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Chapter

Applied Molecular Cloning: 
Present and Future for 
Aquaculture
Tapas Chakraborty, Sipra Mohapatra, Chimwar Wanglar 
and Dipak Pandey

Abstract

With the grim picture of millions of people living in poverty and hunger, there 
is also an international alarm over future world food supply. This global concern 
of food scarcity has established the need to not only increase the production of 
traditional staples but also fisheries and aquaculture. Genetically, physiologically 
and phenotypically, fish are the most diverse group of livings. Similar to mammals, 
molecular biology is being extensively used in aquaculture, be it in disease manage-
ment, or growth and reproduction enhancement. In this chapter we aim to discuss 
the molecular methodologies applied to uplift and attain sustainability in aqua 
farming.

Keywords: aquaculture, fish, disease diagnosis, genome editing, genomic marker

1. Introduction

Agriculture, livestock (bird, cattle, pig, etc.) farming and fish rearing are 
traditionally used to cater the nutritional requirement since ages. Evidence of 
agriculture, including meat farming, can be found as far back as the end of the 
Pleistocene Era, roughly around 12,000 years ago. In contrast, fish have only 
been farmed in aquaculture setting for over 2000 years [1]. Our world roughly 
comprises of 70% water and majority of them are unutilized due to inadequate 
knowledge and resources. Additionally, the availability of terrestrial space of 
agriculture and livestock farming are now on a decline. The lower FCR values of 
various aquaculturable species (e.g., cobia 0.96–1.50:1) than various terrestrial 
animals (e.g., cattle 5.15–6.95:1; poultry 2.13–2.61:1) [2, 3] are not only important 
for reducing the production cost but also have less environmental burden to 
bear. However, aquaculture, the farming of fish and aquatic plants, is the fastest 
growing food sector in the world, recently (since 1970s) growing exponentially 
to meet the increasing population and declining wild fish stock availability. The 
aquaculture industry’s contribution to the total food supply has increased dra-
matically since 2000–2012 by 6.2% [4], and it is expected that by 2030, 60% of 
the total fish supply intended for direct human consumption will be produced 
by the aquaculture industry [5]. With the development of new and environment 
friendly Silvofisheries (fish integrated with mangroves), Aquaponics and IMTA 
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(integrated multitrophic aquaculture), etc., the probability of sustainable growth 
of aquaculture has been raised several folds. But, unlike agriculture and livestock 
farming, aquaculture has lot of geographical restriction, such as in North America 
and Europe, clams, oysters, and other shellfish are the main species being farmed, 
while in Japan, edible seaweed, marine shrimp, and yellowtail are the desired spe-
cies for culture. Likewise, carps in India, freshwater prawns in Hawaii, and eels in 
Taiwan are the preferred culturable species [1]. Although numerous species (>694) 
have made their way into aquaculture and have international consumer market, 
only the Norwegian salmon has gained commercially popularity in recent years. If 
we analyze deeply, it is clear that it is neither the geographical restriction nor the 
consumer demand, but rather the huge industrial success of this specific salmon 
is related to meticulous research, better strain availability through years of selec-
tive breeding, authenticated and steady high quality seed availability and one stop 
consultancy [6].

Molecular biology and cloning set sailed its journey with the DNA molecule 
in 1950s and encountered several breakthrough including RNA and restriction 
endonucleases, however in reality, the recombinant DNA technology has made a 
revolution in modern molecular biology. Through this technique, large quantities 
of proteins present in trace amount, as well as other biologically active substances, 
could be generated through biotechnology and these genetically engineered 
macromolecules have very little side effects. Emerging technologies promise even 
greater possibilities, such as enabling researchers to seamlessly stitch together 
multiple DNA fragments and transform the resulting plasmids into bacteria in 
under 2 h, or the use of swappable gene cassettes, which can be easily moved 
between different constructs, to maximize speed and flexibility. During the past 
2–3 decades, fish molecular biology has been intensively investigated in all aspects 
of fisheries, including diseases, genetics, nutrition, and ecology. Molecular tools 
are used to investigate changes in the DNA, RNA or proteins to detect certain 
genetic or biochemical changes that are associated with certain disease-causing 
pathogens [7–9]. Another advantage of molecular tools is that the analysis can be 
done on stored specimens and abundance of genetic information in the database. 
In recent years, great advances have been made to simplify the techniques and 
reduce the cost without compromising on the sensitivity. In this chapter we will 
discuss about the issues of aquaculture, and the potential of molecular cloning/
biology in fish.

2. Aquatic animal and molecular cloning

2.1 Major hurdles of aquaculture

Fish live in a complex 3D environment, so whether it is the density of the fish, 
or extra feed given by farmer, or local environment and water quality, everything 
impacts the aquaculture output. Although new concepts like precision fish farming 
are emerging, the following categories still are a cause of major concern.

