(w), Y(«)), the normal vector n(ii) can be calculated as

n(u) = \ \, hence n(u) =
\ A (U) ) x'(u)

) 2 y

(3.14)

By calculating the orthogonal profile for each control point, in this instance, the 

highest gradient along the profile denotes the new position of the control point. Each 

control point is moved according to this criterion. Figure 3.25 shows the spline 

before and after this fitting procedure in the simple test image.

Usually, the gradient image is not as clear as in this simple example. Noise and other 

artefacts may provide high gradient values not only on the boundary but also inside 

the cell and on the outside of the cell. It is therefore not sufficient to rely on a single 

high gradient along the orthogonal gradient. A boundary is found whenever there are 

a number of gradient values along the spline segment in the neighbourhood of each 

control point. This condition is used as a criterion for the location of a boundary 

segment. Figure 3.26 shows the principle of the new criterion. The sum of the 

gradient along the short spline segment (marked a) is calculated. The boundary is 

located according to the maximum negative gradient (Prewitt filter template) which 

is accumulated over ±3 positions on both sides of the control point. The search space 

is a vector along the normal vector. The minimum sum of the gradient is taken to be 

the best fit of the spline to the boundary. This forms the basis for the gradient 

confidence parameter.

(3.15)
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Figure 3.26: The confidence parameter of a spline fit to the boundary is calculated as 

the sum along the spline segment a in the neighbourhood of each control point over n 

pixels.

Figure 3.27: Example of spline fitting using the maximum negative gradient using a 

5x5 Prewitt filter mask along the spline profile.
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The confidence parameter of the gradient provides a high reading if there is a 

sufficient gradient (low intensities in gradient image) along the boundary. Figure 3.28 

shows the distribution of gradient confidence values during the tracking procedure of 

a single cell through 7 frames. The majority of confidence values appeared to be 

above 60% which then became the threshold for a sufficient gradient Tgradient-
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Figure 3.28: Distribution of gradient confidence values during a single tracking 
procedure for 16 control points for five image frames. The neighbourhood area was 
3-3 along the normal profile using a 7-7 search space. The dotted line shows the 
suggested threshold value of Tgradient = 60.
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3.3.3 Point Relocation Strategy

The point relocation mechanism is illustrated in Figure 3.29. The spline consists of a 

piecewise cubic interpolation between salient control points. These control points are 

placed initially on the cell boundary at the beginning of the tracking process and 

subsequently relocated on the basis of a decision making process on gradient and 

pixel flow information.

The boundary rendering describes the calculation of the spline coefficients from 

the position of the salient control points. Furthermore the re-sampling of the spline 

points is also part of the boundary rendering.

The relocation process is performed individually for each control point based on the 

image information (Figure 3.30) and confidence parameters Cflow , Cflow_2 and 

Cgradient- These parameters are calculated from the image data as shown in Figure 3.31 

and described in the previous sections. The flow property is used as an initial 

approximation of the point movement. The flow is estimated at two different scales, 

full and half scale, which results in the calculation of two confidence parameters CflOW 

and Cflow_2. A decision is made as to which estimation to use on the basis of the 

higher confidence value.

Both pixel flow and gradient parameters are an average of several individual values. 

A threshold is introduced to ensure enough evidence of good confidence in both 

types of confidence values. Only if Cflow or Cflow_2 are above a threshold Tflow or 

TflOW_2 respectively, is then the flow estimation used to move the control point to a 

new approximate position. Gradient information is used in a subsequent boundary- 

fitting step, if the gradient confidence Cgradient is above a threshold Tgradient- If no 

sufficient confidence in either flow or gradient is available, the control point remains 

in the previous position. Figure 3.32 shows a flow diagram of the decision-making 

process for each control point. The technique can be described as a flow guided 

gradient fitting process based on confidence parameters used in a deterministic 

decision making process.
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Figure 3.30: Schematic of relocation process for an individual control point.



4 frames 
averaged
At = 205

gauss smooth
cr = 1.

5x5 Prewitt Filter

Normalise 
gradient image

Fitting
orthogonal profile

normal profile

area matching r
5x5 block

9x9 search area
full scale

gradient

a
area matching tl 

5x5 block
7x7 search area 

half scale

'flow (low 2
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3.4 Cell Shape Parameters

Cell Area

Once the shape of the boundary has been defined mathematically, the area A/ under 

each spline segment Q,(u) can be calculated as

4 = \Qt (u)du, (3.16)

All boundary segments are described mathematically and thus the centre of area 

(centroid) can be determined mathematically from the cubic spline equation. 

The total area is calculated as the sum of the area underneath n segments.

(3.17)

Depending on the orientation, areas may be positive or negative. The area A t for a 

segment Qj can be calculated as

1
4 =

0

Cell Centroid

The centre of area P(xc,yc) is calculated as [Papula 1991]

= - f - l*c ~ A
(A) (A) (3.19)
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Again, the centroid is calculated for each segment first and the total overall position 

of the cell is calculated from the individual position and area of each segment as 

shown in equation 3.14.

(3.20)

The equations 3.18 and 3.20 are explained further in appendix D.

The centroid of the cell (Xc, Yc) is then calculated from the centroid and area of each 

segment such

The area and centroid are calculated only from the mathematical model. This is 

different from pervious methods that use pixel counting as a means of determining 

the centroid and area.

Perimeter Length

The total perimeter length is calculated as the sum of the length of each segment

, (3.22)
n

while the length of each segment can be calculated as

1
Lt = JVIXO)]2 +\Y-(u}}2 du (3.23)

0
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Shape parameter

As a shape descriptor, a parameter independent of size is needed. A common choice 

is the roundness of an object as defined [Schnorrenberg et al., 1997]

perimeter 2ro undness = ——————. (3.24) 
4;r -area

This shape parameter, which is of no dimension, expresses a value of 1 if the shape is 

a perfect circle and increases in value the more complex the shape of an object gets.
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3.5 Concluding Remarks

In this chapter the development of a novel adaptive spline method was described. The 
method uses control points placed on the boundary to form a piecewise cubic 
interpolation of the cell membrane. Control points can be a moved manually and 
adjusted, added or deleted. A cell can be easily manually segmented with this 
method.

The spline model was developed into an adaptive spline that is enabled to track and 
adapt itself to non-rigid deformations of the cell boundary. Tracking is facilitated by 
combining gradient and flow information in the neighbourhood of control points 
using a novel decision making process to minimise false identifications in a clustered 
environment. The interactive nature of the method and the ease of use make it 
suitable for tracking clustered cells where a fully automated system may fail to 
operate. The time involved in monitoring cells interactively can also be used for 

observations about their behaviour.
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4 Validation

4.0 Introduction

Validation of the new method involved the definition of an objective method to 

compare the results achieved with a well established method. Cell images can be 

segmented in many different ways and it was potentially difficult to find a 'best' 

segmentation method to compare with. The adaptive spline method was therefore 

validated against artificial objects with known area and shape and against manually 

segmented cell images. The comparison of two segmentation methods may be 

performed in many ways. Wilkinson [1998] suggested two methods by which 

systems can be compared with a 'gold standard'.

• Results generated by two methods are compared

• Parameters describing the results are compared

For example, a cell segmented by two different systems may express the same area 

but still have differences in shape. Overlaying the two segmented cell areas would 

yield the 'true' difference between these two methods. However, it may be difficult 

to find a 'gold standard' to compare with. In the case of cells, the exact location of 

the boundary can be slightly ambiguous. Therefore, the segmented area was 

compared (overlaid) with an artificial test image. Cell images, however, were 

compared by measured parameters, such as area, position and roundness.

The adaptive spline method was first validated against the area and shape of a know 

artificial test object (Section 4.1). In section 4.2 the variability of the spline method 

due to different operators was analysed. The spline may be initialised differently and 

the variability introduced is an important factor. Section 4.3 assesses the repeatability 

of the semi-automatic tracking of a clustered cell. Finally, section 4.4 describes the 

influence of gradient and flow properties on the accuracy of the tracking of single and 

clustered cells.
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4.1 Segmentation of test object

The aim of this test was to investigate the accuracy of the adaptive spline method by 

applying it to an artificial test object of a known size and shape. Two test objects 

were created, a circle with a diameter of 20um and a single cell cut out of a cluster 

and placed on a uniform background.

Circle

The circle was of similar size to HT115 cells viewed at x320 magnification. It had a 

diameter of 21um (79 pixels), an area of 357um2 (4901 pixels), a perimeter length of 

66um (248 pixels) and a roundness of 1.0.

The circle was defined six times by manually placing salient control points onto the 

boundary. No automatic fitting procedure was applied and the circle was defined 

using 4, 6 and 8 control points.

The six definitions were compared against the known area and shape of the circle. 

The error in area was calculated on the basis of the differences (XOR) between the 

circle image and the spline image. Perimeter length, roundness and position were 

compared against the calculated values from the circle dimensions. From six 

consecutive definitions, the maximum error was calculated as displayed in Table 4.1.

Control points:
area
max error [%]
perimeter
max error [%]
roundness
max error [%]
position
max displacement fym]

4

4.55

1.61

0.93

0.27

6

6.9

2.02

1.07

0.27

8

7.49

2.02

2.85

0.27

Table 4.1: Maximum error in describing a circle with the adaptive spline method. 

The circle was defined six times using 4, 6 and 8 control points.

The maximum error in area was 7.5% while the maximum error in perimeter length 

was just over 2%. There was a tendency of placing control points onto the outer 

boundary of the circle, increasing the size and hence the error in area. The maximum
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error in roundness was 2.85%. The position of the circle, which was determined by 

calculating the centroid from the spline coefficients, was in good agreement with the 

actual position. There was a maximum displacement of 1 pixel (0.27um) observed in 
all three cases.

Cell

An image of a single cell was cut out of a cluster and placed on a uniform white 

background. A 3x3 median filter was applied to smooth the transition between cell 

boundary and white background. The cell was defined ten times with eight salient 

control points placed on the cell boundary. Figure 4.1 shows the test image to which 

the spline boundary was applied. Figure 4.2 plots the calculated area from the spline 

over ten trials in comparison to the actual area determined through pixel counting.

The actual area to which it was compared to was obtained by pixel-counting. The 

area was 348um2 and is represented by a horizontal line in the graph in Figure 4.2. It 

was observed that the actual area is slightly larger than the calculated area from the 

spline with a maximum error of 10%. This may be explained by the fact that the 

median filtering enlarged the cell boundary slightly. The median area was 3 22 urn2 

while the range was from 313 um2 to 345 um2 .

4.2 Segmentation of real cell images

The aim of this test was to investigate the inter-observer and intra-observer 

variability in defining the cell boundary using the adaptive spline method. An image 

of a single cell viewed by HMC was defined six times by three independent 

observers. Also, an image of a clustered cell viewed by HMC was defined six times 

by the same independent observers. Cell boundaries were defined by placing salient 

points on the cell boundary while the computer formed a closed boundary each time a 

control point was added. The two cells are shown in Figure 4.3. The results from the 

segmentation was tested as to whether the definition of the cell boundary by the 

individuals was consistent with a normal distribution. Figure 4.4 shows the result of 

the Ryan-Joiner test of normality [Altman, 1991] for cell area in 18 cell definitions 

by three individuals.
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Figure 4.1: Test image with delineated spline boundary (blue)
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Figure 4.2: Area of test object in ten trials.



Figure 4.3: Two test cells which were defined sk times each by three independent 

observers. A total of 18 cell definitions were acquired per image.
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Figure 4.4: Ryan- Joiner test of normality from the 18 cell definitions
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The analysis suggested that the definition of the cell boundary was consistent with 

being normally distributed. The mean value over 18 definitions was then used as the 

control area.

Trial Single
Area [pix2]
median
min
max
max error

1 \ 2

_____ |
5745
5589
5835

3%

5994
5755
6113____,

3

6031
5816

1 __ 6278
4%

Control

5905
" 5589

6278
6%

Table 4.2: Results of the six trials of a single cell by three observers (1-3). The 

control column shows the actual (mean) cell area and the lowest and highest value in 

the three trials.

The individuals were consistent within each others definition of the cell boundary. 

There was a maximum error of 4% over the three observers. However, there was a 

difference between observer 1 and 2&3 in what was to be perceived as the cell 

boundary. Comparing the minimum and maximum area in all three observers to the 

average area of 18 definitions, the maximum error resulted to 6%.

Table 4.3: Results of the six trials of a clustered cell by three observers (1-3). The 

control column shows the actual (mean) cell area and the lowest and highest value in 

the three trials.

In the case of a clustered cell, the observers were less consisted within each others 

definition of the cell boundary than in the case of the single cell. There was a 

maximum error of 6% over the three observers. Again, there was a difference 

between observers 1, 2 and 3 in what was to be perceived as the cell boundary. 

Comparing the minimum and maximum area to the average area of 18 definitions, 

the maximum error increased to 13%.
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To increase the consistency of cell definition, a fitting procedure was applied after 

the cell had been defined. This procedure moved each individual control point to the 

maximum negative gradient (5x5 Prewitt filter ) occurring in a ± 7 pixel area along 

the orthogonal profile. The fitting process is described in chapter 3.3.2 and is part of 

the relocation process.

Trial Single
Area [pix2]
median
mm
max
max error

1

5982,
5886
6065

2%

2

l__§95§j—^
6263

4%

3

5999
5864
6347

h 6»/o

Control

6011
5864
6347

6%

Table 4.4: Results of the six trials of a single cell by three observers (1-3). The cell 

boundary was dynamically fitted according to the maximum negative gradient at the 

boundary. The control column shows the actual (mean) cell area and the lowest and 

highest value in the three trials.

The consistency between the three individual trials was improved. The median area 

across observers in Table 4.4 is more consistent than those in Table 4.2. However, 

the fitting process did not always seem to improve the observers definition of the cell 

boundary. The overall maximum error remained at 6%.

Trial Cluster
Area [pix2]
median
min
max
max error

1 i
___ |__^|_

3622f
4260T9%r

2 I
I

3917S
3882[
4063}4%f~~

3

4251
4116
4302

3%

Control

4045
3622
4302
10%

Table 4.5: Result of the six trials of a clustered cell by three observers (1-3). The cell 

boundary was dynamically fitted according to the maximum negative gradient. The 

control column shows the actual (mean) cell area and the lowest and highest value in 

the three trials.

The consistency of cell definition between the median area of the three trials was 

improved. The median area across observers in Table 4.5 is more consistent than 

those in Table 4.3. Comparing the minimum and maximum area to the actual cell
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area calculated as the mean value of 18 definitions, the maximum error decreased to 

10%.

4.3 Repeatability of semi-automatic tracking

The aim of this test was to investigate the repeatability in tracking cells using the 

adaptive spline method. A clustered human colon cancer cell was tracked semi- 

automatically over a period of 30 minutes in three trials. The velocity was calculated 

at a five minute interval. The cell was relocated using gradient information and the 

interactive user input whenever control points were not relocated properly from 

visual inspection. As shown in section 4.1, there was a displacement of one pixel in 

defining the cell boundary. An expected error in velocity was therefore calculated on 

the basis that there was an inherent error due to point displacement of one pixel

(diagonal V2 pixels). This resulted is an absolute error of ±5 um/h measured in a 5 

minutes interval as indicated by error bars in Figure 4.5. The cell was analysed three 

times and the result of the velocity calculations are shown in Figure 4.5. The median 

velocity of the three trials was used as the true velocity of the cell.

The results suggest a good repeatability within the limits of the expected error. On 

two occasions did the calculated velocity supersede the expected error of ±5 um/h. A 

maximum error in velocity of 7.5um/h was observed.

4.4 Automatic tracking

The aim of this test was to evaluate the performance of the automatic point relocation 

technique. For a short period of time (2 1A minutes) a single cell and a clustered cell 

were tracked automatically without any interactive user involvement. Salient control 

points were placed on the cell boundary at the beginning of the tracking process and 

control points were relocated using flow and gradient information.

The automatic tracking was performed three times using different methods. Tracking 

was performed (1) using pixel flow estimation, (2) using pixel flow estimation at half
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scale and (3) using gradient and flow in a decision making process described in 

chapter 3.3.3. The threshold values were set as following: Tflow = 60%, Tflow2 = 60%, 

Tgradient = 60%. The neighbourhood area size was 5x5 for both flow parameters. The 

size of the search space was 7x7 for flow/2 and 9x9 for flow. The gradient search 

region was ±7 along the normal vector.

Figure 4.6 shows a single human colon cancer cell before and after the tracking has 

finished. The spline boundary was marked by a white contour, control points are not 

shown. The area values were compared with a manual segmentation of the cell 

boundary. Figure 4.7 shows the error in area using different tracking techniques. 

Tracking at a lower scale created a greater error (max. 15%) than tacking at the 

original scale (max. 8%). The gradient fitting combined with the flow estimation 

seems to produce the best results with a maximum error of 3% in area. There was a 

similar behaviour when assessing the perimeter length of the same cell. Figure 4.8 

shows the error in percent in perimeter length during the tracking of a single cell. In 

one instance, however, the error was increased by the gradient fitting technique, 

perhaps due to misinterpretation of the gradient along the cell boundary.

The same test was performed on a clustered cell shown in Figure 4.9. The area values 

were compared with a manual segmentation of the cell boundary. Figure 4.10 shows 

the error in area using different tracking techniques. Tracking at a lower scale created 

a greater error (max. 13%) than tacking at the original scale (max. 11%). The 

gradient fitting combined with the flow estimation seems to produce the best results 

with a maximum error of 8% in area. Interestingly, the error in flow seemed to be 

larger than the flow estimation at half scale. This may be due to the fact that faster 

moving parts of the cell boundary are better followed at a lower scale. This was also 

observed when assessing the perimeter length of the same cell. Figure 4.11 shows the 

error in percent in perimeter length during the tracking of a clustered cell. The 

maximum error in perimeter length was 6% while the maximum error using the 

gradient and flow technique was reduced to 3.5%. In one instance, however, the error 

was increased by the gradient fitting technique, perhaps due to misinterpretation of 

the gradient along the cell boundary.
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Figure 4.6: Example of tracking a single cell. Cell shown with delineated boundary at 

t=0min and t=2 1A min.

Error in area by tracking a single cell

Frame

Figure 4.7: Error in percent in area during the tracking of a single cell in seven frames 

with a 20 second difference between frames. The blue and red bar show the error 

using the pixel flow property while the yellow bar shows the error when using 

gradient and flow for point relocation.



Error in Perimeter Length by tracking a single cell

-4%

Frame

Figure 4.8: Error in percent in perimeter length during the tracking of a single cell in 

seven frames with a 20 second difference between frames. The blue and red bar show 

the error using the pixel flow property while the yellow bar shows the error when 

using gradient and flow for point relocation.



t = 0 min

Figure 4.9: Example of tracking a clustered cell. Cell shown with delineated boundary 
at t=0min and t=2 M> min.

Error in area by tracking a clustered cell

15%

Frame

Figure 4.10: Error in percent in area during the tracking of a clustered cell in seven 

frames with 20 seconds difference between frames. The blue and red bar show the 

error using the pixel flow property while the yellow bar shows the error when using 

gradient and flow for point relocation.



Error in Perimeter Length by tracking a clustered cell

Frame

Figure 4.11: Error in percent in perimeter length during the tracking of a clustered cell 
in seven frames with a 20 second difference. The blue and red bar show the error 
using the pixel flow property while the yellow bar shows the error when using 

gradient and flow for point relocation.
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4.5 Conclusion

The adaptive spline method was validated by analysing artificially generated objects 

and real cell images. A simple circle was used to test area and shape measurements 

with the spline method. A maximum error of 7.5% in area and 2% in perimeter 

length was determined. Roundness was used as a shape descriptor which expressed a 

maximum error of 2.85%. On a single cell shape, the maximum error in area was 

10%.

In order to test inter- and intra-observer variability, the application of the spline to 

real cell images by three independent observers showed at maximum error of 6% in 

area while the error in definition of a clustered cell increased to 13%. This may be 

explained by the fact that the boundary definition can be more ambiguous in 

clustered cells. However, the gradient based fitting process seemed to reduce inter- 

observer variability and the maximum error in area of clustered cells was reduced to 

10%.

The semi-automatic tracking of cells seem to provide good repeatability. An 

estimated error ±5nm/h was calculated. A maximum error in velocity of 7.5um/h 

based on the centroid calculation was observed during the repeatability trial.

The gradient and pixel flow based relocation performed well. Using only the flow 

estimation, a maximum error of 15% in area was observed. This could be further 

reduced to 8% by combining flow estimation with gradient fitting. However, it is 

important to note that some control points may not satisfactorily follow the cell 

boundary throughout the monitoring process. Hence, there is always the ability to 

adjust the position of single control points as part of an interactive relocation process.
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5 Cell Experiments

5.0 Introduction

The movement of cancer cells is thought to be important in forming distant 

metastasis [Grimstad, 1987]. The movement behaviour of single cells as well as cells 

in clusters may provide a measure of assessing treatment strategies. A number of 

systems have been developed which investigate the movement of single, detached 

cells. However, cells usually appear in colonies and the ability for cells to detach 

from a colony and migrate is considered to be necessary in the formation of 

metastasis [Jiang et a/., 1994a].

