6,905 research outputs found

    Sequencing of 15 622 Gene-bearing BACs Clarifies the Gene-dense Regions of the Barley Genome

    Get PDF
    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant

    Advances in genomics for adapting crops to climate change

    Get PDF
    AbstractClimate change is a major threat to food security in a world of rising crop demand. Although increases in crop production have previously been achieved through the use of fertilisers and chemicals for better control of weeds and pests, these methods rely on finite resources and are often unsustainable. Recent advances in genomics are laying the foundations for sustainable intensification of agriculture and heightened resilience of crops to climate change. The number of available high-quality reference genomes has been constantly growing due to the widespread application of genome sequencing technology. Advances in population-level genotyping have further contributed to a more comprehensive understanding of genomic variation. These increasing volumes of genomic data facilitate the move towards plant pangenomics, providing deeper insights into the diversity available for crop improvement and breeding of new cultivars. Genomics-assisted breeding is benefiting from these advances, allowing rapid identification of genes implicated in climate related agronomic traits, for breeding of crops adapted to a changing climate

    The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas

    Full text link
    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) constitute a multi-functional, constantly evolving immune system in bacteria and archaea cells. A heritable, molecular memory is generated of phage, plasmids, or other mobile genetic elements that attempt to attack the cell. This memory is used to recognize and interfere with subsequent invasions from the same genetic elements. This versatile prokaryotic tool has also been used to advance applications in biotechnology. Here we review a large body of CRISPR-Cas research to explore themes of evolution and selection, population dynamics, horizontal gene transfer, specific and cross-reactive interactions, cost and regulation, non-immunological CRISPR functions that boost host cell robustness, as well as applicable mechanisms for efficient and specific genetic engineering. We offer future directions that can be addressed by the physics community. Physical understanding of the CRISPR-Cas system will advance uses in biotechnology, such as developing cell lines and animal models, cell labeling and information storage, combatting antibiotic resistance, and human therapeutics.Comment: 75 pages, 15 figures, Physical Biology (2018

    Technological advances in maize breeding: past, present and future

    Get PDF
    Maize has for many decades been both one of the most important crops worldwide and one of the primary genetic model organisms. More recently, maize breeding has been impacted by rapid technological advances in sequencing and genotyping technology, transformation including genome editing, doubled haploid technology, parallelled by progress in data sciences and the development of novel breeding approaches utilizing genomic information. Herein, we report on past, current and future developments relevant for maize breeding with regard to (1) genome analysis, (2) germplasm diversity characterization and utilization, (3) manipulation of genetic diversity by transformation and genome editing, (4) inbred line development and hybrid seed production, (5) understanding and prediction of hybrid performance, (6) breeding methodology and (7) synthesis of opportunities and challenges for future maize breeding

    RECORD: Reference-Assisted Genome Assembly for Closely Related Genomes

    Get PDF
    Background. Next-generation sequencing technologies are now producing multiple times the genome size in total reads from a single experiment. This is enough information to reconstruct at least some of the differences between the individual genome studied in the experiment and the reference genome of the species. However, in most typical protocols, this information is disregarded and the reference genome is used. Results. We provide a new approach that allows researchers to reconstruct genomes very closely related to the reference genome (e.g., mutants of the same species) directly from the reads used in the experiment. Our approach applies de novo assembly software to experimental reads and so-called pseudoreads and uses the resulting contigs to generate a modified reference sequence. In this way, it can very quickly, and at no additional sequencing cost, generate new, modified reference sequence that is closer to the actual sequenced genome and has a full coverage. In this paper, we describe our approach and test its implementation called RECORD. We evaluate RECORD on both simulated and real data. We made our software publicly available on sourceforge. Conclusion. Our tests show that on closely related sequences RECORD outperforms more general assisted-assembly software

    EGenBio : a data management system for evolutionary genomics and biodiversity

    Get PDF
    From The Third Annual Conference of the MidSouth Computational Biology and Bioinformatics Society Baton Rouge, Louisiana. 2–4 March, 2006.© 2006 Nahum et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs.This work was partly funded by the National Institutes of Health (R22/R33 Innovation and Development grant to David Pollock), the National Science Foundation (CBM2/EPSCOR), and the State of Louisiana (Biological Computation and Visualization Center, Governor's iotechnology Initiative, and startup funds to David Pollock)

    Applied Molecular Cloning: Present and Future for Aquaculture

    Get PDF
    With the grim picture of millions of people living in poverty and hunger, there is also an international alarm over future world food supply. This global concern of food scarcity has established the need to not only increase the production of traditional staples but also fisheries and aquaculture. Genetically, physiologically and phenotypically, fish are the most diverse group of livings. Similar to mammals, molecular biology is being extensively used in aquaculture, be it in disease management, or growth and reproduction enhancement. In this chapter we aim to discuss the molecular methodologies applied to uplift and attain sustainability in aqua farming

    First draft genome assembly of the Argane tree (Argania spinosa)

    Get PDF
    Background: The Argane tree (Argania spinosa L. Skeels) is an endemic tree of southwestern Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. Methods: Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of A. spinosa was created using a hybrid de novo assembly approach combining short and long sequencing reads. Results: In total, 144 Gb Illumina HiSeq reads and 7.2 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. Conclusion: The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological purposes
    corecore