2.1.1 Adequate disease diagnosis and health management

Diseases are the major constricting factor for expansion of aquaculture indus-
try, and they potentially cost the sector nearly $6 billion in yield loss each year 
[10]. Aquatic environments impose a constant risk of exposure to disease-causing 
pathogens and poor knowledge of background microbial “diversity” in aquatic farm 
systems often leads to frequent emergence of previously unknown diseases. Healthy 
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looking fish can carry pathogens without a clinical sign and disease become evident 
only under stressful conditions. Therefore, disease management and assessment of 
cultured fish is a major concern to commercial aquaculturists. The ability to identify 
the presence or absence and concentration of a pathogenic organism in fish would 
have significant economic benefits. Statistically, relevant disease surveillance and 
monitoring requires testing large numbers of fish as it increases the probability of 
detecting pathogen from clinically normal fish. Reliable detection of fish pathogens 
in a fish population is difficult if fish with disease are not available or only a low 
percentage of the fish is infected. To detect pathogen carrying fish, a cost effective, 
sensitive, and specific system is required for surveillance and monitoring of fish 
population. Traditionally, the diagnosis and management of diseases is carried 
out by culture dependent methods which are slow, require skill, and only selective 
organism can be detected [11]. Potentially faster, more sensitive diagnostic tech-
niques for identification and characterization of pathogens, even from asymptom-
atic carrier fish, are of utmost necessary.

2.1.2 Maintenance of the environment and biodiversity

Since farmed fish are selected and bred for certain genetic criteria like size, 
quick growth and hardiness, escaped species can become invasive and pose a mas-
sive threat to global biodiversity. The ever-growing aquaculture industries also have 
to bear the public concern in regard to pollution and other environmental effects 
and thus maintaining and sustaining the environment is of paramount importance. 
Attention to genetic variability and biodiversity in aquaculture development, 
proper stock maintenance and aquatic resource management are therefore crucial 
elements for sustainable environment. In this sense, traceability tools are essential 
to assess the impact of aquaculture escapees in natural populations or distinguish 
the farmed and wild specimens.

2.1.3 Reproductive medley

Reproduction is crucial for steady and quality seed supply and hence of utmost 
importance for aquaculture sustainability. Fish gonadal development is influ-
enced by intrinsic (genetics, growth, behavior, etc.), and extrinsic (temperature, 
hormone, environmental pollution, etc.) factors. Though, large diversity of 
aqua animals has its own advantages, each species has distinct reproductive and 
embryonic development biology that hinders the timely breeding and smooth 
progression of commercial aquaculture. For instance, some gonochoristic fish 
harbors sex chromosome while others do not, and several commercially lucrative 
fish sequentially changes their sex. Moreover, some hybrids tend to grow bigger 
with the expense of reproductive unfitness (e.g., hybrids of Atlantic and pacific 
salmon).

2.1.4 Improper growth

Fish growth largely depends on feeding, environment and genetic background. 
For example, farmed Atlantic salmon tend to grow faster than wild ones, and 
genetically modified (GM) farmed salmons are even better. Though FDA recently 
approved GM salmon, till date it is not ethically preferable to use GM fish for 
commercial aquaculture. There are few more success stories of using myostatin 
knockout to improve growth of tilapia, red sea bream and common carp; however, 
yellow catfish [12] did not display similar results, suggesting functional variation 
among species.
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2.2 Application of molecular cloning in aquaculture

2.2.1 Restriction enzyme/endonuclease digestion

Restriction enzymes (or restriction endonucleases, RE) are enzymes or better 
known as “molecular scissors” that recognize and cleave the DNA into fragments 
at or near specific “recognition” sites. The DNA fragments are observed by gel 
electrophoresis and the pattern of bands are used to generate the “fingerprint” of a 
particular DNA molecule. The cut DNA can be observed by gel electrophoresis and 
the pattern of bands compiled to create a restriction enzyme map [13]. This map 
is useful to identify and characterize a particular DNA region and analyze genetic 
variation. Restriction enzymes are used to manipulate DNA and are vital tools 
in molecular cloning. They form the basis for several diagnostic tools like RFLP, 
AFLP, Southern blotting, etc. For instance, RFLP recognizes size variations, and 
in combination with PCR can be used to reduce the labor-intensive DNA isolation 
for RFLP analysis [14]. SNPs (single-nucleotide polymorphism) or INDELs change 
the restriction endonuclease recognition sites that cause differences in restriction 
fragment lengths. AFLP technique is based on cutting with two Res (one average 
(e.g., EcoRI), and another rare (e.g., MseI) cutter), ligation of adapters to these 
restriction fragments and followed by a PCR-based selective amplification with 
adapter-specific radioactive or fluorescent-labeled primers.

2.2.2 Random amplified polymorphic DNA (RAPD)

RAPDs are DNA fragments that are amplified using short random primers 
(~10 bp) and are used to detect polymorphisms. RAPDs are randomly distributed 
throughout the genome and have high abundance. This technique is quick and easy 
and requires low quantity of DNA. Fish pathogens have been studied using RAPD, 
but problems with reproducibility and risks of contamination render the method 
unsuitable as a stand-alone method of diagnosis. However, RAPD can be a useful 
technique as a first step in the development of specific primers or probes and has 
been used in such a way in the study of bacteria.

