
Network Virtual Machine (NetVM): 
A New Architecture for Efficient and Portable 

Packet Processing Applications  
 

                                                           
  The work presented in this paper is based on previous work partly funded by Telecom Italia Labs. This work has been carried out 
within the framework of the QUASAR project, funded by the Italian Ministry of Education, University and Research (MIUR) as part 
of the PRIN 2004 Funding Program. 

Loris Degioanni*, Mario Baldi*, Diego Buffa**, Fulvio Risso*, Federico Stirano***, Gianluca Varenni* 
* Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy 

**Telecom Italia Labs - System On Chip, Torino, Italy 
***Istituto Superiore Mario Boella, Torino, Italy 

 
{mario.baldi,loris.degioanni,fulvio.risso,gianluca.varenni}@polito.it; stirano@ismb.it; diego.buffa@tilab.com 

 
 

Abstract—A challenge facing network device designers, 
besides increasing the speed of network gear, is improving 
its programmability in order to simplify the implementation 
of new applications (see for example, active networks, 
content networking, etc). This paper presents our work on 
designing and implementing a virtual network processor, 
called NetVM, which has an instruction set optimized for 
packet processing applications, i.e., for handling network 
traffic. Similarly to a Java Virtual Machine that virtualizes 
a CPU, a NetVM virtualizes a network processor. The 
NetVM is expected to provide a compatibility layer for 
networking tasks (e.g., packet filtering, packet counting, 
string matching) performed by various packet processing 
applications (firewalls, network monitors, intrusion 
detectors) so that they can be executed on any network 
device, ranging from expensive routers to small appliances 
(e.g. smart phones). Moreover, the NetVM will provide 
efficient mapping of the elementary functionalities used to 
realize the above mentioned networking tasks upon specific 
hardware functional units (e.g., ASICs, FPGAs, and 
network processing elements) included in special purpose 
hardware systems possibly deployed to implement network 
devices. 

I. INTRODUCTION  
Nowadays networks demand ever increasing packet 

processing speeds. Additionally, more and more 
intelligence is requested to the network, making the old 
approach, entirely based on defining custom ASIC for 
packet processing, no longer feasible. For instance, ASICs 
guarantee extremely high packet rates, but they cannot be 
reprogrammed and the time needed to develop (and 
prototype) a new chip is increasingly high. 

A solution that can guarantee high packet processing 
rates, a new form of programmability and short 
developing time can be found in Network Processors. 
These are programmable chips whose architecture is 
particularly targeted to network packet processing. Their 
performances are obtained by a mixture of several 
components. First, a RISC-based processing core (which 
is well-known being very fast) that includes a reduced set 

of instructions, i.e. the ones that are most significant in 
packet processing (e.g. while floating point instructions 
are not present, there are special instructions for bit 
manipulation). Second, they implement a high degree of 
parallelism since there may be several execution engines 
inside the core that are able to execute multiple fragments 
of code in parallel. Third, there are some specialized 
hardware modules that are able to perform some of the 
complex tasks usually required in packet processing (e.g. 
table lookup engines). 

As a general purpose CPU can be used to process 
packets, a general purpose VM (such as CLR or JAVA) 
can be used for this task too. However, not being 
optimized for this, they will never match the performance 
of a specialized VM, in terms of speed, memory 
requirements, and processing time. This paper provides a 
first report of a project aiming at the definition of the 
architecture of a virtual machine optimized for network 
programming, which is called Network Virtual Machine 
(NetVM). This work has the potential to: 

• Simplify and speedup the development of 
optimized packet processing applications, such as 
traffic monitors, routers, firewalls; 

• Enable efficient mapping of the execution of 
software modules performing specific tasks onto 
optimized components of custom hardware 
architectures; 

• Provide a unifying programming environment for 
various hardware architecture; 

• Offer portability of packet processing applications 
across different hardware and software platforms; 

• Provide a reference architecture for the 
implementation of hardware (integrated) 
networking systems; 

• Provide a new tool for specification, fast 
prototyping, and implementation of hardware 
(integrated) networking systems targeted to a 
specific packet processing application. 