In this chapter, the effects of HGF/SF 1 motogen on the movement behaviour of 

human colon cancer cells in clusters were studied. Changes in area and cell velocity 

were assessed as an indicator of cell behaviour. Two forms of cell motility were 

investigated: Stationary motility as described by changes in cell area and cell shape, 

and translocative motility as described by cell velocity and movement path.

The newly developed semi-automatic adaptive spline method has been used for cell 

segmentation and tracking. Four series of HT115 cells with added motogen were 

analysed and their movement was compared with control cells. Section 5.1 describes 

the method and results of the analysis of HT115 human colon cancer cells with and 

without added motogen. In a second step, a different cell line of human colon cancer 

cells (HRT18) was analysed to study the effects of added HGF/SF motogen and 

HECD-1 2 antibody. The results were compared with a set of control cells as 

described in section 5.2.

In section 5.3 it is demonstrated that the adaptive spline method can also be used in 

brightfield microscopy by segmenting neutrophils. The results from the spline-based 

segmentation technique were compared with a region based segmentation system 

based on texture [Korzynska et al., 1998].

1 HGF/SF Hepatocyte growth and scatter factor motogen
2 HECD-1 Human E-cadherin-1, monoclonal antibody
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Finally, it is demonstrated that the developed system can also be used in ratio- 

imaging, measuring the calcium concentration in living cells. A cell outline is created 

from a ratio image using the adaptive spline method. This enables to compare cell 

shape changes with intra-cellular chemical changes in order to analyse changes of 

Ca + in comparison with changes in cell morphology (Section 5.4). The last section 

summarises the findings of the experiments.
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5.1 Human Colon Cancer Cells

The movement of single cells has been studied extensively. However, most cells 

appear in clusters and the ability of cancer cells to detach from a colony, known as 

disassociation, is widely accepted as a pre-condition for cancer metastasis [Jiang et 

al., 1994b]. In order to assess this behaviour in vitro, a cluster of human colon cancer 

cells (HT115) was observed. Cells were lightly clustered and the movement 

behaviour of individual cells within the cluster was analysed. To enhance their ability 

to move, HT115 cells were stimulated with the motogen known as Hepatocyte 

Growth Factor / Scatter Factor (HGF/SF). This motogen is expected to increase the 

cells desire to move [Rosen et al., 1990]. However, cell-to-cell adhesions are not 

affected by the motogen.

The effect of HGF/SF motogen on HT115 human colon cancer cells was studied in 

four experiments; three at 50ng/ml concentration and one at 40ng/ml concentration. 

Four sets of control cells were analysed to compare cell behaviour with non- 

stimulated cells.

In a further experiment, cell-to-cell adhesions were impaired by HECD-1 antibody. 

Three series of HRT18 human colon cancer cells were analysed, one with added 

HECD-1 antibody at 0.6ug/ml, one with added HGF/SF motogen at lOOng/ml and 

one control series.

5.1.1 Microscope Setup and Calibration

A Leica microscope (Leica DM IRB, Germany) was fitted with a Hoffman 

Modulation Contrast Condenser HMC 20 (Hoffman, Greenvale, N.Y.,USA) to 

enhance the structural features of the cells. A cell colony with up to 10 cells was 

chosen at random from the culture and monitored for up to three hours on a time- 

lapsed video system either in real time or time lapse mode. A colour video camera 

(Panasonic WV-CL350, Japan) was connected to the microscope. After each 

recording, a calibration square was captured at xlOO magnification showing a 250um 

square and at x320 magnification three parallel lines separated by 25 urn. This has
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been used for calibration at different magnifications. The following Figure 5.1 shows 

two calibration images at xlOO and x320 magnification on the Leica microscope.

Video frames were digitised as a series of true-colour images at a resolution of 768 

by 576 pixels using a DT3153 frame grabber board (Data Translation, Marlboro, 

MA, USA). To reduce the amount of disk space needed and to further speed up the 

image processing, images were converted into 8 bit grey scale. The spatial resolution 

was the same for all experiments. The calibration image at xlOO magnification was 

used to check the horizontal and vertical resolution which were found to be in 

agreement. Table 5.1 shows the result of this calibration. The horizontal and vertical 

distance was measured six times and a mean value was calculated. The mean vertical 

distance was 292.5 pixels while the mean horizontal distance was 293.5 pixels.

The three parallel stripes were used for calibration at the higher x320 magnification. 

Again, the distance between those stripes was taken six times and a mean value was 

calculated.

Number
1
2
3
4
5
6

Mean
Std

vertical
pixel

291
293
293
293
293
292

292.5
0.84

horizontal
pixel

291
291
291
292
292
292

291.5
0.55

Table 5.1: Results of image calibration at xlOO magnification where vertical and 

horizontal denote the equivalent distance along the square.

The spatial resolution was calculated by measuring the distance between two parallel 

stripes at x320 magnification six times and then calculating the average distance. In 

this example, the resolution was calculated to be 0.2683 urn per pixel length which 

corresponded well with the resolution calculated at xlOO magnification (0.2675um 

per pixel).
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Figure 5.1: Calibration image at xlOO and x320 of Leica microscope.
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5.1.2 HT115 Series I (control and 40ng/ml HGF/SF)

A cluster of 10 cells was chosen at random and six cells in each cluster were 

analysed. One series from which six cells were chosen was used as a control series 

while in a second series, 40 ng/ml motogen (HGF/SF) was added to the cell colony. 

The cells were monitored for three hours on a time-lapse video system. Images were 

captured from the video tape at an equivalent of a 5 minute interval in real time. The 

position of cells was defined by calculating the centre of area (centroid) from the 

spline interpolation.

hi this initial analysis, six cells were analysed using the semi-automatic spline 

method without enabling the automatic relocation process. The outline of a previous 

frame was copied onto the next consecutive frame and slightly adjusted if necessary. 

This does not require a high frame rate since no flow information is used for the 

relocation process.

From the cell boundary the area of the cell can be measured and from its position the 

velocity and movement can be calculated. The velocity was calculated over a 

5 minute interval. This was chosen as the movement of stimulated cells was found to 

be sufficient enough between two frames to be above the expected error in cell 

position. The assessment of error in movement has been covered in the validation 

section (chapter 4). Changes in area, velocity and movement path of six single cells 

within a cell colony were analysed.

Materials

Human colon cancer cells HT115 (obtained from the European Collection for Animal 

Cell Culture, Salisbury, England) were used throughout the HT115 experiments. 

Cells were cultured in DMEM medium supplemented with 10% fetal calf serum, 

Penicillin and Streptomycin. The medium was HEPES buffered to provide a stable 

pH during long period recording in open atmosphere.

Two sets of HT115 human colon cancer cells of the same cell line were analysed, one 

of which had added motogen. The motogen used was a recombinant human
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hepatocyte growth factor (HGF/SF) from DNA-transfected CHO cells [Jiang et al, 

1995, Jiang etal., 1999].

Cells were prepared and cultivated on Petri dishes (Nunc, Denmark) and kept in an 

incubator at a temperature of ( 37°C and 5% CO2) for cells to adhere to the surface. 

The cell culture was placed under a Leica DM IRB microscope (Leica, Germany) 

with a heat control and an attached colour CCD camera. The dish was kept at a 

constant temperature of 37.2 °C.

Results

The median area of the six control cells within one cell cluster at the start of the 

recording was 259 um2 . The maximum area of such cells was 428 um2 while the 

minimum was 169 urn2 . The median area of six control cells and six cells with added 

HGF/SF motogen is shown in Figure 5.2. There were only small variations in area of 

the control cells. In contrast, there were greater changes in area in the cells treated 

with HGF/SF. The median area of six clustered cells with added motogen was 

observed to rise from 289 um2 to its maximum of 401 um2 during the first 35 

minutes. It then showed a periodic pattern of changing its area.

The median velocity of six control cells belonging to the same cluster was 55 um/h at 

the start of the recording; it was observed that the velocity changed over time in both, 

Control and HGF/SF induced cells. The median velocity of HGF/SF induced cells is 

approximately twice as high as that of control cells as shown in Figure 5.3. 

Moreover, there was also a greater variability observed in the HGF/SF cells. The 

range of the velocity was 20 um/h to 190 um/h, while the range of the control cells 

was 0 um/h to 90 um/h. An overall decrease in velocity during the first 20 minutes 

was observed before the velocity changes appeared to show a periodic pattern.

Cells treated with added HGF/SF motogen showed more variation in velocity and 

overall higher values in velocity. Figure 5.4 shows the median velocity of six cells 

with added HGF/SF motogen.
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The control cells showed less movement, slower movement and there appeared to be 

only small changes in area and velocity. In contrast, cells treated with HGF/SF 

seemed to move more vigorously in a variety of directions and the cell colony 

scattered. Figure 5.5 shows the path of a single Control and a single HGF/SF 

stimulated cell within a cell colony in area of 30 micrometers square. Cells with 

added motogen expressed greater movement and more erratic movement as shown in 

the example of movement paths of two cells.
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5.1.3 HT115 Series II, III and IV (control and 50ng/ml HGF/SF)

A cluster of 10 cells was chosen at random and six cells in each cluster were 

analysed. One series consisted of six control cells while in a second series, 50 ng/ml 

motogen (HGF/SF) was added to the cell colony. The cells were monitored for two 

hours in Hoffman Modulation Contrast (HMC) microscopy and videotaped in real 

time. Images were captured from the video tape at a 5 second interval at 768 by 576 

resolution. To reduce noise, four frames were averaged. In order to enhance contrast, 

the grey-level distribution was stretched by a third prior to the averaging process. The 

series of images had thus a higher contrast, noise was reduced and the interval size 

was increased to 20 seconds.

The position of cells was calculated from the adaptive spline method. The semi­ 

automatic relocation was enabled using pixel flow and gradient information as 

described in chapter 3. The system operated in a semi-automatic mode whereby 

spline control points where placed on the boundary initially and pixel flow and 

gradient information was used to adapt to changes at the cell boundary in consecutive 

frames. The spline control points were relocated according to the pixel flow around 

the each control point in five consecutive frames. The spline is then displayed and 

changes can be made interactively by moving single control points before the next 

series of five frames is analysed.

In order to compare these results with previous analysis, the velocity was calculated 

from 5 minutes intervals (15 frames) and the area was calculated from a 1.33 minute 

interval (five frames). From the spline boundary the area of the cell was calculated 

and from its position the velocity and movement can be calculated. Thus changes in 

area, velocity and movement of single cells within a cell colony were analysed. The 

roundness was used as a shape descriptor.
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Materials

Human colon cancer cells HT115 (obtained from the European Collection for Animal 

Cell Culture, Salisbury, England) were used throughout the HT115 experiments. 

Cells were cultured in DMEM medium supplemented with 10% fetal calf serum, 

Penicillin and Streptomycin. A light oil ball was placed on top of the medium to 

provide stable pH during the recording period [Jiang et al, 1999].

Two sets of HT115 human colon cancer cells of the same cell line were analysed, one 

of which had added motogen. The motogen used was a recombinant human 

hepatocyte growth factor (HGF/SF) from DNA-transfected CHO cells [Jiang et al., 

1995]. Cells were prepared and cultivated on Petri dishes (Nunc, Denmark) and kept 

in an incubator at a temperature of ( 37°C and 5% COa). The cell culture was placed 

under a Leica DM IRB microscope (Leica, UK) with a heat control and an attached 

colour CCD camera. The dish was kept at a constant temperature of 37.2 °C.

Results Series I

Six cells were chosen at random from a cluster of approximately 10 control cells and 

10 cells with added HGF/SF motogen as shown in Figure 5.6. The position of each 

cell during the monitoring period, marked by a black dot, was overlaid onto the cell 

image at the beginning of the monitoring process as shown in Figure 5.6. The 

distribution of black dots within a cell shows their centroid positions over the 

monitoring period. Most control cells seemed to remain stationary as the highest 

distribution of positions is within the boundary of the original location of the cell. In 

this experiment, only one out of six control cells seem to have moved further than its 

original border. Cells with added HGF/SF motogen seem to express two different 

behaviours. Some cells expressed hardly any movement similar to those of control 

cells while in this series three stimulated cells showed to be very motile which is 

expressed by a long movement path in the bottom image in Figure 5.6.

Neither control cells nor stimulated cells seem to have moved to a preferred 

direction, however, highly motile cells appeared to show a more directional
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movement behaviour. Cells with added HGF/SF motogen seem to express more 

movement and longer movement paths as control cells.

The median velocity of six control cells belonging to the same cluster was 15um/h 

(range: 0.5um/h to 53um/h) as shown in Figure 5.7. The median velocity of six cells 

with added 50ng/ml HGF/SF motogen was 19um/h (range: lum/h to 127um/h) and 

is shown in Figure 5.8. The median velocity of HGF/SF induced cells was just about 

25% higher than those of control cells. This may be explained by the fact that only 

half of the chosen cells expressed higher velocities. However, cells with added 

motogen appeared to show more variation in velocity and a greater range in 

velocities.

The median area of six control cells from a cluster was 444 um2 (range: 275 um2 to 

720um2). Cells with added HGF/SF motogen showed a median area of 329 um2 

(range: 179um2 to 613|um2). The graph in Figure 5.9 and 5.10 shows the median and 

range of area values of six HT115 cells with and without added motogen. There 

appeared to be little variation in median area in control cells as well as cells with 

added HGF/SF. Although no tendency in area could be observed, there appeared to 

be a slight increase in area during the first 25 minutes after the motogen had been 

added.

Changes in area may be used as an indicator of stationary motility, however, a size 

independent parameter would be desirable. Roundness has been used as a size 

independent shape descriptor. A circle has a roundness of 1.0 while more complex 

shapes develop a higher roundness values as the ratio perimeter length to area 

increases. Cells with added HGF/SF motogen expressed on average an approx. 25% 

higher median roundness during the first hour of the monitoring process as shown in 

Figure 5.11. In the latter half of the observation period, the roundness of stimulated 

cells seemed to be similar to those expressed by control cells.
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Results Series 2

In a second series, six cells were chosen at random from a cluster of approximately 

10 control cells and 10 cells with added HGF/SF motogen as shown in Figure 5.12. 

The position of each cell during the monitoring period was overlaid onto the cell 

image at the beginning of the monitoring process as shown in Figure 5.12. Cells with 

added HGF/SF motogen seem to express longer movement paths as control cells.

All but one control cell showed little movement with a high density of positions close 

to the original position at the start of the observation. In this series, stimulated cells 

expressed significantly more movement than control cells. Two cells moved apart 

from each other only to reunite later, forming a new cluster with two other cells.

The movement behaviour is reflected in the higher median velocity of stimulated 

cells. Figure 5.13 and 5.14 show the median velocity of six control cells and six cells 

with added 50 ng/ml HGF/SF motogen. However, two stimulated cells did not show 

any increased movement behaviour. The median velocity of six control cells 

belonging to the same cluster was 16um/h (range: 1.6fim/h to 84^im/h) as shown in 

Figure 5.13. The median velocity of six cells with added 50ng/ml HGF/SF motogen 

was 25|am/h (range: lum/h to 265um/h) as shown in Figure 5.14. The median 

velocity of HGF/SF induced cells in this second series was about 50% higher than 

those of non-stimulated control cells. However, cells with added motogen appeared 

to show more variation in velocity and a far greater range in velocities.

The median area of six control cells from a cluster was 272 jam2 (range: 32um2 to 

408um2). Cells with added HGF/SF motogen showed a median area of 376 um2 

(range: 206um2 to 639um2). The graph in Figure 5.15 and 5.16 shows the median 

and range of area values of six HT115 cells with and without added motogen.

In this series, there appeared to be little variation in area in control cells. Cells with 

added HGF/SF motogen appeared to show increased changes in the range of cell area 

during the first 50 minutes in the monitoring period.
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Figure 5.12: A cluster of HT115 control cells (left) and HT15 cells with added 

50ng/ml HGF/SF (right). The movement track (black) is overlaid, white bar 25|im.
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The roundness was used as a descriptor of cell shape. Any circle has a roundness of 

1.0 while more complex shapes develop a higher roundness values as the ratio 

perimeter length to area increases. Figure 5.17 shows the median roundness of six 

control and six stimulated cells. In this series, cells with added HGF/SF motogen 

expressed only marginally higher roundness values compared to control cells. Higher 

roundness values occurred during the first 30 minutes of the monitoring period as 

well as around 60, 90 and 120 minutes into the experiment.
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Figure 5.17: Median roundness of sk HT115 control cells and sk HT115 cells with 
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Results Series III

In a third series, six cells were chosen at random from a cluster of approximately 10 

control cells and 10 cells with added 50 ng/ml HGF/SF motogen as shown in Figure 

5.18. The position of each cell during the monitoring period was overlaid onto the 

cell image at the beginning of the monitoring process as shown in figure 5.18. In this 

series, two cells of the stimulated cluster divided after 23 minutes and 67 minutes 

after the experiment started. Again, control cells expressed little movement as shown 

in the upper image in Figure 5.18. Cells with added HGF/SF motogen appeared to 

have a more directional movement and longer movement path.

The median velocity of six control cells belonging to the same cluster was 14um/h 

(range: lum/h to 53um/h) as shown in Figure 5.19. The median velocity of six cells 

with added 50ng/ml HGF/SF motogen was 24um/h (range: 1.4um/h to 92um/h). The 

median velocity of HGF/SF induced cells was about 60% higher than those of non- 

stimulated control cells. However, cells with added motogen appeared to show more 

variation in velocity and a far higher range in velocities as shown in Figure 5.20. The 

highest velocities occurred during the first 30 minutes of the monitoring period and at 

about 60 minutes as well.

The median area of six control cells from a cluster was 330 um (range: 234um2 to 

566um2). Cells with added HGF/SF motogen showed a median area of 445 um2 

(range: 341 um2 to 574um2). The graph in Figure 5.21 and 5.22 shows the median 

and range of area values of six HT115 cells with and without added motogen. There 

appeared to be little variation in area in control cells. However, stimulated cells 

showed a greater variation in area.

In this series, cells with added HGF/SF motogen expressed a similar median 

roundness compared to control cells. In the latter half of the observation period, the 

roundness of stimulated cells seemed to be similar to those expressed by control 

cells, see Figure 5.23.
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Figure 5.18: A cluster of HT115 control cells (left) and HT115 cells with added 

50ng/ml HGF/SF (right). The movement track (black) is overlaid, white bar 25 (am.
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Discussion

In this study the adaptive spline method was applied to describe and track single cells 

in clusters. This system enabled analysis of cell behaviour within a clustered colony 

by calculation of the cell centroid and calculating cell area. As a size independent 

shape parameter, the roundness has been used.

The effect of HGF/SF motogen on human colon cancer cells (HT115) during at least 

two hours of monitoring was assessed. Six cells out of a cluster of 10 cells were 

chosen and changes in area, velocity and shape were analysed.

In all experiments, cells with added HGF/SF motogen showed more movement 

activity expressed by longer movement paths and higher velocities. Non-stimulated 

cells moved in random directions while stimulated cells seem to move partially more 

directional.

Cells with added HGF/SF motogen at 50ng/ml concentration expressed an overall 

higher median velocity than control cells, which is in accordance with previous 

studies [Bhargava et al., 1993]. The median velocity varied from experiment to 

experiment. Cells with added motogen expressed an 25% increase in median velocity 

up to 100% increase in median velocity. This may be explained by the fact that not 

all cells seem to respond to the added HGF/SF motogen equally. Although HT115 

cells are derived from the same tumour, there is a possibility that the cells may exist 

as heterogenetic populations. It has indeed be demonstrated by previous studies that 

in a cluster some cells exhibit higher level of HGF/SF receptors (c-met) than others 

[Jiang et al., 1993, Hiscox et al., 1999]. The variation in behaviour of cells in this 

study may be at least partly the result of various levels of HGF/SF receptors and their 

response to the motogen.

In series I, only half of the cells showed an increased movement activity while the 

other half had no increased movement at all. This resulted in an overall lower median 

velocity. In Series II and III of the HGF/SF experiments, a larger number of cells had 

increased translocative motility which lead to an overall higher median velocity of
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more than a 50% increase. However, it was also observed that cell velocity varies in 

time and these results suggest that this variation is greater in cells with added 

motogen.

Stationary motility was measured by changes in area and shape. The size independent 

roundness is used as a measure of shape complexity in irregularity. In series I, all 

cells expressed higher roundness values compared to control cells indicating the 

development of more complex cell shapes. Moreover, there was a greater variation in 

roundness in stimulated cells.