2.2.3 Polymerase chain reaction (PCR)

The polymerase chain reaction is a robust technique used to produce large 
copies of the target DNA sequence by amplifying the specific region of interest. The 
reaction includes template DNA, primers, polymerase enzyme to catalyze creation 
of new copies of DNA, and nucleotides to form the new copies. The template DNA 
can be collected from sample tissue, blood, serum, fluid, mucus or can be a puri-
fied DNA. The principle of PCR is based on the repetitive cycling of denaturation, 
annealing and extension. Each copy of the DNA then serves as another template 
for further amplification and copy number of PCR products then doubles in each 
cycle. After “n” rounds of replication, 2n copies of the target sequence are theoreti-
cally produced. After thirty cycles, PCR can produce 230 or more than ten billion 
copies of a single target DNA sequence. The PCR product can be detected by gel 
electrophoresis. The whole process just needs 2–5 h depending on the number and 
types of nucleotide. PCR has distinct advantages over conventional microbiological 
diagnostic methods as it can detect slow growing and unculturable pathogens. PCR 
is faster, extremely efficient and sensitive and can be used to amplify sequences 
from wide variety of samples even if they only have a small amount of DNA. Some 
of the shortcomings of PCR are the false positive results from DNA contamination, 
limited detection platform for simultaneous identification of multiple samples, etc. 



5

Applied Molecular Cloning: Present and Future for Aquaculture
DOI: http://dx.doi.org/10.5772/intechopen.88197

In most cases, the target DNA sequence is the rRNA operon and in bacteria, the 
most frequently used is the variable region of the evolutionary conserved 16S rRNA 
gene. Nevertheless, other types of genes or sequences of unknown sequences can 
also be used.

To overcome the shortcoming and to increase the diagnostic capacity of conven-
tional PCR, multiplex PCR was developed to simultaneously amplify several target 
sequences by using more than one pair of primers. It can detect multiple pathogens, 
which save time and cost without compromising test utility, but might require 
further analysis such as DNA sequencing to confirm the identity of the species.

Nested PCR, which uses two pairs of primers and two successive PCR run, was 
developed to increase specificity and sensitivity of conventional PCR. The first set 
of primers is used to amplify target sequence in first run and the PCR products are 
used as template for the second run and amplification is conducted with the second 
set of primers. Though, it is popular for unknown/homologous gene identification, 
due to the lengthy process and complexity, this type of PCR is limited to cases where 
single PCR is not sufficient to identify pathogen.

Though DNA is reliable, RNA is often a more accurate indicator of viable micro-
organism. Therefore, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 
was developed to first synthesize cDNA from RNA by reverse transcription (RT) 
and later amplify the cDNA by PCR. However, for effective detection, sufficient 
amount of detectable RNA concentrations is required, and the RNA sample should 
be free of genomic DNA to avoid false positive results.

Most recently, real time PCR is used to detect, confirm and quantify PCR 
products at “real time” during the amplification process using Fluorescent dyes. 
Two types of dyes are generally used; one is the use of non-sequence specific dyes 
like SYBR green I or ethidium bromide and the second is the use of fluorescently 
labeled internal probe like TaqMan, FRET (fluorescence resonance energy trans-
fer), etc. The real time PCR has three novel features—temperature cycling occurs 
considerable faster than in standard PCR assays, hybridization of specific DNA 
probes occurs continuously during the amplification and the dye fluoresces only 
when hybridization takes place. This technique is quick and convenient, and with 
the recent introduction of multiplex real time PCR, detection of multiple targets in 
a single reaction can be achieved at cheaper cost, shorter time and faster diagnosis.

2.2.4 Loop-mediated isothermal amplification (LAMP)

It is a novel nucleic acid amplification method that amplifies DNA with high 
specificity, efficiency and rapidity under isothermal conditions. This method 
employs a DNA polymerase and a set of four specially designed primers to rec-
ognize six distinct regions of the target DNA. Unlike PCR, LAMP is carried out 
in constant temperature (60–65°C) using an auto-cycling strand displacement 
DNA synthesis and does not require thermal cycler. The amplified product can 
be detected as white precipitate or yellow green color solution after addition of 
SYBR Green. It is cost effective and when combined with reverse transcription, 
this method can also amplify RNA sequences with high efficiency. It can be used 
to detect the identification of genus and species-specific parasites. However, this 
technique is not effective for detection of different pathogens simultaneously.

2.2.5 Fluorescence in situ hybridization (FISH)

In situ hybridization refers to detection of DNA or RNA on actual tissues, cells, 
or any biological sample in their natural positions within a chromosome, by using 
a complementary probe. ISH correlates DNA localization and mRNA expression 
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with morphological findings [15]. Most current in situ hybridization methods use 
FISH [16, 17] in which fluorescent labeled pieces of DNA or RNA (probe) hybridize 
to target nucleic acid in cells under appropriate conditions. These labeled cells can 
then be visualized by flow cytometry or fluorescence microscopy. FISH can be used 
on formalin fixed paraffin embedded tissues, frozen tissues, etc. The technique has 
also been used to detect bacterial and viral DNA in an infected cell. Since the probe 
has to reach the target inside the cells, only probes that are small (~300 bases) can 
be used for tissue penetration, hence sensitivity is limited to the accessibility of the 
target in the cell.

