47 research outputs found

    Hybrid Committee Classifier for a Computerized Colonic Polyp Detection System

    Get PDF
    We present a hybrid committee classifier for computer-aided detection (CAD) of colonic polyps in CT colonography (CTC). The classifier involved an ensemble of support vector machines (SVM) and neural networks (NN) for classification, a progressive search algorithm for selecting a set of features used by the SVMs and a floating search algorithm for selecting features used by the NNs. A total of 102 quantitative features were calculated for each polyp candidate found by a prototype CAD system. 3 features were selected for each of 7 SVM classifiers which were then combined to form a committee of SVMs classifier. Similarly, features (numbers varied from 10-20) were selected for 11 NN classifiers which were again combined to form a NN committee classifier. Finally, a hybrid committee classifier was defined by combining the outputs of both the SVM and NN committees. The method was tested on CTC scans (supine and prone views) of 29 patients, in terms of the partial area under a free response receiving operation characteristic (FROC) curve (AUC). Our results showed that the hybrid committee classifier performed the best for the prone scans and was comparable to other classifiers for the supine scans

    A Robust and Fast System for CTC Computer-Aided Detection of Colorectal Lesions

    Get PDF
    We present a complete, end-to-end computer-aided detection (CAD) system for identifying lesions in the colon, imaged with computed tomography (CT). This system includes facilities for colon segmentation, candidate generation, feature analysis, and classification. The algorithms have been designed to offer robust performance to variation in image data and patient preparation. By utilizing efficient 2D and 3D processing, software optimizations, multi-threading, feature selection, and an optimized cascade classifier, the CAD system quickly determines a set of detection marks. The colon CAD system has been validated on the largest set of data to date, and demonstrates excellent performance, in terms of its high sensitivity, low false positive rate, and computational efficiency

    Segmentation and polyp detection in virtual colonoscopy : a complete system for computer aided diagnosis

    Get PDF
    El cancer colorectal es una de las mayores causas de muerte por cancer en el mundo. La deteccion temprana de polipos es fundamental para su tratamiento, permitiendo alcanzar tasas del 90% de curabilidad. La tecnica habitual para la deteccion de polipos, debido a su elevada performance, es la colonoscopia optica (tecnica invasiva y extremadamente cara). A mediados de los '90 surge la tecnica denominada colonoscopia virtual. Esta tecnica consiste en la reconstruccion 3D del colon a partir de cortes de tomografia computada. Es por ende una tecnica no invasiva, y relativamente barata, pero la cantidad de falsos positivos y falsos negativos producida por estos metodos esta muy por encima de los maximos aceptados en la practica medica. Los avances recientes en las tecnicas de imagenologia parecerian hacer posible la reduccion de estas tasas. Como consecuencia de esto, estamos asistiendo a un nuevo interes por la colonoscopia virtual. En este trabajo se presenta un sistema completo de diagnostico asistido por computadora. La primera etapa del sistema es la segmentacion, que consiste en la reconstruccion 3D de la superficie del colon a partir del volumen tomografico. El aporte principal en este paso es el suavizado de la imagen. A partir de la superficie, se detectan aquellas zonas candidatas de ser polipos mediante una estrategia multi-escala que permite delinear con precision la zona. Luego para cada candidato se extraen caracteristicas geometricas y de textura, que son calculadas tambien en el tejido que rodea la zona a efectos de compararlas. Finalmente las zonas candidatas se clasifican utilizando SVM. Los resultados obtenidos son prometedores, permitiendo detectar un 100% de los polipos mayoresColorectal cancer is the second leading cause of cancer-related death in the United States, and the third cause worldwide. The early detection of polyps is fundamental, allowing to reduce mortality rates up to 90%. Nowadays, optical colonoscopy is the most used detection method due in part to its relative high performance. Virtual Colonoscopy is a promising alternative technique that emerged in the 90's. It uses volumetric Computed Tomographic data of the cleansed and air-distended colon, and the examination is made by a specialist from the images in a computer. Therefore, this technique is less invasive and less expensive than optical colonoscopy, but up to now the false positive and false negative rates are above the accepted medical limits. Recent advances in imaging techniques have the potential to reduce these rates; consequently, we are currently re-experiencing an increasing interest in Virtual Colonoscopy. In this work we propose a complete pipeline for a Computer-Aided Detection algorithm. The system starts with a novel and simple segmentation step. We then introduce geometrical and textural features that take into account not only the candidate polyp region, but the surrounding area at multiple scales as well. This way, our proposed CAD algorithm is able to accurately detect candidate polyps by measuring local variations of these features. Candidate patches are then classi ed using SVM. The whole algorithm is completely automatic and produces state-of-the-art results, achieving 100% sensitivity for polyps greater than 6mm in size with less than one false positive per case, and 100% sensitivity for polyps greater than 3mm in size with 2:2 false positives per case