An increased roundness value may perhaps be due to pseudopodial expansions and 

membrane ruffling. In two experiments (1,11) there was an increased roundness 

especially during the first 30 to 40 minutes of the monitoring process. Ruffling 

normally appears from 5 minutes and reaches a maximum in 30 minutes after the 

motogen has been added [Jiang et al, 1995]. This is perhaps one factor that 

contributes to the increase of roundness seen in this study.

Cell area was found to be similar in cells with and without motogen, however, there 

was greater variation in area with time in those cells treated with motogen and in 

three instances the median cell area increased during the first hour after the motogen 

has been applied.

In summary, HGF/SF leads to more movement activity in HT115 cells. Stimulated 

cells expressed higher movement velocities and a greater variability in movement 

compared to control cells. However, some cells seemed not to respond to the added 

HGF/SF motogen. Cells with added HGF/SF motogen seem to move greater 

distances and also were found to detach more easily from the cell cluster.

-98-



Chapter 5

5.2 HRT18 Cells ( control, antibody and motogen)

The aim of this experiment was to study the effect of HECD-1 antibody and HGF/SF 

motogen on HRT18 cells. HRT18, colorectal cancer cells, share the same histological 

origin with HT115, i.e. colon epithelium. One of the most striking characteristics of 

HRT18 cells is that they express strong cell-to-cell adhesion mechanisms, manifested 

by its high level of E-cadherin [Jiang et al, 1995], the most important cell-to-cell 

adhesion molecule in this tumour type. The aim of this study was to quantify 

differences in movement behaviour and response to HGF/SF motogen and by 

manipulating the function of E-cadherin.

A cluster of 10 cells was chosen at random and three cells in each cluster were 

analysed. Three series of HRT18 cells were monitored for three hours using a Leica 

microscope (Leica DM IRB, Germany) fitted with a Hoffman modulation contrast 

condenser (Hoffman, Greenvale, N.Y.,USA) connected to a time-lapse video 

recording system. Recordings were made at 1A of the normal speed and frames were 

digitised at a 10 second interval real time at 768x576 spatial resolution. Two frames 

were averaged to educe noise and subsequently converted into 8 bit grey scale 

images.

One series of cells was treated with lOOng/ml HGF/SF and one other series with 

1.5ug/ml HECD-1 antibody. A third series was used as a control reference. Each 

series consisted of three cells. Cells were segmented using the adaptive spline 

method. Cell area and cell velocity was calculated from change of position of its 

centroid. In order to compare these results with previous analysis, the velocity was 

calculated over the distance between 5 minutes of movement.

Results

All three series of cells appeared to show little translocative motility. The median 

velocity of three control cells was 5.6um/h [Oum/h to 32um/h]. Cells with added 

motogen (lOOng/ml) expressed a median velocity of 7.7um/h [Oum/h to 44.8um/h] 

while cells with added HECD-1 antibody expressed the highest median velocity
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9.7um/h [Ou,m/h to 53.1um/h]. Figure 5.24 shows the median velocity of three 

HRT18 control cells (c), three HRT18 cells with added lOOng/ml HGF/SF motogen 

(m) and three HRT18 cells with added HECD-1 antibody (a).

Cells with added antibody seem to express greater translocative motility than control 

cells and cells with added HGF/SF motogen. The median velocity of cells with added 

HECD-1 antibody was almost twice as high as that of control cells. The median 

velocity of cells with added motogen was in between that of control cells and cells 

with added antibody.

Stationary motility was assessed by investigating the changes in area. Figure 5.25 

shows the median area of three cells: control, lOOng/ml HGF/SF and 0.6 ug/ml 

antibody. Control cells expressed very little changes in area and hence stationary 

motility. The highest changes in area occurred in cells with added HGF/SF motogen. 

There appeared to be an increase in cell area during the first hour of the monitoring 

period in cells with added HGF/SF motogen.

Interestingly, according to Figure 5.25, cells with added motogen expressed slightly 

more changes in area than cells with added antibody despite the fact that they showed 

less translocational movement.

Discussion

In this study HRT18 cells with added HGF/SF motogen expressed higher median 

velocities than control cells. Added HECD-1 antibody impairs cell-to-cell adhesions 

which then may enable those cells to move more freely leading to an increased 

velocity of HRT18 cells.

Interestingly, stationary motility is higher in cells with added HGF/SF motogen. This 

may be explained by the fact that HGF/SF motogen increases the desire of cells to 

move. This increased ability of movement is reflected by increased changes in area 

and cell shape as cells are trying to explore new territory.
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5.3 Application of the Adaptive Spline method to assess the Movement 

of Neutrophils

The aim of this study was to adapt and apply the semi-automatic spline method to 

segment neutrophils in brightfield microscopy. The cell boundary is described with 

the adaptive spline technique. The results of area measurements are compared with a 

system devised by Korzynska [1998]. Their system provides functionality for a semi­ 

automatic segmentation of neutrophils using a region-based texture segmentation 

technique Korzynska [1998].The neutrophil images were provided by Korzynska.

Materials

Two series of microscopic neutrophil images were digitised at a 2 second interval, 

one other series was digitised at 25 frames per second for 2 seconds. Each image 

contained a single or two separated neutrophils. Neutrophils were obtained from 

fresh finger blood coming from healthy, grown-up donors. Cells were isolated using 

the Harris method based on their adhesion to glass [Harris, 1973].

Images were acquired using a OPTIPHOT-2 (Nikon) microscope fitted with a LWD 

condenser connected to a 1/2" CCD camera (J COHU). The frame grabber used was 

the SVIST (WIKOM) and images were digitised as 8-bit 512x512 grey level images 

and subsequently analysed.

Method

Images were segmented using the adaptive spline method. The original cell image 

expressed low contrast within the cell body and pseudopodial expansions. Figure 

5.26 shows a single neutrophil viewed in brightfield microscopy.

There are three areas in the neutrophil in Figure 5.26 that need to be distinguished in 

order to obtain a successful segmentation. Region (1) is the cell body, region (2) are 

expanding cell pseudopods and finally the peripheral area which is halo (3) and is not 

part of the neutrophil. Although the main cell body (2) has different intensity values 

from the background and halo, expanding and retracting pseudopods often contain a
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Figure 5.26: Single neutrophil with cell body (1) , expanding pseudopods (2) and halo 

(3) around the cell.
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Figure 5.27: Application of the adaptive spline technique to delineate the cell boundary 

of a neutrophil.



Chapter 5

similar range of intensities found in the halo (3) or background. This makes an image 

like that in Figure 5.26 difficult to segment by a region-based segmentation method.

To overcome the problem, the adaptive spline method was applied to describe the 

neutrophil by its outline rather than occupied area. However, it was difficult to locate 

control points in the original brightfield image shown in Figure 5.27. Fortunately, 

expanding pseudopods seem to express a higher density and hence slightly lower 

intensity at the very edge of expansion. Due to the lack of contrast between those 

cellular regions, a histogram equalisation [Gonzales and Woods, 1993] was 

performed to greatly enhance the contrast between cell body, pseudopods and halo. 

The second image in Figure 5.27 shows the histogram equalised cell image. The 

boundary of pseudopods, although fragment, is clearly distinguishable from the halo 

and background. The spline interpolation is used to link those fragments with the 

main cell body to form a smooth representation of the neutrophil boundary.

The spline control points are located at the outer edge of the cell body and pseudopod 

fragments. Figure 5.27 shows the adaptive spline contour describing a single 

neutrophil facilitation histogram equalisation. Pseudopodial regions can be engulfed 

in the spline contour regardless of bright image regions within their area. When 

surrounded by a halo, after histogram equalisation, there appeared to be better 

contrast between cell boundary and background.

The tracking was performed semi-automatically by defining the cell outline at the 

beginning of the monitoring process. Control points were relocated at the outside of 

dark cellular regions after histogram equalisation (see Figure 5.27). This was used as 

an estimate of the position in consecutive image frames. Single control points were 

moved manually if the suggested position did not accord with the operators 

perception of the cell boundary location.

Results

A single series of neutrophils was analysed independently with the two segmentation 

methods. Each frame was segmented using a regional textured based method
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[Korzynska, 1998] and the adaptive spline method. A total of 25 image frames were 

analysed. Figure 5.28 shows the difference in area comparing the two segmentation 

methods using Altman-Bland analysis [Bland and Altman, 1986].

The absolute maximum difference between the two measurement methods was 25% 

in area while the mean difference between the two systems was calculated as 7.5%. 

As seen from the Figure 5.28, none of the systems is biased towards bigger or smaller 

area values. However, the majority of larger errors occur where the measurement by 

the regional texture segmentation shows a larger reading in area than the spline 

method. The large differences in area in some cases may perhaps be explained by the 

fact that the adaptive spline technique interpolates over regions that are not included 

in the texture based segmentation.
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5.4 Application of Spline to Assess the Morphology and Intracellular 

chemical changes in Neutrophils

The aim of this study was to adapt and apply the adaptive spline method to segment 

neutrophils which are viewed by ratio-imaging. Using Ca2+ imaging techniques, it is 

possible to acquire images which contain information of both cytosolic free Ca2+ 

concentration and cell shape. However, the inability to extract Ca2+ data from a 

dynamic region defined in relationship to a localised cell shape change remains a 

major problem. In static cells, a region of interest is usually defined within which 

cytosolic free Ca2+ concentration is extracted. With neutrophils, this approach 

extracts data from regions of differing cell activity at different times as the cell 

moves relative to the region of interest. In this section the spline-based semi­ 

automatic cell segmentation method is adapted to enable interactive segmentation of 

cellular regions in neutrophils in ratio-imaging.

Materials

Neutrophils were isolated from heparinized blood of healthy volunteers as described 

previously [Davies and Hallett, 1995]. Following dextran sedimentation, 

centrifugation through Ficoll-Paque (Pharmacia) and hypotonic lysis of red cells, 

neutrophils were washed and resuspended in Krebs buffer (120 mM NaCl, 4.8 mM 

KC1, 1.2 mM KH2PO4, 1.2 mM MgSC>4, 1.3 mM CaCl2, 25 mM HEPES and 0.1% 

bovine serum albumin, adjusted to pH 7.4 with NaOH).

Method

Neutrophils were loaded with fura-2 from its acetoxy-methyl ester as previously 

described [Davies and Hallett ,1995], This fluorescent indicator of cytosolic free 

Ca2+ concentration provides quantiative information of when the ratio of two 

excitation signals is calculated [Hallett et al., 1996]. Excitation at 340nm and 380nm 

was achieved by using a rapid access monochromator changer (Delta-RAM) with a 

transfer time between wavelengths of 2 msec and emission images (> 490nm) two
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wavelengths were acquired using an intensified IC-200 CCD camera (Photon 

Technology International, Surbiton, UK) coupled to an inverted Nikon microscope. 

Ratios of the images were calculated using ImageMaster (PTI). Acquisition of ratio 

images was performed after averaging 16 frames, and using only a thresholding 

algorithm (no masking applied) which produced a cell image of equal size to that 

viewed by phase contrast. This enabled both cytosolic free Ca2+ concentration and 

cell shape to be measured simultaneously and calculated from the same image data 

set. The cytosolic free Ca2+ concentration was calculated as the mean pixel value 

within cell area which excluded the actual cell edge as this was often contaminated 

with artefactual ratiometric values resulting from the low fura2 intensity in this 

region [Hallett et al., 1991]. The edge of the neutrophil in the ratio image appeared 

jagged and a 3x3 median filter was applied to smooth the boundary and to reduce 

noise.

A neutrophil was segmented in the first image frame by placing manually a few 

salient points (about 10 points) close to the cell boundary. The spline boundary was 

subsequently re-sampled increasing the number of control points up to 25 points. The 

fitting of the spline to the boundary is performed along the normal vector n(u) at each 

control point.

,. n(ii) = (

The edge is located within a ± 10 pixel profile orthogonal to each control point. The 

edge is relocated wherever two values, which are not the background, appear in the 

profile towards the cell. In consecutive frames, control points of the previous frame 

are copied onto the next one and adjusted using the same procedure. The flow 

property has not been used since the boundary was clearly visible in most cases and 

changes in image intensity may not be associated with movement. Figure 5.29 

demonstrates the fitting process of the adaptive spline to a neutrophil boundary.
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a) original (bar: 5 urn) b) point placement c) smoothing+fitting d) result

Figure 5.29. Example of boundary fitting to a single, stained neutrophil (centroid X, 
control points D)

Sub-reeion

Specially marked 
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Figure 5.30: Example of a single neutrophil with highlighted 
pseudopod region before and after retraction (bar: 5urn)
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The cubic spline description produces a smoothed boundary. This is of great 

advantage since a slightly jagged boundary may give inappropriately high readings of 

perimeter length. As a shape descriptor, the roundness was calculated as:

perimeter 2 f . . 
roundness = —————— (y-2) 

4ft -area

Pseudopods

One of the objectives was to monitor calcium changes in expanding and retracting 

pseudopods. Since there are no landmarks within the cell image apart from the cell 

boundary, a method was devised that relates the definition of pseudopods to the 

overall shape of the boundary. A cell is defined by the same spline method as defined 

above, however, a small sub-region can be formed by highlighting several control 

points on the spline. Figure 5.30 shows a single neutrophil with a highlighted 

pseudopodial sub-region. The calcium concentration was only calculated in that sub- 

region As the pseudopod shrinks, the area get smaller and the number of control 

points decreases as they move closely together.

Results

The adaptive spline method was applied to track six neutrophils in two series 

(phag_3 and phag_5) with three cells each. Area, length of perimeter and roundness 

were calculated from the spline description. The median area of six cells was 62 um2 

(range: 41 um2 - 169 um2) and the median perimeter length was 32um (range: 27um 

- 49um).

The roundness was used as a descriptor for cell shape changes. Figure 5.31 and 

Figure 5.32 show the roundness of three cells per series. A roundness of 1.0 describes 

a circular shape, higher values express more complex shapes. By visual inspection, 

neutrophils in the phag_5 series appeared to show greater phagocytosis and more 

changes in cell shape than cells in the phag_3 series; this is supported by greater 

variation in roundness in the phag_5 series compared to the phag_3 series. However,
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it was anticipated to measure changes in shape with localised changes in calcium 

concentration.

As an example, the calcium concentration in the neutrophil shown in Figure 5.30 was 

calculated using ImageMaster (PTI). The concentration of cytosolic free Ca2+ was 

calculated in the whole cell body as well as in the sub-region marked in Figure 5.30. 

The graph in Figure 5.33 shows the calculated calcium concentration and roundness 

of that neutrophil. The roundness of the cell body is also plotted as a comparison to 

the Ca + concentration. The two markers in the graph correspond to regions in the left 

(1) and right (2) image in Figure 5.30. In this example, a greater calcium 

concentration was observed in the region of the pseudopod compared to the overall 

concentration within the neutrophil. The graph suggests that there may be a 

relationship between the morphology of the neutrophil and the calcium concentration 

of the pseudopod. In this example, a sudden decrease in Ca2+ in the pseudopod region 

(marker 2 in Figure 5.33) may be associated with the retraction of the pseudopod as 

indicated by a drop in roundness.

Validation

To validate the spline boundary description, the same neutrophil image was 

delineated six times using 10 control points placed approximately equally spaced 

around the cell boundary. The boundary fitting was performed after a median filter 

had been applied. The spline boundary was compared with a description based on a 

linear interpolation using 50 points placed on the cell boundary.

A maximum error of 3% in area was observed. The maximum difference in 

perimeter length between the linear interpolation of 50 points and the 10 point cubic 

spline interpolation was 10%. However, the spline perimeter was smaller in all six 

cases, confirming a smoother cell boundary.
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pseudopod (-)of the same cell. The two positions in the graph correspond to the cell 
before and after pseudopod retraction in Figure 5.30
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Discussion

In this study the semi-automatic adaptive spline method was used to track single 

neutrophils. The method is based on the adaptive spline interpolation of the boundary 

combined with a relocation mechanism for the control points. There is a clear 

definition of the boundary due to the ratio-imaging, however, concentration values 

inside the cell may drop below the set threshold and thus 'holes' may appear within 

the cell. Therefore, the boundary-based segmentation was found to be a suitable 

approach for cell definition and semi-automatic tracking.

The definition of pseudopod regions was successfully performed by forming a sub- 

region of the adaptive spline contour. This enabled the assessment of localised 

changes in calcium concentration in pseudopods while monitoring morphological 

changes at the same time. The semi-automatic nature of the spline technique enables 

manual intervention if, for example, two cells are attached. Thus, this system may 

help in investigating the role of calcium concentration in neutrophil motility.
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6 Wound Experiments

6.0 Introduction

Leg ulcers are often painful and debilitating and about 1.8 per 1000 population 

develop such a condition [Baker et al., 1991]. Long healing periods cause major costs 

in treatment of care for the National Health Service in England and Wales.

Objective assessment of healing progress is vital, however, at present it is difficult to 

predict how well wounds are healing. It has been suggested that analysis of wound 

colour may be of clinical value [Romanelli,1997; Boardmann et al, 1994; Mekkes et 

al., 1995; Herbin et al., 1993]. However, these studies were only of small number of 

wounds and either looked at the entire wound or a small section and did not 

necessarily use colour patches for reference. Some systems were operated under a 

special experimental setup which may prove impractical in a day to day clinical 

routine.

This chapter describes the application of the semi-automatic spline method to wound 

imaging. The spline was used to delineate the wound boundary and a case will be 

made for assessing the image in the vicinity of the wound boundary. Prior to the 

application of the spline, an analysis of colour variability will be performed. The aim 

of this aspect was to assess colour variability between images taken under clinical 

conditions with a digital video system, (section 6.1).

The accuracy of colour assessment was compared with a clinical trial whereby 

clinicians assessed the amount of slough (necrotic tissue) from digital images 

(section 6.2). Furthermore, the clinicians perception of wound infection from digital 

images was also assessed (section 6.3).

During the healing progress, wounds were observed to show a more blurred and 

convoluted boundary [Herbin et al., 1993]. However, non responding wounds or 

indeed, infected wounds, may stagnate or increase in size [Cutting et al, 1994]. The
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state of the tissue in the boundary region may thus be of value in describing new 

healing characteristics. In this study, in order to achieve more objective measures of 

wound appearance, digital ima^e acquisition is used. This is combined with the 

adaptive spline technique and image analysis to assess the profile of the wound 

boundary (section 6.3).

6.1 Colour Variability

The aim of this study was to assess colour variability in images taken with a digital 

video system. Images were taken under clinical conditions and the aim was to assess 

the variation in colour under not fully controllable lighting conditions. A new 3CCD 

digital camera was used to capture wound images forming a novel approach in the 

use of digital image processing in wound healing.

Images of leg ulcers on 10 patients were obtained using a digital video camera 

(Panasonic NVDX100 B, Matsushita Electric Industrial Co. Ltd., Japan). This 

camera incorporates three separate CCD arrays, one each for the red, green and blue 

colour plane. This provides good colour reproduction and reduces interference 

between neighbouring pixels [Sangwine, 2000].

A 10W video light was mounted on the video camera and used to improve lighting 

conditions. The camera was operated in still picture mode and images were acquired 

in true-colour and subsequently downloaded digitally to a PC workstation. A 

graduated scale with additional colour patches (FUJI Colour Scale) was held close to 

the wound in order to provide a means of colour reference as seen in Figure 6.1. This 

was used to compare the variability of colour values between different images.

All ten images of leg ulcers were taken under clinical conditions, hence the lighting 

conditions could not be fully controlled. For example, some rooms of the clinic had 

daylight from windows while other rooms relied on fluorescent lighting. Images 

taken from the camera were described by its Red, Green and Blue (RGB) 

components. In this colour model, however, the value of each component strongly 

depends on the light intensity which is influenced by the different lighting conditions
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Gonzalez et al. [1993]. As suggested previously [Boardman et al., 1994; Herbin et 

al., 1993] , the HSI (Hue, Saturation, Intensity) colour model was used in this study. 

In this model, the intensity is separated from the other two components. Hue is the 

measure of wavelength of the main colour and represented by an angle [0°..360°], 

saturation is related to the amount of white light included, while the intensity is a 

measure of brightness [Gonzalez and Woods, 1993].

The variation of hue, saturation and intensity values in red colour patches of ten 

wound images was analysed. The red hue region in the HSI colour model ranges 

from 330° to 30°. For example, the graph in Figure 6.1 shows the distribution of hue 

values over three marked regions in the wound image above.

Analysing hue as a non-continuous value causes problems numerically and hence the 

HSI colour model was modified by shifting the hue range to allow a continuous range 

of red hue values (120° - 180°) as seen in Table 6.1.