Section II, that outlines the motivations to and the 
potential benefits stemming from this work, further 
elaborated on the above implications. Section III discusses 
related work that broadly touches three areas: code 
portability across heterogeneous platforms, virtual 
machines, and, specifically, network and packet 
processing related virtual machines. The proposed NetVM 
architecture is outlined in Section IV and performance 
issues are discussed in Section V. Section VI draws some 
conclusions and briefs current and future work. 

II. MOTIVATIONS AND BENEFITS 
The NetVM aims to be a portable but efficient platform 

for demanding networking applications. While when the 
NetVM is executed by a general purpose CPU a NetVM 
program may be less efficient than a natively coded one, 
the situation may be reversed when the NetVM is 
executed by a network processor or a system with custom 
hardware and architecture. In fact, NetVM network-
specific instructions can be efficiently mapped onto 
custom functional units (e.g., ASICs and FPGAs) that 
have been designed to optimally execute their tasks. 

One of the problems of network processors is their 
complexity from the programmability point of view. Each 
device offers its own programming environment that 
usually includes a C-like compiler, which is different not 
only from vendor to vendor, but even between different 
lines of products of a single vendor. However, higher level 
approaches like C programming are not the ideal solution, 
because C has been invented for general purpose 
programming: it lacks many features that could help 
network development and presents some features that are 
not needed. For instance, the provided high-level 
languages lack of some of the standard functions (the ones 
that should not be related to network processing), while 
new ones are available (some that are needed to be able to 
exploit some hardware characteristics of the chip at best); 
therefore there is no guarantee about portability.  

As a consequence, the most affordable way to program 
these devices (and to get efficient programs out of them) is 
to use native assembly language, which is time-consuming 
and error-prone. This requires not only a deep knowledge 
of the target machine, but also a non-negligible amount of 
time to program the device. Additionally, porting a 
program from a platform to another (even belonging to the 
same manufacturer) is a nightmare. 

The idea behind the NetVM (Network Virtual Machine) 
architecture is to keep the high performance guaranteed by 
network processors while adding a reasonable degree of 
programmability. First, the NetVM defines the 
architecture for a new network processor, which is a 
reference architecture that wants to accomplish the most 
common tasks in packet processing. Additionally, it 
defines a way to extend this architecture by means of 
some additional functions (e.g. some hardware-based 
dedicated processors) in order to permit customization. 
Second, it defines the assembly language needed to 
program this virtual device and a set of specifications 
related to the interaction between every block (e.g. 
memory, execution units, etc.) inside the NetVM. Third, it 
defines how an application can interact with these 
components, e.g. how to download the code, how to get 
the results, and more. 

The main goal of the NetVM is to provide programmers 
with an architectural reference, so that they can 
concentrate on what to do on packets, instead of how to do 
that. Each vendor can define a target compiler that 
translates this code into device-specific code. This 
guarantees a high degree of portability of the code 
between different devices, while keeping the performance 
characteristics of the network processors. 

Taking this a step further, the NetVM architecture could 
be implemented in hardware, i.e., the architecture of the 
virtual machine could be used as the (basis for the) design 
of a hardware architecture for network processing (e.g., a 
network processor). 

Analogously, the NetVM code implementing a set of 
functionalities could be compiled in the hardware 
description of a (possibly integrated) system that 
implements such functionalities (e.g., an ASIC or an 
FPGA configuration). In other words, the NetVM could 
provide support to fast prototyping, specification, and 
implementation of network oriented hardware systems.  

NetVM

NetPE1
(e.g. filtering)

Ne
tw

or
k

Pa
ck

et

Ne
tw

or
k

D
at

a

O
ut

pu
t

P
or

t

In
pu

t
P

or
t

General
Purpose CPU

Classification
coprocessor

Crypto
coprocessor

CRC
coprocessorShared Memory

E
xc

ha
ng

e
Bu

ffe
r 1

E
xc

ha
ng

e
Bu

ffe
r 2NetPE2

(e.g. session statistics)In
pu

t
P

or
t

O
ut

pu
t

P
or

t

 
Figure 1. NetVM deployment example. 