    COMPOSITE KERNEL FEATURE ANALYSIS FOR CANCER CLASSIFICATION

    Get PDF
    Computed tomographic (CT) colonography, or virtual colonoscopy, is a promising technique for screening colorectal cancers by use of CT scans of the colon. Current CT technology allows a single image set of the colon to be acquired in 10-20 seconds, which translates into an easier, more comfortable examination than is available with other screening tests. Currently, however, interpretation of an entire CT colonography examination is time-consuming, and the reader performance for polyp detection varies substantially. To overcome these difficulties while providing a high detection performance of polyps, researchers are developing computer-aided detection (CAD) schemes that automatically detect suspicious lesions in CT colonography images. The overall goal of this study is to achieve a high performance in the detection of polyps on CT colonographic images by effectively incorporating an appearance-based object recognition approaches into a model-based CAD scheme. Our studies are focused in developing a fast kernel feature analysis that can efficiently differentiate polyps from false positives and thus improve the detection performance of polyps. We have developed a novel method of selecting kernel functions that are appropriate for the given data set and then use their linear combination in the construction of Kernel Gram matrix which can then used for efficient reconstruction of feature space. The main contribution of this work lies in providing a Composite kernel Matrix that involves appearance-based approach to improve kernel feature analysis for the classification of texture-based features. We evaluated our proposed kernel feature analysis on texture-based features that were extracted from the polyp candidates generated by our shape-based CAD scheme

    A Comparative Study for Methodologies and Algorithms Used In Colon Cancer Diagnoses and Detection

    Get PDF
    Colon cancer is also referred to as colorectal cancer; it is a kind of cancer that starts with colon damage to the large intestine in the last section of the digestive tract. Elderly people typically suffer from colon cancer, but this may occur at any age. It normally starts as a little, noncancerous (benign) mass of cells named polyps that structure within the colon. After a period of time these polyps can turn into advanced malignant tumors that attack the human body and some of these polyps can become colon cancers. So far, no concrete causes have been identified and the complete cancer treatment is very difficult to be detected by doctors in the medical field. Colon cancer often has no symptoms in an early stage so detecting it at this stage is curable but colorectal cancer diagnosis in the final stages (stage IV), gives it the opportunity to spread into different pieces of the body, which are difficult to treat successfully, and the person\u27s opportunities of survival become much lower. False diagnosis of colorectal cancer which means wrong treatment for patients with long-term infections and they will be suffering from colon cancer this causing the death for these patients. Also, cancer treatment needs more time and a lot of money. This paper provides a comparative study for methodologies and algorithms used in the colon cancer diagnoses and detection this can help for proposing a prediction for risk levels of colon cancer disease using CNN algorithm of deep learning (Convolutional Neural Networks Algorithm)

    Deep Learning Based Medical Image Analysis with Limited Data

    Full text link
    Deep Learning Methods have shown its great effort in the area of Computer Vision. However, when solving the problems of medical imaging, deep learning’s power is confined by limited data available. We present a series of novel methodologies for solving medical imaging analysis problems with limited Computed tomography (CT) scans available. Our method, based on deep learning, with different strategies, including using Generative Adversar- ial Networks, two-stage training, infusing the expert knowledge, voting based or converting to other space, solves the data set limitation issue for the cur- rent medical imaging problems, specifically cancer detection and diagnosis, and shows very good performance and outperforms the state-of-art results in the literature. With the self-learned features, deep learning based techniques start to be applied to the biomedical imaging problems and various structures have been designed. In spite of its simplity and anticipated good performance, the deep learning based techniques can not perform to its best extent due to the limited size of data sets for the medical imaging problems. On the other side, the traditional hand-engineered features based methods have been studied in the past decades and a lot of useful features have been found by these research for the task of detecting and diagnosing the pulmonary nod- ules on CT scans, but these methods are usually performed through a series of complicated procedures with manually empirical parameter adjustments. Our method significantly reduces the complications of the traditional proce- dures for pulmonary nodules detection, while retaining and even outperforming the state-of-art accuracy. Besides, we make contribution on how to convert low-dose CT image to full-dose CT so as to adapting current models on the newly-emerged low-dose CT data
    corecore