""'colour

red
yellow
green
turquoise
blue
violet

hue range [°]
330-30
30-90
90-150
150-210
210-270
270-330

shifted hue [°]
120-180
180-240
240-300
300-360

0-60
60-120

Table 6.1: HSI colour conversion table

Results

The range in hue values for the red colour patch held close to 10 wounds was 

analysed. The range of values occurring in the red colour patch was compared the 

range of hue values occurring within each wound region. Hue values were mapped 

(Hue -> Hue') according to Table 6.1. Figure 6.2 shows the comparison of red hue 

ranges in colour patches and the wound area. The colour patch was of uniform hue 

and a six degree variation in hue was observed. The total range of hue values
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observed over the 10 wounds was 110°-190° and extended over the whole range of 
red into yellow.

Red Hue 
Saturation 
Intensity

Median 
min max

144 150 
69 99 

168 240

% of range
10 
30 
28

Table 6.2: Range of median values in 10 images of the red colour patch

In Table 6.2, the variations in red hue, saturation and intensity in the 10 images of the 

red colour patch are shown. The range of scale for the red hue was 60 degrees, the 

range of saturation was 100% and the range of intensity was 255. The hue 

components showed the least variation with 10% over its range. Saturation and 

intensity expressed a much higher variation of up to 30% between images of the 

same colour patch.

6.2 Clinicians assessment of digital wound images

This study was conducted to assess the clinicians perception of colour in wound 

images using a digital video camera system. Twelve wound images were take with a 

3CCD camera (Panasonic NVDX100 B, Matsushita Electric Industrial Co. Ltd., 

Japan) and printed out onto standard white paper. Two experienced clinicians were 

asked to rate each image according to whether the wound depicted in the image 

appeared infected.

The following four grades were defined:

• appears infected

• possibly infected

• probably not infected

• appears not infected

-112-



Chapter 6

Results

The two clinicians were asked to grade each wound according to their perception of 
the wound image and the result is shown in Table 6.3.

wound
1
2
3
4
5
6
7
8
g

10
11
12

appears infected possibly infected

O X

X 0
O

X

X

probably not infected
XO

X

X
XO
O

X
O

appears not infected

0

X
XO
0

XO
o

Table 6.3: Assessment of wounds from digital images by two clinicians (X and O)

As seen from Table 6.3, there seems to be little agreement between two clinicians of 
whether a wound appears infected. There was full agreement in only 4 cases out of 
12 (33%) and light agreement (one grade out) in a further 7 cases (58%).

The agreement was also assessed using kappa analysis [Airman, 1991]. Using four 
classification grades, the kappa value for assessment of agreement was 0.06 while 
using only two classification grades, the kappa value was calculated as 0.4.
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6.3 Assessing the amount of slough

This study was conducted to access the feasibility of using a digital video camera 

system to assess the colour appearance of wound images. More specifically, the 

image processing system was used to quantify the amount of slough in leg ulcers.

Thirty leg ulcer images were acquired using a digital video camera (Panasonic 

NVDX100 B, Matsushita Electric Industrial Co. Ltd., Japan). A 10W video light was 

mounted on the video camera and used to improve lighting conditions. The camera 

was operated in still picture mode and images were acquired in true-colour and 

subsequently downloaded digitally to a PC workstation.

Clinicians Assessment

The images were shown in random order to three experienced clinicians who graded 

images according to amount of slough they perceived. Five images were shown twice 

in order to test intra-observer variability.

Grading was performed according to the Table 6.4 below.

Grade
1
2

3
4

5

Rating
clean wound, no slough

minimal slough
moderate slough
moderate to heavy slough
heavy slough

Table 6.4: Clinicians grading table for assessment of slough in wound images

Wound Imaging

The wound was delineated using the adaptive spline technique by placing a few 

salient points onto the wound boundary. Points could be adjusted by moving them to 

a new location such that the boundary was described closely. The area within the 

spline was used as a region of interest and within that region the amount of slough 

was calculated in relation to the overall size of the region.
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The amount of slough was calculated from the hue values between two thresholds 

Ti=180° and T2=240° of the shifted hue scale in Table 6.1. These threshold values 

were determined after consulting the clinicians' perception of slough. Figure 6.3 

shows the two thresholds on the shifted hue colour scale. Pixel values with an 

excessive intensity (I > 0.9), indicating specula reflection, were excluded. Also, dark 

regions were excluded (I < 0.1). The following two images in Figure 6.4 show an 

example of expressing different amounts of slough.

The percentage values obtained from the image analysis were mapped in a linear 

fashion onto a grading system with grades 1-5 to be compatible with the clinicians' 

assessment.

Results

Thirty images were assessed and classified into five categories by three experienced 

clinicians. In five cases there was full agreement (16.6%) between the three clinicians 

while in a further 19 cases (63.3%) there was a difference of only one grade where 

the two other clinicians agreed. Six cases did not experience any agreement (20%).

The result of the (19+5) wound images from the clinicians' assessment, where at 

least two clinicians agreed, was compared against the results from the image analysis. 

In 12 cases (50%), the image colour analysis expressed the same grade as the 

clinicians assessment while in a further six cases (25%) the result suggested by the 

image analysis was only one grade different from the clinicians assessment. In six 

cases (25%), however, the image processing technique and the clinicians disagreed.
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Figure 6.4: Example of two images with different amount of slough.
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6.4 Wound Profile Assessment

The objective for the descriptor of the boundary was to provide a flexible and easy 
method to define and refine the approximate location of the wound boundary in an 
image. To describe a wound shape, a sequence of control points is specified on the 
boundary; the control points help to describe the curvature. The contour model used 
to delineate the wound boundary is based on the adaptive spline described in chapter 
3. Figure 6.5 shows an example wound image delineated by the spline model.

Once the boundary Q(x(u), y(u)} has been described mathematically, the normal 
vector n(u) at any given position of the spline u can be calculated as

The profile, which was set to 31 pixels in width, is centred over the boundary 
location and divided into three regions: Outer boundary, centre region and inner 
boundary as seen in Figure 6.6. The width of the outer and the inner section is 10 
pixels while the boundary section has a width of 11 pixels.

Each wound was described by eight spline segments and in this study, two profiles 
per segment were taken. However, the number of profiles per spline segment can be 
set to a different number. The mean and standard deviation of hue, saturation and 
intensity values occurring in those three regions of 16 profiles per wound was 
analysed. Figure 6.7 shows a single wound image with 16 profiles along the spline 

boundary.

Results

The mean and standard deviation of values occurring in the outer (o), boundary (b) 
and inner (i) region of the profile of 10 wound images was analysed. The analysis 
was performed on hue, saturation and intensity values.
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Figure 6.5: Wound image with delineated spline boundary
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Figure 6.6: Wound profile generated from the spline boundary description. The profile 

is divided into outer, boundary and inner region.



Figure 6.7: Wound image with profiles along the spline boundary
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WOUND

1
2
3
4
5
6
7
8
9

10

HUE1
0
141
169
170
149
151
146
141
156
141
155

["] (mean)
b
149
167
160
150
153
144
143
153
143
154

I
154
154
153
150
156
147
142
153
145
152

HUE1
0
6
8
9
4
9
6
3
2
3
3

H (stdevji
b 1

7
7

11
3
9
5
3
2
3
3

5
3
6
3

10
6
1
2
2
2

Table 6.5: Mean hue and standard deviation in 10 wound images. Wounds in bold 
were considered to be infected by visual inspection from an experienced clinician.

As seen in Table 6.5, most wounds expressed little differences in mean hue values 
between the three regions of the wound profile despite its different appearance. There 
was no obvious trend by which the mean hue values increased/decreased from the 
outer towards the inner wound region. Those wounds considered to be infected did 
not show any significant differences in hue values at the boundary.

WOUND

1
2
3
4
5
6
7
8
9

10

SAT
0

21
57
19
49
41
34
39
60
40
47

(mean)
b

31
54
32
65
52
51
52
83
62
53

I
38
49
44
75
58
59
58
91
88
61

SAT(stdev) !
o b I

9
15

5
12

9
15

9
11
15
8

13 11
10 5
12 13
17 14
16 17
20 21
10 6
14 8
23 13
10 6

Table 6.6: Mean saturation and standard deviation in 10 wound images. Wounds in 
bold were considered to be infected by visual inspection from an experienced 

clinician.

As seen in Table 6.6, there seems to be a common pattern between the three regions 
of the profile for the mean saturation. All except one wound appeared to show an 
increase in saturation from the outer to the inner region of the wound boundary. The 
mean saturation of wound 2 decreased from the outer to inner region unlike the data
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from the other wound images. Two of three wounds that were considered to be 
infected seemed to be more saturated on the outer boundary.

WOUND

1
2
3
4
5
6
7
8
9

10

INT(mean)
o b I
160 143 144
153 170 184
125 99 105
182 147 125
156 141 137
158 140 135
129 111 110
166 120 108
220 191 161
121 98 86

INT(stdev)
o b I
35 37 26
36 27 19
26 29 41
46 49 43
32 36 36
30 32 39
22 26 16
29 30 24
25 36 25
25 28 20

Table 6.7: Mean intensity and standard deviation in 10 wound images. Wounds in 
bold were considered to be infected by visual inspection from an experienced 
clinician

As seen in Table 6.7, the mean intensity values appear to decrease from the outer 
towards the inner boundary profile. Again, the profile of the likely infected wound 2 
behaved differently. However, this behaviour was not observed in wound 8 and 10, 
which were also considered to be infected by visual inspection of a clinician.

6.5 Conclusion and Discussion

The results suggest that recording images digitally on a 3 CCD chip camera is a 
feasible way of determining wound colours under clinical condition. Despite the 
influence of daylight and/or fluorescent light, there was a maximum shift of six 
degrees (10%) in hue in the red colour patches. Intensity and saturation expressed a 
greater variation of up to 30%. Hue appears to be the most stable component of the 
HSI colour model for colour analysis which is in accordance with previous 
observations [Boardman et al., 1994]. However, it also shows that calibration is 
necessary to obtain reliable results in order to be able to describe subtle changes in 

hue.
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The assessment of wound appearance from digital images alone seemed not to be 

sufficient enough for experienced clinicians to determine whether a wound is 
infected. There was full agreement of only 33% between two experienced clinicians 

in determining wound infection visually from digital images. Clinicians take many 

other factors into account, such as the patients history, odour, pain, size and 

surrounding tissue [Cutting et al, 1994]. Image processing may provide a tool to 

assess objectively colour appearance of wound images. The developed system was 

used to quantify the amount of slough in leg ulcers with a 75% agreement between 
clinicians' assessment and computer analysis.

The adaptive spline technique was implemented to provide a new measure of 

assessing the wound boundary and surrounding tissue. It was used successfully to 

delineate the boundary of leg ulcers and to describe variations of colour in the 

vicinity of the wound boundary. Intensity and saturation expressed a clear trend from 

the inner to the outer wound boundary. Two images out of 10, however, did not 

follow this trend and one of which was considered to be infected. The wound 

boundary profile may be useful in a quantitative assessment of changes at the wound 

boundary, especially the wound edge convolution during progress in the wound 

healing process.
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7.0 Conclusion and Discussion

In this project, a new semi-automatic technique was devised that enabled the analysis 

of movement of clustered cells. Some computerised systems have been developed 

previously to analyse the movement of single cells in vitro. However, the 

segmentation of clustered cells by a fully automated image processing system is 

likely to be unreliable. Therefore, a new semi-automatic image processing system 

which facilitates the segmentation and tracking of cells in a clustered cell colony was 

developed. The following aims and objective were set out to be accomplished:

1. to review current methods of assessment of cell motility

The literature review covered many aspects of light microscopy relevant for 

monitoring living cell cultures. Image processing techniques to segment microscopic 

images were discussed. A number of systems to access cell motility were described 

and some their techniques highlighted. However, most systems were designed to 

monitor single cells or multiple detached cells. In one instance, a system enabled the 

analysis of the whole cell cluster without distinguishing between individual cells. 

The problem is recognising and segmenting cells automatically with an image vision 

system. Model based approaches have been used to enhance the segmentation 

success in difficult situations by using a priori knowledge about the objects occurring 

in an image. For example, a contour model was applied to segment and track single 

cells, however, this method did not perform well on pseudopodial regions. A model- 

based, semi-automatic system was thought to be more appropriate, enabling 

interactive segmentation and tracking of clustered cells.

2. to develop an approach for segmenting cells in clusters

In order to enable the segmentation of cells in clusters, a semi-automatic technique 

based on two-dimensional rendering of the cell boundary was developed. The 

boundary is interpolated between control points placed initially on the cell boundary, 

forming a piecewise cubic spline boundary. The number of control points can be
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changed manually or an automated re-sampling technique can be used. The first and 

second derivative of the boundary at control points is continuous enabling a 

smoothed representation of the cell boundary. The initial definition of the cell by an 

observer overcomes the problems an automated image vision system may have in 

locating cells. This way, expanding and protruding cellular regions can be described 

with the spline representation as long as they are recognisable.

After the initial placement of control points, in order to reduce inter-observer 

variability, a fitting process is applied. Control points are moved towards high image 

gradients whenever a high image gradient along a short section of the boundary is 

detected. A confidence parameter is introduced which estimates the degree of a good 

fit of each control point. This minimises the effect of control points moving to false 

locations due to gradient peaks in the image which is a great advantage over 

traditional segmentation techniques.

Image fitting has been localised and does not rely on a global fitting constraint such 

as global energy minimisation in snakes. This takes into account that some cellular 

regions can express a high image gradient while others no clear image gradient. If a 

control point is located falsely, the operator has full control over the position of each 

control point and hence may move a point manually to ensure a proper representation 

of the cell boundary.

3. to combine the segmentation with a tracking mechanism

It was anticipated to develop a technique to facilitate the tracking of cells in clusters. 

The spline based segmentation process was therefore combined with a spatio- 

temporal tracking technique to relocate cells in consecutive frames. Image features 

from image gradient and intensity are used in a subsequent tracking process to 

relocate each control point from which a new boundary representation is rendered. 

This spatio-temporal approach enables the tracking of regions that do not express a 

predominant image gradient such as expanding pseudopodial regions. Tracking is 

performed by approximating the movement of each control point using an area 

matching technique based on image intensity. Another confidence parameter is
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calculated describing the likelihood of a good movement estimation from the area 

matching which is used for the final assessment of movement of individual control 

points. However, control points are only moved to a new location if there is sufficient 

confidence of a good fit. At the same time, the image gradient in the near 

neighbourhood is analysed and a gradient confidence parameter is calculated as well. 

The position of each control point is relocated individually based on a decision 

making process using the confidence parameters of image gradient and area 

matching. This forms a new spatio-temporal technique for tracking objects.

The advantage is that control points are relocated individually and can be moved 

interactively to a more suitable position if the automatic relocation technique does 

not suggest an appropriate solution. Areas where no predominant gradient is 

expressed may still be able to be tracked after an initial placement of control points.

4. to validate the new system

It was anticipated to validate the system by describing objects with a known size. The 

system was validated by segmenting artificially generated test images and agreement 

within 10% of area was found. The adaptive spline technique was also validated by 

delineating the cell boundary in real cell images viewed by Hoffman Modulation 

Contrast microscopy. In this test, three independent operators placed points onto the 

cell boundary from which the cell boundary was rendered. There was a maximum 

error of 6% in area with single cells and a maximum error of 13% with clustered 

cells. Inter-observer variability could be reduced further by applying a gradient based 

fitting process.

The system was found to be well suited for the description of movement of single 

cells in a clustered environment. The gradient and flow based relocation method 

appeared to work well on clearly definable cells within a cluster. However, the 

system did not accurately reflect movements of the cell boundary when heavy 

membrane ruffling occurred. In such cases, the fully interactive nature of the method 

can be used by simply adjusting single control points manually to ensure a close fit.
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5. to study the effect ofHGF/SF motogen on Human Colon Cancer Cells in vitro

The method has been used in a series of experiments to assess the effects of HGF/SF 

motogen on the movement of HT115 human colon cancer cells. Four series of 

HT115 cells were analysed with six clustered cells each. In each series, one set of 

cells was stimulated with HGF/SF motogen while the other set was used as a control 

reference. Changes in cell area, movement and cell shape were analysed. 

Translocative motility was assessed using cell velocity while changes in cell area and 

shape were used as an indicator of stationary motility. The results showed that cells 

with added HGF/SF motogen expressed a velocity of 25% to 100% higher than those 

without any added motogen. However, it was also observed that cell velocity varies 

in time and our results suggest that this variation is greater in cells treated with 

motogen.

Cells with added motogen expressed more movement and longer movement paths 

than cells without added motogen. This is in accordance with a previous study 

[Goldberg and Rosen, 1993]. There were also more changes in area and cell shape 

with stimulated cells indicating more morphological activity. Cell area was found to 

be similar in cells with and without motogen, however, there was greater variation in 

area with time in those cells treated with motogen. Some stimulated cells did not 

seem to respond to the motogen resulting in a similar movement behaviour to control 

cells. This may be explained by the fact that some cells do not have enough receptors 

for the HGF/SF to take effect.

In a further experiment, HRT18 cells were used to compare the effects of HECD-1 

human E-cadherin antibody and HGF/SF motogen on their movement behaviour. 

Changes in area and velocity were analysed. Although the number of cells analysed 

was low, cells with added antibody expressed more variation in velocity and higher 

median velocities than cells with added HGF/SF motogen. HRT18 cells with added 

antibody showed increased ability to move more freely resulting in higher 

translocative motility compared to cells with added HGF/SF motogen. As suggested 

by Hiscox and Jiang [1999], this may be explained by impairing cell-to-cell 

adhesions by the antibody which gives the tumour cell a possibility to escape from
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the cluster. Interestingly, cells with added HGF/SF motogen seem to express higher 

stationary motility as indicated by a higher range and more frequent changes in cell 

area. HGF/SF stimulates the desire of cells to move [Schiffman 1990] but the cell-to- 

cell adhesions may still restrain their translocative movement.

The system is also applicable for assessing the movement of single cells. The system 

was compared with a region-based segmentation system for analysing the movement 

of single neutrophils [Korzynska, 1998]. The area measurements of three cells were 

compared and a maximum difference in area of 25% was observed in one case while 

a mean difference between the two measurement systems was 7.5% in area.

6. to apply and extend the new method to ratio imaging for neutrophils

Another aspect of studying cell motility is to assess whether an intracellular chemical 

change is responsible for changes in cell morphology and the mechanisms of cell 

movement. The system was adapted for measuring cytosolic free calcium in 

neutrophils using ratio imaging. The level of cytosolic free calcium is thought to be a 

factor in the neutrophils ability to protrude [Pettit and Hallett, 1998]. Special interest 

was paid to calcium changes in expanding and retracting pseudopodial regions. The 

adaptive spline was used as a description of the neutrophil boundary while a dynamic 

sub-region could be defined in which the calcium concentration was assessed. The 

results suggest that in retracting pseudopods the level of cytosolic free calcium is 

higher than in the rest of the cell body.

The advantage of using a boundary based segmentation method instead of a region 

based segmentation technique lies in the fact that regions that fall below a calcium 

threshold are still included in the area calculations. Furthermore, the boundary 

representation is smoothed which avoids false readings when using the perimeter 

length as part of a shape descriptor.
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7. to apply the system to assess the appearance of ulcers in the vicinity of the wound 

boundary

The system for segmenting cell images was also applied to macroscopic wound 

images. In wound imaging, the appearance of the wound boundary may be an 

indicator of wound healing.

Some previous studies have looked at changes in wound colour or texture on a global 

level, though not taking into account any specific regions. Also, in some studies, 

wound images were taken under a special experimental set-up to minimise variations 

in lighting. However, in order to be practical, a system to assess wound healing 

should be able to work under normal clinical conditions which tend to have slightly 

varying ambient lighting conditions.

A system was developed comprising of a 3CCD array digital camera to acquire 

wound images and image processing software, which has been shown to be a feasible 

way of determining wound colours under clinical condition. The RGB colour values 

were converted into a slightly modified HSI colour model for colour separation. 

Despite the influence of daylight and/or fluorescent light, there was a maximum shift 

of 6 degrees (10%) in hue of the red colour scale. However, it also shows that colour 

reference is necessary to obtain reliable colour values in order to be able to describe 

subtle changes in hue.

The system was tested by analysing the amount of slough in wounds in comparison 

with clinicians' assessment. The results suggest that the computer colour analysis 

using a 3CCD camera under clinical conditions compares well with the assessment of 

three experienced clinicians.

Wound appearance alone as a measure of wound infection was not found to be 

reliable. In another study, two clinicians assessed wound images and there was little 

agreement between their assessment. Wound appearance may thus not be enough in, 

for example, assessing whether a wound is infected. Indeed, a number of other 

criteria has been suggested such as pain, odour and friable granulation tissue [Cutting
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et al., 1994]. However, computerised colour analysis provides a more objective 

assessment of wound colour even when used under clinical conditions.

