44 research outputs found

    Wireless synchronisation for low cost wireless sensor networks using DCF77

    Get PDF
    Wireless Sensor Networks (WSN) consist out of multiple end nodes containing sensors and one or more coordinator nodes which poll and command the end nodes. WSN can prove very efficient in distributed energy data acquisition, e.g. for phasor or power measurements. These types of measurements however require relatively tight synchronisation, which is sometimes difficult to achieve for low-cost WSN. This paper explores the possibility of a low-cost wireless synchronization system using the DCF77 long wave time signal to achieve sub-millisecond synchronisation accuracy. The results are compared to conventional GPS based synchronisation. As a practical example, the implementation of the described synchronisation method is proposed for a non-contact electrical phase identifier, which uses synchronised current measurements to distinguishing between the different phases in an unmarked electrical distribution grid

    Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system

    Get PDF
    On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor

    Network Virtual Machine (NetVM): A New Architecture for Efficient and Portable Packet Processing Applications

    Get PDF
    A challenge facing network device designers, besides increasing the speed of network gear, is improving its programmability in order to simplify the implementation of new applications (see for example, active networks, content networking, etc). This paper presents our work on designing and implementing a virtual network processor, called NetVM, which has an instruction set optimized for packet processing applications, i.e., for handling network traffic. Similarly to a Java Virtual Machine that virtualizes a CPU, a NetVM virtualizes a network processor. The NetVM is expected to provide a compatibility layer for networking tasks (e.g., packet filtering, packet counting, string matching) performed by various packet processing applications (firewalls, network monitors, intrusion detectors) so that they can be executed on any network device, ranging from expensive routers to small appliances (e.g. smart phones). Moreover, the NetVM will provide efficient mapping of the elementary functionalities used to realize the above mentioned networking tasks upon specific hardware functional units (e.g., ASICs, FPGAs, and network processing elements) included in special purpose hardware systems possibly deployed to implement network devices

    A frequency-based RF partial discharge detector for low-power wireless sensing

    Get PDF
    Partial discharge (PD) monitoring has been the subject of significant research in recent years, which has given rise to a range of well-established PD detection and measurement techniques, such as acoustic and RF, on which condition monitoring systems for highvoltage equipment have been based. This paper presents a novel approach to partial discharge monitoring by using a low-cost, low-power RF detector. The detector employs a frequency-based technique that can distinguish between multiple partial discharge events and other impulsive noise sources within a substation, tracking defect severity over time and providing information pertaining to plant health. The detector is designed to operate as part of a wireless condition monitoring network, removing the need for additional wiring to be installed into substations whilst still gaining the benefits of the RF technique. This novel approach to PD detection not only provides a low-cost solution to on-line partial discharge monitoring, but also presents a means to deploy wide-scale RF monitoring without the associated costs of wide-band monitoring systems

    IEEE 802.11 Ad Hoc Networks: Performance Measurements

    Get PDF
    In this paper we investigate the performance of IEEE 802.11b ad hoc networks by means of an experimental study. An extensive literature, based on simulation studies, there exists on the performance of IEEE 802.11 ad hoc networks. Our analysis reveals several aspects that are usually neglected in previous simulation studies. Firstly, since different transmission rates are used for control and data frames, different transmission ranges and carrier-sensing ranges may exist at the same time in the network. In addition, the transmission ranges are in practice much shorter than usually assumed in simulation analysis, not constant but highly variable (even in the same session) and depends on several factors. Finally, the results presented in this paper indicate that for correctly understanding the behavior of an 802.11b network operating in ad hoc mode, several different ranges must be considered. In addition to the transmission range, the physical carrier sensing range is very important. The transmission range is highly dependent on the data rate and is up to 100 m, while the physical carrier sensing range is almost independent from the data rate and is approximately 200 m. Furthermore, even though stations are outside from their respective physical carrier sensing range, they may still interfere if their distance is lower than 350 m

    BOUNDARY DETECTION ALGORITHMS IN WIRELESS SENSOR NETWORKS: A SURVEY

    Get PDF
    Wireless sensor networks (WSNs) comprise a large number of sensor nodes, which are spread out within a region and communicate using wireless links. In some WSN applications, recognizing boundary nodes is important for topology discovery, geographic routing and tracking. In this paper, we study the problem of recognizing the boundary nodes of a WSN. We firstly identify the factors that influence the design of algorithms for boundary detection. Then, we classify the existing work in boundary detection, which is vital for target tracking to detect when the targets enter or leave the sensor field
    corecore