In Figure 1 there is an example of deployment of 
NetVM environment: the entire architecture is built 
around the processing element. As shown in the figure, 
each NetPE (similarly to a processing engine of a network 
processor) isolates a specific functionality and uses some 
specialized functional unit (coprocessor) and some shared 
memories to exchange data and packets among all virtual 
machine elements. 

III. RELATED WORK 
The most adopted approach to generate code portable 

among heterogeneous platforms is the one of retargetable 
compilers. Besides a bunch of alternatives [1][2][3], this is 
the approach adopted for Network Processor Units 
(NPUs) as well [4][5][6][7]. This methodology derives 
from the area of embedded systems, of which NPUs are 
considered evolutions. 

A retargetable compiler is usually subdivided into two 
parts: a frontend and a backend. The frontend is in charge 
of source code analysis, generation of an intermediate 
representation, and machine-independent optimizations. 
The backend maps the machine-independent intermediate 
representation into machine-dependent assembly code. 
Such an approach is said to be retargetable since it is 
possible add one or more different target code generators 
to the backend. 

From this point of view, a virtual machine can be 
considered an evolution of a retargetable compiler. In such 
a solution, the source language compiler is the frontend. It 
parses syntax, performs high-level optimizations and 
produces bytecode. The bytecode replaces the 
intermediate representation of a retargetable compiler, and 
the JIT compiler replaces the backend: it reads 



intermediate language, validates it, performs machine 
dependent optimizations and generates native code. 

Compared to a retargetable compiler, a virtual machine 
provides a better insulation among the modules: the fact 
that the backend is a completely separate entity ensures 
easier portability toward several targets, and the 
possibility for the developer of an hardware platform to 
support it without having to do with the compiler. 
Moreover, taking place just before code deployment (or 
even during code execution), the just in time compilation 
process is able to exploit a better knowledge of the target 
hardware and the application execution patterns, and as a 
consequence can implement more aggressive 
optimizations. Another advantage of using a virtual 
machine is that portability is provided at bytecode level: a 
library of networking functions can be used on all the 
supported platforms, without the need of recompiling or 
modifying the source code. 

The best known virtual machines, like University of 
California P Machine [9], SUN JVM [8] or Microsoft 
CLR [10], are generic, system-independent platforms that 
run code generated by one or more languages. They are 
general purpose stack machines, with simple but standard 
instruction sets that provide instructions for load and store, 
control transfer, arithmetic operations, stack management 
and so on. 

Although rich and thoroughly validated, these solutions 
are by their nature very generic, because they virtualize a 
general purpose CPU, therefore they often do not fit 
efficiently to application-specific tasks. Considering for 
example network processing, programs are organized in a 
way that is different from the one of desktop applications; 
furthermore, they make use of different primitives. 

NetVM aims at providing specific support to network 
processing rather than to desktop applications: as seen in 
the previous paragraph, its architecture virtualises a NPU 
rather than a general-purpose processor. As a 
consequence, NetVM will never be better than Java or 
CLR in traditional tasks, however in the domain of 
network processing it provides advantages in terms of 
development time, portability and performance, both on 
traditional PC architectures and on programmable network 
devices. 

Note that some virtual processors for network-related 
tasks already exist. The Berkeley Packet Filter (BPF) [11], 
described in section 2.2, is a well known filtering 
processor that supports packet capture; it is included in 
several Unix kernels, in the NPF driver [14] and in the 
pcap library [15]. SNAP [12] is a stack-based active 
networking language derived from PLAN, designed to be 
carried inside network packets and executed by the 
network nodes. SNAP was born to be interpreted, but it 
has been enriched with a JIT compiler for the IBM 
PowerNP network processor. Proposed by Kind et al. [13], 
this JIT compiler is the first attempt to apply just-in-time 
compilation to a NPU, and has the merit to demonstrate 
that this road is practicable with good results, especially in 
terms of performance. However, all these solutions are too 
limited and too tied to specific domains to be compared 
with NetVM. Both of them rely on very simple (and lean) 
virtual processor, which export minimal instruction sets 
and limited hardware abstractions. None of them, for 
example, allows backward jumps. 