Objective assessment of certain areas of the wound by visual inspection may also be 

difficult for a clinician. The adaptive spline technique was used successfully to 

delineate the boundary of leg ulcers in a semi-automatic approach. The region on 

both sides of the boundary was used for further analysis. A profile of the wound 

boundary was created from the spline location and changes in colour and intensity 

were analysed. Most wound images followed a clear trend in changes of colour from 

the inner wound region to the outer boundary region. Some wound images did not 

follow this trend of which one was considered to be infected by experienced 

clinicians. Such an intra-wound assessment technique may be used to avoid 

inconsistencies in colour representation under clinical conditions.

Further Studies

The system was shown to be useful in assessing the motility of cells in clusters. It is 

intended to use the system to study the effects anti metastatic drugs on cell 

movement. The assessment of clustered cells may also provide a way of quantifying 

the breaking up of cell-to-cell adhesions. It is also anticipated to use the system in a 

broader study to assess the level of cytosolic free calcium in pseudopodial regions of 

neutrophils undergoing motion.

Summary Conclusion

The developed system was shown to be useful in objectively describing the 

movement of cancer cells in clusters. The semi-automatic nature of the technique 

enables segmentation of cells which otherwise would be difficult to describe. The 

tracking of clustered cells was performed on eight series of HT115 cells and on three 

series of HRT18 cells. The system was also used in assessing motility and 

morphological changes of neutrophils and in measuring changes in calcium 

concentration in ratio-imaging.
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Thus, the devised system provides a tool for assessing motility in clustered cells. Cell 

motility plays an important role in the establishment of cancer metastasis. This may 

lead to a further understanding in cancer metastasis.

The system was also shown to be valuable for segmenting macroscopic wound 

images. The 3CCD digital camera system was used to acquire wound images 

digitally for processing. Colour representation using the HSI colour model produced 

a stable red hue component with a maximum of 6 degrees variation under clinical 

conditions. The adaptive spline technique was able to generate a wound profile which 

was used to analyse changes in the vicinity of the wound boundary.

Thus, the system developed should help to further understanding in wound healing 

and cell motility analysis.
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Appendix B - Snapshots

Snapshot Cell Movement Analyser I

Cell Movement Analvser
file Edit Options Testing Cells Validation Analysis Help

/? m

Frame: 1 of 37 'rame 0 of 0

Example of the application for the spline boundary for tracking a semi-detached cell. 
Tools in the toolbox can be used to interactively change the position of control points 
(red) if the suggested position is found not to be sufficient.
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Snapshot Cell Movement Analyser II

Fife Edit Options Testing Cells Validation Analysis Help

Frame: 2 of 37 Frame 0 of 0

Example of the application for the spline boundary for tracking a clustered cell.
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Snapshot Wound Imaging Toolbox

&f. Colour Analys

Red: 93% 
Yellow: 5 °b 
Black 0% 
Slough: 21 %

Hue ' Regions Classify

lEsToolBox

WMthofPen:

Clear Region

REGION:

Press SHIFT to delete 

General Roi Spline /

C Inner Region 

C Boundary 

C Outer Region 

ff none 

r Red Patch 

r Yellow Patch

Example showing the wound imaging toolbox. An image of a leg ulcer was delineated 

using the spline boundary (green) and salient control points (red).

B-3



Appendix C - Software Implementation

Class Diagram - Adaptive Spline Model

Model Classes
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Brief Class Description

Filter

Base filter class implementing contrast stretching, spatial filter masks, histogram 

equalisation, Gaussian smoothing.

Edge

A collection of edge detection methods such as Sobel, Prewitt, Laplacian, Laplacian 

of Gaussian.

ScaleSpace
Methods to reduce or increase the spatial resolution of images. Used for tracking at 

different scales.

Flow
Movement estimation techniques are implemented in this class. The method used for 

movement estimation is area matching based on the sum of squared differences.

Tracking
This class coordinates the tracking of cells using spatio-temporal information from 

the flow class and adaptive spline class.

Dpoint
Base class describing a control point with position and confidence parameters.

Spline
This class extends Dpoint to form a spline segment.
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Boundary

Adds a cubic spline and C2 continuity to the Spline class, forming a Hermite spline. 

Calculation of area, centroid and perimeter length are added. Control points can be 

added and deleted.

AdaptiveSpline

This class makes the Hermite spline adaptable. A boundary profile can be generated 

from the normal vector. Image values along the profile can be used for relocation 

purposes. The relocation process using gradient is implemented in this class.

Cell

The cell is the centre piece of the Cell Movement Analyser software. It contains a list 

of adaptive spline boundaries for each frame. User interaction is coordinates from 

here as well as the re-sampling of the spline boundary. This class has the decision 

making process implemented which ultimately decides about the relocation of each 

control point. T_gradient, T_flow and T_flow2 determine the level of confidence 

required to move a control point.

Xcell

A graphical representation of the adaptive spline to draw it onto a Tcanvas object.
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Class Spline

* The Spline class is derived from the DPoint class and
* describes a single cell segment as a cubic spline interpolation
* DPoint is extended with ax, bx, ex, dx and ay, by, cy, dy

* Author: A Hoppe
*/

class Spline : public DPoint { 

// - — Properties ---

protected:
double ax, bx, ex, dx;
double ay, by, cy, dy;
public:
double Area;
double Length;

public: 
int Colour; 
bool marked; 
DPoint Center;

// x - parameters of spline segment
// y - paremeters of spline segment

// area of the spline segment
// length of the spline segment

// colour of control point 
//a marked segment cannot be deleted 

// centroid of the spline segment

// —- image features in near neighbourhood and confidence values --
DPoint Flow;
DPoint Gradient;
DPoint Orth_Grad;
DPoint Flow 2; // flow at half scale

// —— Constructor ——
Spline () : DPoint 0
{
x=y=0;
ax=ay=bx=by=cx=cy=dx=dy=l . 0; marked=f alse;

// —— Methods ——
// set x-coeff icients of the spline segment
void setXCoef ficients ( double a, double b, double c, double d) { 

ax = a; bx = b; ex = c; dx = d;

// set y-coef ficients of the spline segment
void setYCoefficients ( double a, double b, double c, double d) { 

ay = a; by = b; cy = c; dy = d;

// retrieve coordinate values
int X s(double s) { return (int)(0.5+ax+bx*s+cx*s*s+dx*s*s*s); }
int Y~s(double s) { return (int) (0.5+ay+by*s + cy*s*s+dy*s*s*s) ; }

double angle(double s) 
void recalc(}; 
segment

// calculates area, length and centroid of this

Class Boundary
/*
* The Boundary class is a collection of spline boundary segments which
* form a closed body. This is then used to render the boundary
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* of a single cell.
* Author: A Hoppe
*/

class Boundary {
// -—-_----___ Properties ——-—--—
public:

DPoint Center; // Center of Gravity of area
DPoint Nucleus; // Position of the Nucleus
int Area; // Area of the enclosed field
int Length; // length of perimeter
int Size; // position in array of spline segments

(1..n)
DPoint* spl[1000]; // max 1000 spline segments in boundary

// —— Constructor and Destructor ——
Boundary() {

Center.x=-7; Center.y=-7; 
Nucleus.x=-3; Nucleus.y=-3; 
for (int i=0; i < 1000; i++) spl[i]=NULL; 
Size=0; 
}

// —————————— Methods — —— — ——

// add a new point
virtual void add(int x, int y) ;

// add a new point without sorting 
virtual void justAdd(int x, int y) ;

// delete points within the radius of 3 pixel 
virtual void del(int x, int y);

// move Center and points to new location x and y 
virtual void moveTo( int x, int y) ;

// move single point to a new location 
virtual void moveSingle( int x, int y) ;

// calculate area, length and centroid of the closed boundary 
virtual void recalc ();

// delete all points contained in this boundary 
virtual void clear ();

// clone this boundary 
virtual Boundary* clone(};

// save boundary to filestream 
void saveToFile( FILE* out);

// load boundary from filestream 
bool loadFromFile( FILE* in);

// sort points clockwise around the cell 
void sort ();

protected:

// calculating the length of the boundary

int length();
// dealing with the array of spline points
void swap(int a, int b);
void del(int pos);
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Implementation of sorting for minimal length in Boundary class

void Boundary: : sort () {

int minLength; // minimum length encountered

if (Size < 4) return; // need more than 3 points

// assess the length of all possibilities 

minLength = length ( ) ; 

for (int m=Size-l; m >= 0; m — ) { 

for (int n=Size-l; n > 0; n — ) {

if (length () < minLength) minLength=length ( ) ; 

swap ( n, n-1); // swap the position of points

// find the minimum length again and stop sorting 

if (minLength == length ()) return; 

for (int m=Size-l; m >= 0; m--) { 

for (int n=Size-l; n > 0; n — ) {

if ( minLength == length(J) return; 

swap ( n, n-1) ;

void Boundary::swap(int a, int b) 

{
DPoint* s;

s = spl[a]; spl[a]=spl[b];
spl[b]=s;

Class Adaptive Spline

class AdaptiveSpline : public Hermite

// —— Properties —— 
public:
int P_area;
int P_perimeter ;
int P_size;
Bitmap* bmp;
Bitmap* profile; 

profile information
int xp[33];
int yp[33];
float v[33J; 

values
int p x[500], p_y[500]
int polar[500];

// -— Constructor ——

// reference Bitmap
// image containing the

// x position of vector
// y position of vector

// single vector

// array of x,y positions; 
// polar coordinates
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AdaptiveSplineO : HermiteO { profile = NULL;} 

// —— Methods — —

// clone this spline 
virtual Boundary* clone();

// create a new orthogonal profile with number of vectors per segments 
void createProfile ( Bitmap* bmp, int vectors, float sigma);

// calculates the total profile and paint it on the bitmap 
void paintorthogonalvector (Bitmap* bmp, double ds, int colour);

// save orthogonal profile as bitmap, derv indicates first derivative 
void saveProfile(char* filename);

// mark the highest gradient on profile 
void markBoundary(Bitmap* bmp, int segm);

// —— Methods that work on a single profile element segm(s) ——
protected:
// calculates a single profile, coordinates stored in xp,yp
void calcOrthProfile( int segm, double s);

// calculates a sigle profile with image data at scale in v and xp, yp 
void calcOrthProfile(Bitmap* bmp, int segm, float s);

// calculate the weighted profile at offset dx(centre+dx) and sigma 
void weightProfile ( int dx, float sigma);

// derive orthogonal profile 
void deriveProfile ();

// relocates the spline according to max values along H— search pixels of 
spline segment 
float relocateNormProfile( Bitmap* bmp, int segm, int sindex, int search);

// relocate the spline according to sum along profile and high gradient 
void relocateCombiProfile ( Bitmap* bmp, int segm, int sindex);

// calculate the difference along the normal profile (returns normalised 1 
diff) 
float diffNormProfile( Bitmap* bmp, int segm);

// calculate the sum along the normal profile (returns normalised sum) 
float sumNormProfile( Bitmap* bmp, int segm);

// ----- segment relocation methods ——— 
public:

// relocate this segment
void relocateSegment( Bitmap* bmp, int segm);

protected:

// relocate at index and sigma
void relocateSegmf int Sindex, float sigma);

// relocate according to highest pixel value along profile 
void relocateSegm(int Sindex, bool derive, bool weight);

// normalisation methods

public:

void normaliseFlow();

void normaliseFlow_2();
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Implementation of fitting to gradient boundary in AdaptiveSpline class

// returns confidence parameter

float AdaptiveSpline: : relocateNormProfile ( Bitmap* bmp, int segm, int
&index, int search)
{
Spline *s_l = (Spline*) spl [segm] ;
float max=0, result;
int i ;

calcOrthProfile ( segm, 0); // calculate x,y positions of profile vector 

for (i=16-search; i <= 16+search;

s_l->x = xp[i]; s_l->y = yp[i]; // set new control point position
matrix (); // recalc spline coefficients
result=sumNormProf ile ( bmp, segm) ;
if (result > max) ( max=result; index=i; ) 

}
s_l->x = xp[16]; s_l->y = yp[16]; // set control point to old position 
matrix (); // recalc spline coefficients 
return max; 

}

float AdaptiveSpline: : sumNormProf ile ( Bitmap* bmp, int segm) 
{
Spline *s_l, *s_2;
float ds;
float sum=0;
if (segm > 0 && segm < Size)
{

s_l = (Spline*) spl [segm-1] ; s_2 = (Spline* ) spl [segm] ;
}
else
{
s_l = (Spline*) spl [Size-1] ; s_2 = (Spline* ) spl [0] ;

}

// sum of three pixels of left spline segment 
for (ds=0.8; ds <= 1.0; ds=ds+0.1)
{
sum = sum + bmp->pix [s_l->X_s (ds) ] [s_l->Y_s (ds) ] ;

}
// sum of three pixels of right spline segment
for (ds=0.1; ds < 0.4; ds=ds+0.1)
{
sum = sum + bmp->pix [s_2->X_s (ds) ] [s_2->Y_s ids) } ;

return 1- (sum/6. 0) ; // return lower the sum the higher the gradient, hence 
1-sum

Class Tracking

class Tracking : public Flow
{
public:
// -— Properties - —
Bitmap *spbmpl, *spbmp2; // scale space bitmaps
ScaleSpace scaling;

// —— Constructor -—
Tracking () : Flow() { spbmpl = new Bitmap(); spbmp2= new Bitmap(i

-Tracking() { delete spbmpl; delete spbmp2;}
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// — - Member Functions ——

/*
We calculte the absolute gradient with a prewitt filter
and search for the highest gradient in a size x size area.
All the control points are relocated according to the highest
gradient in that area.
It copies the previous positions of the control points onto
the next frame and relocates them according to the highest gradient*/
void maxGradient (Bitmap* bmp, Cell* c, int size) ;

/* We calculate the gradient in direction of the normal vector
* at each control point.
* The point is relocated according to the highest gradient
* in a 5x1 area
*/
void maxProfileGradient (Bitmap* bmp, Cell* c, int type, int size) ;

/* We calculate the flow approximation in the area around
* each control point. The best fit area is chosen
* bmpl = old frame, bmp2 = new frame

*/

void flowArea( Bitmap* bmpl, Bitmap* bmp2, int size, int search, Cell* c) ;

/* Scale space flow tracking
*

*/
void f lowAreaScale ( Bitmap* bmpl, Bitmap* bmp2, int size, int search, Cell*
c) ;

/*
* calculate flow field around the nucleus position
*

*/
void f lowNucleus ( Bitmap* bmpl, Bitmap* bmp2, int size, int search, Cell*
c) ;

void f lowNucleus ( Bitmap* bmpl, Bitmap* bmp2, Bitmap* bmpl_2, Bitmap* 
bmp2_2, Cell* c) ;

void flowCytoplasm( Bitmap* bmpl, Bitmap* bmp2, int size, int search, Cell*
c) ;

Implementation of area matching using flow Area

void Tracking: : f lowArea ( Bitmap* bmpl, Bitmap* bmp2, int size, int search, 
Cell* c)
{
AdaptiveSpline* s;
Spline* segm; // spline segment
int xp, yp;
float C_flow;

s = c->spl(); // get spline boundary from cell 

for (int i=0; i < s->Size;

segm= (Spline*) s->spl [i] ; 
xp = (int) segm->x; yp = (int) segm->y;
//C_flow=intCorr ( bmpl, bmp2, size, search, xp, yp, xp, yp) ; // relocate 

according to intensity area correlation
C flow=flowField( bmpl, bmp2, size, search, xp, yp) ; 
segm->Flow.x=xp; segm->Flow. y=yp; segm->Flow. alpha=C_f low;
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Class Flow

:lass Flow : public Edge {
public:
// —— Properties ——

// —— Constructor —— 
Flow() : Edge() { }

// —— Methods ——

// performs bmpl = |bmpl - bmp2 |
void absDiff( Bitmap* bmpl, Bitmap* bmp2);

// performs bmpl = Ibmpl - bmp2 | + |bmp3 - bmp2 I
void absDiff( Bitmap* bmpl, Bitmap* bmp2, Bitmap* bmp3) ;

/* relocates point pt (xpos, ypos) according to best correlation of 
intensities

size e.g. 5 = 5x5 area
search e.g. 7 = 7x7 search area around search centre (s_x,s_y)
returns confidence (0..1) as float

*/
float intCorr( Bitmap* bmpl, Bitmap* bmp2, int size, int search, int s_x,
int s_y, int sxpos, int Sypos) ;

float flowField ( Bitmap* bmpl, Bitmap* bmp2, int size, int search, int 
Sxpos, int &ypos);

/* relocate point pt (xpos, ypos) in area size*size (e.g 5x5) 
according the the highest value occuring in that region

*/
void maxVal ( Bitmap* bmp, int size, int Sxpos, int &ypos) ;

Implementation of flowField and intCorr

float Flow: : intCorr ( Bitmap* bmpl, Bitmap* bmp2, int size, int search, int
s_x, int s_y, int sxpos, int sypos)
{
int xl,yl, x2, y2, xp=xpos, yp=ypos;
mat_l = init (mat_l, search, search); // squared differences in searc 

area

int src_x=xp-size/2, src_y=yp-size/2;
int ar_x, ar_y;
float diff, maxima=0, averg=0, std=0;

for (y2=0; y2 < search; y2++) 
for (x2=0; x2 < search; x2++)
{
diff=0;
ar_x=x2+s_x-search/2-size/2 ; 
ar~y=y2+s_y-search/2-size/2;

for (yl=0; yl < size; yl++) 
for (xl=0; xl < size; xl++)

diff = diff + pow( bmp2->pix[ar_x+xl] [ar_y+yl] -bro.pl- 
>pix [src_x+xl] [src_y+yl] , 2) ;

} 
// assign abs diff to result matrix and normalise

mat_l[x2] [y2]= 1 - diff; 

averg = averg + mat_l[x2] [y2j;
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averg = averg/(search*search); // calculating the average difference

// searching for maxima in result matrix and assign new 
// positions to xp,yp

for (y2=0; y2 < search; y2++) 
for (x2=0; x2 < search; x2++)

std = std + pow(mat_l[x2][y2]-averg,2);

if (mat_l[x2][y2] > maxima) 
{
maxima=mat_l[x2][y2] ; 
xpos=xp-search/2+x2; 
ypos=yp-search/2+y2; 

} 
}

std = sqrt( std/(size*size)); 
if (maxima < 0) return 0;

return maxima;

float Flow: : flowField( Bitmap* bmpl, Bitmap* bmp2, int size, int search, int
&xpos, int Sypos)
{

float pos_mat[ll] [11]; // position matrix (max 11 x 11}
float confidence;
int x,y,xp=xpos, yp=ypos;
for (y=0; y < 11; y++) 
for (x=0; x < 11; x++) pos__mat [x] [y] =0;

for (y=-2; y <= 2 ; y++) // 5x5 area of flow vectors 
for (x=-2; x <= 2; x++) 
{

xpos=xp+x; ypos=yp+y;
conf idence=intCorr ( bmpl, bmp2, size, search, xpos, ypos, xpos, ypos); 
pos_mat [5+xpos-xp-x] [5+ypos-yp-y] = pos__mat [5+xpos-xp-x] [5+ypos-yp-y] 

+ confidence;

// calculate the overall direction of the flow field 
float sum=0.0001,xdx=0, ydy=0; 
for (y=0; y < 11; y++) 
for (x=0; x < 11; x++)
{
sum=sum+pos_mat [x] [y] ; 
xdx=xdx+x*pos_mat [x] [y] ; 
ydy=ydy+y*pos_mat [x] [y] ;

xpos=(int) (0.5+xdx/sum) ; ypos=(int) (0 . 5+ydy/sum) 
xpos=xpos+xp-5 ; ypos=ypos+yp-5 ;

return sum/25;

Class Cell

class Cell
{ // ---- Properties ---
public:
int Frame; // frame range: l...n
AdaptiveSpline* boundary[1000]; // max 1000 frames
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FPoint cytoplasm[100] ;

int numFeatures; 
cytoplasm

float T_gradient; 

float T_flow; 

float T_flow2;

// feature points within cell

// number of features points in

// gradient threshold

// flow threshold

// flow threshold at half resolution

// —— Constructor ——
CellO
{
for (int i=0; i<1000; i++) boundary[i]=NULL;
Frame =0; //no frames present
numFeatures=0; // no current feature points
T_gradient=0.6; T_flow=0.6; T_fIow2=0.6;

\
for (int i=0; i < 1000; i++) 
if (boundary[i] !=NULL) delete boundaryti];

// —— Methods ——

void add(int x, int y);

void move(int x, int y) ;

void copyPoints();

void del(int x, int y);

void setNucleus( int x, int y) ;

void addFeaturePoint( int x, int y) ;

DPoint* getNucleus();

int getArea() { return boundary[Frame]->Area; }

AdaptiveSpline* spl () { return boundary[Frame]; } 

// —— Adaptive Spline Methods ——

void resample(); 

void refit(); 

void gradFit();

// —— Persistance Methods ——

// save boundary to filestream 

void saveToFile( FILE* out);

// load boundary from filestream 
bool loadFromFile( FILE* in);

// export parameter of motility for further analysis
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bool exportData (char* filename);

// this method logs all data of the cell and writes into cell.log in temp 
void logDataO ;

// ---- Exporting Data ---- 
protected:

void exportArea(FILE* out); 
void exportCellArea(FILE* out); 
void exportPerimeter(FILE* out); 
void exportPosition(FILE* out); 
void exportDistance(FILE* out); 
void exportNuclVelocity(FILE* out); 
void exportCellVelocity(FILE* out); 
void exportCellRoundness(FILE* out);

implementation gradFit and refit in class cell

void Cell::gradFit()
{

int i;
AdaptiveSpline* s = spl(); // reference to spline boundary
Spline* segm; // reference to single spline segment

for (i=0; i < s->Size; i++)
{
segm=(Spline*)s->spl[i] ;
if (segm->Flow.alpha > T_flow || segm->Flow_2.alpha > T_flow2)

if (segm->Orth_Grad.alpha > T_gradient) { segm->x = segm->Orth_Grad.x; 
segm->y = segm->Orth_Grad.y; } 

}
s->sort(); s->matrix(); s->recalc(); 

}

// relocate the spline boundary 
void Cell::refit()
{

int i ;
AdaptiveSpline* s = spl(); // reference to spline boundary
Spline* segm; // reference to single spline segment

for (i=0; i < s->Size; i++) 
{
segm=(Spline*)s->spl[i] ;
//segm->x = segm->Flow_2.x; segm->y = segm->Flow_2 . y;
//segm->x = segm->Flow.x; segm->y = segm->Flow.y;

if ((segm->Flow.alpha > segm->Flow_2.alpha) && segm->Flow.alpha > 
T flow) { segm->x = segm->Flow.x; segm->y = segm->Flow.y; }
~~ else if (segm->Flow_2.alpha > T_flow2) { segm->x = segm->Flow_2.x; segm- 
>y = segm->Flow_2.y;}

}
s->sort(); s->matrix(); s->recalc();
gradFit(); // using gradient information to relocate control points
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Appendix D - Spline Calculations

The spline equations on the following pages were solved symbolically with the help 
of the software package Derive.