2.2.6 Molecular padlock probes (MPP)

Padlock probes (PLPs) are single stranded long oligonucleotides whose 5′ and 
3′ ends are complementary to two immediately adjacent target sequences. Upon 
hybridization to the target, the two ends are brought into contact, effectively circu-
larizing the probe with a nick. DNA ligase is added to convert this linear PLP into 
a covalently closed circular molecule. Single strand specific DNA exonucleases can 
be used to “chew up” the linear strands and only make available the intact circular 
molecules. PLPs provide extremely specific target recognition, which is followed 
by universal amplification and microarray. However, synthesis of long probes can 
be little expensive as compared to short primers for PCR. At present, the most 
common application for PLPs is the detection of single nucleotide polymorphisms 
(SNPs) and multiplex pathogen detection assays.

2.2.7 Rolling circle amplification (RCA)

RCA is an isothermal enzymatic process where short DNA/RNA primer ampli-
fied to form a long single stranded DNA/RNA using a circular DNA template and 
special DNA/RNA polymerases. The product is a concatemer containing tens to 
hundreds of tandem repeats that are complementary to the circular template. By 
manipulating the circular template, RCA can be employed to generate complex 
DNA nanostructures such as DNA origami, nanotubes, nanoribbons and DNA 
based metamaterials which can be used for bio-detection, drug delivery, etc. 
Millard et al. [18] combined RCA, MPP and hyperbranching (Hbr) to develop a 
multiplex detection assay for IHNV and ISAV.

2.2.8 Microarray

This technology is used to assess expression rate of thousands of genes and 
identify wide range of pathogens from complex samples in one single reaction. This 
technique usually involves hybridization of DNA with large number of probes and 
can overcome the shortcomings of multiplex PCR, which can detect only a maxi-
mum of six pathogens at a time. There are two types of DNA microarrays that are 
widely used—cDNA microarrays and oligonucleotide/DNA chips. There are a num-
ber of ways of using DNA microarrays. One method is the use of fluorescent labeled 
DNA sequences that are hybridized to the microarray slide. The data is detected by 
fluorescent array detection and analyzed by computer programs. The second and 
more practical method is the use of fluorescent labeled competitor oligonucleotide. 
When target DNA does not hybridize to the tethered oligonucleotide in the microar-
ray, fluorescent labeled competitor oligonucleotide will bind to the tethered oligo-
nucleotide on the chip and displace the test DNA. Then the fluorescent microarray 
detector and computer program will analyze the fluorescent array for the presence 
or absence of the species/strain specific DNA sequence. Microarray does not require 
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clear length differences between PCR products and therefore, PCR assays can 
be designed to generate smaller sized amplicons that can improve efficiency and 
probability of template recovery from degraded DNA and reduces PCR template 
biasedness. Compared to traditional nucleic acid hybridization with membranes, 
microarrays offer the additional advantages of high density, high sensitivity, rapid 
detection, lower cost, automation, and low background levels. Since most of the 
pathogens genetic sequences are known, oligonucleotide probes complementary 
to all pathogens can be used for microarray. Although the set-up cost for the use 
of DNA microarrays is high, once the equipment is available and microarrays 
are prepared, cost per unit of sample analyzed becomes low. In the post-genome 
sequencing era, microarrays have been developed from model and non-model fish 
and have the possibility of heterologous application. Though majority of them are 
publicly available, however, they vary in type, size, complexity, methodological 
development and motivation and degree of annotation, so it is advisable to carefully 
select the array beforehand [19].

2.2.9 DNA sequencing

DNA sequencing is used to determine the four chemical blocks—adenine, 
guanine, thymine and cytosine, that make up the DNA molecule. The sequence 
information can help determine changes in the gene that may cause disease. First 
generation sequencing techniques include the Sanger method and the Maxam-
Gilbert techniques. Maxam-Gilbert are based on chemical modification of DNA and 
subsequent cleavage at specific bases while Sanger method requires that each read 
start be cloned for production of single-stranded DNA. Maxam–Gilbert sequenc-
ing is less popular due to its technical complexity. The chain-terminator method or 
Frederick Sanger method, which uses dideoxynucleotide triphosphates (ddNTPs) 
as DNA chain terminators, became a popular method of DNA sequencing due to its 
greater efficiency, use of fewer toxic chemicals and lower amounts of radioactivity 
than Maxam-Gilbert method. Second generation sequencing includes technologies 
such as Illumina and Ion Torrent that produce massive parallel sequencing of short 
read length of reads of DNA (150–400 bp), which require extensive assembly. Third 
generation sequencing method includes PacBio and ONT and involves sequencing 
through extended repetitive regions in the genome to produce much longer reads 
(6–20 kb) but far fewer reads per run (typically hundreds of thousands). The 
second and third generation sequencing methods, collectively known as the next 
generation sequencing (NGS) or high throughput sequencing allows the sequenc-
ing of DNA and RNA more quickly and cheaply. The goal of NGS is to investigate 
functional genome, epigenome and transcriptome elements in cells and tissues, 
and their temporal expression, which permits the definition of variation in gene 
expression among the different types of tissue, organs or life stages of the target 
organism. Over the past decade, the cost of NGS has decreased significantly, mak-
ing it possible to use non-model fish species to investigate emerging environmental 
issues, understand the cell-cell interactions, and whole organismal physiology. To 
cope with it, bioinformatics is also rapidly evolving and new algorithms are being 
published. It is expected that NGS with bioinformatics is the way to revolutionize 
the field of fisheries and might also help clarify the previous findings and dogmas 
prevalent in aquaculture and biology.