Another approach consists in subdividing a program 
into small pieces, each of which performs a single 
independent functionality; these pieces cooperate to create 
the overall application. Modularity in network processing 
applications has been investigated by a number of 
previous works, and is widely accepted nowadays. 

[16] provides results that demonstrate the advantages of 
structuring applications for network processors in a 
modular way, and describes a system, called NEPAL, able 
to extract modules from an existing sequential network 
processing program. The simulations of this system with a 
series of applications, shows that modularization is an 
effective method to improve performance of network 
processing. Modularization, on the other hand, allows 
utilizing efficiently not only the strongly parallel NPU 
architectures, but also the widespread SMP desktop 
workstations. 

Many existing systems make use of modularity; among 
them we can cite NetFilter [17], VERA [18] and 
Click [19]. Particularly, Click is a well-known software 
router, which introduced most of the concepts behind 
modular network processing, and which is used as a base 
and as a term of comparison by several following tools. 
NetVM too draws some concepts from its architecture. A 
Click router is made up of packet processing modules 
called elements. Elements implement specific functions 
like packet classification, queuing, scheduling, and 
interfacing with network devices. A router configuration 
is built connecting elements in a directed graph, which 
represents the flow of the packets inside the router. A 
Click element is written in C++, and is a subclass of the 
virtual class Element. It communicates with the external 
world sending or receiving packets by means of two kinds 
of connections: push or pull. In a push connection packet 
transfer is initiated by the source endpoint, while in a pull 
connection packet transfer is initiated by the destination 
endpoint. Variants of click have been proposed to address 
the issues of parallelism [20] and portability to network 
processors [21], and demonstrated the goodness and the 
feasibility of the modular approach under different 
hardware configurations.  

VERA, another modular router, is a step forward for 
some of these issues: it has an architecture that includes a 
hardware abstraction, and it considers the issue of 
portability toward different processors (including NPUs). 
However, the overall architecture is strictly oriented to 
routing (starting from the hardware abstraction, that 
includes for example the switching element), with very 
few concessions to other kind of processing. Moreover, 
actual modularity is remarkably less pronounced than in 
Click. All in all, VERA privileges architectural hierarchy 
and pure performance rather than modularity portability. 

IV. NETVM ARCHITECTURE 
The main goals of the NetVM are flexibility, simplicity 

and efficiency. These objectives and the experiences 
maturated in the field of Network Processor architecture, 
determine the most important architectural choices of the 
project. 

Packet processing, as well known, is suitable for a 
multi-stage pipeline or even for an array of processors: in 
fact processing can be easily divided across several 
processing units of moderate speed. Consequently, the 
NetVM has a modular architecture built around the 



concept of Processing Element (NetPE), which virtualizes 
(or, it could be said, is inspired to) the actual micro-engine 
of a Network Processor. 

Processing Elements (both hardware and software ones) 
have to deal with only few tasks, but they have to perform 
them in a challenging way: they have to process data at 
wire speed and in real time, they have to process variable 
size data (e.g. IP payload) or/and fragmented data (e.g. the 
IP payload fragmented over several ATM cells). 
Consequently, a Processing Element must have advanced 
memory management and performing scheduling 
algorithms for the units that access memory directly. In 
addition, it should execute specific tasks, such as binary 
searches in complex tree structures and CRC (Cyclic 
Redundancy Code) calculation with stringent time 
constraints.  