Area

Calculation of Spline Area underneath a spline segment Q(u):

r = X(u) 
Y(u)

- _ r (u + AM) - r 
Aw

.. r(u+Au)-r t = lim ————-——
Aa-»0 Air/

A=
(A)

The area of each segment^, with the linear parameter u e [0..1] is calculated as

4 - /«««*.

Since X(u) and Y(u) are known as a cubic spline segment, the area for each segment 

can be calculated symbolically as:

u + cu2 +du3

du
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o du :U +3d\l2 )du

Equation 4 has been solved symbolically with the Derive software package.

r f g 
Ai = b le + —— + ——

n r 2 f g 2 h -,
-I + c le + ———— + —— + ————1 +

L 2 3 4 J
r 3 f 3 g h -,

d |e + ———— + ———— + __|

L 4 5 2-1

5

The total area is calculated as the sum of the area underneath n segments.

Centroid

The centre of area P(xc,yc) is calculated as [Papula 1991]

Q(u) The centroid P(xc, yc) is calculated as

_J_Xc ~ A

The centroid is calculated as the sum of infinitesimal areas dA underneath the 

curvature Q(u) multiplied by their respective x and y position of each area dA and 

divided by the total area.

D-2



The area element dA is calculated as Y(u) *X'(u) while the x-position of each element 

dA is X(u). This yields the following equation for calculation the x-coordinate of the 

centroid underneath each spline segment x;:

Again, the area element dA is calculated as Y(u) *X'(u) while the y-position of each 

element dA is Vz*Y(u). This yields the following equation for calculation the y- 

coordinate of the centroid underneath each spline segment y;:

Perimeter Length
The perimeter length of a single spline segment i can be calculated as

Lt = \Q(u)du
(C)

The length of each segment is the vector sum of x and y component of the tangential

- (X'W\ t, vector t = such as

However, this equation was not solved explicitly. A piecewise approximation using 

ten linear sub-segments per spline segment was used to calculate the length of each 

segment. The total length was then calculated as

D-3



Appendix E - Published Research

Two full journal papers and four peer reviewed conference publications have been 

prepared as a result of the work described in this thesis.
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A System for Computer Analysis of Cancer Cell Movement
A. HOPPE ( , W.G. JIANG2, D. WERTHEIM1 , R. WILLIAMS' and K. HARDING2

1 Department of Electronics and IT, University of Glamorgan, Mid Glamorgan, CF371DL; 
Department of Surgery, University of Wales College of Medicine, Cardiff, CF44XN, U.K.

Abstract. Background: Motility of cancer cells is a principal 
cellular parameter, essentially required in the invasion and 
formation of distant metastasis in human cancer. Measures to 
stimulate or inhibit motility of cancer cells may play an 
important part in the understanding of metastasis biology. The 
aim of this study was to develop a computer system to analyse 
and evaluate the movement of cells. Method: Software was 
developed which enabled cell boundary definition by specifying 
salient points around the cell. The position of the centre of area 
was calculated. Six human cancer cells treated with a motogen 
and cells without added motogen were analysed by the system. 
Results: We observed higher velocities and greater variation in 
area and velocity of the cells treated with HGFISF motogen 
compared with control cells. Conclusion: The system enables 
rapid analysis of cell area, velocity and movement, and may thus 
be of value in further understanding cell motility.

The study of cancer cell motility is important in 
understanding metastasis [1-3]. The effect of stimulating or 
inhibiting motility of cancer cells may play an important part 
in the understanding of metastasis biology in cancer.

It has been suggested that the motogens, such as 
Hepatocyte Growth/Scatter Factor (HGF/SF), may be a 
trigger for the metastatic spread of cancer cells. When added 
to cancer cells in vitro, this factor stimulates both growth and 
motility, leading to a 'scattered' cell colony [4,5]. A number of 
microscopic methods have been reported, but these offered 
limited information on precise and quantitative measures.

Cell velocity provides a description of cell motility but is 
dependent on how cell position is defined. It is unclear, 
whether the cell position is best defined by the position of the 
nucleus or the centre of the cell area (centroid).

In recent years, some cell movement analysis methods have 
been described which record the movement of detached cells 
through automatic cell tracking [6-11]. However, the 
identification of cells within a clustered colony is difficult as

Correspondence to: Andreas Hoppe, Department of Electronics 
and IT, University of Glamorgan, Mid Glamorgan, U-37 1DL, 
U.K. Tel: +44 1443 482530 FAX: +441443 482541.

Key Words: Cell, metastasis, computer analysis, cell velocity.

cells may be partly obscured by or Interfere with neighbouring 
cells.

The aim of this study was to develop a. computer system to 
analyse and evaluate movement of individual cancer cells 
within a cell colony. The system has been applied to analyse 
the movement of HT115 human colon cancer cells.

Materials and Methods

Materials. Human colon cancer cells HT115 (obtained from the 
European Collection for Animal Cell Culture, Salisbury, England) were 
used. Cells were cultured in DMEM medium supplemented with 10% 
foetal calf serum, penicillin, and streptomycin. The medium was HEPES 
buffered to provide a stable pH during long period recording.

Two sets of HT115 human colon cancer cells of the same cell line 
were analysed, one of them with added motogen. The motogen used was 
a recombinant human hepatocyte growth factor from DNA-transfected 
CHO cells [12].

Cells were prepared and cultivated on petri dishes (Nunc, Denmark) 
and kept in an incubator at a temperature of 37'C and 5% CCh. The cell 
culture was placed under a Leica DM IRB microscope (Leitz GmbH, 
Germany) with a heat control and an attached colour CCD camera. The 
dish was kept at a constant temperature of 37.2°C. A Leica HMC20 
Hoffmann Condenser was used to enhance the structural features of the 
cells. A cell colony with up to 10 cells were chosen at random from the 
culture and monitored for three hours on a time-lapsed video system 
(Panasonic, Japan) connected to the camera. In a second series, 40 ng/ml 
motogen (HGF/SF) was added to a colony of 10 cells and also monitored 
for three hours.

Hardware and software implementation. In summary, images were first 
captured from the video tape at an equivalent of a 5 minute interval in 
real time. The position of cells could be defined by two methods; the 
centre of area (centroid) and the position of the nucleus. From the cell 
boundary the area of the cell can be measured and from its position the 
velocity and movement can be calculated. Thus changes in area, velocity 
and movement of single cells within a cell colony were analysed.

Frames were digitised as a series of true-colour images at a resolution 
of 768 by 576 pixels using a DT3 153 frame grabber board (Data 
Translation, MA, USA). To reduce the amount of disk space and to 
further speed up the image processing, images were converted into grey 
scale. Software was written using Borland C+ + (Borland Int. Inc., CA, 
USA) in conjunction with the Data Translation frame grabber Software 
Development Kit (SDK) for Windows95 (Microsoft Corp., Seattle,
USA).

The video tape was replayed and images were digitised at an 
equivalent of a 5 minute- interval and stored in a series of grey scale 
bitmap files. Evaluation and processing of the cell images was performed 
on a personal computer. Analysis software was also designed in Borland 
C++ and incorporated image processing, calibration and evaluation 
functions to describe the movement of cells. The results of the analysis

0250-7005/98 $2.00+.40
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can be viewed within the sol'lware or exported to a spreadsheet or 
statistical software package for further evaluation.

Cell description. The shape of individual cells may be described by their 
membrane, representing the cell boundary, the area it occupies, and its 
nucleus. An indication of the position of a cell may be calculated from its 
centre of the area (centroid) and therefore depends on the shape of the 
boundary. Alternatively the cell position may be defined from the 
position of the nucleus.

The software allows the cell boundary to be defined by drawing 
around the cell with a mouse or by specifying salient points on the cell 
boundary, which is a more rapid method. The boundary is defined with a 
mathematical interpolation of discrete points (two-dimensional 
rendering) on the cell boundary. The boundary can be described by just 
a few fragments and can be adjusted by moving points placed on it. The 
system reconstructs the full boundary through a closed interpolating 
spline. Furthermore, the software incorporates image processing 
methods to enhance the images in order to facilitate easier detection of 
the cell boundary.

The cell membrane can be considered as a curvature formed by the 
enclosed cytoplasm, a liquid with a high viscosity. Such a curvature is 
unlikely to develop sharp discontinuities or corners. The nature of this 
type of boundary may be described as 'naturally' formed.

In our method the outline of the cell membrane is described by 
segments, which are marked by a few points placed on the boundary. 
The transition between each segment must be smooth according to our 
requirement for a 'natural' curvature. Hence the first and the second 
derivative at the end of each segment equal those at the beginning of the 
following.

One type of spline which is described by such attributes is a Natural 
Cubic Spline, a special form of a Hermite Interpolation [13J. Figure 1 
shows a clustered cell describe by a Natural Cubic Spline. Once the 
shape of the boundary has been defined mathematically, the area and 
the centre of area (centroid) can be calculated from the segment 
coefficients.

Image processing. Image processing techniques have been implemented 
in the software so if necessary the appearance of the cell boundary can 
be highlighted. These include functions such as histogram equalisation 
and contrast enhancement which is of value in extending the dynamic 
range of grey-levels available. Additionally, a 5 x 5 Laplacian filter matrix 
can be applied to each frame to locate edges or highlight other high 
frequency components, such as boundary segments or the nucleus. 
Validation. An image with three different detached cell shapes with a 
known area and centroid position was created. We applied our method 
of describing the cell boundary with a natural hermite cubic spline to the 
cells five times. We observed a maximum error in area and centroid 
calculation of 3%.

Figure 1. Cell defined with Natural Cubic Spline.

Results

Cell spreading. Six cells of each cell colony were chosen to be 
analysed and their area, velocity and direction of movement 
was calculated. The control cells appeared to show less 
movement and smaller changes in area and velocity than cells 
treated with HGF/SF. Figure 2 shows an example of the 
paths, in area of 30 micrometers square, of a single control 
and a single HGF/SF stimulated cell within a cell colony.

Cell area. The median area of the six control cells within one 
cell cluster at the start of the recording was 259 um . The 
maximum area of these six cells was 428 um2 while the 
minimum was 164 um . There were only small variations in 
area of the control cells. In contrast, there were greater 
changes in area in the cells treated with HGF/SF. The median 
area of the six cells with added motogen has risen from 
289 um2 to its maximum at 417 jmT during the first 35 
minutes. The area of these cells appeared to change in a 
periodic fashion.

Cell velocity. The median velocity, calculated from the 
centroid of six control cells belonging to the same cluster was

Control cell HGF/SF cell

30

25 + 

20 

15- 

10-

5--

0
15 '20 25 30 10 15 20 25 30

Figure 2. Example of movement paths of a single control and HGF/SF cell over 3 hours.
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Figure 3. Median area of Control and HGF/SF cells.
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Figure 4. Velocity of six. Control cells.

55 (im/h at the start of the recording. It was observed that the 
velocity changed over time in both control and HGF/SF 
treated cells. In this investigation we observed the velocity of 
HGF/SF treated cells was approximately twice that of control 
cells. Moreover, there was also a greater variability observed 
in the HGF/SF cells. The range of the velocity was 7 (xm/h to 
190 nm/h, while the range of the control cells was 0 um/h to 
81 um/h.

Discussion

In this study we have developed a new computer based system 
that enables rapid analysis of cell movement and cell velocity. 
This system enables analysis of cell behaviour within a 
clustered colony. The system allows the position of cells to be 
described both by calculation of the cell centroid and by 
specifying the position of the nucleus.
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Figure 5. Velocity of six HGF/SF treated cells.

We have validated the system by analysing artificially 
generated cell shapes and found agreement within 3% of 
area. We have applied a new technique for rapidly defining 
the cell boundary and found it compares well with manual 
marking of the entire cell boundary. There may be greater 
errors with cells showing membrane ruffling because of 
approximation around the cell. Ruffling normally appears 
from 5 minutes [12] and reaches a maximum in 30 minutes. 
This is perhaps one factor that contributes to the increase of 
area in the first 30 minutes seen in this study.

We observed greater velocities in cells treated with 
motogen than control cells which is in accordance with 
previous studies [14]. However, we also observed that cell 
velocity varies in time and our results suggest that this 
variation is greater in cells treated with motogen. Cell area 
was found to be similar in cells with and without motogen, 
however, there was greater variation in area with time in 
those cells treated with motogen. Cell motility plays an 
important role in the establishment of cancer metastasis. It is 
also an important factor on chemotaxis and endothelium 
penetration. The system reported here may therefore provide 
a useful tool in these studies.
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Interactive image processing system 
for assessment of cell movement

A. Hoppe1 D. Wertheim 1 W.G. Jiang2 R. Williams1 K. Harding2
'School of Electronics, University of Glamorgan, Pontypridd, CF37 1DL, UK 

2 Department of Surgery, University of Wales College of Medicine, Cardiff, CF4 4XN, UK

Abstract—The study of cancer cell motility is considered to be important in under­ 
standing cancer metastasis. The movement behaviour of cells within clustered cell 
colonies is of particular interest. Changes in cell movement, area and velocity can be 
an indicator of cell spreading. The aim of the study is to develop and apply a 
computerised interactive image processing system to quantify the movement of cells 
within cell clusters. A semi-automatic boundary description method based on two- 
dimensional rendering is devised. The system is later combined with image-proces­ 
sing methods that facilitate the relocation of the cell boundary over time; this forms 
a new approach to assessing cell movement. These methods are incorporated into a 
software system, enabling an interactive procedure to define and monitor the 
movement of single cells in cell clusters from digitised microscope images. Valida­ 
tion of the method shows a maximum error of 10% in defining the area through a 
cubic spline interpolation. The system is applied to analyse the movement and area 
of HT1 15 human colon cancer cells. The system provides tools for the analysis of 
movement, area and velocity of single cells in cancer cell colonies and may thus be 
of value in further understanding cancer cell motility.

Keywords—Cell, Cancer, Image processing. Cell movement, Interactive 

Med. Biol. Eng. Comput., 1999, 37, 419-423

1 Introduction
IN RECENT years, several methods to track the movement of 
cells have been described (THURSTON et a!.. 19S6: ZlCHA and 
DUNN, 1995: Wu et a!.. 1995; SHUTT et a/., 1998; SiEGERT 
etal., 1994). These methods typically employed an automated 
imase vision approach and were used to track the movement ot 
sinale cells (THURSTON et al.. 1986: ZlCHA and DUNN, 1995: 
Wu et al., 1995: SHUTT et al., 199S). Thus, the movement ot 
single, detached cells could be described by following the cell 
within an image. The position was either indicated by its 
centroid or by the position of its nucleus. In one system, the 
movement of the whole colony was examined by determining 
the optical flow of the cell colony (SiEGERT et al.. 1994: 
NOMURA and MllKE, 1991). However, no distinction was 
made between sincle cells within the cluster.

As cells often appear in clusters or cell colonies, there is 
particular interest in the movement behaviour of single cells in 
a clustered environment. However, it can be difficult for an 
automated imase vision system to describe and therefore track 
individual cells correctly. This is due to the problem of 
overlapping cells and features becoming obscured in tightly 
clustered cells.

We have previously described the application of an inter­ 
active computer analysis svstem to assess the movement ot 
cells in clusters (HOPPE et al., 1998). The system was used to

Correspondence should be addressed to Mr A Hoppe;
email: ahoppe 1@glam.ac.uk
First received 30 November 1998 and in final form 8 April 1999
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investieate the effects of added motogen on the movement of 
cancer cells.

2 Aim
The aim of this study was to develop further an interactive, 

semi-automatic image-processing system, incorporating a cell 
tracking algorithm, to facilitate the monitoring of single cells in 
cell clusters.

3 Method
A cell is an object that can be described by its boundary (cell 

membrane), area (cytoplasm) and nucleus. Fig. I shows a cell 
with hisihlisihted membrane, centroid (centre of area) and
nucleus.

However, extracting the cell membrane automatically in a 
clustered environment can be difficult, because cells can over­ 
lap, as seen in Fig. 2. A traditional approach of defining the 
outline of a cell by means of pure image segmentation can be 
difficult to implement because of such boundary fragmentation.

3.1 Cell description
Our approach to defining a cell involves an interactive 

boundary description, with only a few salient points placed on 
the cell boundary. In a semi-automatic fashion, fragments of the 
boundary represented by spline segments between the points are 
specified at the beginning of the monitoring process. Image- 
processing functions for image enhancement are provided to aid

17 419
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the process. Once the cell has been described initially, the 
system looks for image features in the near neighbourhood of 
those points to track them in future frames.

The cell boundary is described by two-dimensional 
renderinii of the cell membrane, combined with image-proces­ 
sing functions to reposition points automatically. If the repo­ 
sitioning is considered inappropriate, the user can interactively 
correct the position of a single point or all points. In addition, a 
template of the previous ceil outline can be passed to the next 
frame and permits changes necessary to adjust the boundary.

3.2 Rendering

To describe a cell shape, a sequence of points are specified 
on the boundary that in some way describe how the curvature is 
formed. In the case of an interpolation, the curve is required to 
pass throuuh the specified points shown in Fig. 3.

Mathematically, a spiine segment can be described as 
follows:

0,(i/) = (.Vili/). Y.(in) 0 sS ti ^ 1 (1)

Each point of a segment £?.«<) is described by a function of the 
A',(i/) and }[(;/) coordinates.

The nature of the cell boundary can be described as 
'naturally' formed, and. hence, there are hardly any sharp 
edges or discontinuities within the shape itself. One type of 
spline that is appropriate for such curvature is the natural cubic 
spline, a special form of Hermite spline (BARTELS er «/. 1992).

For example, the r co-ordinate of a single boundary segment 
is described through a cubic polynomial with the parameter a:

The first derivative Yt '(u) and the second derivative Y"(u) at the 
end of the /th segment equal those at the beginning of the 
followins: seamen?. It is important to note that we are dealing

with a closed natural curvature, and. hence, the las; 
connected to the first sesment.

By incorporating those constraints into our cubic 
segment equation, we are able to calculate symbol!' 
spline coefficients.

Once the shape of the boundary has been definec 
tic'ally. the area can be calculated as

.-I; = 0,(ll)dll

for each segment and

-•i = £••»,-

as a total.
Similarly, the centroic. P^x... \\.) of that area is 

from

xdA

All boundary segments are described mathematical!; 
the centre of area can be determined mathematical! 
cubic spline equation. It can be used to describe the 
the ceil in each frame and to calculate the 
Alternatively, the cell position can be specified by t: 
of the nucleus.