2.2.10 RAD sequencing

Restriction-site associated DNA sequencing (RAD sequencing or RAD-Seq) 
combine the use of genome complexity reduction with REs and the high sequencing 
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output of NGS technologies. Original RAD-Seq was first described by Baird et al. 
[20] and several variants of this methodology have been described since then [21]. 
But, only the original RAD-Seq [20], 2b-RAD and ddRAD are extensively used in 
aquaculture research. In aquaculture, RAD-Seq has been used in genetic mapping 
[22], reference genome assembly sex determination loci mapping [23–26], etc. 
Some of the main reasons for its instant success is that RAD-Seq does not require 
any prior genomic knowledge, it allows generation of population-specific genotype 
data (i.e., no ascertainment bias) and it offers flexibility in terms of desired marker 
density across the genome. The use of different REs or innovative modifications 
to the base technique allows a high level of control over the number of markers 
obtained for a specific study. RAD-Seq and similar techniques are also amenable 
tools for aquaculture breeding, where genetic markers have typically been used in 
family assignment and pedigree reconstruction [27]. Mass spawning species are 
common in aquaculture, where mixed rearing and unknown parental contribution 
necessitate the use of genotyping for family-based breeding. RAD-Seq potentially 
facilitates a single experiment whereby pedigrees are reconstructed, genetic diver-
sity is quantified, QTL are mapped, and genomic breeding values calculated [28].

2.2.11 Genomic marker development

Most of the genetic improvement in fish and shellfish species to date has been 
made through the use of traditional selective breeding of Atlantic salmon, Rainbow 
trout, tilapia and many other fish [29]. Notably, spontaneous mutations in the 
genome create genetic variability (or polymorphism) and this variability can be 
an effective means to analyze fish trait and geological pedigree. Boom in whole 
genome sequencing technology, though still costly, encourage fish researchers 
to investigate genomic marker’s potential in selective breeding and aquaculture 
production. There are several available markers for fish research: AFLP, RAPD, etc., 
but most prevalent ones are microsatellite and SNPs. Microsatellite markers, identi-
fied using microsatellite sequence enriched genomic library or Expressed tagged 
sequence library, are simple tandem sequence repeats scattered across the genome 
and used increasingly in aquaculture species [29]. SNPs are generally identified 
using in depth genome sequencing and require huge financial and bioinformatical 
investment. MAS (marker assisted selection) is useful for traits that are difficult 
to measure on breeding candidates, particularly when they are largely linked to 
QTL (quantitative trait loci). With the help of MAS and GS (genomic selection), 
several studies have demonstrated increased accuracy of breeding value predic-
tions in growth and disease resistance in yellowtail and Atlantic salmon [30–33]. 
Nevertheless, this approach requires a great amount of detailed information in 
order to choose which gene explains the greatest effect and to have sufficient power 
to detect the association.

2.2.12 Metagenomics

There are two main methods for studying the microbiome using high-
throughput sequencing: marker-gene studies and whole-genome-shotgun (WGS) 
metagenomics. While marker-gene studies, amplify a particular gene (16S rRNA 
for bacteria/archaea, 18S for fungi), metagenomics refer to the sequencing of 
DNA from the entire genome of samples obtained directly from the environment 
(water, soil) or tissues. Advances in metagenomics have themselves been driven 
by advances in second- and third-generation sequencing technologies, which are 
now capable of producing hundreds of gigabases of DNA sequenced data at a very 
low cost [34]. Unlike bacteria that use the 16S ribosomal RNA as a common gene 
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for their identification, viruses lack a single common gene for their identification 
which makes it difficult to monitor their population dynamics in different aquatic 
environments [35]. Metagenomics also holds the promise of revealing the genomes 
of the majority of microorganisms that cannot be readily obtained in pure culture 
[36]. Breitbart et al. [37] have shown that it is possible to sequence entire genomes 
of uncultured marine viruses using metagenomics. For metagenomic sequences 
linked to novel diseases, there is need to isolate the virus involved followed by veri-
fication using conventional diagnostic approaches such as cell culture to exhibit the 
cytopathic effect (CPE), morphological characterization using electron microscopy, 
and molecular characterization using PCR ([38], Table 1).