Multithreading is an expected feature of a Network 
Processor, hence an objective of our architectural design: 
in fact packets are quite independent from each other and 
suitable to be processed independently. For example, one 
of the first Network Processors — the Intel IXP1200 — is 
composed of six processing elements called Packet 
Engines. The larger the number of Processing Elements, 
the higher is the achievable degree of parallelism, since 
independent packets could be distributed to these units. 

In our NetVM’s architecture, a NetPE is a virtual CPU 
(with a proper set of instructions, and a local memory) that 
executes an assembly program that performs an individual 
function inside the NetVM and maintains private state. A 
NetVM application is assembled from several NetPEs (for 
example, Figure 1 shows an application made of two 
NetPEs), each of which implements a single functionality; 
complex structures can be built by connecting different 
NetPEs together. This modular view derives from the 
observation that many packet processing applications can 
be decomposed in simple blocks that can be connected in 
complex structures. These structures can exploit 
parallelism or sequentiality to achieve better performance. 
The modular approach is not new: other software 
solutions, like Netfilter [17] or Click [19] have 
demonstrated its goodness, and the parallel architecture 
(based on many simple microengines) of many network 
processors follows the same direction. 

Figure 2 shows how NetPEs can be connected to build 
more complex structures, either pipelined or parallel. In 
the first case the packets emitted by the output interface of 
an instance are received by the input interface of the 
following one. In the second case the packets coming 
from a single source are processed in parallel by two or 
more NetPEs. 

NetPE1
(e.g. filtering)

Input
NetPE2
(e.g. TCP
statistics)

Output

NetPE1
(e.g. IP

statistics)

NetPE2
(e.g. IPv6
statistics)

NetPE3
(e.g. TCP
statistics)

Input Output

 

Figure 2. Multiple NetPEs organized either in a pipelined structure or 
running in parallel. 

A. NetPE: the main Processing Element 
The NetPE is the core of the Network Virtual Machine. 

It runs the NetVM bytecode, performing actual processing 
of network data. 

Like most available virtual processors, NetVM, has a 
stack-based design. A stack-based virtual processor grants 
portability, a plain and compact instruction set and a 
simple virtual machine. The consequence of this choice is 
that no general-purpose registers are provided and all the 
instructions that need to store or process a value make use 
of the stack. Any NetPE has its own private stack. 

The execution model is event-based. This means that 
the execution of a NetPE is activated by external events, 
each one triggering a particular portion of code. Typical 
events are the arrival of a packet from an input endpoint, 
the request of a packet on an output connection endpoint 
or the expiration of a timer. 

1) The NetPE Assembly 
The NetVM instruction set derives from the one of a 

generic stack machine, with specific additions to support 
the particular architecture and application area of this 
virtual machine. Opcodes can be subdivided into several 
groups; the most important ones are listed in TABLE I. 

TABLE I  
EXAMPLE OF SOME INSTRUCTIONS PRESENT IN NETPE ASSEMBLY. 

Category Description Example Description 

Initialization 
Used to initialize the 
execution of a NetPE 
program 

set.share 
Set the size of the 
shared memory 

Data transfer Transfer data within 
memory dpcopy 

Copy a memory 
buffer from a 
portion of the  
memory to another 

Pattern 
matching 

Used to compare a 
value in a memory 
buffer against the top 
of the stack 

field.eq.8 

Compare the top of 
the stack with an  
8bit field  in 
memory 

Flow Control Used to control the 
execution flow 

jump 
Unconditional 
branch 

Stack 
management 

Used to manage the 
stack swap 

Swaps the two top 
elements of the 
stack 

Aritmethig 
and Logic 

Used to compute 
simple expressions ror 

Rotale right the 
value at the top of 
the stack 

 
Being targeted to network processing, the NetVM 

instruction set includes a group of more specific opcodes, 
not present in traditional stack machines. Most of these 
opcodes reflect the instructions that some network 
processors provide to speed up packet header processing. 
For instance, TABLE II shows some of them. 

TABLE II  
EXAMPLE OF NETWORK-SPECIFIC OPCODES. 