3.3 fiiuige processing
The aim of the image processing is twofold: first, 

the visual appearance of ceils to facilitate the initial 
defining the cell: secondly, to suggest the new p 
points in the next frame.

3.3.1 linage en/u/ncL'/iit'.".:: Diuitised arey scale im 
from cells can express a poor range of grey-Ie-. 
Therefore imaging techniques to reduce noise and e 
grey-level range were implemented.

Images were acquired ar an egiiivalent of a 5s in; 
frames were averaged which resulted in a 20s fraiv 
This was found to be adequate to reduce the unwan 
of noise. Furthermore, to enhance the global appear, 
cells, contrast stretching and histogram equalisati. 
applied. A 3 x3 Laplacian niter matrix can be used 
and highlight the cells" boundary and ease the 
process.

3.3.2 Point relocation: The cell boundary is desc: 
two dimensional cubic spline that is determined 
points placed on the cell membrane. The system 
image features that can be associated with that Io^ 
might be relocated in the next frame. Points are usiu 
on a fragmented piece of boundary. A two-dimens 
derivative filter yields the high-frequency componc
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Fig. 4 Gradient ima^e profile and corivxpniniiiig profile graph

image, thus helping to identify boundaries. The points are 
'logged' onto such image features, which are not likely to 
change between two frames. The points are relocated accord­ 
ing to the highest absolute local gradient calculated with a 
two- dimensional 3x3 Prewitt filter.

Fig. 4 shows the profile of a 25Q pixel length line through the 
first derivative of a cell cluster image. The image shows the 
intensity of absolute gradient values, whereby dark regions 
express high gradient values.

The cell boundaries on this profile are numbered from one to 
three. The boundary of the cells in the profile can be identified 
by the highest gradient value. This clearly highlights the 
principle behind the point relocation method, whereby the 
system looks for a maximum gradient in the local 5x5 area 
around salient points, which it tries to follow over time. The 
diagram in Fig. 5 explains the"rrackihg process.

Salient points are placed on the cell boundary in the first 
frame. The system suaaests the position of these points in the 
next frame. If the user is not satisfied with the relocation, tools 
are provided to adjust the boundary to ensure a close fit.

4 Implementation

We developed the software package to enable the capturing 
and processing of microscopic cancer-cell images. Software 
was specially written for the DT3I53 image-capture board* to 
capture images from a video source at a selectable interval. 
Images are captured as true colour 76S x 568 bitmaps and 
subsequently converted into 8-bit grey scale versions, image-
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j T system 
K/o U jairtomatic J

call shape
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tion ' I relocationelocatio

Fi». 5 Schematic dUi'jmni of inienicti^ poinr-n'locn'iinn iwthoJ
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tSun Microsystems USA 
Jlnprise, USA 
"Microsoft. USA 
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tJHoffman Greenvale. NY, USA 
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processing algorithms were designed using the JAVA 
language 7 and tested on a Solaris Unix workstationt as \vell 
as on a standard personal computer.

The algorithms were ultimately ported to C+-f- and incor­ 
porated into analysis software designed in Borland C-f—f- 
Builderi for \Vindows95**.

The analysis software facilitates functions to describe cell 
movement and allows export of the analysed data.

5 Application
HT115 human colon cancer cells without added motogen 

were monitored on a real time video system for 30 min. as 
previously described (HOPPE at ul. 199S). An inverted fluor­ 
escent microscopetj, fined with an HMC20 condenserii and z 
digital camera^ connected to a real-time video system, was 
used to record the images. The condenser was used to enhance 
the appearance of the cell boundaries. Frames from the 
microscope video recording were captured every 5 s. and four 
such frames were averaged to reduce noise.

The system was applied to analyse ihe movement, velocity 
and area of HT! 15 cells over a period of 30 min. according to 
the centre of area. The area was calculated every 20 s. Five 
minute intervals were chosen for the calculation of velocity, as 
little or no movement occurred within this time based on visual 
analysis. Calibration was achieved with a special 250 urn 
square marked on a slide.

The validation was performed in three steps:
(a) The accuracy of the semi-automatic spline-based descrip­ 
tion method for cell area and cell position was analysed using a 
test image shown in Fig. 9.
(b) The gradient-based point relocation method on the test 
image was analysed.
(c) "the repeatability of the cell description techniques was 
investiizated in images of real cells.

6 Results
A cell colony with at least ten cells was chosen at random, 

and chan2es in the movement and area of four such ceils were 
analysed. The velocity was calculated according to the centre 
of area. Fin. 6 shows an example of area and velocity of four 
HT115 cells.

The position ar.d the velocity of the cells were calculated 
accordina to the cenrroid (centre of area). The position of the 
centroid can be viewed in a tracking diagram. Fig. 7 shows the 
movement of a single cell within a cell colony in an area 
400 unr. Changes in the cells' shape over time can also be 
compared. Fig. 8 shows an example of changes in cell 
boundary at 5 min intervals over a 10 min period.

n f* . —
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6.1 I'aliclation of cell description
An image of a single cell was cut out of a cluster and pi. 

on a uniform white background. A 3 x3 smoothing niter 
applied to ease the transition between cell boundary and v 
background. The cell was defined ten times, with seven so. 
points placed on the cell, boundary.

Fig. 9 expresses the calculated' area on ten different i 
sions.

The actual area value with which it was compared 
calculated by pixel-counting. The area was 348 uirr a: 
represented by a horizontal line on the graph in Fig. 9. I: 
tests, we observed that the actual area was slisihtly larger 
the calculated one. with a maximum error of 10%. The nv 
area was 322 unr. and the range was from 313un 
345 um-. This could be explained by membrane n: 
resulting in limited definition of the cell boundary.

so,

35

- sc !-

start

60 65 
x, iiro

70 75

Tracking diagram of single HTl 15 cell

6.2 Point relocation validation

The cell in the artificial test image was moved at a rate 
pixels per 20s. This results in a velocity of 1.147umr 
The system should be able to find image features to "log 
and further follow those features according to the linear 
ment of the test cell.

In this test, the user did not interactively alter the sug 
points, and the velocity was calculated every 20 s. As * 
the upper graph of Fig. 10. the area was initially c: 
correctly by placing seven salient points on the outside 
cell boundary. The criterion for the point-relocation me 
the highest first derivative in the near neighbourhoc 
points moved towards the middle of the cell men 
owing to the thickness of the membrane, resulting in 
reduction overall. The cell was followed correctiv fro

centrcic

1 2 3 4 s 6 
trial

Fig. 9 Area of test cell and test cell image (trial I) with splint.'. Centmid marked as a sc/ntin'. 
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on. This is represented by the constant velocity after three 
iterations of point relocation, as marked by a broken line in the 
graphs in Fig. 10.

6-3
In this pan of the validation, the movement of a single cell 

within a ceii cluster was assessed three times with the semi­ 
automatic boundary-description method.

Fig. 11 shows the velocity of the same cell in three trials. 
The solid line expresses the median velocity of those three 
trials, with expected error bars. The expected error is calculated 
on the basis that there is an inherent error due to point 
displacement of one diagonal pixel (^'2 pixels). This results 
in an absolute error of 5 urn h~' measured at a 5 min interval.
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1 Conclusions
In this study, we have developed a new computer system for 

rapid analysis of cell movement, area and cell velocity. 
Furthermore, this system enables analysis of cell behaviour 
within a clustered cell colony.

An advantage of this system is that it allows the definition o.f 
the cell position from the centre of area (centroid) and also by 
specifying the position of the nucleus. The cell velocity' ss 
calculated from the cell position and can be expressed 
accordiim to the centroid or the position of the nucleus.

The operator can also choose to copy the outline of the ceii 
boundary to successive frames and adjust as necessary. The 
system also includes enhancement methods that may help to 
identify the cell boundary. The validation experiments 
confirmed the performance of the system. A possible way ot 
reducing error is to increase the magnification. However, the 
cell membrane may not appear as a clear border, and. hence, 
there is an inherent possible error: this may be particularly 
evident in membrane ruffling.

The semi-automatic point-relocation method proved to be or 
value to the rapid tracking of cells. As the system is interactive, 
the operator can redefine the spline boundary' description of the 
cell, if the computer-generated boundary deviates from that 
observed by eye. The interactive system may also be applicable 
for the analysis of isolated cells. The system is being used to 
investigate the effects of motogen on cancer-cell movement. 
However, this system is not restricted to cancer cells alone, 
other types of cell, such as neutrophils and others that display 
defined boundaries, can also be analysed.

Cell motility is thought to play an important role in tr.e 
establishment of cancer metastasis. Thus this system may be or 
value in the study of cancer metastasis.
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Chronic wounds are often painful, debilitating 
and frequently present a major challenge to 
clinicians. For example, predicting the healing 
process may be difficult.

Software was written to examine colour and 
appearance in the vicinity of the wound 
boundary. The technique was based on a spline 
delineation of the wound boundary. The 
software was applied to analyse the hue, 
saturation and intensity of 10 wound images 
acquired with a digital video camera. The 
images included a colour scale for reference.

The system was used to investigate the 
differences of hue, saturation and intensity in 
three regions in the vicinity of the wound 
boundary.

Our results indicate that there was small 
variation in the hue of the red colour patch 
compared with the overall variation in hue of 
the 10 images. For the majority of wounds 
there was a clear trend in intensity and 
saturation in the boundary region.

Thus, this system may be of value in further 
understanding wound healing.

INTRODUCTION

Objective measurement of the healing progress 
in wounds is considered to be of great

importance to the clinician. It may be of value 
in determining whether a treatment is 
appropriate or if modification is required. At 
present it is difficult to predict how well 
wounds heal. The physical size of wounds is 
used for the assessment of the progress of 
healing.

It has been suggested that analysis of wound 
colour may be of clinical value, Romanelli (1), 
Boardmann et al. (2), Mekkes et ah (3), Herbin 
M et ah (4). Furthermore, texture has been 
used as a descriptor of skin melanomas, 
Schindewolf T et ah (5) and leg ulcer 
appearance, Hoppe et al. (6).

Wounds responding positively to treatment get 
smaller over time, forming new tissue at the 
peripheral edge. However, non responding 
wounds or indeed, infected wounds, may 
stagnate or increase in size. The state of the 
tissue in the boundary region may hence be of 
value in describing new healing characteristics.

In this study, in order to achieve more 
objective and therefore more accurate 
measurements of wound appearance, digital 
image acquisition is used. This is combined 
with a spline based technique and image 
analysis to assess the profile of the wound 
boundary.
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AIM

The aim of this study was to develop a digital 
system for assessing colour and appearance in 
wound images. This combines a new spline 
technique and image analysis to assess changes 
in the profile of the wound boundary and its 
periphery.

METHOD

Images of leg ulcers on 10 patients were 
obtained using a digital video camera 
(Panasonic NVDX100 B, Matsushita Electric 
Industrial Co. Ltd., Japan). This camera 
incorporates three separate CCD arrays, each 
one for the red, green and blue colour plane. 
This provides good colour reproduction and 
reduces interference between neighbouring 
pixels. The camera was operated in still picture 
mode and images were acquired in true-colour 
and subsequently downloaded digitally to a PC 
workstation.

A graduated scale with additional colour 
patches was held close to the wound in order 
to provide a means of colour reference. A 10W 
video light was mounted on the video camera 
and used to improve lighting conditions.

Colour Representation

All ten images of leg ulcers were taken under 
clinical conditions, hence the lighting 
conditions could not be fully controlled, 
images taken from the camera are described by 
its Red, Green and Blue component. In this 
colour model, however, the value of each 
component strongly depends on the light 
'"tensity.

Therefore, we used the HSI (Hue, Saturation, 
Intensity) colour model Gonzalez et al. (7). 
'here, the intensity is separated from the other 
tvv° components. Hue is the measure of 

igth of the main colour and represented 
an angle [0°..360°], saturation is related to 
amount of white light included, while the 

:nsuy is a measure of brightness.

We compared the variation of hue, saturation 
and intensity values in red colour patches of 
ten wounds taken under clinical conditions. 
The red hue region reaches from 330° to 30° . 
We modified the HSI colour model by shifting 
the hue range to allow a continuous range of 
red hue values as seen in table 1.

TABLE I - Colour conversion

colour
red
yellow
green
turquoise 
blue
violet

hue range [°]
330-30
30-90 

90-150
150-210 
210-270
270-330

shifted hue [°]
120-180
180-240 
240-300
300-360 

0-60
60-120

Wound Boundary Description

The objective for the descriptor of the 
boundary was to provide a flexible and easy 
method to define and refine the approximate 
location of the boundary in a wound image.

To describe a wound shape, a sequence of 
control points is specified on the boundary 
which will in some way describe how the 
curvature is formed. In the case of an 
interpolation, the curve is required to pass 
through the specified points - hence the 
operator defines the shape of the delineated 
boundary by a few control points. The closed 
boundary is divided into spline segments using 
cubic polynomials.

Mathematically, the ith spline segment may be 
described as follows:

Q,(u) = (Xi(u), y 0 < u < 1 (1)

Each point of a segment Q;(u) is described by a 
function of the X{(u) and y, (u) co-ordinates.

Xj(u) = au + bix u H- c ix u2 + dix u3 (2)
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To ensure a smooth transition between spline 
segments, we set the first derivative as well as 
the second derivative at the end of one 
segment equal to those at the beginning of the 
following segment.

*,•(!) = •**,«>) *,.(!) = *,,,(()) (3)

This type of spline is known as a Hermite 
spline, Bartels et al. (8) with C2 continuity. 
Fig 1 shows an example wound image with a 
boundary delineated by a Hermite spline.

Fig 1: Wound image with 
delineated spline boundary

Wound Profile

Once the boundary has been described 
mathematically, we can derive an orthogonal 
vector at any given position of the spline. The 
normal vector n(u) can be calculated as

(4)

from which the an?le can be obtained. The
O

profile, which is 31 pixels in width, is centred 
over the boundary location and divided into 
three regions: Outer boundary, boundary 
region and inner boundary as seen in fig 2. The 
width of the outer and the inner section is 10 
pixels while the boundary section has a width 
of 11 pixels.

boundary

outer

DGE

Fig 2: Wound profile regions
Each wound was described by eight spline 
segments and in this study, we took two 
profiles per segment. However, the number of 
profiles per spline segment can be set to a 
different number. We analysed the mean and 
standard deviation of hue, saturation and 
intensity values occurring in those three 
regions of 16 profiles per wound.

To investigate the changes within each profile 
the absolute values of the 1st derivatives along 
the profile were calculated.

Again, we investigated changes in the three 
regions of 16 profiles per wound. Fig. 3 shows 
a single wound with 16 profiles along the 
spline boundary. This image corresponds to 
wound 3 in table 3 to table 6.

Fig 3: Wound image with 
profiles along the spline boundary



209

Analysis

Our analyses were focused on two issues: How 
much variation is observed in hue, saturation 
and intensity in wound images taken under 
clinical conditions?

The second aspect looked into the profile of 
hue, saturation and intensity around the wound 
boundary.

RESULTS 

Colour Assessment

We have analysed the range in hue values for a 
red colour patch held close to 10 wounds. We 
compared these values to the range of hue 
values occurring within each wound. Hue 
values were mapped (Hue -> Hue') according 
to Table 1. Fig. 4 shows the comparison of red 
hue ranges in colour patches and wound area.

hue, which is in accordance with a previous 
study, Hoppe et al. (6).

210 —— ——————————————

180 -

150

|120-

§ 90-
X

60

30 -

0 ———————————

i

z
•

•

1

•

red patches wounds

F>8 4: Comparison of range of red hue values 
'n the 10 images of the red colour patch and 10 
bounds

colour patch was of uniform hue and we 
observed a six degree variation despite being 
taken under different lighting conditions. The 
total range of hue values observed over the 10 
founds extended over the whole range of red.
Some even extended into the yellow range of *

TABLE 2 - Range of median values in 
images of colour patch

10

Red Hue 
Saturation 
Intensity

Median 
min max

1 44 1 50 
69 99 

168 240

% of range
10 
30 
28

In table 2, the variations in red hue, saturation 
and intensity in the 10 images of the red colour 
patch are shown. The range of scale for the red 
hue was 60 degrees, the range of saturation 
was 100% and the range of intensity was 255.

The Hue components showed the least 
variation with 10% over its range. Saturation 
and intensity expressed a much higher 
variation of up to 30% between images of the 
same colour patch.

Boundary Profile

We analysed the mean and standard deviation 
of values occurring in the outer (o), boundary 
(b) and inner (i) region of the profile of 10 
wound images. The analysis was performed on 
hue, saturation and intensity values.

TABLE 3 - Mean hue and standard deviation 
in 10 wound images

WOUND

1
2
3
4
5
6
7
8
9

10

I HUE 1
0
141
169
170
149
151
146
141
156
141
155

[0](mean)
b I
149
167
160
150
153
144
143
153
143
154

154
154
153
150
156
147
142
153
145
152

HUE'

0

6
8
9
4
9
6
3
2
3
3

[°] (stdev)
b I

7
7

11
3
9
5
3
2
3
3

5
3
6
3

10
6
1
2
2
2

As seen in table 3, we observed that most 
wounds have little differences in mean hue 
between the three regions in the profile despite 
its different appearance. However, there was
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no obvious trend by which the mean hue 
values increased or decreased from the outer
towards the inner wound region.

TABLE 4 - Mean saturation and standard 
deviation in 10 wound images

WOUND

1
2
3
4
5
6
7
8
9

10

SAT
0

21
57
19
49
41
34
39
60
40
47

(mean)
b

31
54
32
65
52
51
52
83
62
53

1
38
49
44
75
58
59
58
91
88
61

SAT(stdev)
o b I

9
15

5
12

9
15

9
11
15

8

13 11
10 5
12 13
17 14
16 17
20 21
10 6
14 8
23 13
10 6

As seen in table 4, there seems to be a 
common pattern between the three regions of 
the profile for the mean saturation. All except 
one appeared to increase from the outer to the 
inner region of the wound boundary. Three 
wounds are marked bold in tables 3 to 6, 
which were classified as being likely to be 
infected from visual inspection of images by 
an experienced clinician. The mean saturation 
of wound 2 decreased from the outer to inner 
region unlike the data from the other wound 
images. The highlighted wounds also seem to 
be more saturated on the outer boundary.

TABLE 5 - Mean Intensity and standard 
deviation in 10 wound images

WOUND

1
2
^
4
c

6
7
8
9

10

INT(mean)
o b
160
153
125
182
156
158
129
166
220
121

143
170
99

147
141
140
111
120
191
98

I
144
184
105
125
137
135
110
108
161
86

INT(stdev)
o b I
35
36
26
46
32
30
22
29
25
25

37
27
29
49
36
32
26
30
36
28

26
19
41
43
36
39
16
24
25
20

As seen in table 5, the mean intensity v 
appear to decrease from the outer toward ^ 
inner boundary profile. Again, the profii.^S 
the likely infected wound 2 behav^ 
differently. However, this behaviour was no» 
observed in wound 8 and 10, which were al 
considered to be infected.

TABLE 6 - Median and range of absolute 1st 
derivatives along wound profile

WOUND

1
2
3
4
5
6
7
8
9

10

HUE'[°] median
o b - I
1.5 1 1

1 1 1
1 2 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

HUE'[°] min 
o b I
000
000
000
000
000
000
000
000
000
000

HUE'nmax, 
o •• b T-'$
10 15 9
11 26 15
15 19 25
945
8 20 10

14 9 6
655

10 6 5
27 20 4
475

Table 6 shows the median, minimum and 
maximum of the absolute 1st derivatives of 
hue values. The low median values indicate 
small differences between neighbouring pixels 
in hue.

CONCLUSIONS

The results suggest that recording wound 
images digitally on a 3 CCD camera is a 
feasible way of assessing wound appearance 
under clinical conditions.

Despite the influence of daylight and/or 
fluorescent light, there was a maximum 
variation of 6 degrees in the hue value of the 
red colour patch. However, there is more 
variation in saturation and intensity values in 
the images of the red colour patch.

Over the 10 wound images, the range of hue 
values within the wound areas covered the 
whole red hue region; in some images even 
into the yellow region. This may be due to 
slough in the wound bed.

The spline boundary description is a fast and 
flexible way to determine the approximate
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location of the edge. We used the spline to 
obtain the orthogonal vector, which forms the 
basis for the image analysis profile.

In our analysis, we divided the orthogonal 
profile vector into three regions. In most 
images we observed an increase in saturation 
trom the outer to the inner wound boundary 
and a decrease of intensity from the outer to 
the inner wound boundary. Interestingly, we 
observed small changes in hue between the 
three regions despite the different visual 
appearance.

Three of the ten wounds were considered to be 
infected by visual inspection from an 
experienced clinician. In one of these cases, 
the hue, saturation and intensity expressed a 
different trend.