2.2.13 DNA vaccines

DNA vaccines are composed of bacterial plasmids which has two units-antigen 
expressing unit that comprises of promoter/enhancer sequences, antigen coding 
and polyadenylation sequences; and the production unit comprising of sequences 
necessary for plasmid amplification and selection [39]. The vaccine inserts are 
constructed by molecular cloning and transformed into bacterial cells, and the 
purified plasmid DNA is injected into fish. Hansen et al. [40] first introduced 
vaccination in fish by injecting plasmid constructs encoding viral glycoprotein 
directly into skeletal muscle of common carp that resulted in efficient protection 
of the fish against rhabdoviruses. More than 20 different virus DNA vaccines 
have been developed experimentally for prophylactic use in fish targeting viruses 
such as rhabdoviridae, orthomyxoviridae, togaviridae and nodaviridae [41, 42]. 
However, despite this huge prospect, DNA vaccines for farmed animals remain at 
the moment experimental. DNA vaccines seem to be more harmless and more stable 
than ordinary vaccines [42]. Plasmids are non-viable and do not multiply, and 
therefore have a low risk of developing secondary disease and infection. The main 
concern about the potential DNA vaccines is that they might integrate into the host 
genome and generate immune responses. However, extensive surveys have found 
little evidence of integration, and the merger risk appears to be less than normal 
mutation. Significant advantages of these vaccines include cheapness, simplicity of 

Pathogens Detection method

V. vulnificus, L. anguillarum, P. damselae, V. parahaemolytocus Multiplex PCR, DNA 
microarray

Y. ruckeri, A. salmonicida, F. psychrophilum Multiplex PCR

Infectious salmon anemia virus (ISAV) RT PCR

Myxobolus cerebralis Real time PCR

Edwardsiella tarda LAMP

Infectious hematopoietic necrosis virus (IHNV) & ISAV Molecular padlock

R. salmoninarum, A. salmonicida, E. ictaluri, F. columnare, F. psychrophilum, 
Y. ruckeri, P. salmonis, T. maritimum

DNA microarray

A. salmonicida, E. ictaluri and F. psychrophilum PCR and DNA 
microarrays

Aeromonas (A. hydrophila, A. sobria, A. caviae and A. veronii) Multiplex PCR

P. salmonis (Salmonid Rickettsial Septicaemia) PCR-RFLP

Table 1. 
Prevalent examples of established disease diagnostics in aquaculture.
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production and consumption, transport and higher resistance. The other important 
feature of these vaccines is the ability to put several antigens in the plasmid, result-
ing in immunization against all agents [43]. In 2005, APEX-IHN (Novartis/Elanco) 
became the first DNA vaccine licensed for commercial use in aquaculture for pro-
tection of Atlantic salmon against Infectious Hematopoietic Necrosis Virus (IHNV) 
in British Colombia. In 2017, the European Commission through the European 
Medicines Agency (EMA) granted marketing authorization of CLYNAV (Elanco), a 
polyprotein-encoding DNA vaccine against Salmon Pancreas Disease Virus (SPDV) 
infection in Atlantic salmon (Salmo salar) for use within the EU. However, admin-
istration of vaccines typically requires individual handling and treatment of all 
production fish, which can be expensive and impractical in a large-scale production 
environment.

2.2.14 Transgenesis

Transgenics are those genetically engineered organisms which have heterologous 
DNA (transgene) integrated stably into their genome through artificial means like 
microinjection, electroporation, sperm mediated transfer, lipofection, retrovirus, 
etc. The transgene construct carries a target gene, encoding product of interest and 
regulatory elements that regulate the expression of the gene in a spatial, temporal 
and developmental manner [44]. Since the development of the first transgenic fish 
in 1984, a wide number of transgenic fish species have been produced (Table 2) to 
improve growth, disease resistance, cold resistance, etc. [45].

2.2.15 Gene therapy

In the mid-twentieth century, researcher demonstrated that the rate of mutagen-
esis could be enhanced with radiation or chemical treatment [46, 47]. Later with the 
help of transposons, targeted genomic changes were made in various model organ-
ism including medaka and zebrafish [48–50]. But due to prevalence of transposon 
machinery in these fish, longer time requirement for generating particular line and 

Species Foreign gene Desired effect

Striped bass (Morone saxatilis) Insect genes Disease resistance

Common carp (Cyprinus carpio) Salmon and human GH; 
rainbow trout GH

Improved disease resistance

Grass carp (Ctenopharyngodon 
idellus)

hLF
hLF + common carp β-actin 
promoter

Increased disease resistance to 
bacterial pathogen
Increased disease resistance to 
grass carp hemorrhage virus

Channel catfish (Ictalurus punctatus) Silk moth (Hyalophora 
cecropia) cecropin genes

Enhance bactericidal activity

Japanese Medaka (Oryzias latipes) Insect cecropin or pig 
cecropin-like peptide genes 
+ CMV

Enhanced bactericidal 
activity against common fish 
pathogens

Atlantic Salmon (Salmo salar) Mx genes Potential resistance to 
pathogens following 
treatment with poly I:C

Nile Tilapia (O. niloticus) and 
Redbelly Tilapia (Tilapia zillii)

Shark (Squalus acanthias L.) 
IgM genes

Enhanced immune response

Table 2. 
Transgenesis in aquaculture.
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concerns about transgenics associated wild genepool contamination and biodiver-
sity degradation has led aquaculture researchers to focus on other knockdown and 
knockout technologies.