Opcode Description 
find.bit Find bit set. Returns the position of the first bit inside the 

top of the stack. 
mfind.bit Find masked bit set. Return position of the first set bit in 

the top value of the stack, with mask. 
clz Count leading zeroes. Counts the number of consecutive 

zeroes from the MSB of the top of the stack. 



Opcode Description 
set.bit Set one of the bits of the top of the stack. 

clear.bit Clear or flip one of the bits of the top of the stack. 

flip.bit Flip one of the bits of the top of the stack. 

test.bit Conditional test on a bit of the top of the stack. 

field.c.t Compare a value of width t in the packet memory with 
the top of the stack. Branch if the condition c is satisfied. 
t can be 8, 16 or 32; c can be eq, ne, lt le, gt, ge. This 
instruction can be used as a support for protocol header 
parsing. 

 
Since the NetVM may be potentially mapped on 

embedded systems and network processors, the use of 
high-level memory management systems like garbage 
collectors does not sound feasible. Therefore, the bytecode 
has a low-level, direct view of the memory. Furthermore, 
the memory is statically allocated during the initialization 
phase: the program itself, by means of appropriate 
opcodes, specifies the amount of memory it needs for 
being able to work properly. Obviously, these instructions 
can fail if not enough physical memory is present. 

The flexibility lost with this approach is balanced by the 
gained efficiency: the program can access the memory 
without intermediation thanks to ad-hoc load and store 
instructions. Specific instructions for buffer copies (a 
recurrent operation in network processing; some platform 
have even ad-hoc hardware units) are provided as well, 
either inside the same memory or between different ones. 
Moreover, knowing the position and the amount of 
memory before program execution allows very fast 
accesses when a JIT compiler is used because memory 
offsets can be pre-computed. 

Packets are stored in specific buffers, called exchange 
buffers, which are shared by two NetPE that are on the 
same processing path in order to minimize racing 
conditions when exchanging data. In order to optimise 
packet handling as fast as possible, network-specific 
instructions (e.g. string search) and coprocessors may 
have direct access to exchange buffers. Instructions for 
data transfer (to and from, or internal to exchange buffers) 
are provided as well. 

B. Coprocessors 
Like hardware network processors, that add specific 

capabilities to a general-purpose processor in a single 
chip, the NetVM adds specific functionalities for network 
processing to a standard stack-based instruction set. We 
call these specific functionalities coprocessors. The 
advantage of providing this is twofold. First, they can be 
mapped on features (where present) of real network 
processors, exploiting the advanced hardware and the 
coprocessors that often equip them. This allows to greatly 
increasing the efficiency of the programs when the target 
platform provides the proper hardware. For example, a 
program using the CRC32 functionality of a CRC 
coprocessor will be very efficient and simple on a 
platform with CRC hardware. Second, on general purpose 
systems they make use of optimized algorithms. They 
share code and data structures among different modules 
and thus grant good resource usage. For example, in a 
configuration with several NetPEs that call the CRC32 
functionality, the same coprocessor can be used by all 
these NetPEs. Furthermore, if the efficiency of the CRC32 

is improved with a better algorithm, every NetPE that uses 
it becomes faster, therefore the whole configuration (an 
not only a module) is enhanced. Finally, tasks like string 
search or classification can share data structures and tables 
among different modules for even better efficiency and 
resource usage. An example is the Aho-Corasick string-
matching algorithm, which can build a single automaton 
to search multiple strings. 

NetPEs communicate with coprocessors by means of a 
well-defined interface. Figure 1 shows (at the bottom) 
some coprocessors that may be present in the NetVM 
reference design. 

V. PERFORMANCE EVALUATION 
Although the current implementation of the NetVM is 

still in the early stages, we can figure out some numbers in 
order to evaluate the goodness of the proposed 
architecture. 

This preliminary performance evaluation is carried out 
against the BPF, probably the most known virtual machine 
in network processing arena. Figure 3 shows a very short 
program in BPF assembly language that, given an 
Ethernet frame, it checks if the frame contains an IP 
packet. Figure 4 contains a similar program coded 
according to the NetVM language. 

