10,527 research outputs found

    Lie point symmetries and ODEs passing the Painlev\'e test

    Full text link
    The Lie point symmetries of ordinary differential equations (ODEs) that are candidates for having the Painlev\'e property are explored for ODEs of order n=2,,5n =2, \dots ,5. Among the 6 ODEs identifying the Painlev\'e transcendents only PIIIP_{III}, PVP_V and PVIP_{VI} have nontrivial symmetry algebras and that only for very special values of the parameters. In those cases the transcendents can be expressed in terms of simpler functions, i.e. elementary functions, solutions of linear equations, elliptic functions or Painlev\'e transcendents occurring at lower order. For higher order or higher degree ODEs that pass the Painlev\'e test only very partial classifications have been published. We consider many examples that exist in the literature and show how their symmetry groups help to identify those that may define genuinely new transcendents

    Continuous Symmetries of Difference Equations

    Full text link
    Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalized symmetries acting on solutions of difference equations, but leaving the lattice invariant. The other is to restrict to point symmetries, but to allow them to also transform the lattice.Comment: Review articl

    Invariant Modules and the Reduction of Nonlinear Partial Differential Equations to Dynamical Systems

    Full text link
    We completely characterize all nonlinear partial differential equations leaving a given finite-dimensional vector space of analytic functions invariant. Existence of an invariant subspace leads to a re duction of the associated dynamical partial differential equations to a system of ordinary differential equations, and provide a nonlinear counterpart to quasi-exactly solvable quantum Hamiltonians. These results rely on a useful extension of the classical Wronskian determinant condition for linear independence of functions. In addition, new approaches to the characterization o f the annihilating differential operators for spaces of analytic functions are presented.Comment: 28 pages. To appear in Advances in Mathematic

    Generalized Kadomtsev-Petviashvili equation with an infinite dimensional symmetry algebra

    Full text link
    A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the equation allows an infinite dimensional symmetry algebra. This algebra can involve up to three arbitrary functions of time. It depends on precisely three such functions if and only if it is completely integrable.Comment: AMSLaTeX, 16 pages, no figures, corrected some typos and added two new section

    Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations in Multi-dimensions

    Full text link
    A direct method for the computation of polynomial conservation laws of polynomial systems of nonlinear partial differential equations (PDEs) in multi-dimensions is presented. The method avoids advanced differential-geometric tools. Instead, it is solely based on calculus, variational calculus, and linear algebra. Densities are constructed as linear combinations of scaling homogeneous terms with undetermined coefficients. The variational derivative (Euler operator) is used to compute the undetermined coefficients. The homotopy operator is used to compute the fluxes. The method is illustrated with nonlinear PDEs describing wave phenomena in fluid dynamics, plasma physics, and quantum physics. For PDEs with parameters, the method determines the conditions on the parameters so that a sequence of conserved densities might exist. The existence of a large number of conservation laws is a predictor for complete integrability. The method is algorithmic, applicable to a variety of PDEs, and can be implemented in computer algebra systems such as Mathematica, Maple, and REDUCE.Comment: To appear in: Thematic Issue on ``Mathematical Methods and Symbolic Calculation in Chemistry and Chemical Biology'' of the International Journal of Quantum Chemistry. Eds.: Michael Barnett and Frank Harris (2006

    Singularity Analysis and Integrability of a Burgers-Type System of Foursov

    Full text link
    We apply the Painleve test for integrability of partial differential equations to a system of two coupled Burgers-type equations found by Foursov, which was recently shown by Sergyeyev to possess infinitely many commuting local generalized symmetries without any recursion operator. The Painleve analysis easily detects that this is a typical C-integrable system in the Calogero sense and rediscovers its linearizing transformation

    Isospectral deformations of the Dirac operator

    Full text link
    We give more details about an integrable system in which the Dirac operator D=d+d^* on a finite simple graph G or Riemannian manifold M is deformed using a Hamiltonian system D'=[B,h(D)] with B=d-d^* + i b. The deformed operator D(t) = d(t) + b(t) + d(t)^* defines a new exterior derivative d(t) and a new Dirac operator C(t) = d(t) + d(t)^* and Laplacian M(t) = d(t) d(t)^* + d(t)* d(t) and so a new distance on G or a new metric on M.Comment: 32 pages, 8 figure

    A new integrable generalization of the Korteweg - de Vries equation

    Full text link
    A new integrable sixth-order nonlinear wave equation is discovered by means of the Painleve analysis, which is equivalent to the Korteweg - de Vries equation with a source. A Lax representation and a Backlund self-transformation are found of the new equation, and its travelling wave solutions and generalized symmetries are studied.Comment: 13 pages, 2 figure
    corecore