In fish, antisense morpholinos, small interfering RNA (siRNA) and PNAs 
(peptide nucleic acid) are widely used to transiently interfere with gene function. 
Morpholinos are typically 25 bp long oligos that specifically interfere with gene 
function based on their complementarity to the target sequence either by block-
ing translation initiation or by interfering with splicing. The non-ribose-based 
backbone renders morpholinos insensitive to enzymatic degradation. PNAs have 
a higher affinity for RNA, yet they are less soluble and therefore the in vivo use is 
limited. Dorn et al. [51] changed the chemical composition of the PNA backbone 
to increase solubility and showed efficient knockdown of the six3 gene in medaka. 
In most cases, the chemical/RNA is micro-injected or electroporated into fertil-
ized eggs at early cleavage stages to ensure a ubiquitous distribution to all cells of 
the developing embryo. If thus applied, they interfere with gene function during 
early development. To study gene function during later stages, morpholinos can 
be activated conditionally by light-induced uncaging. However, recent results in 
zebrafish indicate that morpholino-based gene knockdown often results in unspe-
cific off-target effects [52].

To overcome abovementioned complications advanced genome editing tech-
niques were developed, in which, no genetic material from another species is intro-
duced and thus the genome remains untainted. Although tilling (target induced 
local lesion in genome) was first of this kind, it mostly creates single point mutation 
and requires large screening. Some of the next generation gene editing tools used in 
fish are zinc finger nucleases (ZFNs), transcription activator like effector nucleases 
(TALENs) and CRISPR/Cas system. Mutations can be achieved by introducing 
double strand breaks into the target gene and non-homologous end joining (NHEJ) 
repair mechanism is used to produce insertions or deletions in a site-specific 
manner resulting in permanent disruption of the function of the target gene. On 
the other hand, exogenous gene sequence can be introduced into the genome by 
co-delivering the targeted nucleases along with a target vector containing the DNA 
homologous to the break site for gene correction (Figure 1).

Figure 1. 
Comparative evaluation of various knockout technologies used in fish manipulation.
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Theoretically, ZFN is an ideal tool for inducing mutations at target DNA sites 
in any organisms [53]. However, its application has been constrained by limita-
tions in zinc finger domain design and construction as well as low efficiency [54]. 
Compared with ZFN, the recently emerged TALEN provides us a more advanced 
approach for genome editing; it is much easier to construct plasmids for express-
ing TALE proteins, making this technology easily available to most molecular 
biology laboratories. Because of this and its high specificity and efficiency, 
TALEN has quickly replaced ZFN as a dominant platform for genome editing 
since its establishment in 2011 [55]. Unlike ZFN and TALEN, the nuclease Cas9 
is guided towards the target DNA site by a small guide RNA followed by random 
cleavage of the DNA. Particularly, the rapid emergence of CRISPR/Cas9 caused 
a paradigm shift in the research community [56]. There is complementary usage 
of these two technologies in recent years, as CRISPR/Cas9 works as monomer, 
it consists of protein and RNA and produces blunt end, while TALEN works as 
dimer, it consists of protein only and produces cohesive ends [57]. Although each 
one has its associated pros and cons [58], TALENs and CRISPR technologies have 
comparatively high specificity and efficiency with low off target effect [59]. Not 
only the methodology, but selection of delivery methodology (microinjection, 
electroporation, etc.), target tissue, and host is critical for ensured success in 

Fishes Genes (method) Fishes Genes (method)

Atlantic 
salmon

dnd, tyr, slc24a5 (C) 
[60, 61]

Sturgeon dnd (C) [62]

Atlantic 
killifish

ahr2 (C) [63] Tilapia fox12a, cyp19a1a, dmrt1, nanos, gsdf, sf-1/nr5a, mstn 
(C); rspo1, fox12a, cyp19a1a (T) [64–69]

Cavefish oca2 (T) [70]

Channel 
catfish

lh (Z) [71]

Chinese 
lamprey

slc24a5 (C) [72] Yellow 
catfish

mstn (Z) [12]

Common 
carp

sp7a/b, runx2, 
bmp2a, opg & mstn 
(T & C) [73]

Zebrafish dnd (M); ntl, slc24a5, kdr1, prl, (Z); gria3a, hey2, 
cyp19a1a, ryr3, ryr1a, tbx6, slc24a, slc45a2, fsh, lh, 
fshr, ihcgr, pgr, rb1, bmp15, mesp, gnrh3, zap70, nrld1, 
leg1a, mstn, rnf213a, mpl, dmrt1, cyp17a1, stat3, 
kiss1/2 & kissr1/2(T); mitfa, ddx19, slc24a5, slc45a2, 
seta/b, nrg1-I, stxbp1, nERs, gspt11, fus, akt2, atp6v1h, 
cyp19a1a (C) [62, 74–108]