 
(0) ldh [12] ; load the ethertype field

(1) jeq #0x800  jt 2 jf 3   ; if true, jump to (2), else to (3)

(2) ret  #1514                ; return the packet length

(3) ret  #0                   ; return false  
Figure 3. Example of code that filters IPv4 packets with the BPF virtual 

machine. 

; Push Port Handler

;   triggered when data is present on a push-input port

segment .push

.locals 5

.maxstacksize 10

pop               ; pop the "calling" port ID

push 12           ; push the location of the ethertype

upload.16         ; load the ethertype field

push 2048         ; push 0x800 (=IP)

jcmp.eq send_pkt ; compare the 2 topmost values; jump if true

ret               ; otherwise do nothing and return

send_pkt:

pkt.send out1     ; send the packet to port out1

ret               ; return

ends  
Figure 4. Example of code that filters IPv4 packets with the NetVM 

virtual machine. 

A first comparison shows that the NetVM assembly is 
definitely richer than the BPF one, which gives an insight 
about the possibility of the NetVM assembly. However 
the resulting program is far less compact (the “core” is six 
instructions against tree in BPF). This shows one of the 
most important characteristics of the NetVM architecture: 
the stack-based virtual machine is less efficient of a 
competing register-based VM (such as the PBF is) 
because it cannot rely on a set of general-purpose 
registers. Hence, the raw performance obtained by NetVM 
cannot directly compete against the ones obtained by the 
BPF. 



TABLE III shows the time needed to execute the 
programs reported in Figure 3 and Figure 4: as expected, 
the BPF outperforms the NetVM. For instance NetVM is 
penalized not only due to the additional instructions, but 
also due to the fact that BPF code is translated into native 
x86 assembly, while NetVM instructions are interpreted at 
run-time. 

TABLE III  
NETVM PERFORMANCE EVALUATION. 

Virtual Machine Time for executing the “IPv4” filter (clock cycles) 

NetVM 2236 

BPF 124 
 
However, a NetVM is intended as a reference design 

and its code is not expected to be executed as it is. In order 
to achieve better performance, NetVM code must be 
translated into native code (thorough a recompilation at 
execution-time) according to the characteristics of the 
target platform. This justifies the choice of a stack-based 
machine, which is intrinsically slower, but its instructions 
are much simpler to be translated into native code. 
Performances are expected to be much better after a 
dynamic recompilation. The implementation of a just in 
time (JIT) compiler is part of our future work in the 
NetVM. 

VI. CONCLUSIONS 
This paper presents the architecture Network Virtual 

Machine (NetVM), a virtual machine optimized for 
network programming. The paper discusses the 
motivations behind the definition of such architecture and 
the benefits stemming from its deployment on several 
hardware platforms. These include simplifying and 
speeding up the development of performing packet 
processing applications whose execution can be efficiently 
delegated to specialized components of customized 
hardware architectures. Moreover, the NetVM provides a 
unifying programming environment for various hardware 
architecture, thus offering portability of packet processing 
applications across different hardware and software 
platforms. Further, the proposed architecture can be used 
as reference architecture for the implementation of 
hardware (integrated) networking systems. Finally, the 
NetVM can be used as a novel tool for specification, fast 
prototyping, and implementation of hardware (integrated) 
networking systems. 

Some preliminary results on the performance of a 
simple NetVM program shows that other simpler virtual 
machines targeted to networking applications outperform 
the NetVM that, in turn, provides higher flexibility. 
Ongoing work on the implementation of a Just In Time 
compiler (JITTER) for NetVM code aims at reversing or 
at least reducing this performance discrepancy. 

Since writing NetVM native code (bytecode) is not 
practical, work is being done towards the definition of a 
high level programming language and the implementation 
of the corresponding compiler into NetVM bytecode.  

