1,725 research outputs found

    Meeting the challenges of decentralized embedded applications using multi-agent systems

    No full text
    International audienceToday embedded applications become large scale andstrongly constrained. They require a decentralized embedded intelligencegenerating challenges for embedded systems. A multi-agent approach iswell suited to model and design decentralized embedded applications.It is naturally able to take up some of these challenges. But somespecific points have to be introduced, enforced or improved in multiagentapproaches to reach all features and all requirements. In thisarticle, we present a study of specific activities that can complementmulti-agent paradigm in the ”embedded” context.We use our experiencewith the DIAMOND method to introduce and illustrate these featuresand activities

    Tools for Real-Time Control Systems Co-Design : A Survey

    Get PDF
    This report presents a survey of current simulation tools in the area of integrated control and real-time systems design. Each tool is presented with a quick overview followed by a more detailed section describing comparative aspects of the tool. These aspects describe the context and purpose of the tool (scenarios, development stages, activities, and qualities/constraints being addressed) and the actual tool technology (tool architecture, inputs, outputs, modeling content, extensibility and availability). The tools presented in the survey are the following; Jitterbug and TrueTime from the Department of Automatic Control at Lund University, Sweden, AIDA and XILO from the Department of Machine Design at the Royal Institute of Technology, Sweden, Ptolemy II from the Department of Electrical Engineering and Computer Sciences at Berkeley, California, RTSIM from the RETIS Laboratory, Pisa, Italy, and Syndex and Orccad from INRIA, France. The survey also briefly describes some existing commercial tools related to the area of real-time control systems

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Coalition based approach for shop floor agility – a multiagent approach

    Get PDF
    Dissertation submitted for a PhD degree in Electrical Engineering, speciality of Robotics and Integrated Manufacturing from the Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaThis thesis addresses the problem of shop floor agility. In order to cope with the disturbances and uncertainties that characterise the current business scenarios faced by manufacturing companies, the capability of their shop floors needs to be improved quickly, such that these shop floors may be adapted, changed or become easily modifiable (shop floor reengineering). One of the critical elements in any shop floor reengineering process is the way the control/supervision architecture is changed or modified to accommodate for the new processes and equipment. This thesis, therefore, proposes an architecture to support the fast adaptation or changes in the control/supervision architecture. This architecture postulates that manufacturing systems are no more than compositions of modularised manufacturing components whose interactions when aggregated are governed by contractual mechanisms that favour configuration over reprogramming. A multiagent based reference architecture called Coalition Based Approach for Shop floor Agility – CoBASA, was created to support fast adaptation and changes of shop floor control architectures with minimal effort. The coalitions are composed of agentified manufacturing components (modules), whose relationships within the coalitions are governed by contracts that are configured whenever a coalition is established. Creating and changing a coalition do not involve programming effort because it only requires changes to the contract that regulates it

    Generic Design Methodology for Smart Manufacturing Systems from a Practical Perspective, Part I—Digital Triad Concept and Its Application as a System Reference Model

    Get PDF
    Rapidly developed information technologies (IT) have continuously empowered manufacturing systems and accelerated the evolution of manufacturing system paradigms, and smart manufacturing (SM) has become one of the most promising paradigms. The study of SM has attracted a great deal of attention for researchers in academia and practitioners in industry. However, an obvious fact is that people with different backgrounds have different expectations for SM, and this has led to high diversity, ambiguity, and inconsistency in terms of definitions, reference models, performance matrices, and system design methodologies. It has been found that the state of the art SM research is limited in two aspects: (1) the highly diversified understandings of SM may lead to overlapped, missed, and non-systematic research efforts in advancing the theory and methodologies in the field of SM; (2) few works have been found that focus on the development of generic design methodologies for smart manufacturing systems from the practice perspective. The novelty of this paper consists of two main aspects which are reported in two parts respectively. In the first part, a simplified definition of SM is proposed to unify the existing diversified expectations, and a newly developed concept named digital triad (DT-II) is adopted to define a reference model for SM. The common features of smart manufacturing systems in various applications are identified as functional requirements (FRs) in systems design. To model a system that is capable of reconfiguring itself to adapt to changes, the concept of IoDTT is proposed as a reference model for smart manufacturing systems. In the second part, these two concepts are used to formulate a system design problem, and a generic methodology, based on axiomatic design theory (ADT), is proposed for the design of smart manufacturing systems

    Uses and applications of artificial intelligence in manufacturing

    Get PDF
    The purpose of the THESIS is to provide engineers and personnels with a overview of the concepts that underline Artificial Intelligence and Expert Systems. Artificial Intelligence is concerned with the developments of theories and techniques required to provide a computational engine with the abilities to perceive, think and act, in an intelligent manner in a complex environment. Expert system is branch of Artificial Intelligence where the methods of reasoning emulate those of human experts. Artificial Intelligence derives it\u27s power from its ability to represent complex forms of knowledge, some of it common sense, heuristic and symbolic, and the ability to apply the knowledge in searching for solutions. The Thesis will review : The components of an intelligent system, The basics of knowledge representation, Search based problem solving methods, Expert system technologies, Uses and applications of AI in various manufacturing areas like Design, Process Planning, Production Management, Energy Management, Quality Assurance, Manufacturing Simulation, Robotics, Machine Vision etc. Prime objectives of the Thesis are to understand the basic concepts underlying Artificial Intelligence and be able to identify where the technology may be applied in the field of Manufacturing Engineering

    A Model-based Approach for Designing Cyber-Physical Production Systems

    Get PDF
    The most recent development trend related to manufacturing is called "Industry 4.0". It proposes to transition from "blind" mechatronics systems to Cyber-Physical Production Systems (CPPSs). Such systems are capable of communicating with each other, acquiring and transmitting real-time production data. Their management and control require a structured software architecture, which is tipically referred to as the "Automation Pyramid". The design of both the software architecture and the components (i.e., the CPPSs) is a complex task, where the complexity is induced by the heterogeneity of the required functionalities. In such a context, the target of this thesis is to propose a model-based framework for the analysis and the design of production lines, compliant with the Industry 4.0 paradigm. In particular, this framework exploits the Systems Modeling Language (SysML) as a unified representation for the different viewpoints of a manufacturing system. At the components level, the structural and behavioral diagrams provided by SysML are used to produce a set of logical propositions about the system and components under design. Such an approach is specifically tailored towards constructing Assume-Guarantee contracts. By exploiting reactive synthesis techniques, contracts are used to prototype portions of components' behaviors and to verify whether implementations are consistent with the requirements. At the software level, the framework proposes a particular architecture based on the concept of "service". Such an architecture facilitates the reconfiguration of components and integrates an advanced scheduling technique, taking advantage of the production recipe SysML model. The proposed framework has been built coupled with the construction of the ICE Laboratory, a research facility consisting of a full-fledged production line. Such an approach has been adopted to construct models of the laboratory, to virtual prototype parts of the system and to manage the physical system through the proposed software architecture
    • …
    corecore