Japanese 
anchovy

mstn (T & C) [109]

Medaka dnd (M); fox13, 
dmy, dmc1, fshb, 
gnrh1 (T); gsdf (Z) 
[110–114]

Red sea 
bream

mstn (C) [115]

Rice field 
eel

dmrt1, foxl2, 
cyp19ala (T) [116]

Rohu tlr22 (C) [117]

Starlet and 
sturgeon

Ntl, dnd (T & C) 
[118, 119]

M, morpholino; Z, zinc finger nuclease (ZFN); T, transcription activator-like effector nucleases (TALEN), 
C, clustered regularly interspaced short palindromic repeats (CRISPR).

Table 3. 
Genome editing using ZFN, TALEN and CRISPR system in varies model and non-model fish species.
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aquaculturable strain production. Numerous genes are being knocked out using 
various techniques and some of them are already adapted for commercial aqua-
culture (Table 3).

3. Conclusions

With the continual growth of global aquaculture, fish production continues 
to grow globally and till date only a small proportion of the aquatic animals come 
from managed breeding especially through applied molecular cloning and genomics 
(Table 4). The molecular biology of aquatic organisms offers many opportunities 
for rapid genetic gains as new genetic techniques make the improvement feasible 
in a wider range of model and non-model species. The future of molecular biology 
in aquaculture is bright with the technologies mentioned above being cheaper than 
ever, widely available and easily applicable in laboratories. However, the results 
obtained from these methods should not be conclusive without additional informa-
tion, such as clinical diagnosis, as the mere detection of a certain pathogen does not 

Category Type of approach Popular methods

Genomics High throughput 
analysis

Microarray, NGS, whole genome bisulfate 
sequencing

Marker based analysis Rad sequencing, microsatellite, SNP, AFLP, RAPD, 
RFLP

Forward genetics Chemical mutagenesis ENU mutagenesis

Transposon 
mutagenesis

Sleeping beauty, AcDs, Tol2, EnSpm-N6

Reverse genetics Antisense and small 
RNA

Morpholino, PNA, SiRNA, shRNA

Micro RNA miRNA sponges, miRNA knockdown, miRNA 
mimics

Conditional  
knockdown

Tet on/off

Tilling ENU mutagenesis

Genome editing ZFN, CRISPR/Cas9, TALEN

Transgenesis Meganuclease ISecI

Transposon Sleeping beauty, AcDs, Tol2, EnSpm-N6

Recombinases (site 
specific)

PhiC3, Cre-loxP, BAC, Fosmid, YAC

Molecular genetics Reporter cell line Promoter analysis,

Cell lineage Gaudi toolbox

Transactivation LexPR, Gal4, tet on/off, heat shock protein

Transcriptomics RNA detection In situ hybridization, expressed sequence tagging, 
CDNA library, RNA-seq, microarray, QPCR, PCR

Proteomics Protein detection Antibody based analysis, chromatography and 
spectrophotometry

Table 4. 
Summary of molecular biology application in fish.
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imply necessarily that it is responsible for or even involved in a disease. Effective 
use of these techniques will reduce economic losses as well as risk of infection 
among wild fish species. Taking advantage of the numerous tissue specific sequence 
information available in the database, predictions of gene function by bioinformat-
ics tools such as in silico and in vitro can be employed to identify candidate genes 
responsible for diseases or disease resistance that will reduce labor and cost of 
diagnosis and treatment. In silico approaches use computational tools to analyze raw 
DNA sequence data to simulate and predict the function and structural features of 
protein. In addition, the use of in vitro organoid models that refer to growing stem 
cells in 3D to generate cellular units that mimic an organ in both structure and func-
tion, is advancing rapidly. This method can also be applied in fish to study organ 
development, reproductive enhancement, fast tract selective breeding, disease and 
drug interactions as well. The new diagnostic techniques like, droplet digital PCR, 
Hybrid fusion FISH might improve the credibility and cost effectiveness of disease 
diagnosis.

Genome editing though has the advantage over traditional selective breeding 
and a trait can be introduced in a single generation without disrupting a favorable 
genetic background. Many traits of great significance in aquaculture could be 
targets for improvement by genome editing, including growth and reproductive 
performance, disease resistance, feed conversion efficiency, and tolerance to envi-
ronmental stressors (temperature, salinity and oxygen). Keeping the animal welfare 
issues of “genetically modified organisms” in mind, fish that carry more muscle 
mass have also been produced by the disruption of a single gene (Myostatin, an 
inhibitor of skeletal muscle growth) in Common carp, Tilapia, Red sea bream and 
Japanese anchovy [74, 75, 82, 91]. But still the key question is whether the precise 
natural genome modifications will find greater public acceptance and make a way to 
commercial aquaculture. The long-term impacts of these non-transgenic GMOs on 
wild biodiversity and environment are an uncharted area too. So, in the coming era, 
we must rethink to what extent we can and should use these molecular advance-
ments for aquaculture betterment.
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