Finally, in order to fully demonstrate the benefits, also 
in terms of performance, brought by the NetVM, further 
work includes the implementation of the virtual machine 
and its JITTER for a commercial network processor. 

BIBLIOGRAPHY 
[1] Lucent Technologies. “PayloadPlus Functional Programming 

Language.” Preliminary Product Brief. Lucent Technologies, 
Microelectronics Group. April 2000. 

[2] Rothfus, Eric J. “The Case for a Classification Language.” Agere 
White Paper. Sept 10, 1999. 

[3] Avatria, ADEPT development environment, 
http://www.avatria.com. 

[4] J. Li, F. R. Boyer, and E. M. Aboulhamid, "Retargetable C 
Compiler for Network Processors," Proceedings of 6th World 
Multiconference on Systemics, Cybernetics and Informatics (SCI 
2002), Orlando, Fl., July 2002. 

[5] C. W. Fraser, D. Hanson, A Retargetable C Compiler: Design and 
Implementation. The Benjamin/Cummings Publishing Company, 
Inc. 1994. 

[6]  Gigascale System Research Center, MESCAL: “Modern 
Embedded Systems: Compilers, Architectures, and Languages”, 
http://www.gigascale.org/mescal. 

[7] Karen Bartleson, A New Standard for System-Level Design, 
Datasheet, 1999, http://www.systemc.org/. 

[8] T. Lindholm, F. Yellin, The Java Virtual Machine Specification 
Second Edition, 1999. 

[9] Steven Perbenton and Martin C. Daniels, Pascal implementation 
of the P4 compiler, Ellis Horwood, 1982. 

[10] ECMA standard 335, Common Language Infrastructure (CLI), 
2nd edition, December 2002. 

[11] S. McCanne, V. Jacobson, The BSD Packet Filter: A New 
Architecture for User-level Packet Capture. Proceedings of the 
1993 Winter USENIX Technical Conference (San Diego, CA, Jan. 
1993), USENIX.  

[12] J.T. Moore, M. Hicks, S. Nettles, Practical Programmable Packets, 
in Proceedings of the 20th Annual Joint Conference of the IEEE 
Computer and Communication Societies (INFO-COM’01), April 
2001. 

[13] A. Kind, R. Pletka, B. Stiller, The Potential of Just-in-Time 
Compilation in Active Networks based on Network Processors, in 
Proceedings of IEEE OPENARCH'02, June 2002. 

[14] F. Risso, L. Degioanni, An Architecture for High Performance 
Network Analysis. Proceedings of the 6th IEEE Symposium on 
Computers and Communications (ISCC 2001), Hammamet, 
Tunisia, July 2001. WinPcap is available at 
http://winpcap.polito.it/. 

[15] V. Jacobson, C. Leres and S. McCanne, libpcap, Lawrence 
Berkeley Laboratory, Berkeley, CA. Initial public release June 
1994. Currently Available at http://www.tcpdump.org/. 

[16] [32] G. Memik, W. H. Mangione-Smith, NEPAL: A Framework 
for Efficiently Structuring Applications for Network Processors, 
Second Workshop on Network Processors – NP2, 2003. 

[17] P. Russell et al., Netfilter, http://www.netfilter.org. 
[18] S. Karlin, L. Peterson, VERA: an extensible router architecture, in 

Computer Networks, volume 38, number 3, 2002. 
[19] R. Morris, E. Kohler, J. Jannotti and M. F. Kaashoek: The Click 

modular router. Proceedings of the 1999 Symposium on Operating 
Systems Principles. 

[20] B. Chen, R. Morris, Flexible Control of Parallelism in a 
Multiprocessor PC Router, in Proceedings of the 2001 USENIX 
Annual Technical Conference, 2001. 

[21] N. Shah, W. Plishker, K. Keutzer, NP-Click: A Programming 
Model for the Intel IXP1200, 2nd Workshop on Network 
Processors (NP-2), 9th International Symposium on High 
Performance Computer Architectures (HPCA), Feb 2003. 

 
 


