469 research outputs found

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Robotic Applications in Neurosurgery

    Get PDF

    Influence of respiratory motion management technique on radiation pneumonitis risk with robotic stereotactic body radiation therapy.

    Get PDF
    Purpose/objectivesFor lung stereotactic body radiation therapy (SBRT), real-time tumor tracking (RTT) allows for less radiation to normal lung compared to the internal target volume (ITV) method of respiratory motion management. To quantify the advantage of RTT, we examined the difference in radiation pneumonitis risk between these two techniques using a normal tissue complication probability (NTCP) model.Materials/method20 lung SBRT treatment plans using RTT were replanned with the ITV method using respiratory motion information from a 4D-CT image acquired at the original simulation. Risk of symptomatic radiation pneumonitis was calculated for both plans using a previously derived NTCP model. Features available before treatment planning that identified significant increase in NTCP with ITV versus RTT plans were identified.ResultsPrescription dose to the planning target volume (PTV) ranged from 22 to 60 Gy in 1-5 fractions. The median tumor diameter was 3.5 cm (range 2.1-5.5 cm) with a median volume of 14.5 mL (range 3.6-59.9 mL). The median increase in PTV volume from RTT to ITV plans was 17.1 mL (range 3.5-72.4 mL), and the median increase in PTV/lung volume ratio was 0.46% (range 0.13-1.98%). Mean lung dose and percentage dose-volumes were significantly higher in ITV plans at all levels tested. The median NTCP was 5.1% for RTT plans and 8.9% for ITV plans, with a median difference of 1.9% (range 0.4-25.5%, pairwise P < 0.001). Increases in NTCP between plans were best predicted by increases in PTV volume and PTV/lung volume ratio.ConclusionsThe use of RTT decreased the risk of radiation pneumonitis in all plans. However, for most patients the risk reduction was minimal. Differences in plan PTV volume and PTV/lung volume ratio may identify patients who would benefit from RTT technique before completing treatment planning

    A methodology for design and appraisal of surgical robotic systems

    Get PDF
    Surgical robotics is a growing discipline, continuously expanding with an influx of new ideas and research. However, it is important that the development of new devices take account of past mistakes and successes. A structured approach is necessary, as with proliferation of such research, there is a danger that these lessons will be obscured, resulting in the repetition of mistakes and wasted effort and energy. There are several research paths for surgical robotics, each with different risks and opportunities and different methodologies to reach a profitable outcome. The main emphasis of this paper is on a methodology for ‘applied research’ in surgical robotics. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers, the most important first two tiers, and thus gain some acceptability. However, the lack of conformity to the criteria in the top tier, and the inability to conclusively prove increased clinical benefit, is shown to be hampering their potential in gaining wide establishment

    Neurorobotics in Pakistan

    Get PDF
    corecore