This study suggests that it is important to 
include a colour scale for reference when 
taking wound images for further analysis. 
Furthermore we have developed and applied a 
spline based technique for assessment of hue, 
saturation and intensity in the vicinity of 
wound boundaries which can be used to 
investigate changes in wound appearance.

This system may therefore be of value in 
further understanding the healing process of 
wounds.
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Abstract. The study of cell motility is thought to be important in understanding the behaviour of cells. We 
have devised a semi-automatic boundary description method based on two-dimensional rendering. This is 
combined with a relocation method to track the movement of single neutrophils. We used the system to 
analyse the morphology of neutrophils and information of cytosolic free Ca2* concentration and cell shape. 
The results of the validation indicated a maximum difference of 3% in area between our adaptive spline 
method and a linear interpolation of the cell boundary. Furthermore, we devised and applied a method to 
assess the calcium concentration in a dynamic region defined in relation to a localised cell shape change.

1 Introduction

Neutrophils are blood cells which are crucial for combating infection within the body. They achieve this by 
moving from the blood stream to a site of infection where they engulf (phagocytose) and kill the infecting micro­ 
organism. These cells are thus both phagocytic and chemotactic, and are capable of rapid and specific changes in 
cell shape.
Despite the importance of this cellular activity, it has been surprisingly difficult to establish a link between an 
intracellular chemical change with a cell and the accompanying cell shape change. However, several lines of 
evidence suggest that changes in cytosolic free Ca2+ concentration may play a role in the response [1]. Using Ca * 
imaging techniques, it is possible to acquire images which contain information of both cytosolic free Ca"* 
concentration and cell shape. Several image processing techniques have been proposed to assess morphological 
changes of cells and to quantify their movement [2,3]. However, the inability to extract Ca2+ data from a dynamic 
region defined in relationship to a localised cell shape change remains a major problem. In static cells, a region 
of interest is usually defined within which cytosolic free Ca2* concentration is extracted. With neutrophils, this 
approach extracts data from regions of differing cell activity at different times as the cell moves relative to the 
region of interest. A particularly useful data extraction would be a computer assisted extraction of Ca + data from 
the forming and moving pseudopods as well as the whole cell body.
In this paper a spline-based semi-automatic method is presented which permits this objective to be met. The 
method relies upon the use of spline points, the positions of which are recalculated in successive images. Some of 
these points can also be used to define a dynamic region of interest from which the Ca2+ data is extracted.

2 Materials and Method 

Neutrophil Isolation

Neutrophils were isolated from heparinized blood of healthy volunteers as described previously [4]. Following 
dextran sedimentation, centrifugation through Ficoll-Paque (Pharmacia) and hypotonic lysis of red cells, 
neutrophils were washed and resuspended in Krebs buffer (120 mM NaCl, 4.8 mM KC1, 1.2 mM KH2PO4, 1.2 
mM MgSO4 , 1.3 mM CaCl2, 25 mM HEPES and 0.1% bovine serum albumin, adjusted to pH 7.4 with NaOH).
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Measurement and Imaging of cytosolic free CaJ+ concentration

Neutrophils were loaded'with fura-2 from its acetoxy-methyl ester as previously described [2J. This fluorescent 
indicator of cytosolic free Cai+ concentration provides quantiative information of when the ratio of two excitation 
signals is calculated [5]. Excitation at 340nm and 380nm w,as achieved by using a rapid access monochromator 
changer (Delta-RAM) with a transfer time between wavelengths of 2 msec and emission images (>490nm) two 
wavelengths were acquired using an intensified IC-200 CCD camera (Photon Technology International, Surbiton, 
UK) coupled to an inverted Nikon microscope. Ratios of the images were calculated using ImageMaster (PTI). 
Acquision of ratio images was performed after 16 frame averaging, and using only a thresholding algorithm (no 
masking applied) which produced a cell image of equal size to that viewed by phase contrast. This enabled both 
cytosolic free Ca2* concentration and cell shape to be measured simultaneously and calculated from the same 
image data set. The cytosolic free Ca2+ concentration was calculated as the mean pixel value within cell area 
which excluded the actual cell edge as this was often contaminated with artefactual ratiometric values resulting 
from the low fura2 intensity in this region [6].

Image Segmentation

We have further developed a previously described system which assessed the movement of clustered cancer cells 
[7]. This system incorporates a model based segmentation approach using a cubic spline interpolation to render 
the boundary of cells. A neutrophil is specified from the first frame by marking a few salient points (10-20 
points) on the cell boundary while the computer automatically interpolates and fits a suitable closed boundary. In 
consecutive frames, the system refits these points to changes in the boundary. If necessary, single control points 
can be added, moved or deleted manually to ensure a close fit to the cell boundary. The software calculates the 
cell position from the centre of area (centroid), and in addition the area and the length of the perimeter.

The whole boundary is divided into segments and each segment is described by a cubic spline, a special form of a 
Hermite spline [8]. Each segment is determined by a start and finish point as well as four polynomial coefficients. 
The x coordinate of a single boundary segment Qfu) is described as a cubic polynomial with the parameter u:

Qfu) = <xfu). yfuj), x£u) = a. + b_ u + c. u2 + dn u3 0 < u < 1 (1)

The first derivative as well as the second derivative at the end of each segment equal those at the beginning of the 
next segment. All boundary segments are described mathematically and thus the centre of area (centroid) and 
perimeter can be determined from the cubic spline equation. As a shape descriptor, we calculate the roundness as

perimeter^ (2)
denned: roundness = ————— ^ '

4n • area

Figure 1 demonstrates the fitting process of a cubic spline to a neutrophil boundary

a) original (bar: Sum) b) point placement c) smoothing+fitting d) result 
Figure 1. Example of boundary fitting to a single, stained neutrophil (centroid X, control points ;)

The cubic spline can also be used as a first approximation for the initial cell shape. It then locates ten times more 
points on the boundary' where the orthogonal vector intercepts the boundary. This way a more accurate 
description is achieved but the boundary is not as smooth. A slightly jagged boundary may give inappropriately 
high readings of perimeter length, therefore we calculated the perimeter from the cubic spline only.
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Tracking

Tracking is initiated by placing a few salient control points close to the cell boundary. The boundary often 
appears jagged and a 3x3 median filter is applied locally to smooth the boundary and to reduce noise. The fitting 
of pomts onto the boundary is performed along the normal vector n(u) at each control point.

„(«) = (-—--W . , *'<«> ) (3)
i/*'(«) 2 +/oo 2 V*'(«) 2 +/(")2

The edge is located within a ± 10 pixel profile orthogonal to each control point. The edge is located wherever 
two values, which are not the background, appear in the profile towards the cell. In consecutive frames, control 
pomts of the previous frame are copied onto the next one and adjusted with the same relocation method as 
described.

Pseudopods

One of the objectives was to monitor calcium changes in expanding and retracting pseudopods. Since there are 
no landmarks within the cell image apart from the boundary, we devised a method by which we relate the 
definition of the pseudopod to the overall shape of the boundary. Whenever a pseudopod is forming, the user 
highlights once those control points that describe the expanding/retracting region. The pseudopod is tracked like 
the rest of the cell body but forms a sub-region of the spline boundary defined only by the selected number of 
control points as seen in the example in figure 2.

Sub-region

Specially marked 
control points

Figure 2. Example of a single neutrophil with highlighted 
pseudopod region before and after retraction (bar: 5pm)

3 Results

We have applied our method to track six neutrophils in two series (phag_3 and phag_5) with three cells each. 
The cells were delineated with the described spline equation from which the area, length of perimeter and 
roundness was calculated. We observed a median area of 62 um2 (range: 41 urn2 - 169 um2) and a median 
perimeter length of 32pm (range: 27pm - 49pm).
The following graph shows the roundness of three cells per series. A roundness of 1.0 describes a circular shape, 
higher values express more complex shapes.

132 165 197 230 263
time [sec]

Figure 4. Roundness of three cells in phag_3 series Figure 5. Roundness of three cells in phag_5 series

By visual inspection, neutrophils in the phag_5 series appeared to show greater phagocytosis and changes in cell 
shape than cells in the phag_3 series; this is supported by our observation of greater variation in roundness in the 
phag_5 series compared to the phag_3 series. We have also calculated the Ca2* concentration in the cell body. 
The following "raph shows the calculated calcium concentration and roundness of a single neutrophil.
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Figure 6. Example of Calcium Ca2+ concentration in the cell body (-) and a pseudopod (—)of the same cell. 
The roundness of the cell body is also plotted as a comparison to the Ca2* concentration.

The two cell images on the right correspond to the position marked in the graph (bar: 5um ).

In this example we observed a greater calcium concentration in the region of the pseudopod compared to the 
overall concentration within the neutrophil. The graph suggests that there may be a relationship between the 
morphology of the neutrophil and the calcium concentration of the pseudopod.

Validation

We have previously validated the adaptive spline method against artificial cell shaped objects [9] and observed a 
maximum error of 3% in area. We compared also the cubic spline boundary description with a description based 
on a linear interpolation using 50 points placed on the cell boundary. We delineated the same neutrophil image 
six times using 10 control points placed approximately equally spaced around the cell boundary. The relocation 
was performed after a median filter had been applied. We observed a maximum difference of 3% in area 
between linear and cubic interpolation. The maximum difference in perimeter length between the linear 
interpolation of 50 points and the 10 point cubic spline interpolation was 10%. However, the spline perimeter 
was smaller in all six cases, while the area calculated by the spline was three times less than and three times 
more than the linear interpolation.

4 Conclusion

In this study we developed and applied a semi-automatic method to track single neutrophils. The method is based 
on a cubic spline interpolation of the boundary combined with a relocation mechanism for the control points. 
Furthermore, this approach enables the definition and semi-automatic ^tracking of expanding or retracting 
pseudopods and the analysis of area, perimeter, roundness and calcium Ca2+ concentration. The semi-automatic 
nature of the technique enables manual intervention if, for example, two cells are attached. Thus, this system may 
help in investigating the role of calcium concentration in neutrophil motility.
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Abstract: The study of neutrophil motility is thought 
to be important in the assessment of immuno­ 
deficiency disorders. Several automated methods of 
assessing the movement of cells in brightfield 
microscopy have been described. In some cases, a fully 
automatic approach might not be appropriate. The 
aims of this study were to develop and apply a 
computer system to assess the area and velocity of 
neutrophils with a semi-automatic spline interpolation 
method and to investigate texture based segmentation. 
We applied our system for the analysis of the 
movement of neutrophils. In one series of neutrophil 
images, we observed a median area for the neutrophils 
of 118 urn2 [ range 90 to 131 um2 ]. 
Our semi-automatic spline method appears to be well 
suited for describing the shape of neutrophils. An 
automated boundary relocation function to support 
the process of boundary definition was investigated. As 
the system is interactive, the user may modify the 
computer generated boundary by moving control 
points as necessary. The system thus enables 
interactive definition of neutrophils and hence 
calculation of position, area, velocity and compactness. 
Our system may therefore be of value in investigating 
neutrophils.

Introduction

Several automated methods for assessing the 
movement and chemotaxis of cells in brightfield 
microscopy have been described. Most methods are 
devised from an automatic cell detection mechanism that 
identifies the cell body in each frame [1,2]. Other cell 
movement analysis systems register similarities between 
consecutive frames and use optical flow analysis to 
relocate a region in consecutive frames [3]. In. some 
cases, a fully automatic approach might not be appropriate 
to ensure correct cell boundary definition.

We therefore developed an interactive computer 
system based on a semi-automatic spline interpolation 
method to assess the movement of neutrophils. We further 
extended the system with a regional texture based 
relocation method.

Materials and Methods

Two series of microscopic neutrophii images were 
digitised at a 2 second interval, one other series was 
digitised at 25 frames per second for 2 seconds. Each 
image contained a single or two separated neutrophils. 
Neutrophils were obtained from fresh finger blood coming 
from healthy, grown-up donors. Cells were isolated using 
the Harris method based on their adhesion to glass [4].

Images were acquired using a OPTIPHOT-2 (Nikon) 
microscope fitted with a LWD condenser connected to a 
1/2" CCD camera (J COHU). The frame grabber used was 
the SVIST (WIKOM) and images were digitised as S-bil 
512x512 gray level images and subsequently read into our 
analysis software. We used our system to investigate 
changes in movement path, velocity, area and compactness 
of three series of neutrophil images.

Instead of describing the cell boundary with a series of 
pixel locations, our approach is based on a mathematical 
description of the cell boundary. The shape of the 
boundary is described by a Hermite spline interpolation 
which can easily be modified to make a close fit. The 
boundary is divided into segments between salient control 
points placed on the boundary of the neutrophil. This 
approach allows an interactive relocation process [5] as 
only a few salient control points may be required to 
describe the shape of the neutrophil.

Figure 1 shows an example of a single neutrophil 
described by an interpolated hermite spline boundary with 
marked centroid and control points.
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Figure I: Example of a neutrophil described by Hermite 
jpline (dashed line). Ccntroid marked by a cross, salient 
points arc marked by open squares

The position of the cell is calculated as its centroid 
from Ihe overall spline shape. The software also calculates 
llic urea, ,velocity and the compactness, defined as 
(Pcrimetcr)"/Area.

Initially, the neutrophil is described in the first frame 
by placing a few salient control points on the boundary. In 
Consecutive frames, the outline of the previous frame can 
be copied as a template and adjusted as necessary.

We have also investigated a more automated 
JCginentation method based on a regional texture 
descriptor. This approach is combined with a method to 
relocate the position of the control points. The texture 
descriptor is calculated as the mean value of the absolute 
differences of intensities for two dimensions in a 5x5
region.

Control points are relocated according to the highest 
Iflcan value in a 5x5 region around the previous position.
Points can be adjusted interactively if automatic relocation • j *
floes not appear to be appropriate.

III two series of neutrophil images 28 frames were 
IRAIyscd. For the first series, we observed a median area 
w(hc neutrophils of I IS pm2 [range 90 to 131 urn2]. We 
wWrvcd a median compactness of 20 [range 16 to 24]. In 
* "Comi series we observed a median area of 82 |im2 
Wflgc 64 to 90 jam2] and a median compactness of 34 

30 10 371.
conipnrec] our spline based cell description with a 

ml description (drawing around) on six cell images. 
*™scrved a maximum difference in area of less than 

the manual description and the spline method.

be included [6]. A feature of the spline method is that it 
can interpolate over parts of the cell boundary that are 
separated by halo and hence have similar intensity values. 

The accuracy of the automatic point relocation method 
depends on cell features not changing dramatically 
between frames. We are investigating further the more 
automated boundary detection function to support the 
process of boundary definition

Conclusion

Our semi-automatic spline method appears to be well 
suited for describing the shape of neutrophils. As the 
system is interactive, the user may modify the computer 
generated boundary by moving points as necessary. The 
system thus enables interactive definition of neutrophils 
and hence calculation of position, area, velocity and 
compactness. Our system may therefore be of value in 
investigating neutrophils.
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when pods build during movement which may be 
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Abstract The study of cancer cell motility is considered to be important in improving understanding of cancer 
metastasis. Changes in cell movement behaviour may be an indicator of cell spreading. The movement of cells in 
clustered cell colonies is of particular interest.
We have previously described a semi-automatic boundary description method based on two-dimensional 
computerised rendering of the cell boundary. In this preliminary study, we have used our system to compare the 
position of cells calculated according to the centroid and according to the position of the nucleus. The system may 
be of value in further understanding cancer cell motility.

1 Introduction

In some previous studies, the movement of single, detached cells were described by separating the cell from its 
surrounding background [1-3]. As cells can appear in cell colonies, there is particular interest in the movement 
behaviour of clustered cells as changes in cell movement may be an indicator of cell spreading [4,5]. Due to the fact 
that tightly clustered cells may overlap or features may not be visible, it may be difficult for an automated image 
vision system to track individual cells correctly. We have previously described a system for computer analysis of cell 
movement and applied this system for the analysis of cell velocity [6,7].

The aim of this study was to apply our previously described system to compare the position of the centroid with the 
position of the nucleus in cancer cells.

2 Method

Cancer cell images were captured as true colour 768 by 568 bitmaps and subsequently converted into 8-bit grey scale 
images. Analysis software was designed in the Java 1.1.6 Language (Sun Microsystems, U.S.A) under Linux 5.3 
(Suse GmbH, Germany). The software facilitates image processing functions to describe cell movement and allows 
export of the analysed data.

Two sets of HT115 human colon cancer cells, one set with and one set without added HGF/SF motogen, were 
monitored for at least 90 minutes at a constant temperature. The motogen was added to stimulate the spreading of 
cells. A time-lapsed video recording system with a colour CCD camera connected to a microscope (Leica, Leitz, 
Germany) was used to record the cell colony. The microscope was fitted with a Herman condenser (HMC20) to 
enhance the visibility of the cell boundaries. Images were digitised at an equivalent of a five-minute interval in real 
time and subsequently read into the analysis software.

The system incorporates a semi-automatic approach, whereby cells are specified in the first frame by marking a few 
salient points on the cell boundary while the computer automatically interpolates and fits a suitable closed boundary. 
In consecutive frames, the system tries to relocate these points. If necessary, single points can be added, moved or 
deleted to ensure a close fit to the cell boundary. This software allows the definition of the cell position from the 
centre of area (centroid) and also by specifying the position of the nucleus.

In this study, we have used our system to compare the position of the centre of area with the position of the nucleus. 
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2.1 Rendering

To describe a cell shape, a series of points are specified on the boundary which will describe how the curvature can 
be formed. In the case of an interpolation, the curve is required to pass through the specified points. The whole 
boundary is divided into segments and each segment is described by a cubic spline. A suitable type of spline which is 
appropriate to describe natural curvatures is the natural cubic spline, a special form of a Hermite spline [8].

The y coordinate of a single boundary segment is described as a cubic polynomial with the parameter u: 

Yi(u) = a; + fy u + q u2 + dj u3 with 0 < u < 1 (1)

The first derivative Y;'(u) as well as the second derivative Yj"(u) at the end of each segment equal those at the 
beginning of the following segment. By incorporating those constraints into the cubic polynomial segment equation 
all the spline coefficients of each segment can be calculated.

All boundary segments are described mathematically and thus the centre of area (centroid) can be determined from 
the cubic spline equation. It can thus be used to describe the position of the cell in each frame and hence to calculate 
the velocity. Figure I shows a single HT115 human colon cancer cell with a cubic spline boundary description.

Figure 1. Example of a HTl 15 cell with highlighted cubic spline boundary description

2.2 Cell Boundary Location

Our approach is based on a two-dimensional rendering of the cell boundary with just a few salient points specified on 
the cell boundary. In a semi-automatic fashion, fragments of the boundary represented by a spline segment are 
specified manually in the first frame. Image enhancement functions are provided to facilitate this process. 
Subsequently, the points are logged onto positions with the highest absolute gradient in a 5x5 neighbourhood. The 
gradient is calculated with a two-dimensional 3x3 Prewitt filter.

This method has been designed so that the user can check and control the boundary relocation by moving single 
points if necessary.

Alternatively, a template of the previous cell outline can be passed to the next frame and the system permits changes 
necessary to adjust to the correct boundary. The position of the nucleus can be marked manually in the cell body.

Medical Image Understanding and Analysis, Examination Schools, Oxford. 19 - 20 July 1999



3 Results

HT115 human colon cancer cells were monitored on a time-lapsed video system for at least 90 minutes. In this 
preliminary study, a cell colony with at least six cells was chosen at random and the movement of 3 such cells was 
analysed. The position of the cell according to the centroid and the position of the nucleus were compared in cells 
without added motogen (control cells) and cells with added motogen (HGF/SF).

The Euclidean distance between centroid and nucleus position of those cells without added motogen showed less 
variation over the monitoring period than cells with added HGF/SF motogen as can be seen in figure 3. Figure 2 
shows the range in Euclidean distance of three control cells and three cells with added HGF/SF motogen.
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Figure 2. Range in Euclidean distance of three 
Control and HGF/SF cells
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Figure 3: Example of a single HGF/SF and Control 
cell showing changes in Euclidean distance over a 90 

minute period
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In this preliminary study, we observed a higher range in Euclidean distance between nucleus position and centroid in 
cells with added motogen as compared to cell with no added motogen.

4 Conclusion

In this study we applied a newly developed computer system for rapid analysis of cell movement and cell velocity to
investigate movement of cancer cells. Furthermore, this system permits the analysis of cell position according to the
centroid of the cell and the position of the nucleus.
In this preliminary study, we observed greater variation in Euclidean distance (Nucleus-Centroid) of those cells with
added motogen compared to control cells.
This system enables the analysis of area, velocity and relative distance between nucleus and centroid and hence may
be of value in better understanding the movement behaviour of clustered cancer cells.
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